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ABSTRACT

Learning instantaneous and time-lagged causal relationships from time-series data
is essential for uncovering fine-grained, temporally-aware interactions. Although
this problem has been formulated as a continuous optimization task amenable to
modern machine learning methods, the integration of coarse-grained lag-agnostic
causal priors, an important and commonly available form of prior knowledge,
remains largely unaddressed. To address this gap, we propose a novel framework
for structure learning from time series to integrate lag-agnostic priors, enabling
the discovery of lag-specific causal links without requiring precise information on
the exact lag of causality. We introduce formulations to precisely characterize the
lag-agnostic priors, and demonstrate their consequential and process-equivalence to
priors, maintaining consistency with the intended semantics of the priors through-
out optimization. We further analyze the challenge for optimization due to the
increased non-convexity by lag-agnostic prior constraints, and introduce a data-
driven initialization to mitigate this issue. Experiments on both synthetic and
real-world datasets show that our method effectively incorporates lag-agnostic
prior knowledge to enhance the recovery of fine-grained, lag-aware structures.

1 INTRODUCTION

Time-series data, which captures the dynamic evolution of variables over time, are fundamental to
research across both science and artificial intelligence (Sarropoulos et al., 2021; Kim et al., 2024),
where uncovering the underlying temporal causal mechanisms is a critical task (Li et al., 2023;
Rajapakse and Zhou, 2007). This temporal causal relationship is characterized by a time lag, i.e., the
causality between variables manifests after some delay. Such lag-specific interactions1 are known as
inter-slice causality, or intra-slice causality when the interaction is instant (i.e., at zero lag).

Accordingly, uncovering time-series causal mechanisms can be formalized as a structure learning
task aimed at recovering the lag-specific structure from temporal data. In this formulation, inter-slice
causality is represented by a set of structures corresponding to different time lags, while intra-slice
causality is captured by a directed acyclic graph (DAG). By expressing the DAG constraint through a
smooth characterization (Zheng et al., 2018), the problem becomes a continuous optimization task,
making it compatible with modern machine learning techniques (Pamfil et al., 2020).

In practice, researchers usually possess prior knowledge about partial causal relationships, which
is essential for recovering more interpretable and insightful structures than relying on data alone,
and should be actively incorporated into structure learning. To this end, Sun et al. (2023) proposed
integrating causal knowledge with specific time lags into structure learning from time-series data.
However, such precise lag-specific information is rarely available in real-world settings2. Instead,
prior knowledge is more commonly available in the form of summarized causal relationships, without
specifying exact time lags (Marbach et al., 2010; Runge et al., 2019a). We refer to this more accessible
form of knowledge as a lag-agnostic prior due to its invisibility to time lags of causality.

Incorporating lag-agnostic priors is to specify the presence (or absence) of a causal edge without
knowledge of its exact time lag. Due to this ambiguity, such constraints cannot be directly imposed
on specific structural parameters. This complicates the precise representation of prior knowledge,

1Lag-specific causality refers to causal links with known, specific time lags (including instant causality).
2This is reflected in the scarcity of publicly available time-series data with annotated lag-specific structures.
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posing a challenge to preserve the intended information without introducing unintended bias toward
specific lags during optimization. Moreover, the ambiguity introduces additional non-convexity3,
making the optimization landscape more difficult and prone to poor local optima resulting from
suboptimal lag selections. In summary, structure learning from time-series data with lag-agnostic
priors is a significant yet underexplored challenge in the field.

To address this gap, we propose a novel continuous optimization framework for incorporating lag-
agnostic structural priors into structure learning from time-series data. We first show the issue
of process-inequivalence in an intuitive maximum-based characterization of lag-agnostic priors.
Despite the consequential equivalence (i.e., it ultimately enforces the same structural conditions
as the lag-agnostic priors), the maximum-based formulation unexpectedly introduces bias toward
specific lags during the optimization process, which is misaligned with the prior that the time lag is
unknown. Targeting this issue, we introduce formulations that are both consequentially equivalent
and process-equivalent, which are proven to maintain consistency with the intended semantics of
the priors throughout optimization. This ensures that the prior constraints are not only satisfied at
convergence but are also fully respected during the entire optimization trajectory.

For the optimization behavior, we show the increased non-convexity caused by incorporating lag-
agnostic priors, which leads to more suboptimal local optima compared to the task without prior.
Early optimization dynamics, and in particular, the initialization, can potentially bias which lag-
specific edge satisfies the constraint, thus sticking into bad optima. To mitigate this, we introduce
a data-driven initialization strategy that leverages unconstrained structure learning to guide early
updates and promote convergence to favorable optima.

We conduct extensive experiments on both synthetic and real-world datasets. Results show that our
method effectively leverages coarse-grained, lag-agnostic prior knowledge to significantly improve
the recovery of fine-grained, lag-aware causal structures. This work provides practical insights and
robust strategies for incorporating commonly available causal priors into dynamic causal discovery.

Our main contributions are listed as follows:

1. We introduce a continuous optimization framework for time-series structure learning to
incorporate lag-agnostic structural priors, enabling the use of widely available coarse-grained
knowledge to guide the recovery of temporally-resolved causal mechanisms.

2. We analyze the process-ineqivalent issue in the characterization of lag-agnostic priors, and
propose formulations that are both consequentially and process-equivalent to the intended
priors throughout optimization.

3. We analyze the increased non-convexity caused by lag-agnostic constraints, and propose a
data-driven initialization strategy that facilitates the convergence to favorable optima. It is
validated by comprehensive experiments on synthetic and real-world datasets.

Related work, theoretical details, and complete experimental results are provided in the Appendix.

2 PRELIMINARIES

This section introduces the preliminaries of structure learning from time-series data and describes
how to incorporate lag-specific edge constraints into the learning process.

Notations For matrix A, we use As1:e1, s2:e2, ... to denote slicing along multiple dimensions, where
each (sk : ek) specifies an inclusive start and end index for the k-th dimension. If a dimension
is omitted, it indicates selection of all elements along that axis. We write

∑
A for the sum of all

elements in matrix A, and |A| for the element-wise absolute value of A.

2.1 STRUCTURE LEARNING FROM TIME SERIES

Let X ∈ RT×d be a multivariate time series, where Xt ∈ Rd denotes the observations of d variables
at time t. Temporal dependencies are modeled using a linear vector autoregressive (VAR) process:

3See Example 1 for details on the non-convexity induced by lag-agnostic priors.
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Xt =

L∑
τ=0

WτXt−τ + ϵt,

where W0 captures intra-slice (instantaneous) dependencies, Wτ for τ > 0 capture inter-slice (lagged)
dependencies, and ϵt is zero-centered noise. The maximum lag L defines the longest allowable delay
in the model. Each Wτ ∈ Rd×d parameterizes directed edges from Xt−τ to Xt, defining a structure
modeling the generation process of the time-series data.

Zheng et al. (2018) introduces a smooth constraint of acyclicity, which is used to ensure the acyclic
intra-slice structure W0 by Pamfil et al. (2020):

h(W0) := Tr
(
eW0◦W0

)
− d = 0,

where ◦ denotes the Hadamard (element-wise) product.

The full modeling objective can be written as a regression task over time-series observations.

min
θ

L(X; {Wτ (θ)}Lτ=0), subject to h(W0(θ)) = 0. (1)

Here, Wτ (θ) denotes the lag-τ structure derived from parameters θ. The model can be either linear,
where θ = {Wτ}, or nonlinear, where θ determines the lagged structure Wτ (θ) via a predefined
mapping (Sun et al., 2023; Zheng et al., 2020). Hence, constraints on the structure are directly
applicable to the nonlinear settings with the defined mapping from θ to Wτ .

The augmented Lagrangian approach (Zheng et al., 2018) is used to optimize this problem. After
optimization, a thresholding step extracts the edge structure:

Ŵτ = I(|Wτ | > δ) ◦Wτ , (2)

where δ > 0 is the edge threshold, and I(·) is the element-wise indicator function, which values 1 if
the inner condition holds and values 0 otherwise.

