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Abstract

Many Markov Decision Processes (MDPs) exhibit structure in their state and action spaces
that is not exploited. We consider the case where the structure can be modelled using a
directed acyclic graph (DAG) composed of nodes and edges. In this case, each node has
a state, and the state transition dynamics are influenced by the states and actions at its
parent nodes. We propose an MDP framework, Directed Acyclic Markov Decision Process
(DAMDP) that formalises this problem, and we develop algorithms to perform planning and
learning. Crucially, DAMDPs retain many of the benefits of MDPs, as we can show that Dy-
namic Programming can find the optimal policy in known DAMDPs. We also demonstrate
how to perform Reinforcement Learning in DAMDPs when the transition probabilities and
the reward function are unknown. To this end, we derive a posterior sampling-based algo-
rithm that is able to leverage the graph structure to boost learning efficiency. Moreover, we
obtain a theoretical bound on the Bayesian regret for this algorithm, which directly shows
the efficiency gain from considering the graph structure. We then conclude by empirically
demonstrating that by harnessing the DAMDP, our algorithm outperforms traditional poste-
rior sampling for Reinforcement Learning in both a maximum flow problem and a real-world
wind farm optimisation task.

1 Introduction

Reinforcement Learning (RL) algorithms are typically used to solve Markov Decision Processes (MDPs),
a general model for sequential decision-making under uncertainty in which the state of the environment
only depends on what happened in the previous time step. There exist many online reinforcement learning
approaches for finding an optimal policy in an unknown MDP (e.g. Watkins & Dayan (1992); Sutton et al.
(1999); Auer et al. (2008); Azar et al. (2017); Strens (2000)). However, these methods tend to be quite
general and do not make any assumptions beyond the MDP structure. This generality means that while
these methods can be applied to most MDP problems, they will fail to exploit any additional structure
present in the problem and, as such, can be sub-optimal in specific cases.

In this paper, we consider a special case of Markov Decision Processes in which the environment’s dependency
structure is encoded in a directed acyclic graph. In such a setting, the state space can be decomposed into
the state at the nodes of the graph, and the reward and transitions depend on the connectivity of each node.
In particular, the state at each node of the graph will depend on the state and action taken at all its parent
nodes.
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This structure is present in a lot of real-world settings. For example, in wind farm optimisation, e.g. Abkar
et al. (2023), a grid of rotating wind turbines creates a stream of turbulence that impacts the yield of
downstream wind turbines. The turbulence at downstream wind turbines depends on the orientation of the
upstream wind turbines. Finding the optimal orientation of all wind turbines in the wind farm becomes
an interesting control problem. Since the turbines’ locations are known, the interaction pattern between all
turbines composing the farm is also known. This interaction pattern can be encoded as a directed acyclic
graph, where each node represents a wind turbine and each edge indicates a potential interaction. The graph
structure we consider also covers any problem formulated as a maximum flow problem (i.e. network routing
Mammeri (2019) or supply chain management Rolf et al. (2023)). Such problems are typically modelled as
directed acyclic graphs where the state at each node depends on the action taken at the parent nodes, and
we observe the outcome of the actions at the parent nodes before taking actions at the child nodes.

This paper will show that leveraging this latent graphical structure can significantly improve performance,
both in theory and practice. We develop a Posterior Sampling algorithm that effectively exploits graphical
structures. We empirically show that the proposed algorithm outperforms algorithms that ignore the latent
structure. We also theoretically validate the improved efficiency of the proposed algorithm through an upper
bound on the Bayesian regret. This analysis is achieved by a careful analysis of the proposed algorithm,
which breaks down the combinatorial structure of the state and action spaces and reuses repeated patterns
within the graph. Note that while there are some similarities between the DAMDPs that we consider
and the Factored MDP (FMDP) framework (Boutilier et al., 2000), there are significant differences that
necessitate further innovation. As elaborated in Section 7, the main difference is that FMDPs consider a
time-homogeneous setting, where the state factorisation remains the same for every time step. On the other
hand, we consider a time inhomogeneous setting where the factorisation structure might change over time;
this allows us to capture more complex and realistic graph structures.

Contribution: To demonstrate the efficiency gains from leveraging a latent graphical structure, we start
by formalizing the sub-class of MDPs we focus on and then show that when the transition function and
rewards are known, a dynamic programming approach can be applied to find an optimal policy. When the
rewards and transitions are unknown, we develop a posterior sampling algorithm and show an upper bound
on its Bayesian regret. This upper bound demonstrates an improvement compared to methods that ignore
the latent graphical structure, such as Auer et al. (2008); Osband et al. (2013). We also provide empirical
validation of our method’s performance gain, first on a maximum flow problem and then on a wind farm
optimization problem. To summarize, this paper proposes, analyses and evaluates a novel posterior sampling
algorithm specifically designed to exploit the graphical structure present in many real-world problems.

2 Background

Before we introduce our decision-making framework, it is helpful to recall the foundations of Markov Decision
Processes and Directed Acyclic Graphs.

2.1 Fixed-Horizon Markov Decision Process

A fixed-horizon time-inhomogeneous MDP is a tuple M = ⟨{St}H
t=1, {At}H

t=1, {Rt}H
t=1, {Pt}H

t=1, H, ρ⟩. We
consider finite time-dependent state spaces St and action spaces At for t ∈ {1, . . . , H}. The mean reward
function is defined by Rt : St × At → [0, 1] for all t ∈ [H]. In state st, after performing action at, the
agent observes a reward Rt(st, at) + ηt, where ηt are independent identically distributed sub-Gaussian noise
(σ = 1). The probability of reaching a specific state st+1 ∈ St+1 when action at ∈ At was performed in
state st ∈ St is determined by Pt(st+1|st, at). The agent interacts with the environment during episodes of
length H, and in each episode, the initial state s1 ∼ ρ is drawn from the initial state distribution. For the
following H time steps, t ∈ {1, · · · , H}, the agent observes a state st ∈ St and decides to perform an action
at; the result of this action is immediately observed as a new state st+1 ∼ Pt(·|st, at) and an immediate
reward Rt(st, at) + ηt.
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Reinforcement learning algorithms aim to find policies µt : St → At for all t ∈ {1, · · · , H} that maximise
the cumulative reward over an episode. We measure this in terms of the value function:

V M
µ,t(st) = E

[ H∑
h=t

Rh(sh, ah)
∣∣∣∣ah = µh(sh), sh+1 ∼ Ph(·|sh, ah), st = s

]
, (1)

where the expectation is taken the stochastic transition dynamics sh+1 ∼ Ph(·|sh, ah). Often, we evaluate
the quality of a policy µ in terms of the value function of the initial state s1, V M

µ,1(s1), where the superscript
M indicates that we compute the value in the MDP M . The aim is to find an optimal policy µ∗ within the
set of Markov deterministic policies Π, which maximizes the value function,

µ∗ ∈ arg max
µ∈Π

V M
µ,1(s1). (2)

It is also helpful to define the Q-function as the expected reward the policy can obtain given that at time t in
state st ∈ St the action at ∈ At is executed, Qµ,t(st, at) = rt(st, at) +

∑
st+1∈St+1

Pt(st+1|st, at)V M
µ,t+1(st+1).

2.2 Directed Acyclic Graphs

Definition 2.1 (Directed Acyclic Graph). A directed acyclic graph (DAG) G = (V, E) is defined by a set
of vertices V and a set of edges E. Each edge has a direction associated with it. The graph is said to be
acyclic if there is no node for which there exists a path (with one or more edges) that leads to itself.

For any DAG, there is a corresponding topological ordering of the nodes (Bang-Jensen & Gutin, 2008,
Sec. 2.3.2). It assigns a layer to each node; the layer of a node is equal to the length of the longest path
from the root to the current node. If the DAG does not have a root we can trivially add an artificial node
that serves as a root. In this work, we consider this form of layered directed acyclic graphs, whose edges only
connect nodes from adjacent layers.
Definition 2.2 (Layered Directed Acyclic Graphs). A Layered, Directed Acyclic Graph (LDAG) is a DAG
with a specific topology. It has a unique root node and a unique leaf node. All nodes are organised in layers,
and all edges go from one layer to the next. Edges between nodes of the same layer are not allowed, as well
as edges that connect nodes that are two or more layers away.

With a layered directed acyclic graph, it is clear that all edges go from a layer l to a layer l + 1 with
l ∈ {1, · · · , H − 1}. Larger steps, backward steps, and transversal steps (within the same layer) are not
allowed. Note that the assumption of LDAG does not lose any generality. We show in Appendix G.1 that
for any DAG, we can construct an LDAG. Since the corresponding LDAG conserves the same connectivity
patterns, such transformation has a limited impact on the complexity measure considered in this article. We
illustrate and discuss this point further in Appendix G.

3 Directed Acyclic Markov Decision Process

We consider a particular sub-class of MDPs that can be rolled out on an LDAG. We define a Directed
Acyclic Markov Decision Process (DAMDP) as a tuple MG = ⟨X , {Yj}Ur

j=1, {rj}Ur
j=1, {pi}Uτ

i=1, H, {ρv
A}n1

v=1, G⟩.
An illustration of a simple DAMDP is given in the leftmost plot of Figure 1. Critically, in addition to
the MDP components (described below), a DAMDP MG is structured by an LDAG, G. The nodes of an
LDAG, G, can be organized in layers. A node belongs to a layer l if the shortest path from a root node
to the current node is of length l. The execution of an episode consists of a graph traversal from the first
layer to the last layer of G. Each node has its own state, and the original MDP state can be recovered by
combining all nodes’ states of the current layer. The horizon H of the DAMDP corresponds to the number
of layers in G = (V, E) since we sequentially observe the graph’s layers. Edges e ∈ E connect a node from
a layer l to a node in layer l + 1, for some l ∈ {1, · · · H − 1}. At each time step, a layer of nodes of G
describes the current state of the DAMDP; that is, in layer l, the nl nodes that compose this layer describe
the full state at time step l. For each layer t, we consider an arbitrary ordering of its nodes {1, · · · , nt},
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Directed Acyclic MDP Time steps Full states

1

2

3

4 1

2

3

4

t=1 t=2 t=3

s1 =
[

1
]

s2 =
[

2 , 3
]

s3 =
[

4
]

Atomic actions Reward contexts Transition Contexts
[Depending on outgoing edges] [Depending on outgoing edges] [Depending on incoming edges]

