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ABSTRACT

Visual reasoning demands multimodal perception and commonsense cognition of
the world. Recently, multiple vision-language models (VLMs) have been proposed
with excellent commonsense reasoning ability in various domains. However,
how to harness the collective power of these complementary VLMs is rarely
explored. Existing methods like ensemble still struggle to combine these models
with the desired higher-order communications. In this work, we propose Cola 1,
a novel paradigm that coordinates multiple VLMs for visual reasoning. Our key
insight is that a language model (LM) can serve as an efficient coordinator to
leverage the distinct and complementary capabilities of multiple VLMs. Extensive
experiments demonstrate that our finetuning variant, Cola-FT, achieves state-
of-the-art performance on outside knowledge VQA, visual entailment, and visual
spatial reasoning tasks. Through systematic ablation studies and visualizations,
we validate that a coordinator LM comprehends the instruction prompts and the
separate functionalities of VLMs and then coordinates them to enable impressive
visual reasoning capabilities.

A bus is traveling down a street with a bus.

Mass transportation system is the largest 
public transport system in the world.

One.

Two.

How many transportations have
headlights on? 

(A) One
(B) None
(C) Two
(D) Three

How many transportations 
have headlights on?

Two.

Ensemble

Ensemble

Answer

LM

Answer

Cola

(a) Comparison between Paradigms 

(b) Example Visual Reasoning Task: VQA (c) Cola Solution to the Example VQA

Action ① - VLMs describe the visual context.

Action ③ - LM coordinates and answers.

Action ② - VLMs answer the question.

VLM-1 VLM-2 VLM-1 VLM-2

Figure 1: We propose, Cola, using a coordinative language model for visual reasoning. Cola coor-
dinates multiple pretrained VLMs based on the visual context and plausible answers they provide.

1 INTRODUCTION

Visual reasoning is a crucial task that demands models to not only comprehend and interpret visual
information but also to apply high-level cognition to derive logical solutions (Johnson et al., 2017;
Zakari et al., 2022; Małkiński & Mańdziuk, 2022b). Classic visual reasoners typically rely on
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1Code is available at https://github.com/cliangyu/Cola.
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complex architectures (Yi et al., 2018; Mao et al., 2019; Yi et al., 2019) and are unable to generalize
beyond the training dataset (Zellers et al., 2018; Park et al., 2020).

However, recent advancements in large pretrained models have shown that vision-language models
(VLMs) exhibit impressive performance on visual reasoning tasks even under zero-shot settings (Wang
et al., 2022; Li et al., 2022a). Meanwhile, language models (LMs) have also demonstrated robust zero-
shot commonsense reasoning abilities on the natural language processing (NLP) applications (Brown
et al., 2020; Chowdhery et al., 2022; Wei et al., 2022).

Consequently, several recent studies have attempted to combine such complementary VLMs and
LMs for visual reasoning. For example, PICa (Yang et al., 2022) utilizes image captioning models to
create textual prompts for GPT-3 (Brown et al., 2020), and adapts GPT-3 to solve the visual question
answering (VQA) tasks in an in-context few-shot learning manner. Socratic Models (Zeng et al., 2022)
allow VLMs and LMs to communicate via prompt engineering and emerging zero-shot multimodal
reasoning capabilities. On the premise that current studies have focused on the interactions between
heterogeneous models (e.g., between VLM and LMs), in this work, we examine how to include
homogeneous models (e.g., multiple VLMs) with LMs in a coordinative paradigm. Inspired by the
findings in CICERO (Meta et al., 2022) that LMs capture strong abilities in coordinating multiple
agents, we propose Cola, a novel approach that utilizes an LM as the coordinator in between multiple
VLMs.

Our key insight suggests that, given multiple VLMs with different preferred patterns in describing the
visual context and predicting plausible answers, an LM can coordinate and integrate their respective
strengths efficiently and effectively. We present two variants of Cola, namely Cola-FT and Cola-Zero,
where FT corresponds to a finetuning approach and Zero stands for an in-context learning approach
to adapt the coordinator LM for visual reasoning.

Systematic experiments demonstrate that Cola performs at the pinnacle of ability on outside knowl-
edge VQA, visual entailment, and visual spatial reasoning tasks. Specifically, Cola-FT achieves
state-of-the-art performance on A-OKVQA (Schwenk et al., 2022), e-SNLI-VE (Do et al., 2020),
and VSR datasets (Liu et al., 2022a), even when compared with methods that adopt larger models
or require more training computations. Besides, we conduct a thorough analysis to investigate how
Cola recognizes each VLM’s individual functionalities and then perform coordination behavior.

In summary, our contributions are as follows: (1) Cola, a novel paradigm that utilizes a language
model as a coordinator between multiple VLMs to integrate their respective strengths for visual
reasoning (§2). (2) Cola achieves state-of-the-art performance on a challenging suite of diverse visual
reasoning datasets (§3.1). (3) Systematic analysis reveals how Cola comprehends the instruction
prompts and the separate functionalities of VLMs and then coordinates them to capture impressive
visual reasoning capabilities (§3.2, §3.3, §B.3).

2 COLA

2.1 COLA & TEMPLATES

General Prompt Template
Answer the following multiple-choice question
by OFA and BLIP’s description and their answers
to the visual question. OFA and BLIP are two dif-
ferent vision-language models to provide clues.
OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>
Q: <Question>
OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>
Choices: <Choices to the question>
A:

Table 1: LM prompt template. The LM is instructed
to coordinate VLMs. Each question set defines visual
context, question with choices, and plausible answers.

An overview of Cola is shown in Figure 1c.
We use OFA (Wang et al., 2022) and BLIP (Li
et al., 2022a) as the VLMs and FLAN-
T5 (Chung et al., 2022) as the LM. We first
prompt each VLM to output captions and
plausible answers independently. We then
concatenate the instruction prompt, the ques-
tion with choices, captions, and plausible an-
swers to fuse all contexts for the LM to rea-
son, coordinate, and answer.