2.2 INCORPORATING LAG-SPECIFIC EDGE CONSTRAINTS

To enforce the presence or absence of a specific lagged edge (Ws)ij , there are two approaches, a hard
constraint and a soft penalty. The hard way directly constrain the corresponding parameters:

min
θ∈Θij,s(δ)

L
(
X; {Wτ (θ)}Lτ=0

)
, subject to h(W0) = 0, (3)

where Θij,s(δ) := {θ | |(Ws(θ))ij | ≥ δ} enforces the presence of edge (Ws)ij , or Θij,s(0) := {θ |
(Ws(θ))ij = 0} enforces its absence. This strict constraint was used in the work by Sun et al. (2023).

Alternatively, one can add a loss term to softly encourage edge presence or absence:

min
θ

L
(
X; {Wτ (θ)}Lτ=0

)
+ ReLU (δ − |(Ws(θ))ij |) , subject to h(W0) = 0, (4)

where the penalty ReLU(δ−|(Ws(θ))ij |) encourages the presence of edge (Ws)ij , while |(Ws(θ))ij |
alone can be used to encourage absence. The soft constraint allows a balance between prior enforce-
ment and data fitting, but does not guarantee strict adherence.

Discussion. While the hard constraint strictly enforces prior knowledge, the soft constraint allows
trade-offs with data fit. However, in the case of lag-agnostic priors, the exact lag of a causal edge is
unknown, making parameter-level constraints ill-defined. Therefore, the hard constraint becomes
unsuitable in this setting, and soft, flexible formulations are preferred.

Remark 1. For simplicity, we assume a linear setting where Wτ (θ) = Wτ in the remainder of the
paper. Nonetheless, the proposed methods and analysis also apply to nonlinear parameterizations.
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3 TIME-SERIES STRUCTURE LEARNING WITH LAG-AGNOSTIC STRUCTURAL
CONSTRAINTS

3.1 PROBLEM FORMULATION

Let X ∈ RT×d be a multivariate time series, where T is the number of time steps and d the number
of variables. Let Wτ ∈ Rd×d denote the lag-specific structure matrix at lag τ ∈ {0, 1, . . . , L}, where
each entry (Wτ )ij represents the causal influence from variable j at time t− τ to variable i at time t.
We use W0:L (or simply W ) to denote the set of all lagged structure matrices.

Let Cp, Ca ∈ {0, 1}d×d be binary masks encoding lag-agnostic structural priors: Cp specifies the
presence of edges, and Ca specifies their absence. A small threshold δ > 0 is used to determine
whether an edge is considered present.

Definition 1 (Lag-Agnostic Edge Presence). For a node pair (i, j) with (Cp)ij = 1, the lag-agnostic
presence constraint requires that edge (i, j) at least one lag τ ∈ {0, 1, . . . , L} exists, |(Wτ )ij | > δ.

Definition 2 (Lag-Agnostic Edge Absence). For a node pair (i, j) with (Ca)ij = 1, the lag-agnostic
absence constraint requires that (Wτ )ij = 0 for all τ ∈ {0, 1, . . . , L}.

Given these constraints, the structure learning objective is formulated as:

min
W0:L

L(X;W0:L), subject to h(W0) = 0, W0:L |= Ca, Cp, (5)

The adherence to lag-agnostic constraints is defined formally as:

W0:L |= Ca ⇐⇒ ∀(i, j) with (Ca)ij = 1, (Wτ )ij = 0 for all τ, (6)
W0:L |= Cp ⇐⇒ ∀(i, j) with (Cp)ij = 1, max

τ
|(Wτ )ij | > δ. (7)

The absence of a lag-agnostic edge can be directly enforced by zeroing the corresponding entries
across all lags, as described in Section 2.2. Therefore, the focus of this work lies in how to properly
formulate and enforce the presence of lag-agnostic edges during optimization.

3.2 PROCESS-INEQUIVALENCE IN CHARACTERIZING LAG-AGNOSTIC EDGE PRESENCE

We consider the problem of modeling lag-agnostic edge presence using a smooth, non-negative
constraint function. Let (p(W ))ij ≥ 0 represent the presence penalty for edge (i, j), such that
(p(W ))ij = 0 indicates satisfaction of the lag-agnostic presence prior. With this setup, we extend the
objective in Equation (5) to include soft constraint penalties as follows:

min
W0:L

L(X;W0:L) + λp

∑
i,j

(Cp ◦ p(W ))ij , subject to h(W0) = 0, (8)

Here, the prior constraint is relaxed into the objective via a weighted penalty, allowing for greater
stability in the presence of the inherent ambiguity associated with lag-agnostic edge semantics.

Maximum-Based Formulation and Process-Inequivalence A natural and direct approach for
encoding lag-agnostic edge presence is to penalize the maximum magnitude across all lags, in line
with the definition in Equation (7):

(pmax(W ))ij = ReLU
(
δ −max

τ
|(Wτ )ij |

)
. (9)

Although this formulation is logically equivalent to the lag-agnostic prior at convergence, it is not
process-equivalent. That is, it does not preserve the prior intention throughout optimization.

In particular, directly applying a penalty to maxτ |(Wτ )ij | introduces a bias toward whichever lag
happens to dominate early in training, leaving the rest lags unconsidered, as illustrated below:
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Proposition 1. Let (i, j) be a lag-agnostic edge specified to be present, and assume the data-fitting
loss satisfies ∇|(Wτ )ij |L ≥ 0 for all τ during optimization (push all (Wτ )ij toward zero). Suppose
∀τ ̸= τ0, δ > |(Wτ0)ij | > |(Wτ )ij | at initialization. Then, optimizing Equation (8) with the penalty
in Equation (9) will satisfy the constraint solely via (Wτ0)ij if with sufficiently large λp.

This scenario illustrates a typical trade-off between data fit and adherence to a lag-agnostic prior,
where the data-fitting loss does not favor including the prior-specified edge (i, j) at any lag. In this
case, the maximum-based formulation selects the lag whose edge has the largest initial absolute
weight and disregards other lag options. Once the prior constraint is satisfied by this single lag,
the optimizer stops exploring alternative lags, thus incorrectly treating the lag-agnostic prior as
lag-specific. We refer to this behavior as process-inequivalence.

This early commitment breaks the core idea of lag-agnostic priors, that no preference exists among
candidate lags, and stops the model from correctly identifying the true lag. To address this issue, the
process-equivalent formulation is needed to avoid such bias during optimization.

3.3 PROCESS-EQUIVALENT FORMULATIONS

The failure of the maximum-based formulation provides an insight that it is necessary to simulta-
neously impact on edge (i, j) at every lag to avoid bias in specific lags, thus ensuring the process-
equivalence to the lag-agnostic prior. Following this insight, we introduce a binary-masked formula-
tion and a logic-dual formulation for the presence of lag-agnostic edges.

Binary-Masked Formulation A natural idea is to apply uniform constraints to all lagged versions
of a given edge. This leads to the following loss function for a lag-agnostic edge (i, j):

(pbin(W ))ij = I
(
max

τ
|(Wτ )ij | < δ

)
·
∑
τ

ReLU (δ − |(Wτ )ij |) , (10)

where I(·) is the element-wise indicator function. The binary mask activates the loss only if all
corresponding lag-specific edges are below the threshold δ. When active, the penalty equally
encourages all lag-specific edges to grow.

This design ensures that the constraint behaves in accordance with the intended semantics:
Proposition 2. A lag-agnostic edge (i, j) is present in W0:L if and only if (pbin(W0:L))ij = 0, where
pbin(·) is defined by Equation (10).

More importantly, this formulation also maintains consistency during optimization, as shown below:
Proposition 3. Let (i, j) be a lag-agnostic edge with known ordering of conflict degrees with respect
to the data-fitting loss:

0 ≤ ∇|(Wτ1 )ij |L < ∇|(Wτ2 )ij |L < · · · < ∇|(WτL
)ij |L,

where τ1 corresponds to the lag most aligned with data fit. Suppose all (Wτ )ij are initialized with
δ0 < δ. Then, optimizing Equation (8) with the prior penalty pbin will result in edge (i, j) appearing
only at lag τ1.

This result demonstrates that pbin(·) selects the lag-specific edge most compatible with the data, at
least under an ideally consistent ordering of loss gradients and identical initialization. In this sense,
the binary-masked formulation seeks the optimal structure under the lag-agnostic presence constraint,
maintaining both consequence and process equivalence with the original prior. This ensures the
optimization remains equivalent to the intended causal semantics throughout training.