For nodes: 2 , 3

y ∈ Y1

For node: 1

y ∈ Y2

For nodes: 2 , 3

y (x, y) ∈ X × Y1x

For node: 1

(x, y) ∈ X × Y2x y

For nodes: 2 , 3

C(x) ∈ C1x

For node: 4

C(x) ∈ C2x

Figure 1: Illustration of the important components of DAMDPs. Inside the top leftmost box is an illustration
of a simple DAMDP, MG. The underlying graph has four nodes, which are visited within three time steps,
t = {1, 2, 3} as depicted on the second box of the top row. The last box of the top row illustrates the full
state representation of MG. At time step t, the full state st consists of the concatenation of the observations
at each node in layer t. The leftmost box of the bottom row shows the atomic action; in this particular
example, the dimensionality of the atomic action space depends on the number of outgoing edges, i.e. the
atomic action lies in Y1 if the node has a single outgoing edge, if the node has two outgoing edges the atomic
action lies in Y2. The second box of the bottom row depicts the two atomic reward contexts that arise in
MG, which are composed of the atomic state x and the atomic action y of the current node. The last box
of the bottom row shows the two atomic transition contexts that arise in MG, which consists of the atomic
states and atomic actions observed at the current node, x’s, parents (i.e. nodes from the previous time step).
Consequently, the transition function of a node depends on the number of incoming edges.
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which remains fixed for the entirety of the training. The edges of G encode the dependence between different
nodes. In a DAMDP, each node of G has an atomic state x, where x belongs to the atomic state space X .
In general, the atomic state space X is smaller than the original state space St for any time step t ∈ [H].
More precisely, the original state space St can be recovered by combining all the atomic state space of the
tth layer nodes. Similarly, at each node, we can perform an atomic action y ∈ Yj where {Yj}Ur

j=1 denote the
Ur different atomic action spaces1. For a given time step t ∈ [H], and a node v ∈ [nt] in layer t, which is in
atomic state xv

t , if the agent perform the atomic action yv
t ∈ Yj , it receives a reward rj(xv

t , yv
t ) + ηt,v, where

rj(xv
t , yv

t ) is the mean atomic reward function associated with the jth atomic action space Yj , and ηt,v is
i.i.d. sub-gaussian noise. Here, and throughout, v ∈ {1, · · · , nt} denotes the position of the current node in
its layer, and we use the notation xv

t and yv
t to refer to the vth atomic state and action in the tth layer. If two

nodes have the same number of parents and if their parents have the same atomic action spaces, then these
two nodes obey the same dynamics and are said to belong to the same transition equivalence class [τi], with
i ∈ {1, · · · Uτ } and Uτ the number of equivalence classes. Formally, this implies that the dynamics of nodes
that belong to the same equivalence class [τi] are governed by the same atomic transition distribution pi(·|c),
with c the transition context, which consists of the atomic state and actions at all parent nodes. Hence,
nodes with the same number of incoming edges have the same transition function. Concretely, let’s consider
the vth node of layer t and assume that this node belongs to the equivalence class [τit,v

], where we use the
notation it,v to denote the index of the equivalence class that node v in layer t belongs to. The atomic state
at this node is drawn from the atomic transition function xv

t ∼ pit,v (·|cv
t ). The transition context cv

t ∈ Cit,v

consists of the concatenation of all parent’s nodes atomic states and atomic actions. We denote by Cit,v the
space of all possible transition contexts, and note that this is the same for all nodes in the same equivalence
class. We denote by N v

t the set containing the parent nodes of the node v in the tth layer, then the space
of transition contexts for the ith equivalence class is, Ci =

⊗
v∈N v

t
X × Yjv

, the Cartesian product of all
possible configuration of the parent nodes atomic states and atomic actions. Finally, the initial atomic state
components are sampled from initial atomic state distribution xv

1 ∼ ρv
A for all nodes of the initial layer of G,

v ∈ {1, · · · , n1}.

We now illustrate the concepts introduced in this section with two practical examples. The key difference
between the two examples lies in the construction of the atomic action spaces. The first example considers
a single atomic action space Y for all nodes. While the second example considers that the atomic action
space of a node depends on the number of outgoing edges, hence there are Ur different atomic action spaces
and {Yj}Ur

j=1.

Wind farm yield optimisation: Optimisation of wind farm yield is an interesting control problem that
can be modelled as a DAMDP. The extraction of kinetic energy and the interactions between the wind and
the turbine’s physical structure decrease the wind speed and increase the intensity of the turbulence in a
wake region downstream of the wind turbine (Sedaghatizadeh et al., 2018). This wake effect impacts the
yield of the downstream turbine. It is, however, possible to deflect this effect by modifying the yaw angle,
the angle between the wind direction and the turbine head. While this can impact the turbine’s immediate
yield, it improves the wind conditions downstream and, consequently, the yield of the wind turbine in the
original wake region. There is an optimal set of yaw angles that maximises the wind farm’s total yield for
a given farm layout and atmospheric conditions. When modelling this problem as a DAMDP, the graph
G = (V, E) encodes potential interactions between wind turbines. Each node, v ∈ V , represents a wind
turbine in the farm. If an edge exists between node v1 ∈ V and node v2 ∈ V , it indicates that the wake effect
of wind turbine v1 might impact wind turbine v2. The atomic state space, X , consists of the atmospheric
conditions observed at a specific wind turbine. Similarly, the atomic action, Y, characterises the yaw angle
(i.e. the angle between the wind turbine and the upstream wind direction). Note that the atomic action
space is the same for all nodes, reflecting the fact that all wind turbines can be configured with the same set
of yaw angles. The atomic reward r(xv

t , yv
t ) observed at the node v in layer t is the yield of the corresponding

wind turbine. In this example, the atomic reward context (xv
t , yv

t ) consists of the current node’s atomic state
xv

t ∈ X and atomic actions yv
t ∈ Y. Atomic transitions functions, pi(x|c), determine the atomic state x ∈ X

1In some applications, the atomic action description can be tightly linked to the number of outgoing edges at each node,
hence it is natural to consider models where there are several different atomic action spaces.
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based on the atomic transition context (i.e. the parent nodes atomic states and actions), c ∈ Ci, where
Ci =

⊗
v∈N X × Y, with N the set of parent nodes.

Maximimum leaky flow: The maximum leaky flow problem Wayne (1999) is defined as a directed acyclic
graph G = (V, E), with a single root node, the source node v1 ∈ V , and a single leaf node, called the sink
node vN ∈ V . Using edges to transport flow from one node to the next, the goal is to transport as much
flow as possible from the source node to the sink node. Because G is directed, it is only possible to transport
flow in the edge’s direction. Two parameters govern the environment: edges have a given capacity, c > 0,
which denotes the maximum amount of flow that can be transported along that edge, and an unknown
failure probability, p ∈ [0, 1], which dictates how likely the edge is to fail to transport the flow assigned
to it. This environment can also be modelled as a DAMDP. More specifically, the latent graph is G, and
the atomic states space, X , describe the amount of incoming flow in each node. The atomic action spaces,
{Yj}Ur

j=1, describe the proportion of incoming flow to assign to each outgoing edge. Note, in this particular
problem instance, the atomic action space Yj depends on the number of outgoing edges j ∈ [Ur]. Indeed, to
specify how to distribute the flow among n edges necessitates n − 1 entries. The atomic reward rj(xv

t , yv
t )

is proportional to the amount of flow sent to the next layer by a node. The atomic reward context (xv
t , yv

t )
then consists of the node’s atomic state xv

t ∈ X and actions yv
t ∈ Yj . Similarly, the transition function,

pi(x|c), computes the distribution of flow at a node given its transition context. The transition context of
a node, c ∈ Ci consists of its parent’s atomic states x ∈ X which represent the amount of flow received at
each parent node and each parent’s atomic action which is the proportion of flow they assign to the current
node’s incoming edges. Section 6.1) discusses this setting in more detail and includes visualization of several
problem instances (see Fig. 6).

3.1 Relationship between DAMDPs and MDPs

A DAMDP MG = ⟨X , {Yj}Ur
j=1, {rj}Ur

j=1, {pi}Uτ
i=1, H, ρA, G⟩ is a special case of a finite horizon MDP, where

the state and action spaces are time-dependent, but the atomic dynamics are stationary. While the number
of nodes and the connection patterns might vary from one layer to the next, the atomic reward function and
the atomic transition function behaviours remain unchanged. Below, we discuss the relationship between
MG and the corresponding MDP M constructed from the atomic components and the graph G.

Time step and horizon: The execution of a DAMDP episode is tightly linked to the graph G. Since the
graph is layered, directed and acyclic, each layer l corresponds to a time step t in the corresponding MDP
M . Hence, the depth H of the graph corresponds to the MDP’s horizon. After executing K episodes, the
total number of time steps is T = HK.

State space: In any time step t, the full state st ∈ St is composed of the atomic state at each node in the
graph’s tth layer. Formally, in layer t we observe st = [x1

t , · · · , xnt
t ], where xv

t is the observation collected in
the vth node of layer t (see Fig. 1, middle box) and nt denotes the number of nodes in layer t. For simplicity,
we assume that each node has the same atomic state space, X . Then the full state space at time step t is the
Cartesian product of the atomic state space of each node in layer t, St =

⊗nt

v=1 X . We will use the term full
state to refer to the concatenation of the observed values at each node of a layer, i.e. st = [x1

t , · · · , xnt
t ], which

are the states observed in the corresponding MDP M . In contrast, an atomic state is the value observed at
a specific node, i.e. xv

t for some v ∈ {1, . . . , nt}.

Action space: We similarly define an atomic action space, which is the set of actions that can be taken
at a particular node. Note that all nodes do not necessarily have the same action space; {Yj}Ur

j=1 represents
the Ur different atomic action spaces available. Let yv

t ∈ Yjt,v be the atomic action of the vth node of layer
t, and Yjt,v

be the atomic action space associated with this specific node, with jt,v ∈ {1, · · · , Ur} indicating
which equivalence class node v belongs to. The full action space at time step t can be expressed as the
Cartesian product of the atomic action space of each node composing layer t, At =

⊗nt

v=1 Yjt,v
. The full

action at time step t, at ∈ At, is the concatenation of the atomic actions selected at each node of layer t,
at = [y1

t , · · · , ynt
t ]. In Figure 1 (rightmost plot), we show examples where the dimension of the atomic action

depends on the number of exiting edges.
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Policies: Let µ = {µt}H
t=1 denote a collection of time-dependent policies that maps a full state st to a full

action: µt : St → At for all t ∈ {1, · · · , H}. Since nodes in the same layer can have common successors, all
atomic actions in a given layer must be jointly selected; ignoring these common dependencies and selecting
atomic actions independently could lead to sub-optimal policies. Hence, the policies we consider still operate
on the full state and full action spaces. Note that sometimes, we are interested in the action selected at a
specific node. Let at = µt(st) be the full action, we denote the atomic action corresponding to the vth node
of layer t as µt(xv

t |st) ∈ Yjt,v
, to make it explicit that the policy requires knowledge about the full state in

order to select atomic actions.

Transition function: We assume that the known latent graphical structure encodes conditional indepen-
dence between nodes, with the state at a node depending only on the atomic state and actions taken at the
parent nodes. We split nodes into equivalence classes [τi] based on their connectivity patterns, with all nodes
in the same equivalence class having the same number of parents with the same atomic action spaces. The
DAMDP is then governed by a set of atomic transition functions {pi}Uτ

i=1. In particular, the probability of
observing an atomic state xv

t ∈ X at the vth node of layer t is pit,v (xv
t |cv

t ), where cv
t ∈ Cit,v

denotes the atomic
state and the atomic actions at all parent nodes and it,v denotes the equivalence class of the node. Figure 1
(rightmost plot) shows all the transition contexts that arise in a simple DAMDP. The atomic transition
function offers two immediate benefits. First, it reduces the number of dependent variables, focusing only on
the subset of variables that influences the next atomic state. Second, it is possible that a layer contains more
than a single node belonging to the equivalence class [τi]; in that case, within a single step, the algorithm
will observe several samples from the same atomic transition function, pi, offering more opportunities to
collect data and learn the true unknown dynamics. We sometimes want the transition context to reflect
that a specific full action a ∈ At−1 was executed in layer t − 1. In such cases, we write the context of node
v ∈ {1, · · · , nt} in layer t as cv

t,a. The context of any node in layer t can be constructed using the atomic
description of a, a = [y1

t−1, · · · , y
nt−1
t−1 ]. The probability of observing a new full state st+1, given that the

full action at has been executed in full state st is given by Pt(st+1|st, at) =
∏nt+1

v=1 pit,v (xv
t+1|cv

t,at
), where

st = [x1
t , · · · , xnt

t ], st+1 = [x1
t+1, · · · , x

nt+1
t+1 ] and cv

t,a denotes the context of node v in layer t given that full
action a was selected. Similarly, if actions are selected by a given policy µ, we make this relation explicit in
our notation with cv

t,µ. Note that for the first transition, at t = 1, we define the context to be the empty set,
that is, cv

1 = ∅.