Image captioning gives important visual
context to reason from. We first employ ith

VLM to describe each image respectively to
get visual descriptions ci(v). We use ofa-large for OFA and blip-image-captioning-large for
BLIP, both implemented by the Hugging Face Transformers library (Wolf et al., 2020).
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Table 2: Overall performance on A-OKVQA, e-SNLI-VE and VSR datasets. The accuracy metric
varies slightly in different datasets. In A-OKVQA, we report val/test accuracy, and val accuracy
in e-SNLI-VE, test (zero-shot split) accuracy in VSR. We mark the best performance on each dataset
with bold font and second-best with underlines.

Methods Vision-language Model Language Model Accuracy ↑
Model Spec. FT ↓ Model Spec. ICL ↓ FT ↓

Outside Knowledge Visual Question Answering (A-OKVQA)
VLC-BERT (Lu et al., 2019) VL-BERT (118M) 20 ep. - - - - / 38.1
Unified-IO (Lu et al., 2022) UNIFIED-IO (3B) - - - - - / 45.2
PromptCap (Hu et al., 2022) OFA (472M) 2 ep. GPT-3 (175B) - - - / 73.2

Img2Prompt (Guo et al., 2022) BLIP (384M) - OPT (175B) 0-shot - 42.9 / 40.7

Ensemble BLIP+OFA (384M+472M) - - - - 56.6 / 54.9
Cola-Zero BLIP+OFA (384M+472M) - FLAN-T5 (11B) 0-shot - 65.4 / 61.6
Cola-Zero BLIP+OFA (384M+472M) - FLAN-T5 (11B) 2-shot - 70.4 / 66.5
Cola-FT BLIP+OFA (384M+472M) - FLAN-T5 (11B) - 1 ep. 77.7 / 74.0

Visual Entailment (e-SNLI-VE)
e-UG (Kayser et al., 2021) UNITE (86M) 400 ep. GPT-2 (117M) - 400 ep. 79.5

OFA-X (Plüster et al., 2022) OFA (472M) 10 ep. - - - 80.9

Ensemble BLIP+OFA (384M+472M) - - - - 48.8
Cola-Zero BLIP+OFA (384M+472M) - FLAN-T5 (11B) 0-shot - 56.2
Cola-Zero BLIP+OFA (384M+472M) - FLAN-T5 (11B) 2-shot - 57.8
Cola-FT BLIP+OFA (384M+472M) - FLAN-T5 (11B) - 1 ep. 81.6

Visual Spatial Reasoning (VSR)
VisualBERT (Li et al., 2019) VisualBERT (110M) 100 ep. - - - 54.0

LXMERT (Tan & Bansal, 2019) LXMERT (110M) 100 ep. - - - 63.2
ViLT (Kim et al., 2021) ViLT (88M) 30 ep. - - - 62.4

Ensemble BLIP+OFA (384M+472M) - - - - 51.4
Cola-Zero BLIP+OFA (384M+472M) - FLAN-T5 (11B) 0-shot - 55.8
Cola-Zero BLIP+OFA (384M+472M) - FLAN-T5 (11B) 2-shot - 54.9
Cola-FT BLIP+OFA (384M+472M) - FLAN-T5 (11B) - 1 ep. 67.0

Plausible answers by the VLMs to the question provide clues and patterns of VLMs for the LM to
consider and coordinate. Similar to captioning, we prompt each ith VLM using the image-question
pair to get a plausible answer âi(v, q). We use ofa-large for OFA and blip-vqa-base for BLIP.
Following OFA, our prompt template varies by task category. For the VQA tasks, we leave the
original question unchanged. For the visual entailment tasks, our prompt template is ” does the image
describe ”<text premise>” ?”.

Prompt template is shown in Table 1. First, we design an instruction prompt for LM to understand
the requirement to coordinate VLMs to answer the visual reasoning question. We then concatenate
the captions from each VLM model, with the VLM identification labels in natural languages, such
as ”OFA’s description: <OFA caption>”. Next, the question and its plausible answers provided by
VLMs (with similar identification labels) are concatenated. We follow (Chung et al., 2022) to include
the choices of question and ”A:” to prompt for answers. More specific prompt templates on each
dataset are provided in Appendix B.10.

2.2 COLA-FT

Finetuning of Cola is initialized with FLAN-T5 (Chung et al., 2022) checkpoints. Given the
question q based on the image v, the LM predicts the answer in the form of sequence sv,q =
LM(Prompt(v, q)).

Inference deploys the same prompt as Table 1 to align with finetuning. We resort to the greedy
decoding strategy for conditional sequence generation at both finetuning and inference.

2.3 COLA-ZERO

In-context learning is an emerging ability of the LM models pretrained on documents of long-
range coherence. By learning input and output format from demonstration, in-context learners
learn to perform a downstream task simply by conditioning on a prompt consisting of input-output
examples (Xie et al., 2021). FLAN-T5, finetuned on instruction prompts with examples, is capable of
in-context few-shot learning and zero-shot learning (see Figures 4 and 5(b)).

Cola-Zero is the in-context few-shot/zero-shot learning variant of Cola, without finetuning. For
in-context k-shot learning, we modify the prompt (Table 1) to include k input-output examples
sampled from the training set. For zero-shot learning, the prompt remains the same as Table 1.
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Question What type of shot is the 
man hitting? 

What appliance is next to 
an appliance that is highly 
decorated? 

Does this image describe 
"puppy running after a 
stick in grass" ? 

Does this image describe 
"The truck is away from 
the elephant" ? 

OFA caption tennis player hits a return 
to tennis player during 
their men's singles second 
round match at

a refrigerator covered in a 
variety of stickers. 

a coyote is seen in this 
undated file photo. (credit: 
ktla

an elephant is loaded onto 
a truck in yangon. photo: 
afp

BLIP 
caption

a man in a blue shirt is 
playing tennis 

a refrigerator with many 
pictures on it 

a dog running through the 
grass in a field 

a man riding a motorcycle 
with a truck behind him 

Choices ['forehand', 'backhand', 
'serve', 'dropshot'] 

['mixer', 'stove/oven', 
'refrigerator', 'microwave'] 

['yes', 'maybe', 'no'] ['yes', 'no']

OFA answer backhand stove/oven yes yes
BLIP answer forehand microwave no no
Cola-Zero 
answer

forehand stove/oven no no

Cola-FT 
answer

forehand stove/oven maybe no

Cola-FT 
answer
(swapped VLM 
answer labels)

backhand microwave maybe yes

Figure 2: Qualitative examples. The correct choices are underlined.