Logic-Dual Formulation We now introduce a second process-equivalent formulation by deriving
the edge presence constraint as the logical dual of the edge absence under lag-agnostic priors:

(a(W ))ij = 0, where a(W ) =
∑
τ

|Wτ |.

Here, |Wτ |ij = 0 serves as the condition for the absence of a lag-specific edge, and the summation
expresses an "AND" logic: all corresponding lag-specific edges must satisfy this absence condition.

5
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In contrast, the presence of a lag-agnostic edge follows an "OR" logic: the edge is considered present
if at least one lag-specific edge is active. We capture this behavior using a product-based formulation:

(por(W ))ij =
∏
τ

ReLU (δ − |(Wτ )ij |) , (11)

where ReLU(δ − |(Wτ )ij |) evaluates to zero if any lag-specific edge exceeds the threshold δ. The
product thus encodes a logical "OR": the constraint is satisfied (i.e., the penalty vanishes) when any
one of the edges is sufficiently strong.
Proposition 4. A lag-agnostic edge (i, j) is present in W0:L if and only if (por(W0:L))ij = 0, where
por(·) is defined in Equation (11).

This formulation, like the binary-masked version, simultaneously considers all lag-specific edges
during optimization and remains process-equivalent to the original prior (cf. Proposition 3).

Compared to the binary-masked formulation, the logic-dual formulation is fully continuous, avoiding
the discontinuities introduced by the indicator function. This results in smoother optimization
dynamics. However, the product-based formulation suffers from scale sensitivity: as the number of
candidate lags increases, the magnitude of the loss can decrease rapidly, even when the constraint is
violated, leading to weaker optimization signals.

To mitigate this, we normalize the loss magnitude as follows:

(p̄or(W ))ij =
∏
τ

1

δ
ReLU (δ − |(Wτ )ij |) , (12)

where each ReLU term is scaled by δ to standardize its contribution. This normalization ensures that,
when all (Wτ )ij = 0, the loss yields a consistent penalty regardless of the number of lags, preserving
balanced optimization across varying temporal horizons.

3.4 DATA-DRIVEN INITIALIZATION FOR STABLE OPTIMIZATION

The lag-agnostic edge presence constraint introduces additional non-convexity into the structure
learning objective, even in linear models without the acyclicity constraint (originally a convex
formulation). This added non-convexity can destabilize optimization and lead to convergence to
suboptimal solutions. The following toy example illustrates this effect:
Example 1 (Multiple Local Optima under Lag-Agnostic Constraint). Consider a time series with
two variables, X1 and X2, over three time steps and maximum lag L = 2, with:

X:,1 = [0, 0, 4], X:,2 = [4, 2, 1].

Assume a lag-agnostic prior indicating that X2 → X1. We fit a linear model predicting X3,1 as:

X̂3,1 = (W0)2,1X3,2 + (W1)2,1X2,2 + (W2)2,1X1,2,

and optimize the following loss with a binary-masked lag-agnostic constraint4:

min
W

L(W ) + 100 · I
(
max

τ
|Wτ |2,1 < 1

)∑
τ

ReLU(1− |Wτ |2,1),

L(W ) = (4− (W0)2,1 − 2(W1)2,1 − 4(W2)2,1)
2
+ ∥W∥1.

(13)

This setup yields at least three local optima:
(i) W:,2,1 = [1, 0, 0.72], (ii) W:,2,1 = [0, 1, 0.47], (iii) W:,2,1 = [0, 0, 1],

with corresponding losses L = 1.73, 1.48, 1.0, respectively. Although all satisfy the lag-agnostic
constraint, only (iii) is a good optima.

This example (see Appendix B for proof, and see Appendix C for more discussions) demonstrates
that incorporating lag-agnostic priors transforms the originally convex problem of unconstrained
time-series structure learning (without the acyclicity constraint) into a non-convex one. As a result,
different initializations may lead the optimization process to suboptimal solutions such as (i) or (ii),
where the lag-agnostic constraint is prematurely satisfied by an incorrect lag. This underscores the
importance of a principled initialization strategy to promote convergence to favorable optima.

4This example also applies to the logic-dual formulation.
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Two-Stage Optimization via Data-Driven Initialization A practical solution is to initialize
using the outcome of the unconstrained data-fitting problem, which guides optimization toward
the most data-consistent lag. For Example 1, this strategy naturally favors the correct lag, leading
the optimization to recover solution (iii) and effectively avoid the suboptimal solutions (i) and (ii).
Specifically, we adopt a two-stage process:

Stage 1: Solve the unconstrained structure learning problem:

Ŵ data
0:L = arg min

W0:L

L(X;W0:L) subject to h(W0) = 0. (14)

Stage 2: Use the result as initialization for the lag-agnostic constrained objective:

min
W0:L

L(X;W0:L) + λp

∑
(Cp ◦ p(W )) , subject to h(W0) = 0, with W

(0)
0:L = Ŵ data

0:L . (15)

This formulation preserves the original task structure, enabling existing optimization and thresholding
methods to be applied directly. In our implementation, we use either the binary-masked loss pbin(W )
or the logic-dual loss por(W ) to encode lag-agnostic edge presence constraints.

4 EXPERIMENTS

This section presents the main experimental results and analysis. We begin with experimental setup.

Synthetic Data. We generate synthetic time-series data based on Erdős–Rényi (ER) random graphs,
where each possible edge is included independently with equal probability. To control graph sparsity,
we denote settings as ER-k, where k is the ratio of the number of edges to the number of nodes
d. Linear time-series samples are generated using a linear VAR process under two noise settings:
Gaussian (Gauss) and Exponential (Exp). The sequence contains T samples (time steps). For
incorporating lag-agnostic priors, we randomly select a proportion p% of the true lag-agnostic edges
as prior. The generation of nonlinear data is detailed in the specific corresponding experiments.

Real-World Data. We evaluate on the DREAM4 gene regulatory network dataset (Marbach et al.,
2009), a standard benchmark for time-series structure learning. It provides gene expression trajectories
with known regulatory interactions under various perturbations. As the ground-truth specifies edges
but not time lags, this dataset is well-suited for evaluating models with lag-agnostic structural priors.

Metrics. We report structural metrics including Structural Hamming Distance (SHD), True Positive
Rate (TPR), False Discovery Rate (FDR), F1 score, and the recovery rate of prior lag-agnostic edges.
We also use the area under the ROC curve (AUROC) for summary graph evaluation, and test-set
regression loss to assess predictive accuracy when lag-specific ground truth is unavailable.

Setup. Default settings: prior percentage p = 80, loss weight λp = 0.5, edge threshold δ = 0.1,
maximum lag L = 3; others follow the backbone default. Backbones inlcude DYNOTEARS (Pamfil
et al., 2020), LIN (Liu and Kuang, 2023), RHINO Gong et al. (2023), and NTS-NOTEARS (Sun et al.,
2023). Our methods are denoted as Backbone& (binary-masked loss) and Backbone* (logic-dual
loss). Initialization strategies include "Init 0" (zero), "Init Data" (data-driven), and "Init Random"
(random). Experiments run on an AMD Ryzen 9 7950X (4.5 GHz) CPU and 32 GB RAM.

4.1 EVALUATION OF OVERALL PERFORMANCE

We compare our method, augmented with lag-agnostic edge presence priors, against the data-only
baseline across varying node counts and graph settings. Figure 1 reports SHD, F1 score, and edge
recovery rate on synthetic data with 250 time steps. A more comprehensive evaluation is available
in Appendix E. We observe that both the logic-dual formulation (DYNOTEARS* with Init Data)
and the binary-masked formulation (DYNOTEARS& with Init Data) consistently outperform the
data-only baseline. Moreover, methods initialized with data-based strategies consistently outperform
their zero-initialized counterparts, highlighting the benefit of data-driven initialization in improving
optimization stability. Additionally, DYNOTEARS* consistently outperforms DYNOTEARS and
DYNOTEARS& under Init 0, suggesting that its fully continuous loss formulation leads to more
stable convergence even without carefully chosen initialization.
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Figure 1: Comparison between time-series structure learning with and without lag-agnostic priors.