Reward function: We assume that the expected reward at a time step t in the full MDP is the sum of
the atomic expected reward observed at each node composing the tth layer, Rt(st, at) =

∑nt

v=1 rjt,v (xv
t , yv

t ),
where xv

t and yv
t are the atomic states and atomic actions at node v, jt,v denotes the action space available

at the vth node of layer t, and rjt,v (x, y) is the mean of the atomic reward distribution associated with atomic
action set Yjt,v .

3.2 Learning in a DAMDP

As depicted in Figure 1 (rightmost plot), G can be partitioned into layers, each representing a time step,
t ∈ {1, . . . , H}, of the DAMDP. At each time step within an episode, t, the agent observes the state of each
node within the tth layer of the graph. Note that the number of nodes, nt, will change depending on the
time step t. Hence, the dimensionality of the full state and the observation also depends on the time step t.
After observing each node’s atomic state, the agent chooses the full action it wishes to perform (recall that
this corresponds to an atomic action being taken at each node). Again, the dimensionality of the full action
will depend on the current time step. Once the full action is taken, the agent observes the reward obtained
at each node in the current layer and the new atomic states in each node of the next layer. This process
repeats until the algorithm goes through all the H layers in the graph, which completes an episode.

Value function: Similar to the value function of a policy in an MDP, the value of a policy µ in a DAMDP
consists of the expected reward accumulated at each node; when ambiguous, we use the subscript MG to
indicate that this value function is computed under the DAMDP MG, namely ∀t ∈ {1, · · · , H} and ∀s ∈ St,

V MG
µ,t (s) = E

[ H∑
h=t

nh∑
v=1

rjh,v (xv
h, yv

h)
∣∣∣∣yv

h = µh(xv
h|sh), sh+1 ∼ Ph(·|sh, ah), st = [x1

t , · · · , xnt
t ]
]
. (3)
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Among all the Markov and deterministic policies that operate on the full state-action space µ ∈ Π, we aim
to find the optimal policy, µ∗, i.e. the policy with the largest value function:

µ∗ = arg max
µ∈Π

V MG
µ,1 (s1). (4)

We consider a sequential learning setting where the learner interacts with the DAMPD over K episodes.
After each episode, the learner can use the information gathered to improve their policy in the next episode.
To measure the learner’s performance on this task, we define the regret, which compares, at each point in
time, the performance of the current policy against the optimal policy µ∗.
Definition 3.1 (Regret). A reinforcement learning algorithm A chooses for each episode k ∈ {1, · · · , K}
the policy µk that interacts with the environment. The regret of algorithm A over K episodes is defined as,

Regret(K,A) =
K∑

k=1
∆k, (5)

where ∆k denotes the difference of value function in the true DAMDP, M∗
G, between the optimal policy µ∗

and the current policy µk:
∆k =

∑
s∈S1

ρ(s)
(

V
M∗

G
µ∗,1(s) − V

M∗
G

µk,1(s)
)

. (6)

where ρ(s) =
∏n1

v=1 ρv
A(xv

1) with s = [x1
1, · · · , xn1

1 ].

Note that the regret is a stochastic quantity that depends on the random atomic dynamics of M∗
G and the

algorithm’s sampling procedure. In the remainder of this paper, we consider the Bayesian regret, where we
also take an expectation over all possible DAMDPs MG that are drawn from a prior over MDPs f ,

E[Regret(K,A)] =
K∑

k=1
E[∆k].

Note that, in general, we use tk to denote the starting time of the kth episode, so tk = (k − 1)H + 1, and we
denote with tk + i the ith time step of episode k.

4 Dynamic Programming on Graphs

We begin by considering how to learn an optimal policy in a known DAMDP. This will form an important
building block of the reinforcement learning algorithm for DAMDPs presented in Section 5.

The planning algorithm 1 computes an optimal policy via backwards recursion. Dynamic programming
algorithms rely on the self-consistency property of the Bellman operator. We show that there exists an
atomic Bellman operator for any time step t ∈ {1, · · · , H}, T MG

µ,t , that performs a one-step rollout according
to the policy µ, using only the atomic description of the DAMDP MG,

(T MG
µ,t V MG

µ,t+1)(st) :=
nt∑

v=1
rjt,v (xv

t , µt(xv
t |st)) +

∑
st+1∈St+1

nt+1∏
v=1

pit,v (xv
t+1|cv

t+1,µ)V M
µ,t+1(st+1), (7)

for all t ∈ {1, · · · , H} and for all st ∈ St. Here st = [x1
t , · · · , xnt

t ] and cv
t,µ denotes the transition context of

the vth node of layer t when actions are selected by µ.

The following lemma guarantees the self-consistency of the atomic Bellman operator in equation 7.
Lemma 4.1 (Consistency of atomic Bellman operator). For any DAMDP MG =
⟨X , {Yj}Ur

j=1, {rj}Ur
j=1, {pi}Uτ

i=1, H, ρA, G⟩ and policy µ, the value function V MG
µ,t satisfies:

V MG
µ,t (st) = T MG

µ,t V MG
µ,t+1(st), (8)

for t ∈ {1, · · · , H − 1} and st ∈ St, with V MG

µ,H (sH) = maxa∈AH
RH(sH , a) for all sH ∈ SH .
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Algorithm 1 Planning on a DAMDP

Input: {p̂i}Uτ
i=1, {r̂j}Ur

j=1, G

uH(sH) = maxa∈AH

∑nH

v=1 r̂jH,v (sv
H , av) ∀sH ∈ SH

for t = H − 1, · · · , 1 do
for st ∈ St do

Evaluate ut(st) according to:

ut(st) = max
at∈At

{ nt∑
v=1

r̂jt,v (xv
t , yv

t ) +
∑

st+1∈St+1

nt+1∏
v=1

p̂it,v (xv
t+1|cv

t+1,at
)ut+1(st+1)

}
,

Set

π(s) = arg max
at∈At

{ nt∑
v=1

r̂jt,v (xv
t , yv

t ) +
∑

st+1∈St+1

nt+1∏
v=1

p̂it,v (xv
t+1|cv

t+1,at
)ut+1(st+1)

}

where st = [x1
t , · · · , xnt

t ] and at = [y1
t , · · · , ynt

t ].
end for

end for
Output: π and u1(s1) ∀s1 ∈ S1

This property is directly inherited from the MDP assumption; for the sake of completeness, a proof for this
lemma is given in Appendix B.

Before developing a reinforcement learning algorithm for DAMDPs in Section 5, we need to verify that there
exists a planning algorithm that can compute the optimal policy for a given atomic transition distribution p
and atomic reward function r. We show in Theorem 4.2 that this can be done via dynamic programming as
outlined in Algorithm 1. The algorithm leverages the one-step Bellman equation for DAMDP in equation 7.
It starts by finding the optimal full action for each full state at the last layer, H. This is trivial as the last
full action will not impact future rewards. For each time step t ∈ {H − 1, · · · , 1} and each full state st ∈ St

it uses the one-step Bellman equation for DAMDP equation 7 to find the corresponding value ut(s) and the
optimal full action a∗. The following theorem guarantees that Algorithm 1 retrieves the optimal policy µ∗

and its associated value function V MG
µ∗,1 for any known DAMDP MG. The policy µ∗ can be directly used

to find the optimal atomic actions, since the optimal full action, a∗
t = [y1,∗

t , · · · , ynt,∗
t ], directly encodes the

optimal atomic action, yi,∗
t for each node i ∈ {1, · · · , nt} of the tth layer of G.

Theorem 4.2. If Algorithm 1 receives as input {pi}Uτ
i=1 and {rj}Ur

j=1, the atomic reward and transition
functions of a known DAMDP MG, then it returns ut(st) and π, the optimal value function and policy, i.e.

u1(s1) = V MG
µ∗,1(s1) ∀s1 ∈ S1 and π = µ∗. (9)

The full proof is in Appendix C and follows the one presented in Puterman (2014, ch. 4).
Remark 4.3. Using the atomic description of the environment does not impact the computational complexity
of the planning algorithm, which remains O(H|A||S̄|2), where S̄ denotes the largest full state space.

5 Posterior Sampling RL on Graphs

This section presents PSGRL, a posterior sampling-based algorithm that can successfully leverage the latent
graphical structure present in DAMDPs. First, we describe the algorithm in Section 5.1. Second, we state
the main result of this paper, which is an upper bound on the Bayesian regret suffered by PSGRL in Section
5.2. Finally, we conclude this section by providing intuition on how the atomic representation used by
PSGRL leads to the observed efficiency gains in Section 5.3.

9
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Algorithm 2 Posterior sampling on graph MDPs (PSGRL)
Input Prior f encoding G
for episodes k = 1, 2, · · · do

Sample MG,k ∼ f(·|Dtk
)

Compute µMG,k using Algorithm 1
for time steps t = 1, · · · , H do

Select and execute at = µk(st, t)
Observe rt = [r1

t , · · · , rnt
t ] and st+1 = [x1

t+1, · · · , x
nt+1
t+1 ]

Append (st, at, rt, st+1) to Dtk+1

end for
end for

5.1 The algorithm

In Algorithm 2, we present our posterior sampling algorithm for DAMDPs, which leverages the rich underly-
ing structure in the DAMDP setting. The algorithm proceeds in episodes. At the beginning of each episode
k, the algorithm samples a DAMDP MG,k ∼ f(·|Dk), where f(·|Dk) represents the current belief about
the true DAMDP M∗

G, given the observations collected up to episode k, Dk. Note that in the context of
DAMDP, to sample MG,k the algorithm essentially samples a set of atomic transition functions {pi}Uτ

i=1 and
atomic reward functions {rj}Ur

j=1. The algorithm then computes the optimal policy µMG,k on MG,k and runs
the policy for an episode. The trajectory (st, at, rt, st+1)H

t=1 is added to our dataset Dk. We then use Dk to
update our belief about the distribution of the true DAMDP M∗

G. We assume that each transition function
is a categorical distribution governed by a set of parameters θpi ∈ RX , for all i ∈ {1, · · · , Uτ }. The expected
reward function has a Gaussian distribution with mean µrj and standard deviation σrj , for j ∈ {1, · · · , Ur}.
The prior f maintains a Dirichlet distribution over the space of parameters θpi and a Normal-inverse gamma
prior over the space of parameters µrj and σrj . This induces a prior distribution over DAMDPs.

5.2 Upper bound on the Bayesian regret

The regret suffered by PSGRL (Alg. 2) is bounded by the following theorem.

Theorem 5.1. If f is the distribution of M∗
G then the regret suffered by PSGRL (Alg. 2) over K episodes

is upper bounded by,

E[Regret(K, PSGRL)] = Õ
( Ur∑

j=1
H

√
XYjmj

rK +
Uτ∑
i=1

H

√
(XȲ )dimi

τ XK

)
(10)

where X = |X | is the size of the atomic state space, Ȳ = maxj∈{1,··· ,Ur} |Yj | is the size of the largest atomic
action space. For nodes that belong to the ith equivalence class [τi], di denotes the number of parent nodes,
and mi

τ denotes the number nodes in G that share the same equivalence class [τi]. Finally, mj
r is the number

of nodes in G with the same atomic action space Yj.