3 EXPERIMENTS

The main quantitative results are then presented in Table 2. Next, we provide qualitative examples on
how Cola integrates VLMs to provide final answer. Due to space limit, we leave the rest analysis and
more details in Appendix B.

3.1 OVERALL PERFORMANCE

In Table 2, we first observe that Cola-FT achieves state-of-the-art (SOTA) performance on all three
datasets, with merely 1 epoch of finetuning and a medium-sized language model. In contrast, many
previous SOTA methods require finetuning more epochs than Cola-FT (e.g., VLC-BERT, PromptCap
on A-OKVQA). Some also use much larger language models, such as GPT-3 (175B) (Brown et al.,
2020) and OPT (175B) (Zhang et al., 2022). In addition, the lighter variant Cola-Zero also achieves
comparable performance to most baseline methods through in-context few-shot and zero-shot learning,
without training any model parameter.

3.2 QUALITATIVE EXAMPLES

In Figure 2, we exhibit several qualitative examples. The leftmost example (a tennis player playing)
demonstrates a case when captions are not informative to guide the LM for predictions. Between OFA
and BLIP’s plausible answers, the LM follows the answer of BLIP. In contrast, in the left example
(an oven next to a fridge), again with trivial captions, the LM follows OFA’s plausible answer instead.

The rightmost example presents the scenario of inconsistency between captions and answers. OFA
describes the image as ”an elephant is loaded onto a truck in yangon.” Though, it agrees that ”the
truck is away from the elephant”. With Cola-FT, The LM coordinates OFA’s correct caption and
BLIP’s correct answer to make a reasonable prediction.

Notably, we observe a scenario in that captions can be more informative than plausible answers to
guide LM. The right example (a puppy running) presents an uninformative image. Though neither
OFA nor BLIP succeeds to answer the question, the LM chooses to answer with ”maybe” based on
the given visual context. See Appendix B.11 and Appendix B.12 for more analysis on qualitative
examples, including failure cases.

3.3 COORDINATION ANALYSIS

Overall, Figure 3 validates the efficacy of Cola to coordinate VLMs. All the experiments
use the same prompt template as in Table 1 unless otherwise stated. To validate the effec-
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tiveness of multi-VLM collaboration, we first ablate single-VLM variants of Cola-FT, shown
as #1 and #2 from the top. As expected, both fall behind Cola-FT (#6) by a large margin.

74 76 78
Accuracy (%)

FT: correct VLM answer labels
Eval: correct VLM answer labels

FT: correct VLM answer labels
Eval: swap VLM answer labels

FT: perturb VLM answer labels
Eval: perturb VLM answer labels

FT: perturb VLM caption labels
Eval: perturb VLM caption labels

BLIP only

OFA only

Cola-FT

73.97

73.27

77.29

76.16

76.86

77.73

Figure 3: Ablation study results using (#1, #2
from top) single VLM, (#3, #4) perturbed VLM
caption/answer labels at finetuning (FT), and (#5)
swapped answer labels at evaluation (Eval). In #4,
the coordination prior cannot be learned by the LM.
In #5, the coordination prior can be learned by the
LM, but cannot be properly applied at evaluation.

Next, we perturb caption labels by swapping
the VLM caption labels at finetuning and
evaluation (#3), specifically ”OFA’s descrip-
tion: ” and ”BLIP’s description: ”, by a
chance of 50%. Under such settings, the LM
fails to acquire the preferred patterns of VLM
for captioning, though the overall visual con-
text is preserved. The results underperform
Cola-FT, which verifies that VLM caption la-
bels improve Cola-FT performance. Notably,
the VLM (plausible) answer labels are more
important to the LM’s decision: a consider-
able gap exists between (#4) and Cola-FT. In
#4, the LM fails to learn the separate func-
tionalities of VLM. Naturally, we ask what
if the LM can learn the patterns each VLM
answers, but they cannot apply it at infer-
ence? We input correct VLM answer labels at
finetuning and swap labels at evaluation (#5).
Consequently, #5 falls behind Cola-FT with
a smaller but still considerable margin. The
results suggest that learning and applying the
separate functionalities of VLMs is important
for the coordinator LM to make predictions.

3.4 SCALING WITH MORE VLMS

By different top-k (k=5) decoding results from three identical (three OFA-base models, answers
and captions may vary slightly, Cola achieved substantial performance gains over a single VLM
or ensemble. The performance gap between ensemble baselines and Cola based on three different
models (OFA-tiny, OFA-medium, and OFA-base) are even larger.

Methods A-OKVQA e-SNLI-VE

OFA-base (1) 45.76 52.60
OFA-base (2) 46.07 51.70
OFA-base (3) 45.73 52.33

Ensemble (majority voting) 44.79 52.71
Ensemble (average) 46.04 52.25

Cola-Zero (2-shot) 47.71 54.42

Cola-FT 48.85 56.92

Table 3: Performance of ensemble methods
based on three identical models.

Methods A-OKVQA e-SNLI-VE

OFA-tiny 39.03 50.20
OFA-medium 42.45 51.04
OFA-base 45.76 52.60

Ensemble (majority voting) 46.71 53.94
Ensemble (average) 46.62 54.41

Cola-Zero (2-shot) 49.37 57.63

Cola-FT 54.26 63.68

Table 4: Performance of ensemble methods
based on three different models.

4 CONCLUSIONS

In this paper we have proposed a novel paradigm for visual reasoning that harnesses the power
of multiple VLMs. Experiments show that reasoning performance is substantially improved by
LM finetuning or in-context learning. Our results provide a promising step towards building multi-
component intelligent systems that capture multimodal reasoning capabilities in a human-like way.
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A PRELIMINARIES

We formulate various visual reasoning tasks as a multi-class classification problem. Given an image
v ∈ V and a question-like prompt q ∈ Q, the reasoner is required to select an answer a from the
candidate set A = {a}. In the case that the reasoner outputs a text sequence sv,q, we map s to a
prediction P (v, q) = sim(T (sv,q), T ({a})) where T transforms text sequences into text embeddings
(we use a all-mpnet-base-v2 model (Reimers & Gurevych, 2019) here), and sim denotes cosine
similarity.