4.2 COMPARISON WITH LAG-SPECIFIC PRIOR INTEGRATION

To demonstrate the robustness of our method, we compare it not only against a "no prior" baseline but
also against a Lag-Specific (LS) baseline given imperfect information. In this setup, the LS baseline
receives correct summary graph priors, but the associated lag is incorrect for q% of them (denoted
LS-q). Table 1 presents partial results from experiments using DYNOTEARS* (Init Data), 20-node
ER4 graphs, Gaussian noise, and a maximum lag of 5, evaluated across varying percentages of prior
knowledge. A more comprehensive evaluation is available in Appendix E.

Table 1: Partial comparison results between our method with lag-specific prior integration methods.

Method 5% Priors 10% Priors 30% Priors 50% Priors

SHD↓ F1↑ SHD↓ F1↑ SHD↓ F1↑ SHD↓ F1↑

DYNOTEARS 13.00±3.10 0.91±0.02 13.00±3.10 0.91±0.02 13.00±3.10 0.91±0.02 13.00±3.10 0.91±0.02
LS-0, Perfect Lags 10.33±2.73 0.93±0.02 8.00±2.37 0.95±0.02 4.83±1.94 0.97±0.01 4.83±1.33 0.97±0.01
LS-10, 10% Error 11.67±3.44 0.92±0.02 8.17±2.64 0.95±0.02 6.67±2.58 0.96±0.02 6.50±2.43 0.96±0.02
LS-30, 30% Error 12.50±3.62 0.92±0.03 9.50±3.27 0.94±0.02 8.83±1.33 0.94±0.01 8.33±2.16 0.95±0.02
LS-50, 50% Error 12.50±3.62 0.92±0.03 10.67±2.73 0.93±0.02 11.17±1.47 0.93±0.01 11.83±1.94 0.92±0.01
Ours (Lag Agnostic) 10.50±2.35 0.93±0.02 8.00±2.37 0.95±0.02 5.33±1.86 0.97±0.01 5.67±2.16 0.96±0.01

The results in Table 1 are revealing. While the oracle baseline with perfect lag information (LS-0)
achieves the best performance, our lag-agnostic method performs remarkably close to this upper
bound without requiring any specific lag knowledge. However, LS’s performance is brittle: With just
10% incorrect lag information (LS-10), our lag-agnostic method already exceeds its performance. As
the noise in the lag increases (LS-30, LS-50), the LS method’s performance degrades significantly,
falling significantly behind our lag-agnostic approach. This highlights the practical value of our
method in real-world scenarios where precise temporal information is often noisy or unavailable.

4.3 GENERALIZATION TO NON-STATIONARY AND NON-LINEAR BACKBONES

To demonstrate the versatility of our framework, we integrate it with state-of-the-art backbones
designed for complex non-stationary and non-linear time-series data: LIN (Liu and Kuang, 2023) and
RHINO (Gong et al., 2023). We use the logic-dual loss for lag-agnostic priors and the data-driven
initialization. Our method with p% lag-agnostic priors is denoted as LIN-p or RHINO-p here. We
adopted experimental setups from their respective papers to ensure a fair comparison: MLP-based
nonlinear data; (LIN) 5-node ER graphs (density=0.5), 1 lag, 1D and 2D Brownian motion, 2
intervention nodes; (RHINO) {5, 10, 20}-node graphs, 2 lags, connection factor=2, spline product
noise, intervention history=3. We report results with 5000 samples for LIN and RHINO in Figure 2,
with more comprehensive evaluation available in Appendix E. The results show that our lag-agnostic
prior framework consistently enhances the performance of both backbones, with improvements
scaling directly with the amount of available prior knowledge. These findings provide strong evidence
that our method serves as a general and effective plug-in for sophisticated, optimization-based
discovery methods, confirming its utility for challenging data conditions.
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(a) Results for LIN with various prior amount. (b) Results for RHINO with various prior amount.

Figure 2: Results of applying our method to LIN and RHINO for non-stationary, nonlinear data.

4.4 PERFORMANCE ON REAL-WORLD DATA

We tested our framework on the DREAM4 dataset using various sample sizes (m). We supplied our
method and a "random-lag" baseline with 25% and 75% of the true lag-agnostic edges as priors. As
the lag-specific truth is unknown, we also test static NOTEARS with and without priors. Results of
summary graph recovery quality and test-set regression loss are reported in Table 2.

Table 2: Results of data-only and prior-based methods on DREAM4 dataset.

@Priors Method DREAM4-63 DREAM4-126 DREAM4-189

Loss↓ AUROC↑ Loss↓ AUROC↑ Loss↓ AUROC↑

25%

NOTEARS 8.20±0.73 0.54±0.03 8.02±0.92 0.55±0.03 7.89±0.73 0.55±0.03
NOTEARS+Prior 7.57±0.52 0.66±0.02 7.57±0.72 0.67±0.02 7.66±0.61 0.68±0.03
DYNOTEARS 7.81±1.14 0.58±0.03 5.61±1.04 0.62±0.04 4.08±0.60 0.65±0.05
DYNOTEARS-RandomLag 7.26±0.63 0.64±0.03 6.01±0.83 0.68±0.04 4.94±0.61 0.71±0.06
DYNOTEARS* (Init Data) 7.19±1.01 0.69±0.02 5.27±0.92 0.73±0.03 3.85±0.54 0.74±0.05

75%

NOTEARS 8.20±0.73 0.54±0.03 8.02±0.92 0.55±0.03 7.89±0.73 0.55±0.03
NOTEARS+Prior 6.68±0.42 0.89±0.01 6.61±0.53 0.89±0.01 6.65±0.42 0.89±0.01
DYNOTEARS 7.81±1.14 0.58±0.03 5.61±1.04 0.62±0.04 4.08±0.60 0.65±0.05
DYNOTEARS-RandomLag 7.45±0.98 0.70±0.02 6.20±0.72 0.75±0.03 5.43±0.84 0.77±0.05
DYNOTEARS* (Init Data) 6.22±0.72 0.89±0.01 4.88±0.85 0.90±0.01 3.40±0.42 0.92±0.02

As shown, our method achieves the best performance across all conditions, outperforming baselines in
both predictive accuracy (regression loss) and structure recovery (AUROC). Notably, while priors with
imperfect random lags can appear to improve the summary causal graph, they severely degrade the
model’s predictive ability (126 and 189 samples). Our lag-agnostic approach, however, consistently
improves both, demonstrating its practical value and robustness in the real-world setting.

4.5 ABLATIONS, SUPPLEMENTARY EVALUATION AND RESULTS

Experiments of comprehensive ablations, evaluation of lag-agnostic edge absence, comprehensive
parameter analysis, qualitative results, and supplementary results, are presented in Appendix E.

5 CONCLUSION

This paper introduces a novel task: incorporating lag-agnostic structural priors into continuous
structure learning from time-series. The goal is to leverage commonly available, coarse-grained
prior knowledge to guide the recovery of fine-grained, lag-specific causal structures. We analyze
the unique challenges this setting poses, particularly in loss formulation and optimization stability,
and propose solutions with both theoretical guarantees and strong empirical performance. Results
on synthetic and real-world datasets demonstrate the effectiveness and robustness of our approach.
Future work may explore extending lag-agnostic priors beyond individual edges to more expressive
forms such as causal paths or partial orders, which are widely used in static structure learning.

9
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STATEMENT ON LLM USAGE

In the preparation of this manuscript, a large language model (LLM), specifically Google’s Gemini,
was used as a writing assistance tool. The human authors first drafted and completed each section of
the paper, establishing all core ideas, analyses, and conclusions. The LLM was then used solely to
refine and polish the language of these pre-written drafts to improve clarity, grammar, and readability.
The LLM’s role was strictly that of an editing assistant; it did not contribute to the research ideation,
experimental design, or the generation of any results or substantive content. All authors take full
responsibility for the final content of this paper.

A RELATED WORK

A.1 STRUCTURE LEARNING FROM STATIONARY TIME-SERIES DATA

Structure learning from stationary time-series data, whose fundamental statistical properties don’t
change over time, spans a broad set of methodologies, which can be mainly grouped into constraint-
based, functional causal model (FCM)-based, gradient-based, Granger causality-based, and miscella-
neous approaches.