The proof of Theorem 5.1 is given in Appendix D. It follows the proof in Osband et al. (2013), with the key
difference being that the confidence sets are built around the estimates of the atomic transition and reward
functions. This approach has two immediate benefits. First, we might be able to collect more than a single
sample per time step. If we consider the case where we have k nodes in the same layer, t, that belong to the
same equivalence class, [τi], then at time step t, we collect k samples from pi. Second, the input space of the
atomic reward and transition function can be significantly smaller than the input space in the original MDP
(i.e. the transition and reward functions over the full state and action spaces). This leads to a significant
gain in performance since the atomic transition and reward function are easier to estimate than their full
state-action counterparts.

10
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The bound presented in Theorem 5.1 is an improvement over the lower bound that can be obtained by
running any RL algorithm in the full MDP and ignoring the latent graphical structure. Indeed, by Osband
et al. (2013), the lower bound for an RL algorithm that ignores the graphical structure is:

Ω
(

H∑
h=1

√
StAtKH

)
= Ω

(
H∑

h=1

√
(X

¯
Y )ntKH

)
. (11)

Where
¯
Y = minj∈{1,··· ,Ur} Yj is the size of the smallest action space in the DAMDP. The comparison of

PSGRL upper bound in equation 10 and the lower bound in equation 11 suggests an improved efficiency
for PSGRL compared to RL algorithms that ignore the latent graphical structure. In particular, note that
the number of incoming edges for any node in a given layer t is always bounded by the number of nodes at
the previous layer di ≤ nt−1 where i denotes the equivalence class of any node in layer t. In conclusion, the
regret suffered by PSGRL, as described in equation 10, is smaller than the regret any RL algorithm that
ignores the graphical structure G could suffer as described in equation 11:

Ur∑
j=1

H

√
XYjmj

rK +
Uτ∑
i=1

H

√
(XȲ )dimi

τ XK ≤
H∑

h=1

√
(X

¯
Y )ntKH.

5.3 Efficiency gains via compact confidence intervals

This section gives more insight into the sources of PSGRL’s efficiency gains. Specifically, it highlights that
we can leverage the atomic components of the DAMDP to construct more compact confidence intervals.
This leads to the improved theoretical guarantees seen in Theorem 5.1.

The fact that both the transition and the reward functions can be written in terms of their atomic counter-
parts represents an opportunity to increase the algorithm’s efficiency. Indeed, the size of the combinatorial
spaces St and At can present a challenge when a learner is tasked to learn the full transition distribution P
and the full reward function R directly. The inputs of the atomic transition functions and the atomic reward
functions lie in spaces much smaller than their non-atomic counterparts, presenting an opportunity to speed
up learning. The input space for the atomic transition function i depends on the size of the context space,
|Ci|, for i ∈ {1, · · · Uτ }, where Uτ is the number of equivalence classes. Critically, |Ci| includes states and
actions for only a subset of the nodes at the previous layer. This space is smaller than the full state-action
space, which is the Cartesian product of the atomic state-action pairs of all nodes in the previous layer.
Similarly, the atomic reward only depends on the atomic state x ∈ X and the atomic action y ∈ Yj , for
j ∈ {1, · · · , Ur}, which is also smaller than the full state-action space.

We can exploit the structure to achieve further efficiency gains by observing that the input of the atomic
transition and reward function can be observed more than once per time step. If two nodes in the same
layer have the same number of incoming edges, then they are learning the same atomic transition function.
Similarly, if they have the same atomic action space Yj , then they are learning the same atomic reward
function. This benefits the learner as they observe more samples corresponding to the atomic functions than
their non-atomic counterparts.

PSGRL (i.e. Alg. 2) leverages the above two properties to achieve efficiency gains. To see this, consider the
sampling procedure of PSGRL when it samples a candidate MDP MG,k from a set of plausible MDPs MG,k.
The regret of the algorithm is tightly linked with the pace at which the confidence sets MG,k concentrate
around the true MDP M∗

G. The atomic representation of the transition and reward function significantly
simplifies the construction of the confidence intervals, which leads to the observed efficiency gains. Indeed,
the width of the confidence interval for the atomic transition function2 depends on the square root of the
size of the outcome space,

√
X =

√
|X |. To see this, let p̂i be an empirical estimate of the atomic transition

function for nodes in the equivalence class i ∈ [Uτ ] and pi be the true atomic transition function. The
algorithm samples p̃i that are close to the current estimate p̂i

k, i.e. ||p̃i(·|c) − p̂i(·|c)|| ≤ ϵ with probability
greater than 1−δ for all c ∈ Ci and for all i ∈ [Uτ ]. The width of the confidence interval can be determined by

2we focus on the transition function, although similar arguments can be made for the reward function.
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the concentration inequality in (Weissman et al., 2003) to be ϵ ≤

√
2
n

(
X log

( 2
δ

))
+ 2di log

(
2Uτ XȲ mi

tk

δ

)
.

This explicitly shows that the width of the confidence interval scales with the square root of the outcome
space,

√
X. Algorithms that construct confidence intervals with the full representation of the transition

function will have confidence intervals that scale with respect to
√

|S|, which is much larger than
√

X,
leading to larger regret.

Another advantage of the atomic representation that PSGRL exploits is that the number of observed atomic
transitions is larger or equal to the number of observed full transitions. This is a direct consequence of
the atomic transition being stationary and potentially appearing several times within a layer or in different
layers. This potentially increases the number of observations for each atomic transition function more than
once per step. PSGRL uses all the atomic observations to construct confidence sets. This can speed up
learning as we see that the confidence intervals scale with 1/

√
n so as the number of observations increases,

the confidence sets shrink. However, using all the atomic observations complicates the analysis as we need
to account for the fact that we can observe a reward or a transition input more than once per time step, in
contrast to the classic analysis of RL frameworks that assume that a single sample is collected at each time
step.

6 Experiments

We now illustrate that the performance gains suggested by Theorem 5.1 manifest themselves empirically. We
consider two experimental settings: the maximum leaky flow of a graph and wind farm yield optimization.

6.1 Maximum leaky flow of a graph

The maximum leaky flow problem (introduced in Sec. 3) is defined as a directed acyclic graph G = (V, E),
with a single root node, the source node v1 ∈ V , and a single leaf node, called the sink node vN ∈ V . Using
the edges to transport flow from one node to the next, the goal is to transport as much flow as possible
from the source node to the sink node. Because G is directed, it is only possible to transport flow in the
edge’s direction. The environment is governed by two parameters: edges have a given capacity, c > 0, which
denotes the maximum amount of flow that can be transported along that edge, and an unknown failure
probability, p ∈ [0, 1], which dictates how likely the edge is to fail to transport the flow assigned to it.

The above problem is similar to the graph maximum flow problem (Ford & Fulkerson, 1956). However, the
leaky version of the problem is more challenging as the probability of failure is unknown to the learner. In
the leaky version of the problem, the learner is tasked to jointly learn the unknown dynamics and the paths
that maximise the expected flow.

We consider two algorithms for this problem. The proposed PSGRL, which has access to the graphical
structure and an extension of the PSRL algorithm (Osband et al., 2013) that works in time-inhomogeneous
full MDP settings, which does not know the graphical structure.

PSGRL representation: At each time step t, we observe the set of atomic states {xv
t }nt

v=1, which represent
the amount of flow into node v of layer t. For each node, the agent decides how to distribute the current
flow along its edges. For each node, the atomic action space consists of the possible allocation of flow along
its edges; the action space is discrete and represents a possible fraction of the total flow. The atomic reward
is then the amount of flow a specific node sends to the next layer of the graph.

PSRL representation: The full state representation at time step t, st is a vector representing the amount
of flow in each node in layer t. The full action representation is the flow assignment for all edges connecting
nodes from layer t to layer t + 1. The reward at time step t is the total amount of flow the agent managed
to move from layer t to layer t + 1.

Figure 2 compares the performances of PSGRL and PSRL on the leaky maximum flow problem. The first
row of Figure 2 depicts the DAMDP considered, while the second row shows the cumulated regret incurred
by PSGRL (in blue) and PSRL (in red). The uncertainty estimates around the curve are obtained by running
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Figure 2: The first row depicts the graph that governs the maximum leaky flow problem instance. The second
row shows the learning curve for both algorithms considered. PSRL ignores the latent graphical structure,
and PSGRL leverages the graphical structure. The left-most plot shows the performance obtained on a
simple chain graph. As expected, the performance for both algorithms is similar. Looking at the remaining
plots, where we consider larger diamond-shaped graphs, it is clear that as we increase the complexity of the
graph, the benefit of PSGRL becomes evident. To monitor the evolution of the regret, we ran ten different
seeds; the solid line represents the mean regret while the shaded area covers ± one standard deviation.

the experiment with ten seeds. We present in Appendix H (see Figure 6) another series of experiments that
highlights similar performance results on a different family of graphs.

The leftmost DAMDP is a simple chain graph. For this specific DAMDP instance, the atomic representation
and the full state representation are equivalent. This explains the similar performance of PSGRL and PSRL.
In contrast, considering more complex DAMDP instances, the benefit of leveraging the latent graphical
structure becomes more apparent. Breaking down the combinatorial nature of the full state space and full
action space using the DAG structure is beneficial. This is even more obvious on the rightmost plot, which
shows the most complex leaky maximum flow instance considered.
Remark 6.1. Even for a simple example like the leaky maximum flow problem, it is interesting to analyse
how the Bayesian regret bound for PSGRL equation 10 compares to the RL lower bound equation 11.
The diamond-shaped graph with 16 nodes in the rightmost part of Figure 2 implies that the DAMDP is
parameterized by the following quantities. The number of distinct atomic action spaces is Ur = 2 as some
nodes can distribute their flow in a single edge while others can distribute it in two different edges. We
observe that there are 6 nodes with a single outgoing edge, hence m1

r = 6 and 9 nodes with two outgoing
edges, m2

r = 9. The number of transition equivalence classes is Uτ = 2 as some nodes have two incoming
edges while others have a single incoming edge. We observe that there are 6 nodes with a single incoming
edge (i.e. m1

τ = 6) and 9 with two incoming edges (i.e. m2
τ = 9). We also note that the maximum number

of nodes in a layer is Nmax = 4, and the largest number of edges between two adjacent layers is Mmax = 6.
In this specific context, the regret upper bound of PSGRL can be expressed as follows:

E[Regret(K, PSGRL)] = Õ
( Ur∑

j=1
H

√
2XYjmj

rK +
Uτ∑
i=1

H

√
2(XȲ )dimi

τ XK

)
(12)

= Õ
(

H
√

12XY1K + H
√

18XY2K + H
√

12X2Ȳ K + H
√

19X3Ȳ 2K
)

. (13)

In orange, we have the regret associated with learning the transition function, and in blue, the regret
associated with learning the reward function. Similarly, using the characteristics of this specific problem
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Figure 3: The two leftmost plots summarize the results obtained on a wind farm task with six wind turbines.
The first plot shows the performance of PSGRL and PSRL, while the second plot illustrates the farm layout
(each node represents a wind turbine, and each edge contains the wake effect). The two rightmost plots
show the same experiment for a larger farm with nine wind turbines.

instance for any algorithm that do not leverage the latent graphical structure, such as PSRL, we obtain the
following lower bound:

E[Regret(K, PSRL)] = Ω
(

H∑
h=1

√
StAtT

)
= Ω

(
H∑

h=1

√
(X

¯
Y )ntT

)
(14)

= Ω
(
2
√

(X
¯
Y )1T + 2

√
(X

¯
Y )2T + 2

√
(X

¯
Y )3T +

√
(X

¯
Y )4T

)
, (15)

where
¯
Y denotes the smallest atomic action space.