Ensemble Modeling is a prevalent method to combine multiple models’ predictions in order to
improve the overall performance (Figure 1a). One common practice is averaging over n models,
given by:

P (v, q) =
1

n

n∑
i=1

Pi(v, q), (1)

where Pi(v, q) denotes the prediction of the ith model on input (v, q).

B EXPERIMENTS DETAILS

B.1 DATASETS

Our experiments are conducted on a challenging suite of three diverse visual reasoning tasks, including
outside knowledge VQA, visual entailment, and visual spatial reasoning. For each task, we select the
following dataset respectively.

Augmented-OKVQA (Schwenk et al., 2022) (A-OKVQA) contains about 25k questions paired
with both multiple choice (MC) answer options. Unlike most existing VQA datasets, the questions in
A-OKVQA cannot often be answered by querying the knowledge base, but rather involve some type
of commonsense reasoning and outside knowledge about the situation portrayed in the image.

e-SNLI-VE (Do et al., 2020) dataset is an extended version of SNLI-VE dataset (Xie et al., 2019),
which contains about 190k question pairs and human-annotated natural language explanations for the
ground-truth labels. The text premise provides a statement about the contents of the image. The task
is to determine whether the statement is true or false based on the image content.

Visual Spatial Reasoning (Liu et al., 2022a) (VSR) consists of 65 spatial relations (e.g., under, in
front of, facing, etc.) of instances in images. VSR has more than 10k question pairs, associated with
6940 images from MS COCO (Lin et al., 2014).

B.2 COMPARISON METHODS

State-of-the-art Methods are summarized into two broad categories, VLM alone, and VLM
combined with LM. In Table 2, for a fair comparison, we detail the techniques (whether finetuning or
in-context learning is required) used for training VLMs and LMs, and the number of training epochs.

Ensemble Modeling can be considered the most basic baseline for combining VLMs. It represents
the base performance that the combination of VLMs can achieve on the target task when not processed
additionally. We implement averaging ensemble (Equation (1)) of cosine similarity between VLM
output and each choice of a question as our ensemble baseline.

B.3 SALIENCY VISUALIZATION

As shown in Figure 4, we visualize the importance of the input prompt tokens by input-gradient
saliency feature attribution (Denil et al., 2014), implementing with Ecco (Alammar, 2021). The input
tokens that are more relevant to predict the output token "grass" are highlighted in darker colors. In
the given example, both Cola-FT and Cola-Zero predict the correct answer and find the relevant clues
from visual context and plausible answers. Figure 4b shows that Cola-Zero attributes the output more
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to the instructions in the prompt template. This explains Cola-Zero’s competitive performance, a
consequence of FLAN instruction tuning (Wei et al., 2021). After finetuning, Cola-FT focuses more
on the most informative parts of input: the question, choices, as well as VLMs’ plausible answers.

(a) Cola-FT Feature Attribution

(b) Cola-Zero Feature Attribution
Plausible answers

Question and choices

Instructions VLM labels

Figure 4: Visualization of input token saliency. We visualize the relevancy between input tokens
and the output token "grass" by feature attribution (Denil et al.). The more salient tokens are
highlighted in darker boxes. Cola-FT focuses on the question, choices, and VLMs’ plausible answers
in (a). While as shown in (b), Cola-Zero pays extra attention to instructions and VLM labels, as a
consequence of instruction finetuning (Chung et al.).

B.4 SCALING MODEL SIZE

We conduct experiments on scaling model size to see if there are ramifications when operating at a
larger scale. Figure 5(a) reveals that Cola-FT performance increases as the LM (FLAN-T5) model size
increases. Notably, Cola-FT/small, with only 80M parameters, could achieve about 65% MC accuracy
on A-OKVQA validation set, which is far beyond our baseline methods (around 55%). Cola-Zero,
under the in-context learning paradigm, achieves competitive performance when the model grows to
a billion-parameter scale. This observation on Cola-Zero can be regarded as a proof-of-concept that
potentially reveals Cola-Zero’s emerging abilities (inherited from FLAN-T5 (Chung et al., 2022)) on
visual reasoning tasks at a relatively large scale.

B.5 LOW-DATA FINETUNING

We conduct experiments on different data scales to verify Cola’s performance varying from zero-shot
to full-shot under in-context learning and full-finetune paradigm. As shown in Figure 5(b), with
Cola-Zero, few-shot exemplars substantially improve performance compared to zero-shot learning.
As Chung et al. (2022); Wei et al. (2021) pointed out, exemplars potentially help the model better
understand the output format and understand the instructions in Table 1.

We also observe Cola-FT’s substantial performance gain when finetuning shots increase to 1000.
Cola-FT keeps improving till the inclusion of the whole training set.

B.6 FINETUNING DETAILS

We adopt pretrained BLIP (Li et al., 2022a)2 and OFA (Wang et al., 2022)3 as VLMs, and freeze their
parameters without updating. The finetuning only happens on the language model part. The training
set of each dataset is used for finetuning. We use the whole training set unless otherwise specified in
low-data finetuning discussion.

We use an AdaFactor optimizer (Shazeer & Stern, 2018) at the learning rate of 1e-4 for all Cola-
FT experiments. The batch size is by default set to 16, though we find Cola-FT insensitive to batch
size. We finetune and evaluate the models on NVIDIA V100 or A100 GPUs. The finetuning ranges
from 1 hour to about 15 hours, varying by the dataset.

2BLIP: https://github.com/salesforce/BLIP
3OFA: https://huggingface.co/OFA-Sys
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Figure 5: (a) Cola performances versus the LM (FLAN-T5) sizes, on A-OKVQA validation set.
Cola-FT is applicable with small models, but Cola-Zero is an emerging ability on larger models only.
(b) Low-data Cola-FT and Cola-Zero performances on A-OKVQA validation set. Cola-Zero for
in-context few-shot learning outperforms zero-shot learning by a large margin, being on par with
low-data Cola-FT without finetuning. The X-axis is manipulated to exhibit zero-shot learning.