Constraint-based Methods. Constraint-based approaches, such as tsFCI (Entner and Hoyer, 2010),
PCMCI (Runge et al., 2019b), and CDANs (Ferdous et al., 2023), rely on conditional independence
testing to infer temporal dependencies. These methods aim to recover a partially directed acyclic
graph (PDAG) by exploiting the statistical independencies implied by the causal Markov condition
and faithfulness assumptions.

FCM-based Methods. Functional Causal Model (FCM)-based methods, such as VarLiNGAM
(Hyvärinen et al., 2010) and TiMINo (Peters et al., 2014), assume a structural equation model with
functional dependencies and noise independence. These methods are identifiable under stronger
functional assumptions, but may be restrictive when applied to complex nonlinear dynamics.

Gradient-based Methods. Gradient-based approaches reformulate structure learning as a differen-
tiable optimization problem. DYNOTEARS (Pamfil et al., 2020) extends the NOTEARS framework
(Zheng et al., 2018) to time-series data by jointly learning intra-slice and inter-slice dependencies in
linear VAR models. NTS-NOTEARS (Sun et al., 2023) further incorporates neural networks and soft
supervision for dynamic causal structure discovery.

Granger Causality-based Methods. Granger causality-based methods (Granger, 1969) evaluate
causality through predictive performance: if the past of variable Xj improves prediction of Xi, then
Xj is said to Granger-cause Xi. Granger causality assumes strictly inter-slice causality, and typically
ignore instantaneous (intra-slice) effects. Modern machine learning methods are actively developing
to recover granger causality from time-series data. Representative approaches include neural granger
causality (Tank et al., 2018), generalized vector autoregression (GVAR) (Marcinkevičs and Vogt,
2021), neural additive vector autoregression (NAVAR) (Bussmann et al., 2021), and amortized causal
discovery (ACD) (Löwe et al., 2022).

Miscellaneous. Other methods, such as oCSE, TCDF (Nauta et al., 2019), NBCB, and PCTMI,
include hybrid or specialized approaches tailored to specific domains. These may leverage mutual
information, neural attention, or hybrid search strategies and are often evaluated in niche applications.

In summary, constraint-based methods are based on discrete search approaches, while FCM-based
methods use analytical approaches to address structure learning from time-series. The gradient-based
methods and neural granger causality approaches utilizes continuous optimization methods, which
are compatible with our introduced task of incorporating lag-agnostic priors. Even our method is
introduced based on the assumption of both intra-slice and inter-slice causality, it can be directly used
for granger causality and benefit the community by leveraging rich lag-agnostic priors.
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A.2 STRUCTURE LEARNING FROM NON-STATIONARY TIME-SERIES DATA

Learning causal structures from real-world time-series data is often complicated by non-stationarity,
where shifts in the underlying dynamics can lead to spurious discoveries if stationary models are used
(Song et al., 2009; Zhang et al., 2017). To address this, a significant research effort has focused on
methods that can adapt to changing data distributions. One prominent strategy is to model the process
as a sequence of discrete causal regimes. This includes methods that explicitly detect changepoints
to segment the data, like CASTOR (Rahmani and Frossard, 2025), as well as those that infer latent
interventions to identify different causal models, such as LIN (Liu and Kuang, 2023).

An alternative line of work models more complex dynamics or leverages richer data. RHINO (Gong
et al., 2023), for instance, captures continuously evolving systems by modeling history-dependent
noise with deep neural networks. Others, like IDYNO (Gao et al., 2022), use interventional data
from active experiments to robustly identify causal graphs that are otherwise unidentifiable from
observational data alone.

Investigating the integration of widely available lag-agnostic prior knowledge in such cases is highly
valuable but rarely studied. Our work complements these approaches by introducing a principled
method to integrate widely available lag-agnostic priors, and we demonstrate its effectiveness on
these complex backbones.

A.3 USE OF PRIOR KNOWLEDGE IN DIFFERENTIABLE STRUCTURE LEARNING

Prior knowledge has long been recognized as a powerful asset in causal discovery and has been widely
integrated into traditional combinatorial structure learning methods (Chen et al., 2016; Li and Beek,
2018; Constantinou et al., 2023). More recently, the differentiable structure learning community
(Zheng et al., 2018; Yu et al., 2019; Zheng et al., 2020) has begun exploring the incorporation of
various forms of prior knowledge, including edge constraints (Chen et al., 2025; Hasan and Gani,
2022), partial orders (Ban et al., 2024), and ancestral relationships (Wang et al., 2024). These
constraint types reflect common structural priors and help connect traditional discrete methods with
modern continuous optimization approaches in machine learning (Zhang et al., 2021).

In dynamic causal discovery, however, the integration of prior knowledge remains far less developed.
A few recent efforts, such as NTS-NOTEARS (Sun et al., 2023), support hard supervision for known
lag-specific edges. This study, however, assume that the exact time lag of a causal relationship is
known, which is rarely the case in real-world applications. In practice, domain knowledge from
fields such as biology, neuroscience, or industrial systems often indicates the presence of a causal
relationship between variables, without specifying when the influence occurs (Marbach et al., 2010).

Despite the broad availability of this coarse-grained form of knowledge, no existing methods system-
atically support lag-agnostic structural priors, which specify the existence of a causal edge without
identifying its exact time lag. This paper addresses that gap by proposing a continuous optimization
framework for time-series structure learning that integrates lag-agnostic priors.

B PROOF OF STATEMENTS

Proposition 1. Let (i, j) be a lag-agnostic edge specified to be present, and assume the data-fitting
loss satisfies ∇|(Wτ )ij |L ≥ 0 for all τ during optimization (push all (Wτ )ij toward zero). Suppose
∀τ ̸= τ0, δ > |(Wτ0)ij | > |(Wτ )ij | at initialization. Then, optimizing Equation (8) with the penalty
in Equation (9) will satisfy the constraint solely via (Wτ0)ij if with sufficiently large λp.

Proof. Let wτ = (Wτ )ij and m(W ) = maxτ |wτ |. The objective is

J(W ) = L(W ) + λp ReLU
(
δ −m(W )

)
+ ρh(W0).

Assume (i) ∇|wτ |L ≥ 0 for every τ (the data term always contracts each |wτ |) and (ii) 0 < |wτ0 | < δ
while |wτ0 | > maxτ ̸=τ0 |wτ | at initialization. Note that the acyclicity loss consistently push all
structural parameters toward 0. Hence, we regard h(W0) as part of L here as they both push all
(Wτ )ij toward 0 for the lag-agnostic edge (i, j).
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We have m(W ) = |wτ0 | and, while |wτ0 | < δ, the penalty equals δ − |wτ0 | with sub-gradient
∂wτ0

p = −λp sgn(wτ0) and ∂wτ
p = 0 for τ ̸= τ0. Because ∇wτ

L is bounded on the compact set
{|wτ | ≤ δ}, choose λp larger than that bound. Then

∇|wτ0
|J = ∇|wτ0

|L − λp|wτ0 | < 0,

so a descent step increases |wτ0 |; for every τ ̸= τ0,

∇|wτ |J = ∇|wτ |L ≥ 0,

and descent decreases |wτ |. Consequently |wτ0 | grows monotonically and all other magnitudes shrink
until the first time t∗ with |wτ0(t

∗)| = δ. At that instant p(W ) = 0 and remains zero as long as
|wτ0 | ≥ δ; if |wτ0 | ever tries to dip below δ, the same penalty force −λp sgn(wτ0) reactivates and,
because λp still dominates the data term, immediately drives |wτ0 | back up. Therefore eventually
|wτ0 | ≥ δ > |wτ | for every τ ̸= τ0, so the constraint m(W ) ≥ δ is satisfied solely through the single
coefficient wτ0 , i.e., the edge at lag τ0 with the largest initial absolute value.

Proposition 2. A lag-agnostic edge (i, j) is present in W0:L if and only if (pbin(W0:L))ij = 0, where
pbin(·) is defined by Equation (10).

Proof. Write
m := max

0≤τ≤L
|(Wτ )ij |.

We first show that presence =⇒ (pbin)ij = 0. Assume the edge is present, i.e. m ≥ δ. Then the
indicator in (10) equals 0:

I(m < δ) = 0,

hence (pbin(W ))ij = 0 · (· · · ) = 0.

Then we show (pbin)ij = 0 =⇒ presence. Suppose (pbin(W ))ij = 0. By (10) the product of two
non-negative factors is zero, so at least one factor is zero.