In this simple example, the efficiency gain provided by PSGRL will be significant as long as
√

X3Ȳ 2 <√
(X

¯
Y )4 which is in general true, unless the discrepancy between the largest and smallest action space

becomes too large, note that in the diamond graph considered we expect to see an efficiency gain as
¯
Y = Y

and Ȳ = Y 2. Additionally, this efficiency gain is reinforced as we increase the size of the graph. Considering
that the number of nodes increases while the diamond-like architecture on Figure 2 is preserved, PSGRL’s
regret equation 12 scales linearly with the number of nodes, through mi

τ and mj
r. On the other hand, PSRL’s

lower bound on the regret scales exponentially with the number of nodes through nt, the number of nodes
at each layer of the graph.

6.2 Wind farm yield optimisation

One real-world example with a known latent graphical structure is the case of wind farm optimization. To
maximise the yield of a wind farm given a specific atmospheric condition (wind direction and speed), it is
important to consider the interaction between wind turbines. Wind turbines generate a stream of turbulent
wind that might impact the yield of a downstream wind turbine. This phenomenon is known as the wake
effect. The wake of a wind turbine can be deflected if the upstream wind turbine slightly rotates. This
introduces an interesting control problem as for a single wind turbine to maximize its yield, it has to face
the wind, but as soon as the yield of the entire farm is concerned, the optimal set of angles might include
wind turbines not facing the wind in order to maximize the yield of other wind turbines. In what follows,
we constructed a simple environment that models some of the dynamics of a wind farm. To model the
wake effect, we use FLORIS, a wind farm simulation software (Annoni et al., 2018) 3. To simplify the
setting, we discretize the atomic action Y = {30◦, 0◦, −30◦} which are the possible angles (with respect to
the wind direction) for each wind turbine. The atomic state encodes the wind speed observed at each wind
turbine. We also discretize the state and consider all increments of 0.1m/s from 6m/s to 10m/s. Similarly
to the maximum flow experiment, the full state and full action at time step t are obtained, respectively,
by concatenating the atomic state of each node in layer t and the atomic action of each node in layer t.
The performance of PSGRL on the resulting DAMDP and PSRL on the corresponding MDP is shown in

3The code for the FLORIS simulator is available at the following address: https://github.com/NREL/floris
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FMDP/DAMDP

t = 1 t = 2 t = 3 t = 4

DAMDP

t = 1 t = 2 t = 3 t = 4

DAMDP

t = 1 t = 2 t = 3 t = 4

Figure 4: This figure shows three examples of DAMDPs; the leftmost one has a constant connectivity
pattern. Each layer has the same number of nodes, and the connectivity pattern from one layer to the next
remains the same. MDPs that exhibit such a structure could be modelled by an FMDP or a DAMDP. On the
contrary, the middle and the rightmost graphs could only be modelled by DAMDPs. The example depicted
in the middle graph shows interactions that vary from one time step to the next, which cannot be modelled
by an FMDP. The rightmost graph shows a graph where the number of nodes varies from time step to time
step, which also cannot be modelled as an FMDP

Figure 3, where each plot considers wind farms with a grid layout with a varying number of wind turbines.
We consider a grid-like layout where we explicitly encode the impacts between a wind turbine and its closest
upstream wind turbine. While the plots on the left of Figure 3 show a wind farm composed of six wind
turbines, the right side of the figure shows an experiment with nine wind turbines. Again, it can be seen
that the benefits of running PSGRL on the DAMDP are significant compared to the performance of PSRL
on the corresponding MDP because of the re-usability of the atomic reward and transition function.

7 Related work

The DAMDP model considered in this paper is related to the factored MDP (FMDP) framework. While
the first works on FMDP considered only a factorisation of the state space (Kearns & Koller, 1999; Boutilier
et al., 2000; Guestrin et al., 2003), the FMDP framework was later extended to consider factorisation over the
state-action space (Osband & Van Roy, 2014; Chen et al., 2020) - which in spirit is more similar to DAMDP.
Indeed, FMDPs and DAMDPs share similar assumptions; they both consider the factorisation of the state
and action spaces, the additivity of the reward function and the factorisation of the transition function.
However, an important difference between the two frameworks is that FMDPs were initially proposed in
a time-homogeneous setting, while DAMDPs allow the structure to vary as dictated by the graph and its
connectivity.

In particular, DAMDP models a larger class of problems, as depicted in Figure 4; the encoding of the entire
episode in a graph allows the representation of richer dynamics. The leftmost plot of Figure 4 shows a
graph that exhibits the same connection patterns across all layers; such a problem could be modelled with
FMDPs or DAMDPs. The remaining examples in the middle and on the right side of Figure 4 represent
problems that cannot be directly modelled with FMDPs. The example in the middle of Figure 4 shows a
scenario where the connection dynamics change from one layer to the next, while the rightmost example
shows a graph with a varying number of nodes and edges in each layer. Since DAMDPs are rolled out on an
arbitrary directed acyclic graph, we can model each of the three graphs in Figure 4 with a DAMDP. On the
subset of DAMDP problems that can be modelled as FMDP, the regret obtained for the algorithm proposed
in Osband & Van Roy (2014) is equivalent to the regret of our algorithm, PSGRL.

In general, DAMDPs, a naive extension of the regret proposed Osband & Van Roy (2014) to the time
inhomogeneous setting, is worse than the result obtained in Theorem 5.1. A naive extension of the FMDP
framework to the time inhomogeneous setting, where the factored dynamics are encoded in graph G, would
produce a regret bound driven by the number of nodes in the graph G. To be more specific, using our
notation, the regret paid by the posterior sampling-based algorithm proposed in Osband & Van Roy (2014) to
estimate the transition distribution of an FMDP is

∑|V |
v=1 O(H(XȲ )dv +

√
(XȲ )dv XT ), where |V | represents

the number of nodes in G and dv is the number of incoming edges in node v. For the case of DAMDPs, the
bound we propose in Theorem 5.1 is tighter as in equation 10 the size of the transition context (XȲ )di is
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under the square root and, in general,
∑|V |

v=1(XY )dv ≥
∑Uτ

i=1

√
(XȲ )di , as the first sum is over all nodes in

the graph while the second is only over the Uτ equivalence classes. This difference becomes more evident
if we consider increasing the number of nodes |V | while preserving a relatively small number of equivalence
classes Uτ . For example, in the case of the diamond-shaped graph (e.g. Fig. 2), the graph’s architecture
remains constant, and the only term that grows is mt, the largest number of nodes in a single layer that has
the same transition context.

In this work, we have assumed that the graphical structure is known. An interesting direction for future
work would consist of learning the latent graphical structure. Structure discovery has been studied in the
case of time-homogeneous FMDP Degris et al. (2006); Strehl et al. (2007); Mutti et al. (2023), but these
methods have not been extended to the time-inhomogeneous setting. Approaches like the one considered in
Mutti et al. (2023), where the proposed algorithm, C − PSRL, can learn the factored representation, could
be extended to the time-inhomogeneous setting. Such an extension is not trivial as it would require adding
another layer of inference in our proposed algorithm and treating the latent graph G as a random variable.

8 Conclusion

In this paper, we have formalised a new subclass of MDPs that have an additional graphical latent structure,
DAMDPs. We then presented a posterior sampling-based algorithm, PSGRL, that exploits this graphical
structure to efficiently learn a policy. We finally showed that PSGRL outperforms PSRL both in theory and
in practice when this graphical structure is present.

Although the structure of DAMDPs may appear restrictive, we argue that it does appear in many practical
settings, including the maximum flow of a graph and wind farm yield optimisation setting discussed in
this paper. However, an immediate future step could be to extend our model. First, we could add edge
attributes; for example, if we revisit the wind farm optimisation example presented in Section 6.2. We could
imagine that the potential effect two wind turbines have on each other might depend on the relative distance
between the two; adding additional attributes to the edge would allow us to consider a richer set of transition
dynamics and to model real-world problems more realistically. Such an increase in complexity will impact
the upper bound on the regret but would offer more flexibility in the modelling. Second, to accommodate
a wider range of real-world problems, the proposed framework could be extended to allow for continuous
state and action. Quantifying the benefit of the graphical factorisation in such a context remains of great
interest. We leave these endeavours for future work as, for the time being, our graph-based approach renders
a potentially large subset of real-world MDPs amenable to more efficient training. This phenomenon is even
more evident when we consider that the graph computations are inherently parallelisable.
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A Notation

Symbol Description
H The episode’s horizon.
G The additional structure encoded in a LDAG.
X The atomic state space.
S The full state space.
Y The atomic action space.
A The full action space.
Ur The number of different action spaces.
rj An atomic reward function with j ∈ [Ur].
Rt The full MDP’s mean reward function at time ste t ∈ [H].
Uτ The number of nodes equivalence classes.
pi The atomic transition function for nodes in equivalence class i ∈ [Uτ ].
Pt The full MDP’s transition function at time t ∈ [H].
ρv

A The atomic initial distribution for node v in the first layer of G.
ρ The full MDP’s initial state distribution.

B Proof of the consistency of the atomic Bellman operator

Lemma B.1 (Consistency of the atomic Bellman operator). For any DAMDP MG =
⟨X , {Yj}Ur

j=1, {rj}Ur
j=1, {pi}Uτ

i=1, H, {ρv
A}n1

v=1, G⟩ and policy µ, the value function V MG
µ satisfies:

V MG
µ,t (st) = T MG

µ,t V MG
µ,t+1(st), (16)

for t ∈ {1, · · · , H − 1} and st ∈ St, with V MG

µ,H (sH) = maxa∈AH
RH(sH , a) for all sH ∈ SH .

Proof.

T MG
µ,t V MG

µ,t+1(st) =
nt∑

v=1
rjt,v (xv

t , µ(xv
t |st)) +

∑
st+1∈St+1

nt+1∏
v=1

pit,v (xv
t+1|cv

t+1,µ)V MG
µ,t+1(st+1)

=
nt∑

v=1
rjt,v (xv

t , µ(xv
t |st)) +

∑
st+1∈St+1

nt+1∏
v=1

(
pit,v (xv

t+1|cv
t+1,µ)E

[
H∑

h=t+1

nh∑
v=1

rjt+1,v (xv
t+1, µ(xv

t+1|st+1))
])

= E

[
H∑

h=t

nh∑
v=1

rjt,v (xv
t , µ(xv

t |st))
]

= V MG
µ,t (st)

To obtain the first equality, we used the definition of the Bellman operator, and to obtain the second
equality, we used the definition of V MG

µ,t+1. Observing that we consider all possible next state st+1 weighted
by its probability of appearing, we can directly include this computation into the expectation leading to the
third equality.

C Proof of convergence of Algorithm 1

Theorem C.1. If Algorithm 1 receives as input p and r, the atomic reward and transition functions of a
known DAMDP MG, then it returns u1(s1) and π, the optimal value function and policy, i.e.

u1(s1) = V MG
µ∗,1(s1) and π = µ∗. (17)

Proof. The proof follows the one presented in Puterman (2014, ch. 4) and consists of two parts.
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Part i: Show that the learned value function ut(st) ≥ V MG
π,t (st) for all π ∈ Π and for all (t, st), ∈ {1, · · · , H}×

St, where Π is the class of all deterministic and Markov policies.

Part ii: Show that the algorithm’s output satsifies ut(st) = V MG
π∗,t (st) for all t and all s ∈ St.