Following the common experiment protocols, we employ a teacher forcing and greedy decoding
strategy for finetuning.

B.7 EVALUATION DETAILS

As specified, we use the validation or test set multiple choice accuracy as the evaluation metric. In
A-OKVQA, we report val/test accuracy, and val accuracy in e-SNLI-VE, test (zero-shot split)
accuracy in VSR. For simplicity and consistency, we evaluate ablation experiments on A-OKVQA
validation set. Following the common experiment protocols (Hu et al., 2022; Plüster et al., 2022), we
report the single run results for performance comparison.

The exemplars at the inference of Cola-Zero are randomly sampled from the training set, i.e.,
supposedly help the LM learn the input data distribution and output format but do not leak relevant
information to the evaluation question.

B.8 A-OKVQA DIRECT ANSWER RESULTS

In addition to MC accuracy, we present the direct answer (DA) accuracy of models on the A-OKVQA
validation set in Tables 5 and 6.

FLAN-T5-Small FLAN-T5-Base FLAN-T5-XL FLAN-T5-XXL

Cola-FT 56.5 60.6 64.1 65.4
Cola-Zero (2-shot) 30.3 34.6 57.6 61.0
Cola-Zero (0-shot) 28.6 36.0 55.0 59.3

Table 5: A-OKVQA validation set DA performance. Extension of Figure 5(a).

1-shot 2-shot 3-shot 4-shot

Cola-Zero 60.2 61.0 60.7 59.2

Table 6: Cola-Zeroin-context few-shot learning DA performance on A-OKVQA validation set.
Extension of Figure 5(b).
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B.9 PARAMETER-EFFICIENT FINETUNING

To further reduce the computation cost in model adaptation, we explored parameter-efficient finetuning
(PEFT) techniques to reduce finetuning parameter counts. Specifically, we use (IA)3 (Liu et al.,
2022b), which finetunes an overhead of 1 million parameters, equivalent to 0.01% of the full
parameters of FLAN-T5-XXL.

Accuracy # Finetuning Params
Finetuning 77.73 11B (100%)

PEFT, (IA)3 63.76 1M (0.01%)

Table 7: (IA)3 (Liu et al., 2022b) parameter-efficient tuning (PEFT) performance. We finetune a
FLAN-T5-XXL model on the A-OKVQA training set and evaluate it on the A-OKVQA validation
set.

Compared to full finetuning, (IA)3 requires more iterations to converge. The performance of a
(IA)3 finetuned FLAN-T5-XXL model is on par with a fully finetuned FLAN-T5-Small (80 million
parameters) counterpart (Figure 5(a)). Notably, the former is associated with more computation and
memory footprint as a consequence of more parameters in the forward pass.

B.10 EXTENDED PROMPT TEMPLATES

Across three datasets, the prompt template is roughly the same, with minor differences mainly in
the format of the questions and choices. We list the prompt templates adopted in A-OKVQA and
e-SNLI-VE/VSR in Table 8 and Table 9, respectively.

A-OKVQA Prompt Template
Answer the following multiple-choice question by OFA and BLIP’s description and their answers
to the visual question. OFA and BLIP are two different vision-language models to provide clues.

OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>

Q: <Question>

OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>

Choices: <Choices to the question>

A:

Table 8: A-OKVQA prompt template for the LM. The LM is instructed to coordinate VLMs. Each
question set defines visual context, question with choices, and plausible answers.

B.11 EXTENDED QUALITATIVE EXAMPLES

In this section, we provide more qualitative examples on A-OKVQA (Figure 6), e-SNLI-VE (Fig-
ure 7), and VSR (Figure 8) datasets.

Due to the large span of the three figures, for better visibility, we put the detailed description directly
in each figure’s caption part. We illustrate how Cola-FT and Cola-Zero process the VLMs answers
in each example.

Overall, in these examples, we can observe that even if BLIP and OFA provide wrong answers,
Cola can still present the correct answer based on the captions provided by OFA and BLIP, as well as
the choice set. This may illustrate how Cola amazingly accompanishes visual reasoning tasks via
coordinating BLIP and OFA.
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e-SNLI-VE / VSR Prompt Template
Answer the following multiple-choice question by OFA and BLIP’s description and their answers
to the visual question. OFA and BLIP are two different vision-language models to provide clues.

OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>

Q: does the image describe <hypothesis> ?

OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>

e-SNLI-VE Choices: [yes, no, maybe]
VSR Choices: [yes, no]

A:

Table 9: e-SNLI-VE/VSR prompt template for the LM. The LM is instructed to coordinate VLMs.
Each question set defines visual context, hypothesis, and plausible answers.

B.12 FAILURE CASES

In Figure 9, we provide a few failed cases to analyze the specific behavior of Cola.

The leftmost example’s correct answer is kayaking, but there are no hints from OFA and BLIP’s
answers and captions. Therefore Cola-Zero incorrectly provides the answer OFA without sufficient
information as hints, while surprisingly Cola-FT answered correctly from OFA’s boating answer.

The left example again has insufficient information from captions. While BLIP answers no and OFA
answers yes, Cola-FT chooses to answer maybe, which looks natural but unfortunately picks the
wrong choice.

The right example’s captions contain enough information this time. But both Cola-FT and Cola-
Zero are misled by BLIP’s wrong answer no parking.

The rightmost example also has insufficient information from captions. In this situation, Cola has no
choice but to believe either BLIP or OFA’s answer, but it mistakenly prefers BLIP’s wrong answer.

C RELATED WORKS

C.1 VISUAL REASONING

Beyond unimodal reasoning tasks such as question answering (QA) (Trischler et al., 2016; Choi
et al., 2017; Zaib et al., 2022; Bondarenko et al., 2022), visual reasoning extends high-level cognition
to visual domains, requiring an intelligent agent to derive rational solutions (Johnson et al., 2017;
Hudson & Manning, 2019; Sampat et al., 2022; Zakari et al., 2022; Ji et al., 2022). Several tasks have
been introduced to address visual reasoning, such as VQA (Agrawal et al., 2015), in which models
are expected to provide answers to questions related to an image, and visual entailment (Xie et al.,
2019), where the model is required to determine if a text description is consistent with the visual
content provided.