Case 1: I(m < δ) = 0. Then m ≥ δ, hence ∃ τ with |(Wτ )ij | ≥ δ; the edge is present.

Case 2:
∑
τ

ReLU(δ − |(Wτ )ij |) = 0. Each term of the sum is non-negative; therefore every term

must be 0, which implies |(Wτ )ij | ≥ δ for some τ (otherwise each absolute value would be < δ and
the indicator in the first factor would be 1, contradicting the product being 0). Hence the edge is again
present.

Since presence implies (pbin)ij = 0 and conversely (pbin)ij = 0 implies presence, we have the
desired equivalence and complete the proof.

Proposition 3. Let (i, j) be a lag-agnostic edge with known ordering of conflict degrees with respect
to the data-fitting loss:

0 ≤ ∇|(Wτ1
)ij |L < ∇|(Wτ2

)ij |L < · · · < ∇|(WτL
)ij |L,

where τ1 corresponds to the lag most aligned with data fit. Suppose all (Wτ )ij are initialized with
δ0 < δ. Then, optimizing Equation (8) with the prior penalty pbin will result in edge (i, j) appearing
only at lag τ1.

Proof. We have that the data-fitting loss L(X;W0:L) satisfies the fixed ordering

0 ≤ gτ1 < gτ2 < · · · < gτL , gτ := ∇|(Wτ )ij |L. (16)

Denote wτ := |(Wτ )ij | (τ = 0, . . . , L) and let
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m := max
τ

wτ .

Because all wτ < δ at initialisation, I(m < δ) = 1 and the prior penalty for the pair (i, j) equals

λp

L∑
τ=0

(
δ − wτ

)
(all terms positive).

The negative gradient of the total objective (restricted to edge (i, j)) is

− ∂

∂wτ

(
L+ λppbin

)
= −gτ + λp (τ = 0, . . . , L). (17)

Because gτ1 < gτ2 < · · · < gτL by (16), we have

−gτ1 + λp > −gτ2 + λp > · · · > −gτL + λp. (18)

Thus wτ1 receives the largest positive ascent among all lags, while every wτ starts from the same
value. Consequently wτ1 becomes the unique maximiser m after an arbitrarily small descent step.

As long as m < δ (so the indicator in pbin stays 1) the update for every lag keeps the form (17).
Inequality (18) remains valid because the ordering (16) is assumed fixed. Hence wτ1 grows strictly
faster than every other wτ and reaches δ first. Let t⋆ be the first iteration where wτ1 = δ. At this
moment m = δ and the indicator in pbin flips to zero, so the penalty vanishes.

For iterations t > t⋆ the objective reduces to L alone, whose gradients −gτ are non-positive (each
gτ ≥ 0 by assumption). Thus ẇτ ≤ 0 for every lag. For τ ̸= τ1 we still have wτ (t) ≤ wτ (0) < δ;
no mechanism makes them increase. wτ1(t) can decrease but remains ≥ δ in a neighbourhood of t⋆,
so the presence condition is fulfilled and the prior penalty never re-activates.

Gradient flow therefore converges to a stationary point where

wτ1 ≥ δ, wτ = 0 (τ ̸= τ1),

which is exactly the result of proposition 3. We complete the proof.

Proposition 4. A lag-agnostic edge (i, j) is present in W0:L if and only if (por(W0:L))ij = 0, where
por(·) is defined in Equation (11).

Proof. Define aτ := |(Wτ )ij | and write

por =

L∏
τ=0

ReLU(δ − aτ ).

(⇒) If por = 0, then the edge is present. Because a product of non–negative numbers is zero only
when at least one factor is zero, there exists an index τ⋆ with

ReLU(δ − aτ⋆) = 0 =⇒ δ − aτ⋆ ≤ 0 =⇒ aτ⋆ ≥ δ.

Hence |(Wτ⋆)ij | ≥ δ; the edge is present at lag τ⋆.

(⇐) If the edge is present, then por = 0. Assume there exists τ † with aτ† ≥ δ. Then

ReLU(δ − aτ†) = 0,

so the product contains a zero factor and therefore por = 0.

Since each direction holds, the equivalence is proved.
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Example 1 (Multiple Local Optima under Lag-Agnostic Constraint). Consider a time series with
two variables, X1 and X2, over three time steps and maximum lag L = 2, with:

X:,1 = [0, 0, 4], X:,2 = [4, 2, 1].

Assume a lag-agnostic prior indicating that X2 → X1. We fit a linear model predicting X3,1 as:

X̂3,1 = (W0)2,1X3,2 + (W1)2,1X2,2 + (W2)2,1X1,2,

and optimize the following loss with a binary-masked lag-agnostic constraint5:

min
W

L(W ) + 100 · I
(
max

τ
|Wτ |2,1 < 1

)∑
τ

ReLU(1− |Wτ |2,1),

L(W ) = (4− (W0)2,1 − 2(W1)2,1 − 4(W2)2,1)
2
+ ∥W∥1.

(13)

This setup yields at least three local optima:

(i) W:,2,1 = [1, 0, 0.72], (ii) W:,2,1 = [0, 1, 0.47], (iii) W:,2,1 = [0, 0, 1],

with corresponding losses L = 1.73, 1.48, 1.0, respectively. Although all satisfy the lag-agnostic
constraint, only (iii) is a good optima.

Proof. We will show that the three points (with exact values) listed in Example 1,

(i) W (i) = (1, 0,
23

32
),

(ii) W (ii) = (0, 1,
15

32
),

(iii) W (iii) = (0, 0, 1),

(19)

are local minimisers of the objective

F (W ) =
(
4− (W0)2,1 − 2(W1)2,1 − 4(W2)2,1

)2︸ ︷︷ ︸
L(W )

+ ∥W∥1︸ ︷︷ ︸
L1 sparsity

+ 100 I
(

max
τ=0,1,2

|Wτ |2,1 < 1
) 2∑

τ=0

ReLU
(
1− |Wτ |2,1

)
.

(20)

Throughout, write wτ := (Wτ )2,1 for brevity and consider perturbations wτ + ετ with ε :=
(ε0, ε1, ε2) arbitrarily small in Euclidean norm.

First note that for every point in (19), maxτ |wτ | = 1, so the indicator I(maxτ |wτ | < 1) is zero and
the penalty term is inactive.

Let P (ε) the perturbed penalty indicator:

P (ε) = I
(
max

τ
|wτ + ετ | < 1

)
.

For any perturbation sufficiently small, we have two disjoint cases.

Case A: The penalty is triggered
(
P (ε) = 1

)
. Then

F
(
W + ε

)
≥ 100

2∑
τ=0

(
1− |wτ + ετ |

)
> 100,

while F (W (i)) = 1.73, F (W (ii)) = 1.48, F (W (iii)) = 1. This penalty value (100) is larger than
every baseline value,

5This example also applies to the logic-dual formulation.
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F
(
W + ε

)
− F

(
W (k)

)
> 0 (k = i, ii, iii).

Case B: The penalty remains zero
(
P (ε) = 0

)
. This implies maxτ |wτ + ετ | ≥ 1. Because exactly

one component in each W (k) equals 1 and the others are below 1, we must have ετ̂ ≥ 0 for that
maximising index τ̂ , while |ετ | is arbitrarily small for the others.

Consider the case of W (i) = (1, 0, 23
32 ), we have that ε0 > 0. In this region, F (W ) is fully

continuous, and we only need to prove that for arbitrarily small ε0 > 0 and |ε1|, |ε2|:
F (w0 + ε0, w1, w2) ≥ F (w0, w1, w2), (21)
F (w0, w1 + ε1, w2) ≥ F (w0, w1, w2), (22)
F (w0, w1, w2 + ε2) ≥ F (w0, w1, w2). (23)

Let
t ≡ (4− w0 − 2w1 − 4w2) =

1

8
.

We have:
F (w0 + ε0, w1, w2)− F (w0, w1, w2) = (−2t+ 1)ε0 =

3

4
ε0 > 0,

which proves (21).

Besides, we have:

F (w0, w1 + ε1, w2)− F (w0, w1, w2) =

{
(−4t+ 1)ε1 = 1

2ε1 > 0 ε1 > 0
(−4t− 1)ϵ1 = − 3

2ε1 > 0 ε1 < 0
,

which proves (22).