Proof of i: Let π ∈ Π be any policy in the class of deterministic Markov policies. Since at the last time
step H the goal is only to maximise the immediate reward, the suggested result holds at time step H,
uH(sH) ≥ V MG

π,H (sH), for all sH ∈ SH . Let’s now assume that ut(st) ≥ V MG
π,t for t = h + 1, · · · , H. We prove

by induction that it also holds for t = h,

uh(sh) = max
a∈Ah

{ nh∑
v=1

rjh,v (xv
h, yv

h) +
∑

sh+1∈Sh+1

nh+1∏
v=1

pih,v (xv
h+1|cv

h+1,a)uh+1(sh+1)
}

≥ max
a∈Ah

{ nh∑
v=1

rjh,v (xv
h, yv

h) +
∑

sh+1∈Sh+1

nh+1∏
v=1

pih,v (xv
h+1|cv

h+1,a)V MG

π,h+1(sh+1)
}

≥
nh∑

v=1
rjh,v (xv

h, π(xv
h|sh)) +

∑
sh+1∈Sh+1

nh+1∏
v=1

pih,v (xv
h+1|cv

h+1,π)V MG

π,h+1(sh+1)

=
nh∑

v=1
rjh,v (xv

h, π(xv
h|sh)) + Eπ

[ H∑
t=h+1

nt∑
v=1

rjt,v (xv
t , yv

t )
]

(by def. of V MG in equation 3)

= V MG

π,h (s)

where the notation Eπ is used to explicitly mention that actions are selected according to the policy π.

Proof of ii: The second part is also shown by induction. We start by observing that the last step focuses
only on maximising the immediate reward. So at time step H it trivially holds that uH(s) = V MG

∗,H (s) for all
s ∈ SH . We then assume that ut(s) = V MG

∗,t (s) for t = h + 1, · · · , H and for all s ∈ St. Then,

uh(s) = max
a∈Ah

{ nh∑
v=1

rjh,v (xv
h, yv

h) +
∑

s′∈Sh+1

nh+1∏
v=1

pih,v (xv
h+1|cv

h+1,a)uh+1(s′)
}

= max
a∈Ah

{ nh∑
v=1

rjh,v (xv
h, yv

h) +
∑

s′∈Sh+1

nh+1∏
v=1

pih,v (xv
h+1|cv

h+1,a)V MG

∗,h+1(s′)
}

=
nh∑

v=1
rjh,v (xv

h, µ∗(xv
h|sh)) +

∑
s′∈Sh+1

nh+1∏
v=1

pih,v (xv
h+1|cv

h+1,∗)V MG

∗,h+1(s′)

= V MG

∗,h (s)

Where the third line is obtained by the hypothesis that ut(s) = V MG
∗,t (s) for t ≥ h+1 and from the definition

of µ∗.

D Proof of Theorem 5.1

We follow the proof structure of Osband et al. (2013), where the analysis focuses on a modified regret term
that removes the dependency on µ∗ and is equivalent to the original regret in expectation. For any episode
k, we can write the modified regret as follows:

∆̃k =
∑

s1∈S1

ρ(s1)(V MG,k

µk,1 (s1) − V
M∗

G
µk,1(s1)). (18)
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where M∗
G is the true DAMDP and MG,k is the DAMDP sampled at episode k.

The equivalence in expectation between the original regret ∆k and the modified regret ∆̃k is possible thanks
to the following lemma, which is first presented in Osband et al. (2013, Lemma 1) and restated below in the
DAMDP setting:
Lemma D.1. If f is the distribution of M∗

G and MG,k ∼ f then, for any σ(Dk)−measurable function g,

E[g(M∗
G)|Dk] = E[g(MG,k)|Dk]. (19)

Where σ(Dk) is the σ-algebra generated by all the data accumulated up to episode k, Dk.

This allows the following equivalence between the two different regret terms, E
[∑K

k=1 ∆k

]
= E

[∑K
k=1 ∆̃k

]
.

Indeed, since ∆k −∆̃k =
∑

s1∈S1
ρ(s1)(V Mk

µk,1(s1)−V M∗

µ∗,1(s1)), from Lemma D.1, we get that E[∆k −∆̃k|Dk] =
0. Finally, by the tower rule E[∆k − ∆̃k] = E[E[∆k − ∆̃k|Dk]] = 0.

To lighten the notation we now write V k
µk,i for V Mk

µk,i. Working with the modified regret ∆̃ (presented in
equation 18) allows us to rewrite the modified regret in terms of Bellman error,

E[∆̃k|M∗
G, MG,k] = E

[ H∑
i=1

(T MG,k

µ,i − T M∗
G

µ,i )V k
µ,i+1(stk+i)

∣∣∣∣M∗
G, MG,k

]
. (20)

To prove that equation 20 holds, we apply the Dynamic programming equation 7 inductively (note that we
denote by pi

∗(x|c) the atomic true transition distribution for nodes that belong to the equivalence class [τi]):

(V k
µk,1 − V ∗

µk,1)(stk+1) = (T k
µk,1V k

µk,2 − T ∗
µk,1V ∗

µk,2)(stk+1)

= (T k
µk,1 − T ∗

µk,1)V k
µk,2(stk+1) +

∑
s′∈S2

n2∏
v=1

p
i2,v
∗ (xv

2|cv
2)(V k

µk,2 − V ∗
µk,2)(s′)

= (T k
µk,1 − T ∗

µk,1)V k
µk,2(stk+1) + (V k

µk,2 − V ∗
µk,2)(stk+2) + dtk+1

= · · ·

=
H∑

h=1
(T k

µk,h − T ∗
µk,h)V k

µk,h+1(stk+h) +
τ∑

i=1
dtk+h

for

dtk+h =
∑

s′∈Sh+1

nh+1∏
v=1

p
ih,v
∗ (xv

h+1|cv
i+1)(V k

µk,h+1 − V ∗
µk,h+1)(s′) − (V k

µk,h+1 − V ∗
µk,h+1)(stk+h+1).

Since E[(V k
µk,h+1 − V ∗

µk,h+1)(stk+h+1)|M∗
G, MG,k] =

∑
s′∈Sh+1

∏nh+1
v=1 (pih,v

∗ (xv
h+1|cv

h+1,µk
)(V k

µk,h+1 −
V ∗

µk,h+1)(s′) the terms dtk+h disappear in expectation (i.e. E[dtk+h|M∗
G, MG,k] = 0 for all k and h ∈

{1, · · · , H}) and so we obtain equation 20.

Since the regret has been rewritten as the sum of one-step Bellman errors (see equation 20), the next step is
to show that as interactions with the environment are observed, the sampled DAMDPs, MG,k, concentrate
around the true DAMDP M∗

G. This is done in the following subsection.

D.1 Confidence sets

For the remainder of this section, the notation is a bit more involved. The below list introduces or recalls
the concepts and the notation used.
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1. G = (V, E) is an LDAG that encodes the underlying structure in the execution of a DAMDP episode.
We denote the ith node of layer t by vi

t. We recall that each layer t = 1, · · · , H has nt nodes. The
graph has a total of |V | =

∑H
t=1 nt = n nodes.

2. If two nodes vi1
t1

and vi2
t2

, with (i1, t1) ̸= (i2, t2) have the same number of parents and their parents
have the same atomic action space, they belong to the same transition equivalence class [τi]. We
denote by di the number of parent (or incoming edges) of a node that belongs to equivalence class
[τi]. All nodes in G belong to one of the Uτ equivalence classes, [τi]Uτ

i=1. The number of nodes in
G that belong to the same equivalence class is denoted by mi

τ , and
∑Uτ

i=1 mi
τ = n. For example, in

Fig. 1, there are two different equivalence classes, Uτ = 2, because there exist nodes with two parent
nodes or a single parent node.

3. Each equivalence class [τi] with i ∈ {1, · · · , Uτ }, has a corresponding state-action space Ci =⊗di

k=1(X × Yk) that contains all the possible values the transition context (of an element of the
ith equivalence class [τi]) can take. Recall that the atomic action space might depend on the node,
so two nodes belong to the same equivalence class if they have the same number of parent nodes
with the same atomic action spaces. This space consists of the atomic states and the atomic action
values of each parent of the node. We can upper-bound the size of this context space by (XȲ )di ,
where di is the number of parent nodes in the ith equivalence class, and Ȳ is the size of the largest
atomic action space.

4. Each equivalence class [τi] has a dedicated transition function pi(·|ci) for all i ∈ {1, · · · , Uτ } and all
possible transition context ci ∈ Ci.

5. Ur is the number of distinct atomic action sets. For example, in the case of the leaky maximum
flow problem in Section 6.1 Ur = 2, the atomic action space is different if a node has a single out-
going edge or two out-going edges. In the wind farm optimisation problem Ur = 1, regardless of
the number of outgoing edges, the atomic action space of a node remains the same. The number
of nodes in G that have the atomic action set j is denoted by mj

r, for all j ∈ {1, · · · , Ur}. Then,∑Uj

j=1 mj
r = n, where n is the number of nodes in G.

6. For each distinct atomic action set {Y}Ur
j=1, we call the atomic reward context the associated atomic

state-action space Zj = X × Yj . We denote by zj ∈ Zj an element of the reward context j.

7. For each atomic action set {Yj}Ur
j=1 we define a corresponding atomic reward function rj(zj).

8. Define Nτ,i
tk

(c) to count the number of times a node of the equivalence class [τi] has observed the
transition context c ∈ Ci during the first tk time steps, where tk indicates the time step at which
episode k starts (i.e. tk = (k − 1) ∗ H + 1). Sometimes, we are interested in monitoring the number
of visits more closely. Then, Nτ,i

tk,v(c) counts the number of time the transition context c ∈ Ci given
that the agent started episode k and already observed the v first nodes of G, with v ∈ {1, · · · , n}.
Nodes are indexed by layers, but the indexing within a layer is arbitrary and fixed before the learning
starts. In Figure 1 leftmost plot, we show an example of an LDAG with a valid node indexing.

9. Define Nr,j
tk

(z) to count the number of times a node has observed the reward context z ∈ Zj during
the first tk time steps for all j ∈ [Ur] and for all z ∈ Zj . Nτ,i

tk,v(z) counts the number of times the
reward context z was observed until the vth node of the execution of the kth episode, where the node
indexing is the same as the one considered for Nτ,i

tk,v(c) (see entry 8 of this list for more details).

The posterior sampling algorithm proceeds by sampling an atomic reward function for each possible action
set {Yj}Ur

j=1 and a transition function for each equivalence class [τi] for all i ∈ {1, · · · , Uτ }. The atomic
transition distributions and the atomic reward distributions sampled at the beginning of episode k (step
3. in Alg. 2) are denoted {pi

k}Uτ
i=1 and {rj

k}Ur
j=1, respectively. The sampled DAMDP is then constructed by

combining the atomic transition and reward function as dictated by the graph G. To show that the sampled
DAMDPs, MG,k, concentrate around the true DAMDP M∗

G, we construct confidence intervals around the
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empirical atomic transition and reward functions. We define the confidence set of feasible DAMDPs that we
may sample at episode k as:

Mk
G =

{
M :∥p̂i

k(·|c) − pi(·|c)∥1 ≤ βi
k(c) ∀c ∈ Ci, ∀i ∈ [Uτ ] &

∥r̂j
k(z) − rj(z)∥ ≤ γj

k(z) ∀z ∈ Zj∀j ∈ [Ur]
}

. (21)

Where p̂i
k denotes the empirical estimate at time step k of the ith atomic transition function, r̂j

k denotes the
empirical estimate at time step k of the jth reward function, βi

k(c) is the threshold for the error on the ith

transition function, and γj
k(z) is the error threshold for the error on the jth atomic reward function. We

propose the following definition for the error thresholds:

βi
k(c) =

√
2

Nτ,i
tk

(c)

(
X log

(
2
δ

)
+ 2di log

(
XȲ mi

tk

δ

))
∀i ∈ {1, · · · , Uτ } and ∀c ∈ Ci (22)

γj
k(z) =

√√√√√ log
(

XȲ mj
rk

δ

)
max(1, Nr,j

tk
(z))

∀j ∈ {1, · · · , Ur} and ∀z ∈ Zj , (23)

where Nr,j
tk

(z) and Nτ,i
tk

(c) are defined above (elements 8 and 9 in the list).