Classic visual reasoning methods employ an image encoder and a text encoder, along with a reasoning
block that utilizes attention mechanisms (Zellers et al., 2018; 2021; Wang et al., 2021), neuro-
symbolic methods (Yi et al., 2018; Mao et al., 2019), or external knowledge (Marino et al., 2021; Gui
et al., 2021; Chen et al., 2022).

Recent progress in large pretrained models has led to the development of LMs that capture exceptional
commonsense reasoning capabilities (Raffel et al., 2020; Chung et al., 2022; Chowdhery et al.,
2022). These LMs can potentially replace the reasoning module in visual reasoning tasks, and

15



Published at the Workshop on Understanding Foundation Models at ICLR 2023

LMs’ lack of perception can be compensated by incorporating multiple VLMs trained on different
domains (Radford et al., 2021; Wang et al., 2022; Li et al., 2022a). However, there is still a lack of
research on how to harness the collective power of these separate VLMs for visual reasoning tasks.

C.2 MODEL ENSEMBLE

Model ensemble is a powerful machine learning technique that combines the predictions of multiple
models to improve the overall performance of a given task (Dietterich, 2000). The variance and bias
of the final predictions decrease, resulting in a more robust and accurate model (Sagi & Rokach,
2018). To this end, common methods include averaging, voting, weighting the predictions based on
model performance, or stacking the models.

Ensemble methods have been challenging for visual reasoning, where a simple combination is not
applicable to heterogeneous models as their inputs and outputs vary. To address the issue, Socratic
Models (SMs) (Zeng et al., 2022) use prompt engineering to guide the heterogeneous pretrained
multimodal models through natural language discussions. With a similar goal, Li et al. propose a
closed-loop iterative consensus optimization method to utilize the strengths of individual models.
However, previous methods do not fully adapt to the intrinsic patterns of different models, particularly
in the visual reasoning scenario. Recent studies, such as CICERO (Meta et al., 2022), have shown
that LMs possess strong social intelligence in coordinating multiple agents, which inspires us to
reorganize pretrained mixed-modal models with a focus on adapting LMs.

C.3 FINETUNING LARGE LANGUAGE MODELS

Large language models (Brown et al., 2020; Ouyang et al., 2022; Bommasani et al., 2021) pretrained
on massive amounts of unstructured data have gradually demonstrated great performance by finetuning
on additional task-specific instances. Finetuning a large language model can be considerably more
sample efficient than re-training from scratch, although acceptable performance may still require
a considerable quantity of data (Stiennon et al., 2020). Recent works have finetuned task-specific
models that demonstrate amazing capabilities in many real-world applications, such as Copilot for
program synthesis (Chen et al., 2021).

C.4 INSTRUCTIONS-BASED LEARNING

Recent advances in the capabilities of language models have piqued researchers’ curiosity in the field
of instruction-based learning (Goldwasser & Roth, 2014; McCarthy et al., 1960; Schick & Schütze,
2020; Gao et al., 2020). The core of instruction-based learning is to explore the knowledge of the
language model itself. In the contrast to prompt learning to stimulate the language model’s ability to
complete blanks, instruction tuning more focuses on activating the language model’s comprehension
by giving obvious instructions to models and expecting correct feedback. Earlier work (Mishra et al.,
2021) finetune BART (Lewis et al., 2019) using instructions and few-shot examplars in question
answering, text classification, and text modification. Their findings suggest that few-shot instruction
tuning improves performance on unseen tasks. (Min et al., 2021) finetunes GPT-2 Large and also
observes that few-shot examplar instruction tuning could improve performance. (Sanh et al., 2021)
finetunes T5-11B with more diverse instruction templates and observe similar improvements in
zero-shot learning. More recent work (Wei et al., 2021) performs large-scale experiments with a
137B FLAN-T5 model and instruction-tune it on over 60 datasets verbalized via instruction templates.
They observe FLAN-T5 substantially improves over zero-shot GPT-3 (175B) on 20 of 25 evaluation
datasets. OpenAI also releases InstructGPT (Ouyang et al., 2022) based on GPT-3 (Brown et al.,
2020), it makes use of human annotations to steer desired model behavior through both instruction
tuning and reinforcement learning of human feedback. They discover that InstructGPT is favored by
humans over unmodified GPT-3.

C.5 VISUAL REASONING

Beyond the uni-modal reasoning tasks such as question answering (QA) (Trischler et al., 2016; Joshi
et al., 2017; Choi et al., 2017; Reddy et al., 2019; Rajani et al., 2019; Fan et al., 2019; Qu et al.,
2020; Clark et al., 2020; Sultan et al., 2020; Geva et al., 2021; Zhu et al., 2021; Zaib et al., 2022;
Bondarenko et al., 2022), visual reasoning requires models to not only understand and interpret visual
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information but also to apply high-level cognition to derive rational solutions (Johnson et al., 2017;
Hudson & Manning, 2019; Amizadeh et al., 2020; Małkiński & Mańdziuk, 2022a;b; Sampat et al.,
2022; Zakari et al., 2022). Several tasks have been introduced to address visual reasoning, such as
visual question answering (VQA) (Agrawal et al., 2015), in which models are expected to provide
answers to questions related to an image, and visual entailment (VE) (Xie et al., 2019), where the
model is required to determine the similarity or relationship between a given image and a description.
Classic visual reasoning methods have employed an image encoder and a text encoder, along with
a reasoning block that utilizes attention mechanisms (Zellers et al., 2018; Park et al., 2020; Zellers
et al., 2021; Wang et al., 2021), neuro-symbolic methods (Yi et al., 2018; Mao et al., 2019; Yi et al.,
2019), or external knowledge (Marino et al., 2021; Gui et al., 2021; Chen et al., 2022) to perform
reasoning.