Finally, we have:

F (w0, w1, w2 + ε2)− F (w0, w1, w2) = (−8t+ 1)ϵ2 = 0 ≥ 0,

which proves (23).

Hence, we have shown that F (W (i) + ε) ≥ F (W (i)) in case B. Parallel calculations for W (ii) and
W (iii) give the same results as well.

Both Case A and Case B show that for sufficiently small non-zero perturbations F (W+ε)−F (W ) ≥
0. Thus each reference point W (i),W (ii),W (iii) satisfies the definition of a local minimiser.

C AMBIGUITY-INDUCED NON-CONVEXITY OF LAG-AGNOSTIC PRIORS

This section discusses why the lag-agnostic priors introduce additional non-convexity to the objective,
and illustrates that this is a unique challenge for lag-agnostic prior, which is not encountered by
lag-specific priors.

In lag-specific structure learning a prior singles out one weight, e.g. "(W1)ij ≥ δ", and the objective
remains convex (quadratic data-loss + ℓ1 + linear constraint). A lag-agnostic prior, instead, states
only that some lagged edge must be present; the optimisation then decides which lag de-activates
the penalty. That logical OR introduces pieces that switch on/off at different locations, yielding a
non-convex surface even in the linear-VAR setting.

Now we consider the following example that replace the lag-agnostic constraint in Example 1 with a
lag-specific one.

Consider two variables (X1, X2) observed at three time steps (L = 2):

X:,1 = [0, 0, 4], X:,2 = [4, 2, 1].

We learn weights wτ = (Wτ )2,1 in

X̂3,1 = w0X3,2 + w1X2,2 + w2X1,2,

18
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using either lag-agnostic prior pLA in Example 1, or lag-specific prior pLS on the presence of edge in
lag 1, .e., parameter w1 in this formulation. Then we consider the corresponding losses:

FLA(w) =
(
4− w0 − 2w1 − 4w2

)2
+ |w0|+ |w1|+ |w2|+ 100 I

(
max

τ
|wτ | < 1

) 2∑
τ=0

ReLU(1− |wτ |),

FLS(w) =
(
4− w0 − 2w1 − 4w2

)2
+ |w0|+ |w1|+ |w2|+ 100 ReLU(1− |w1|).

Both use edge threshold δ = 1.

Next, we consider the convexity of the lag-specific objective. In FLS, the squared error is a convex
quadratic, ℓ1 is convex, ReLU(1− |w1|) is convex in w1. Hence FLS is convex in (w0, w1, w2).

In comparison, the lag-agnostic loss FLA has been proven to be non-convex, which has the following
three local optima:

A = (1, 0, 0.72), B = (0, 1, 0.47), D = (0, 0, 1).

Because the penalty switches off as soon as any wτ reaches 1, each axis direction creates a separate flat
basin. Gradient descent starting near A,B, or D converges to these points, all stationary and satisfying
the lag-agnostic prior. Only D minimizes the overall loss, while A,B persist as (suboptimal) local
minima, precisely the phenomenon highlighted in Example 1.

In summary, without the acyclicity constraint the lag-specific objective FLS is convex and has a unique
(lasso) solution. Replacing the single-lag prior with the ambiguous OR-constraint pLA produces
a non-convex surface with multiple disconnected minima. This non-convexity is intrinsic to lag-
agnostic priors and absent in earlier lag-specific formulations, motivating careful initialization and
the process-equivalent losses proposed in this paper.

D LIMITATIONS AND BROADER IMPACT

Limitations. While our method demonstrates strong performance across synthetic and real-world
datasets while remaining identical computational efficiency of the used backbone model, several
limitations remain. First, the method currently assumes no latent confounders or missing variables;
its effectiveness under partial observability remains untested. Second, the two-stage optimization
(data fit followed by prior-guided refinement) may not always guarantee global optima due to residual
non-convexity in the loss landscape. Finally, our method assumes the correctness of the provided
priors, which may harm the structure learning if with low prior quality.

Broader Impact. This work contributes to improving structure learning in time-series settings
where precise temporal annotations are scarce but higher-level causal insights are available, an
increasingly common situation in domains such as biology, neuroscience, finance, and sensor systems.
By enabling the use of coarse-grained prior knowledge, our method supports more practical and
accessible causal discovery pipelines. However, as with all data-driven causal inference tools, there is
a risk of overinterpreting or misapplying recovered structures, especially in high-stakes fields like
healthcare or policy-making. We emphasize that the results should be validated with domain expertise
and, where possible, interventional or experimental studies.

Overall, we hope this work encourages the development of structure learning methods that bridge the
gap between real-world prior availability and fine-grained causal inference in dynamic systems.

E COMPLETE EXPERIMENT RESULTS

This section presents a series of supplementary analyses. We begin by evaluating key modules, testing
our method on the non-linear NTS-NOTEARS backbone and integration of edge absence priors.
We then present comprehensive parameter analysis results, followed qualitative results including
experiments with an unknown maximum lag, and an analysis of varying structural weights. Finally,
we provide supplementary results for all experiments.
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(a) Results on 250 samples. (b) Results on 1000 samples.

Figure 3: Comparison between data-based initialization and random initialization.

E.1 ABLATIONS ON INITIALIZATION STRATEGIES

We assess the effectiveness of data-driven initialization by comparing it with random initialization.
Specifically, we generate 12 random W0:L initializations and evaluate both two-stage optimization
using data-driven initialization (Init Data) and direct optimization from these random initialization
(Init Random). Results on 30-node graphs with 250 and 1000 samples are shown in Figure 3.

For DYNOTEARS&, Init Data consistently generally yields better performance than Init Random,
reducing the variability across runs and leading to more stable outcomes. For DYNOTEARS*, the
difference is less pronounced in the low-sample setting due to its inherently stable, fully continuous
loss formulation. However, in the high-sample regime, Init Data clearly outperforms Init Random.
These results confirm that data-driven initialization enhances both performance and stability when
incorporating lag-agnostic structural priors.

(a) Results on 250 samples. (b) Results on 1000 samples.

Figure 4: Comparison between process-equivalent and -inequivalent loss formulation.

E.2 ABLATIONS ON PROCESS-EQUIVALENT LOSS FORMULATION

We evaluate the impact of process-equivalence in loss design by comparing our logic-dual formula-
tion (DYNOTEARS*) with the maximum-based formulation, which is denoted as DYNOTEARSˆ .
Results are shown in Figure 4. DYNOTEARS* consistently outperforms DYNOTEARSˆ , with the
performance gap particularly pronounced under Init 0. This supports our analysis that the maximum-
based formulation is highly sensitive to initialization, as it tends to commit early to a single lag based
on initial parameter values, violating the intent of lag-agnostic priors.
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Table 3: Results on nonlinear data with backbone algorithm NTS-NOTEARS.

Sample Count 200 1000

Model Method F1-score↑ SHD↓ Recovery↑ F1-score↑ SHD↓ Recovery↑
ANM NTSNOTEARS 0.63±0.08 48.00±11.73 0.60±0.15 0.75±0.06 31.33±7.76 0.68±0.14
ANM NTS-NOTEARS*-20 0.65±0.06 47.17±8.45 1.00±0.00 0.76±0.05 31.17±7.03 1.00±0.00
ANM NTS-NOTEARS*-40 0.68±0.05 45.17±7.03 1.00±0.00 0.79±0.03 28.33±4.93 1.00±0.00
ANM NTS-NOTEARS*-60 0.67±0.07 49.00±10.22 1.00±0.00 0.78±0.06 31.00±8.88 1.00±0.00
ANM NTS-NOTEARS*-80 0.70±0.05 46.00±7.64 1.00±0.00 0.81±0.04 28.33±6.83 1.00±0.00
ANM NTS-NOTEARS*-100 0.70±0.07 48.17±13.18 1.00±0.00 0.81±0.04 28.67±6.22 1.00±0.00

AIM NTSNOTEARS 0.60±0.04 49.17±5.12 0.61±0.14 0.85±0.04 20.00±6.29 0.77±0.06
AIM NTS-NOTEARS*-20 0.64±0.02 47.33±4.68 1.00±0.00 0.87±0.04 17.67±5.96 1.00±0.00
AIM NTS-NOTEARS*-40 0.67±0.02 46.00±6.45 1.00±0.00 0.88±0.03 17.67±5.61 1.00±0.00
AIM NTS-NOTEARS*-60 0.70±0.05 44.83±10.17 1.00±0.00 0.88±0.05 18.33±8.31 1.00±0.00
AIM NTS-NOTEARS*-80 0.73±0.04 42.50±8.96 1.00±0.00 0.88±0.04 18.17±7.25 1.00±0.00
AIM NTS-NOTEARS*-100 0.75±0.04 39.67±9.24 1.00±0.00 0.89±0.04 16.50±7.29 1.00±0.00

E.3 EVALUATION ON NONLINEAR DATA

This section evaluates our method in nonlinear time-series settings using synthetic data and the
NTS-NOTEARS backbone. We first describe the data generation process for two nonlinear structural
equation models (SEMs), then present experimental results under varying lag-agnostic priors and
finally the analysis of the observations.