D.1.1 Analysis of the Confidence Sets

Lemma D.2. For any k ≥ 1, the true MDP M∗
G belongs to the confidence set at episode k, Mk

G, defined in
equation 21 with probability:

P(M∗
G /∈ Mk

G) ≤ δ/k.

Proof. The L1 deviation between the true atomic transition distribution pi(·|c) and its empirical estimate
p̂i

k(·|c) is bounded for any ϵ by (Weissman et al., 2003):

P
(

∥p̂i
k(·|c) − pi(·|c)∥1 ≥ ϵ

)
≤ (2X − 2) exp

(
− nϵ2

2
)

∀i ∈ {1, · · · , Uτ } and ∀c ∈ Ci, (24)

where X is the number of distinct outcomes of p(·|c) and n is a fixed number of samples.

We now define

ϵi
τ =

√
2
n

log
(

2X2Uτ (XȲ )dimi
tk

2

δ

)
where ϵi

τ ≤

√
2
n

(
X log

(
2
δ

)
+ 2di log

(
2Uτ XȲ mi

tk

δ

))
.

This upper bound on ϵi
τ gives the exact expression of βi

k(c) defined in equation 22.

We can, therefore, show that the confidence bound in equation 21 holds with high probability. In particular,
for the atomic transition probability of a given context c ∈ Ci and fixed number of visits n we have:

P

(
∥p̂i

k(·|c) − pi(·|c)∥1 ≥ βi
k(c)

)
= P

(
∥p̂i

k(·|c) − pi(·|c)∥1 ≥

√
2
n

(
X log

(
2
δ

)
+ 2di log

(
2Uτ XȲ mi

tk

δ

)))

≤ 2X exp
(

− n

2 (ϵi
τ )2
)

= 2X exp
(

− n

2
2
n

log
(

2X2Uτ (XȲ )dimi
tk

2

δ

))
= δ

2Uτ (XȲ )dimi
tk

2
.
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Now, with a fixed number of samples n, the deviation between the true atomic expected reward and the
empirical atomic mean reward is bounded by Hoeffding’s inequality for any ϵj

r > 0:

P
(

|r̂j
k(z) − rj(z)| ≥ ϵj

r

)
≤ 2 exp(−2n(ϵj

r)2) ∀j ∈ {1, · · · , Ur} and ∀z ∈ Zj . (25)

We define

ϵj
r =

√
1

2n
log
(

4UrXȲ mj
rk2

δ

)
and note that ϵj

r ≤

√
1
n

log
(

4UrXȲ mj
rk

δ

)
.

Again, this upper bound on ϵj
r will be used to determine the exact expression of γj

k(z).

Combining Hoeffdings inequality with our definition of ϵj
r, we get:

P

(
|r̂j

k(z) − rj(z)| ≥ γj
k(z)

)
=P

(
|r̂j

k(z) − rj(z)| ≥

√
1
n

log
(

4UrXȲ mj
rk

δ

))
(26)

≤ 2 exp(−2n(ϵj
r)2) (27)

= 2 exp
(

− 2
n

n

2 log
(

4UrXȲ mj
rk2

δ

))
(28)

= δ

2UrXȲ mj
rk2

(29)

To compute the probability of interest P(M∗
G /∈ Mk

G), we need to compute the union bound by summing
over all possible numbers of visits. It is important to note that in the same layer, more than one node
might observe a reward for the same atomic state-action pair z = (x, y). It is also possible that in the
same layer, more than one node observes the same transition context c. As a consequence, the number of
observations can increase by more than a unit per time step. If we perform k episodes, the number of visits
for a specific reward context j might range between 0 and kmj

r, where mj
r is the number of occurrences of

reward architecture j in G (see element 5 of the above list for a more complete definition). Similarly, there
are mi

τ nodes that belong to the equivalence class [τi], so a given transition context ci can be observed up
to kmi

τ times (see element 2 of the above list for a more complete definition). Now, computing the union
bound by summing over all possible numbers of visits, we obtain the following:

P

(
|r̂j

k(z) − rj(z)| ≥

√√√√ log
( 4UrXȲ mj

rk
δ

)
max(1, Nr,j

tk
(zj))

)
≤

mj
rk∑

n=1

δ

2UrXȲ mj
rk2

<
δ

2UrXȲ k
(30)

P

(
∥p̂i

k(·|c) − pi(·|c)∥1 ≥

√√√√ 2
max(1, Nτ,i

tk
(ci))

(
X log

(
2
δ

)
+ 2di log

(
2Uτ XȲ mi

tk

δ

))

≤
mi

tk∑
n=1

δ

2Uτ (XY )dimi
tk

2 <
δ

2Uτ (XȲ )dik

This allows us to define βi
k(c) (introduced in equation 21) for all i ∈ {1, · · · , Uτ } and for all c ∈ Ci:

βi
k(c) :=

√
2

max(1, Nτ,i
tk

(c))

(
X log

(
2
δ

)
+ 2di log

(
2Uτ XȲ mi

tk

δ

))
(31)

and γj
k(z) for all j ∈ {1, · · · , Ur} and for all z ∈ Zi, as
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γj
k(z) :=

√√√√ log
( 4UrXȲ mj

rk
δ

)
max(1, Nr,j

tk
(z))

. (32)

Summing the probabilities over all possible reward contexts z ∈ Zj (the number of which is bounded by
XȲ ) and transition context c ∈ Ci (the number of which is bounded by (XȲ )di) we get

P(M∗
G /∈ Mk

G) =
Ur∑

j=1

∑
z∈Zj

P(|r̂j
k(z) − rj(z)| < γj

k(z)) +
Uτ∑
i=1

∑
c∈Ci

P(∥p̂i
k(·|c) − pi(·|c)∥ < βi

k(c)) (33)

≤
Ur∑

j=1

∑
z∈Zj

δ

2UrXȲ k
+

Uτ∑
i=1

∑
c∈Ci

δ

2Uτ (XȲ )dik
≤ δ

k
(34)

as desired.

D.2 Upper Bounding the Regret

The regret can be upper bounded by the sum of the errors made at each node.
Lemma D.3. If MG,k and M∗

G belong to the confidence set at time step k, Mk
G, then the one-step Bellman

error is upper bounded by the size of the confidence interval:

|(T k
µk,h − T ∗

µk,h)V k
µk,h+1(sh+1)| ≤ H min{

n∑
v=1

βiv

k (cv
k) + γjv

k (zv
k), 1} (35)

Proof. Error in the atomic Bellman operator has the most impact if the value function is high; we can then
directly upper bound the value function with H.

|(T k
µk,h − T ∗

µk,h)V k
µk,h+1(sh+1)| ≤ H|(T k

µk,h − T ∗
µk,h)| (36)

≤ H

(∣∣∣∣ nh∑
v=1

rjv

k (xv
k|cv

h,µ) +
nh+1∏
v=1

piv

k (xv
h+1|cv

h+1,µ) −
nh∑

v=1
rjv

∗ (xv
k|cv

h,µ) +
nh+1∏
v=1

piv
∗ (xv

h+1|cv
h+1,µ)

∣∣∣∣) (37)

≤ H

(∣∣∣∣ nh∑
v=1

rjv

k (xv
k|cv

h,µ) −
nh∑

v=1
rjv

∗ (xv
k|cv

h,µ)
∣∣∣∣+
∣∣∣∣ nh+1∏

v=1
piv

k (xv
h+1|cv

h+1,µ) −
nh+1∏
v=1

piv
∗ (xv

h+1|cv
h+1,µ)

∣∣∣∣) (38)

≤ H

(∣∣∣∣ nh∑
v=1

rjv

k (xv
k|cv

h,µ) −
nh∑

v=1
rjv

∗ (xv
k|cv

h,µ)
∣∣∣∣+

nh+1∑
v=1

∣∣∣∣piv

k (xv
h+1|cv

h+1,µ) − piv
∗ (xv

h+1|cv
h+1,µ)

∣∣∣∣) (39)

≤ H min
{ nh∑

v=1
γjv

k (zv
h,µ) + βiv

k (cv
h+1,µ), 1

}
(40)

Equation 37 is directly obtained using the definition of the atomic Bellman operator equation 7. Then
equation 38 is obtained by grouping together the terms depending on the atomic reward functions and the
one depending on the atomic transition functions. To obtain equation 39 we use the following inequality:

n∏
i=1

ai −
n∏

i=1
bi ≤

∑
i=1

|ai − bi|, ∀ai, bi ≤ 1.

Finally, in equation 40, we upper-bound the error in the transition and reward function at each node with
the width of the corresponding confidence interval. Note that since the reward at each time step is bounded
in [0, 1], the sum of all the nodes’ errors in a given layer is upper-bounded by 1.
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With this upper bound on the Bellman error, we are now equipped to upper-bound the regret; we first
decompose it as follows, observing that ∆̃k ≤ H for any k ∈ {1, · · · , K}. Hence,

K∑
k=1

∆̃k ≤
K∑

k=1
∆̃k1{Mk

G
,M∗

G
∈Mk

G
} + H

K∑
k=1

[
1{M∗

G
/∈Mk

G
} + 1{Mk

G
/∈Mk

G
}
]
.

By Lemma D.1, E[1{MG,k /∈Mk
G

}|Dtk
] = E[1{M∗

G
/∈Mk

G
}|Dtk

]. Additionally, setting δ = 1
K in Lemma D.2

shows the true DAMDP M∗
G does not belong to the confidence set at time step k, Mk

G, with probability
P(M∗

G /∈ Mk
G) < 1

K . Then,

E
[ K∑

k=1
∆̃k

]
≤ E

[ K∑
k=1

∆̃k1{MG,k,M∗
G

∈Mk
G

}

]
+ 2H

K∑
k=1

P(M∗ /∈ Mk) (41)

≤ E
[ K∑

k=1
E[∆̃k|M∗

G, MG,k]1{MG,k,M∗
G

∈Mk
G

}

]
+ 2H (42)

≤ E
[ K∑

k=1

H∑
h=1

|(T k
µk,h − T ∗

µk,h)V k
µk,h+1(stk+1)|1{MG,k,M∗

G
∈Mk

G
}

]
+ 2H (43)

≤ HE
[ K∑

k=1

H∑
h=1

min
{ nh∑

v=1
βiv

k (cv
k) + γjv

k (zv
k), 1

}]
+ 2H, (44)

where Eq. 42 is obtained by applying the tower property and noting that Mk
G is measurable if MG,k is

known. Equation 43 is the definition of the modified regret term (see equation 18). Finally, equation 44 is a
direct consequence of Lemma D.3. We also denote by n the number of nodes in G; we use iv to denote the
equivalence class of the node v and jv to denote the atomic action set available at node v. The transition
context observed during episode k at node v is denoted by cv

k ∈ Civ
, and the reward context observed at

node v during the kth episode is denoted by zv
k ∈ Zjv

.