Recent progress in large pre-trained models has led to the development of language models (LMs)
that possess exceptional commonsense reasoning capabilities (Raffel et al., 2020; Chung et al., 2022;
Chowdhery et al., 2022; Rae et al., 2021). These models can potentially replace the reasoning block
in visual reasoning tasks, and LMs’ lack of perception can be compensated by incorporating multiple
vision-language models (VLMs) trained on different domains (Radford et al., 2021; Wang et al.,
2022; Li et al., 2022a). For example, PICa (Yang et al., 2022) converts the image into captions that
GPT-3 (Brown et al., 2020) can understand, and adapts GPT-3 to solve the VQA task in a few-shot
manner by providing a few in-context VQA examples. However, there is still a lack of research on
how to harness the collective power of these complementary VLMs for visual reasoning tasks.

C.6 MODEL ENSEMBLING

Model ensembling is a powerful machine learning technique that combines the predictions of
multiple models to improve the overall performance of a given task (Dietterich, 2000). Classic
model ensembling methods include simple averaging, weighting the predictions based on model
performance, and stacking the models. By combining the predictions of multiple models, ensembling
can reduce the variance and bias of the final predictions, resulting in a more robust and accurate
model (Sagi & Rokach, 2018). Ensemble methods have been shown to perform well in a wide range
of tasks, including image classification, natural language processing, and time series forecasting.
However, when it turns to multimodal tasks such as visual reasoning, a simple combination is not
applicable to heterogeneous models as their inputs and outputs vary.

To address the problem, Socratic Models (SMs) (Zeng et al., 2022) use prompt engineering to guide
the heterogeneous pre-trained multimodal models through multimodal discussions to combine their
diverse knowledge. With a similar goal, (Li et al., 2022b) proposes a closed-loop iterative consensus
optimization method to utilize the strengths of individual models. However, previous methods do not
fully explore the potential of a centralized solution or adapt to the separate functionalities of different
models, particularly in the visual reasoning scenario. Recent studies, such as CICERO (Meta et al.,
2022), have shown that language models possess strong capabilities in coordinating multiple agents,
which inspires us to reorganize pre-trained multimodal models with a focus on the language models.

D LOOKING BACK AND FORWARD: A CONCLUDING DIALOGUE

David and Brian (pseudo names) are two graduate students studying visual reasoning and have
interests in recent emergent large language models. Over a cup of coffee, they sit down together to
discuss the advantages and caveats that language models could bring to visual reasoning.

David: I’ve noticed that recent emergent large language models, aka LLM, have a wide range of
abilities, including the capability to generate program code, analyze sentiments, and even solve math
problems via logical reasoning.

Brian: That’s incredible, and I’ve seen relevant papers on it. The LLM possesses these abilities
fully from unsupervised pretraining linguistic data and could be stimulated by finetuning on specific
downstream tasks. Researchers call these emerging abilities, and I’ve seen discussions related to
multi-step reasoning, chain-of-thought, and so on.

David: Interesting! Similar models also exist in the computer vision field, such as CLIP, DALL-E,
etc. They are also very strong at capturing visual signals and can achieve very good results on many
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vision tasks. Those large-scale models have demonstrated overwhelming capability, and people seem
to have entered the era of foundation models.

Brian: It’s really amazing, therefore I’m questioning whether these models of various modalities may
be combined to accomplish something. At the moment it doesn’t look like the language model has a
way to process visual information well, and the visual language model doesn’t seem to be a strong
reasoner of language information. Will they have more incredible powers if they could compliment
one another? One might also avoid having to repeatedly train new foundation models.

David: What you said is interesting; I saw a similar work with this idea called Socratic Models, in
which various modalities (e.g. visual language models, and language models) models were allowed
to communicate via language prompts, it’s like the models ask questions to each other and finally let
one output final answer.

Brian: It’s amazing how fast everyone’s research has progressed. So have they tried using VLM
to capture visual information and provide caption prompt, and LLM for further inference like a
reasoner? This is very suitable for VQA-related tasks that require powerful reasoning ability.

David: Not yet, I see they provide some examples about this paradigm, but not including VQA task.
Maybe we can think deeper in this direction, I think it makes a lot of sense to combine multiple
models, naturally different models may have their own special preferred patterns. Naturally, VLM
is more suitable for processing visual information, and LLM is suitable for processing language
information. And even for homogeneous models, like multiple VLMs, they may also have preferred
patterns, which may be determined by the dataset they are trained on and specific training strategy.

Brian: Indeed, combining multiple pretrained models would make them more powerful. Ensemble
modeling is a good way, however, it appears rather basic and unexplainable. The combination of
multiple VLMs with LLMs is intriguing, in a Socratic Models way, and perhaps LLMs will learn to
integrate VLMs and stimulate their respective strengths. These are not seriously discussed in previous
works, and perhaps we should make some efforts in this regard.

David: Yes, we can try using LLM to read the output of multiple VLMs, then letting it reason about
the best answer, and see whether LLM is a good coordinator in between VLMs.

[After a few days...]

David: Hi! Brian, I tried this paradigm on A-OKVQA dataset, I used BLIP and OFA as the base
VLM, then combined their outputs into a prompt template, fed the prompt into FLAN, and then
finetune FLAN for one epoch. This paradigm achieves results that far exceed the both single-model
and ensemble performance using pretrained BLIP and OFA, and even outperforms the current
state-of-the-art approach that requires much more epochs of finetuning.

Brian: No way! Largely surpassing single model performance may suggest that FLAN learns new
knowledge after finetuning. This process may indicate FLAN is coordinating multiple VLMs. We
could do more experiments to justify this conjecture.

David: This may also be related to instruction tuning, FLAN is a language model that uses instructions
to complete tasks, it may regard the prompt template as a kind of coordination instruction. And
then follow the coordination instructions to integrate multiple VLMs outputs to conclude its final
answer. Language models? coordination? That’s interesting, we could probably call this paradigm
Coordinative language models? Cola, a cool name.

Brian: This is incredibly fascinating! It’s a great name, and this paradigm has so much potential. We
should refine this study and tell the community about this finding!

[After it, the two students and their collaborators, the supervisors, began to focus their efforts
studying on Cola.]
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Question Why might people sit 
here? 

The room can be 
described as what? 

In what type of location 
are they playing with the 
body board? 

What is in front of the 
monitor? 

OFA caption colorful umbrellas on the 
riverwalk

living room layout and 
decor medium size how to 
decorate a small living 
room dining combo mant

person, left, and person 
look at a painting of a 
great white shark. 

a desk with a computer, a 
lamp, a laptop, and a plant.

BLIP 
caption

a colorful umbrella 
umbrella with colorful 
umbrellas 

a dining room table with a 
glass table and chairs 

a man holding a surfboard 
while another man is 
standing next to him 

a desk with a computer 
and a lamp

Choices ['to testify', 'to rest', 'to 
shop', 'get tattoo'] 

['tidy', 'messy', 'on fire', 
'destroyed'] 

['room', 'beach', 'park', 
'store'] 

['keyboard', 'phone', 
'mouse', 'headphones'] 

OFA answer to eat living room bedroom a keyboard
BLIP answer yes dining room beach monitor
Cola-Zero 
answer

to rest tidy beach keyboard

Cola-FT 
answer

to rest tidy room keyboard

Figure 6: A-OKVQA qualitative examples. Leftmost: LM doesn’t use BLIP and OFA’s answers,
but may observe from captions to derive the correct final answer. Left: As shown on the left, LM
does not follow the wrong answers from OFA and BLIP but gets the correct answers from captions.
Right: With both OFA and BLIP answering incorrectly, LM derives the correct one from both VLMs’
captions and answers. Rightmost: After assessing the questions, answers, and captions, LM goes with
OFA’s answer and rewrites it to match the expression in choices. The correct choices are underlined.
Cola-Zero answers are given in zero-shot settings.
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Question Does the image describe " 
A professional daredevil "?

Does the image describe " 
the dog is a shitz " ?

Does this image describe 
"Two twenty-somethings 
prepare to catch salmon 
while other older men 
catch catfish" ? 

Does this image describe 
"A little girl gets hit by a 
woman riding a bike" ? 

OFA caption person doing a flip on a 
mountain bike

a dog jumping out of the 
water.

men repairing fishing nets 
on the beach in zanzibar, 
tanzania

a man and a woman on a 
tandem bike 

BLIP 
caption

a man doing a trick on a 
bike in the air

a dog jumping over rocks 
in the water 

a man sitting on a boat 
with a fishing net net 

a man and woman riding a 
bicycle in a parking lot 

Choices ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no']

OFA answer yes no yes yes
BLIP answer yes no yes no
Cola-Zero 
answer

yes no no no

Cola-FT 
answer

maybe maybe maybe no

Figure 7: e-SNLI-VE qualitative examples. Leftmost: As the connection to daredevil is not obvious
in BLIP and OFA’s captions, although Cola-Zero is misled, Cola-FT correctly answers maybe. Left:
Similar to the left example, Cola-FT answer correctly as no obvious connections are seen from the
captions to this question. Right: Similar to the left example, the fact of catch catfish is not reasonable
from the captions, Cola-FT picks the correct answer maybe. Rightmost: As girl gets hit is not obvious
in BLIP and OFA’s captions and answers, Cola-Zero and Cola-FT both follow BLIP to choose the
correct answer no. The correct choices are underlined. Cola-Zero answers are given in zero-shot
settings.
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Question Does this image describe 
"The truck contains the 
elephant" ? 

Does this image describe 
"The bed is under the 
handbag" ? 

Does this image describe 
"The couch is behind the 
hot dog" ? 

Does this image describe 
"The bowl contains the 
banana" ? 

OFA caption an elephant being 
transported on a truck in 
sri lanka

a black and white tuxedo 
cat with a white nose, 
yellow eyes, and white 

person enjoying a meal by 
the fire 

bananas and mangoes in a 
bowl

BLIP 
caption

a truck with a large 
elephant in the back of it 

a black cat laying on a bed 
with a pillow 

a man sitting on a couch 
with a plate of food 

a bowl of fruit is shown in 
this bowl 

Choices ['yes', 'no'] ['yes', 'no'] ['yes', 'no'] ['yes', 'no'] 

OFA answer yes no yes yes
BLIP answer no no yes no
Cola-Zero 
answer

no no no yes

Cola-FT 
answer

yes no no yes

Figure 8: VSR qualitative examples. Leftmost: As OFA caption mentioned elephant being transported
and OFA provides the correct answer, Cola-FT follows OFA’s choice. Left: As OFA and BLIP provide
the same answer, Cola-Zero and Cola-FT follow the choice. Right: As the captions do not provide
obvious information, even BLIP and OFA provide the same answer, Cola-Zero and Cola-FT are
not misled to the wrong choice. Rightmost: As the captions provide strong clue bananas in a bowl,
although BLIP’s answer is incorrect, Cola-Zero and Cola-FT still choose the correct answer. The
correct choices are underlined. Cola-Zero answers are given in zero-shot settings.

Question What are the people doing 
in the water? 

Does the image describe " 
The man is making a 
vase"?

What kind of zone is this 
bike parked in? 

Does this image describe 
"The motorcycle is beside 
the truck" ? 

OFA caption black and white photo of a 
man on a bike looking at a 
canoe in the river 

person on the potter's 
wheel

a city made by people 
bucharest

men walking past a truck 
in kabul, afghanistan. 

BLIP 
caption

a man and woman on a 
bike in a park 

a man is sitting on a chair 
and is using a wheel 

a bicycle parked next to a 
pedestrian crossing sign 

a man walking down the 
street in a city 

Choices ['surfing', 'fishing', 
'kayaking', 'swimming'] 

['yes', 'maybe', 'no'] ['temporary', 'pedestrian', 
'no parking', 'handicap'] 

['yes', 'no']

OFA answer boating yes pedestrian yes
BLIP answer swimming no no parking no
Cola-Zero 
answer

OFA no no parking no

Cola-FT 
answer

kayaking maybe no parking no

Figure 9: Failure cases. The correct choices are underlined. Cola-Zero answers are given in zero-shot
settings.

21