The contribution to the regret incurred by errors in the reward function rj
k can be upper-bounded by the

sum of γj
k for every episode and every node v ∈ Vj , where Vj is the set of nodes that exhibit the reward

architecture j. Then, for a single reward architecture j we have:

K∑
k=1

∑
v∈Vj

γj
k(zv

k) =
K∑

k=1

∑
v∈Vj

γj
k(zv

k)1{Nr,j
tk

(zv
k

)≤mj
r} +

K∑
k=1

∑
v∈Vj

γj
k(zv

k)1{Nr,j
tk

(zv
k

)>mj
r}

≤
K∑

k=1

∑
v∈Vj

1{Nr,j
tk

(zv
k

)≤mj
r} +

K∑
k=1

∑
v∈Vj

1{Nr,j
tk

(zv
k

)>mj
r}

√√√√ log
( 4UrXȲ mj

rk
δ

)
max(1, Nr,j

tk
(zv

k))
.

Where zv
k ∈ Zj is used to denote the reward context observed in the vth node of G during the kth episode.

Consider a fixed zv
k = z. The case where Nr,j

tk
(z) ≤ mj

r happens less than 2mj
r times for each z ∈ Zj can be

upper bounded as follows
∑K

k=1
∑

v∈Vj
1{Nr,j

tk
(z)≤mj

r} ≤ 2mj
rXȲ . Now, let’s suppose that Nr,j

tk
(z) > mj

r for

a z ∈ Zj . In the kth episode, for any node v ∈ Vj , we have Nr,j
tk,n(z) + 1 ≤ Nr,j

tk
(z) + mj

r ≤ 2Nr,j
tk

(z). Note
that the number of occurrences of a specific reward architecture in each layer depends on G, but we know
that it occurs mj

r times over an episode.
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We can then bound the following ratio:

K∑
k=1

∑
v∈Vj

√√√√1{Nr,j
tk

(zk,v)>mj
r}

Nr,j
tk

(zk,v)
≤

K∑
k=1

∑
v∈Vj

√
2

Nr,j
tk,v(zk,v) + 1

(45)

=
√

2
Kmr

j∑
t=1

(Nr,j
t (zt) + 1)−1/2 (46)

≤
√

2
∑

z∈Zj

Nr,j
Tj

(z)∑
b=1

b−1/2 (with Tj = Kmj
r + 1) (47)

≤
√

2
∑

z∈Zj

∫ Nr,j
Tj

(z)

0
x−1/2dx (48)

≤
√

2XȲ
∑

z∈Zj

Nr,j
Tj

(z) =
√

2XȲ Kmj
r. (49)

Equation 46 rewrites the two sums as a single one, where now, each index t in Nr,j
t uniquely encodes a pair

(tk, n). We obtain equation 47 by considering all possible reward contexts z ∈ Zj and the total number of
times this specific reward context was visited. In equation 48 we use the fact that the sum

∑N
i=n+1 x−1/2 is

upper bounded by
∫ N

n
x−1/2dx. Lastly, equation 49 is obtained by Cauchy-Schwartz inequality.

With the same approach, we can bound the regret incurred by the error in the ith transition function,
K∑

k=1

∑
v∈Vi

βi
k(cv

k) ≤
K∑

k=1

∑
v∈Vi

1{Nτ,i
tk

(cv
k

)≤mi
τ } +

K∑
k=1

∑
v∈Vi

1{Nτ,i
tk

(cv
k

)>mi
τ }βi

k(cv
k),

where Vi denotes all the nodes of the equivalence class [τi]. For any c ∈ Ci, the case where Nτ,i
tk

(c) ≤ mi
τ

happens less than 2mi
τ times. Given that |Ci| ≤ (XȲ )di we can upper-bound

∑K
k=1

∑
v∈Vi

1{Nτ,i
tk

(c)≤mi
τ } ≤

2mi
τ (XȲ )di . For a given transition context c and episode k when Nτ,i

tk
> mi

τ , we have that for any node
V ∈ Vi, Nτ,i

tk,v(c) + 1 ≤ Nτ,i
tk

(c) + mi
τ ≤ 2Nτ,i

tk
(c).

We can then bound the following ratio:

K∑
k=1

∑
v∈Vi

√√√√1{Nτ,i
tk

(cv
k

)>mi
τ }

Nτ,i
tk

(ck
v)

≤
K∑
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∑
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√
2

Nτ,i
tk,v(cv

k) + 1
(50)

=
√

2
Kmτ

i∑
t=1

(Nτ,i
t (ct) + 1)−1/2 (51)

≤
√

2
∑
c∈Ci

Nτ,i
Ti

(c)∑
b=1

b−1/2 (with Ti = Kmi
τ + 1) (52)

≤
√

2
∑
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∫ Nτ,i
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0
x−1/2dx (53)

≤
√

2(XȲ )di

∑
c∈Ci

Nτ,i
Ti

(c) =
√

2(XȲ )diKmi
τ . (54)

Where all steps here are obtained following the same reasoning as in equation 45 toequation 49.
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Because the rewards at every time step (or layer) are bounded in [0, 1], the total regret consists of the
following:

min
{

H

K∑
k=1

H∑
h=1

min
{ nh∑

v=1
γiv

k (zv
k) + βiv

k (cv
k), 1

}
, T

}
(55)

≤ min
{

H

Ur∑
j=1

2mj
rXȲ +

√
2XȲ Kmj

r log(4UrXȲ mj
rK)

+H
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√
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X log(2

δ
+ 2di log(2Uτ XȲ mi
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)
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}
(56)
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H

Ur∑
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2mj
rXȲ +

√
2XȲ Kmj

r log(4UrXȲ mj
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X log(2
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+ 2di log(2Uτ XȲ mi
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)
, KH
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(57)

To complete the proof, we note that min(a + b, c) ≤
√

ac + b holds for a, b, c > 0. We then apply this
inequality twice in equation 57.

Equation 57 ≤

√√√√KH

Ur∑
j=1

2mj
rXȲ H +

Ur∑
j=1

√
2XȲ Kmj

r log(4UrXȲ mj
rK)H

+

√√√√KH

Uτ∑
i=1

2mi
τ (XȲ )diH +

Uτ∑
i=1

√
2(XȲ )diHKmi

τ (X + 2di log(2Uτ XȲ mi
τ K))

≤ H

Ur∑
j=1

√
2XȲ Kmj

r log(4UrXȲ mj
rK) +

Uτ∑
i=1

H

√
2(XȲ )diKmi

τ (X + 2di log(2Uτ XȲ mi
τ K))

This gives us the result obtained in Eq. 10.

E Regret of PSRL on the full MDP

A natural baseline to our approach is to consider the Posterior Sampling for Reinforcement Learning (Osband
et al., 2013) algorithm. This algorithm can solve any DAMDP by considering the MDP built from the
DAMDP’s atomic components. In that case, the algorithm will directly learn the full state transition
distribution P and the reward function R.

To simplify the analysis, we upper bound the state space at each time step t, St ⊆ X Nmax , with the largest
state space in the MDP, note that Nmax denotes the number of nodes in the largest layer. Similarly, we
upper bound the full action space at each time step t, A ⊆ ȲNmax .

If we apply the results of Osband et al. (2013) to the proposed MDP, we get a regret of

O

(
HX Nmax

√
ȲNmaxT log((X Ȳ)NmaxT )

)
(58)

F Computational complexity of PSGRL

This section provides an analysis of the computational complexity of running PSGRL. In PSGRL (see Alg. 2),
there are two sub-routines with non-trivial runtime, i.e. "Sample MG,k ∼ f(·|Dtk

)" and "Compute µMG,k

using Algorithm 1".
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Figure 5: Illustration of how to transform a directed acyclic graph (on the left) into a layered directed acyclic
graph (on the right)

First, let’s consider the operations when the algorithm "samples MG,k ∼ f(·|Dtk
)". At this point, the

algorithm needs to sample the atomic transition and reward functions, {pi}Uτ
i=1 and {rj}Ur

j=1. In the case of
the transition function, the algorithm requires sampling the parameters for every equivalence class i ∈ [Uτ ],
every context c ∈ Ci and for any potential next atomic state x ∈ X . This consists of O(Uτ X2dmax Ȳ dmax)
operations. Similar reasoning can be used regarding the sampling of the reward functions. Resulting in a
combined number of operation to be O(Uτ X2dmax Ȳ dmax + UrXȲ ).

Second, the planning phase does not benefit from any speed up and is equivalent to the computa-
tional complexity of running backward induction on the considered non-stationary MDP, which consists
of O(

∑H
t=1 StAt) operations.

In conclusion the computational complexity of running PSGRL for every episode k ∈ [K] consists of
O(
∑H

t=1 StAt + Uτ X2dmax Ȳ dmax + UrXȲ ) operations.

G Additional properties of DAMDP

Remark G.1. Any DAMDP with an arbitrary DAG, G, has an equivalent DAMDP with a layered directed
acyclic graph, G′.

We now show how a LDAG, G′, can be constructed from a DAG, G. In particular, we focus on two possible
transformations that are illustrated in Figure 5, that is, when an edge spans more than one layer (first row
of Fig. 5) or when we have a transversal edge, i.e. an edge that connects two nodes that belong to the same
layer, (second row of Fig. 5).

Note that both illustrations Figure 5 suggest that to transform a DAG into LDAG, we need to add artificial
nodes (represented by a red square) and artificial edges (coloured in blue and orange). The artificial node
does not directly increase the complexity of the problem, as both its atomic state and atomic action will
be identical to the atomic state and atomic action of its unique parent node. The additional edges do not
increase the problem complexity as when we remove an "illegal" edge with a single orange edge and a single
blue edge. In particular, it leaves the number of equivalence classes Uτ unchanged since all incoming illegal
edges were replaced by a single blue edge, and it leaves the number of action spaces unchanged as well as
all outgoing illegal edges are replaced by an orange edge. Since those transformations are always possible
and leave the DAMDP characteristics unchanged, they have no impact on the algorithm complexity measure
presented in Theorem 5.1.

While this argument is reasonable in problems of the type of "the leaky maximum flow" problem, this
will not necessarily hold for more complex problems such as the wind farm optimization problem. Indeed,
the LDAG assumption allowed us to assume all the layers were spaced uniformly in the field. Hence, the
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transition context did not necessarily have to include information about the relative distance between two
wind turbines, for example. If we would like to consider such scenarios, then the transformations are not
trivial and will have repercussions on the algorithm’s regret.

H Additional experiments

In Figure 6, we present an additional set of leaky maximum flow experiments. We consider an alternative
graph structure presented in the first row of Figure 6. Observing the respective performance of PSRL and
PSGRL, we can see that as the graph complexity increases, the benefit of PSGRL increases as well. These
results are similar to the experiment presented in the main paper; we just revisit this experiment considering
a different network architecture. In the leftmost case, we see no benefit in using PSGRL as we have a single
node per layer. However, as we increase the central grid of nodes, creating multiple nodes that belong to the
same equivalence class, the benefit of PSGRL becomes more evident.

Figure 6: The first row depicts the graph that governs the DAMDP. The second row shows the learning
curve for both algorithms considered. PSRL, which ignores the latent graphical structure and PSGRL,
which leverages the graphical structure. The left-most plot shows the performance obtained on a simple
chain graph. As expected, the performance for both algorithms is similar. Looking at the remaining plots, it
becomes clear that as we increase the complexity of the graph, the benefit of PSGRL becomes self-evident.
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