Synthetic Nonlinear Data We construct two types of nonlinear time-series datasets to test the
robustness of our approach. In both settings, each variable is generated as a nonlinear function of its
lagged parents, plus additive noise. The Additive Noise Model (ANM) generates each sample via

x = σ(XW )W + z,

where σ(·) denotes the element-wise sigmoid function and z is Gaussian noise. The Additive Index
Model (AIM) introduces more complex nonlinearity:

x = tanh(XW ) + cos(XW ) + sin(XW ) + z.

Experimental Setting and Results We apply the logic-dual formulation (NTS-NOTEARS*) with
data-driven initialization (Init Data) under both nonlinear models. For each setting, we vary the
percentage of available lag-agnostic edge priors and measure performance using SHD and F1 score
on ER4 graph with 3 maximum lags and 20 nodes. The results are reported in Table 3.

Analysis As the proportion of prior edges increases, we observe a steady improvement in F1 score,
indicating more accurate recovery of true dependencies. SHD exhibits mild variability across settings
but generally remains low, suggesting that performance gains are not achieved by overfitting or
inflating edge counts. These results demonstrate that our method effectively leverages coarse-grained
structural knowledge to improve structure learning even in nonlinear time-series settings, confirming
its general applicability beyond the linear case.

E.4 EVALUATION OF LAG-AGNOSTIC EDGE ABSENCE CONSTRAINTS

This experiment evaluates the impact of incorporating lag-agnostic edge absence constraints on
structure learning from time-series data. Specifically, we enforce the absence of a lag-agnostic edge
(i, j) by constraining the corresponding lagged edge weights to zero across all lags:

∀τ ∈ {0, 1, . . . , L}, (Wτ )ij = 0.

Given a binary mask Ca ∈ {0, 1}d×d, where (Ca)ij = 1 denotes the absence of the lag-agnostic edge
(i, j), the optimization problem becomes:
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Table 4: Results of DYNOTEARS with absence and presence constraints of lag-agnostic edges.

ER2 250 Samples 1000 Samples

Metric Method Node=20 Node=30 Node=50 Node=20 Node=30 Node=50

SHD ↓

Baseline 12.67±4.03 22.33±2.25 37.67±2.25 10.50±3.02 15.33±2.94 19.67±1.75
DYNOTEARS+Absence 9.83±3.13 16.50±3.08 24.33±2.58 9.83±2.79 14.17±1.83 19.50±1.76
DYNOTEARS& (Init 0) 11.17±3.43 18.00±4.20 24.33±6.68 7.17±2.04 6.33±3.27 7.33±1.21
DYNOTEARS& (Init Data) 9.33±2.42 16.00±3.58 27.33±2.50 4.33±1.03 5.33±1.86 5.67±2.42
DYNOTEARS* (Init 0) 10.00±3.10 15.00±2.00 24.83±3.54 6.50±2.59 5.33±1.63 7.00±1.10
DYNOTEARS* (Init Data) 9.17±2.14 14.00±3.79 25.50±2.43 5.50±2.07 6.00±1.41 7.33±2.58

F1 ↑

Baseline 0.83±0.06 0.80±0.02 0.80±0.01 0.85±0.05 0.85±0.03 0.89±0.01
DYNOTEARS+Absence 0.86±0.05 0.85±0.03 0.87±0.02 0.86±0.05 0.87±0.02 0.89±0.01
DYNOTEARS& (Init 0) 0.86±0.05 0.85±0.03 0.88±0.03 0.90±0.03 0.94±0.03 0.96±0.01
DYNOTEARS& (Init Data) 0.88±0.03 0.87±0.03 0.86±0.01 0.94±0.01 0.95±0.02 0.97±0.01
DYNOTEARS* (Init 0) 0.87±0.04 0.87±0.02 0.88±0.02 0.91±0.04 0.95±0.01 0.96±0.01
DYNOTEARS* (Init Data) 0.88±0.03 0.88±0.03 0.87±0.01 0.93±0.03 0.95±0.01 0.96±0.01

ER4 250 Samples 1000 Samples

Metric Method Node=20 Node=30 Node=50 Node=20 Node=30 Node=50

SHD ↓

Baseline 17.00±2.68 31.17±2.86 57.00±6.90 13.00±3.10 22.67±5.39 33.33±4.27
DYNOTEARS+Absence 14.00±3.22 24.00±3.16 40.33±4.68 12.50±3.02 22.33±5.05 32.33±4.63
DYNOTEARS& (Init 0) 17.33±4.76 27.00±6.16 46.83±10.01 6.83±0.98 10.33±2.16 14.83±2.64
DYNOTEARS& (Init Data) 11.83±3.19 21.83±1.94 40.50±11.64 6.33±1.86 6.83±2.93 11.50±2.07
DYNOTEARS* (Init 0) 13.50±2.81 22.50±4.09 40.50±7.64 6.67±2.16 10.17±3.66 14.17±1.33
DYNOTEARS* (Init Data) 11.50±4.51 20.00±2.00 38.83±10.78 6.50±1.87 7.33±2.50 13.33±3.44

F1 ↑

Baseline 0.88±0.02 0.86±0.01 0.84±0.02 0.91±0.02 0.90±0.03 0.91±0.01
DYNOTEARS+Absence 0.91±0.02 0.89±0.02 0.89±0.01 0.91±0.02 0.90±0.03 0.91±0.01
DYNOTEARS& (Init 0) 0.89±0.03 0.89±0.03 0.88±0.03 0.96±0.01 0.96±0.01 0.96±0.01
DYNOTEARS& (Init Data) 0.92±0.02 0.91±0.01 0.90±0.03 0.96±0.01 0.97±0.01 0.97±0.01
DYNOTEARS* (Init 0) 0.91±0.02 0.90±0.02 0.90±0.02 0.96±0.01 0.96±0.02 0.96±0.00
DYNOTEARS* (Init Data) 0.93±0.03 0.91±0.01 0.90±0.03 0.96±0.01 0.97±0.01 0.97±0.01

min
W0:L

L(X;W0:L), subject to h(W0) = 0,
∑
τ

Ca ◦Wτ = 0.

We use DYNOTEARS as the backbone solver and denote the model with lag-agnostic absence
constraints as DYNOTEARS+Absence.

In our setup, we randomly select 80% of absent lag-agnostic edges as priors. We compare three config-
urations: (1) DYNOTEARS (data-only baseline), (2) DYNOTEARS+Absence, and (3) DYNOTEARS
with 80% lag-agnostic edge presence priors. Results under varying node counts, sample sizes, and
graph densities (with Gaussian noise) are summarized in Table 4.

Results and Analysis We observe that incorporating lag-agnostic edge absence priors improves
structure learning performance over the data-only baseline. However, the degree of improvement
is smaller than that achieved by incorporating lag-agnostic edge presence constraints at the same
proportion. This difference arises because presence constraints actively guide the model toward
recovering missing true edges, enhancing both recall and structural accuracy. In addition, by encour-
aging the inclusion of informative edges, presence priors can help remove erroneous edges through
the regularization, further improving model performance. In contrast, absence constraints merely
restrict spurious connections and do not directly assist in identifying the correct ones. As a result,
their influence on structure recovery is more passive and less impactful.

These findings highlight that while absence priors are useful for improving precision and suppressing
false positives, presence priors contribute more significantly to overall structure recovery, especially
in terms of recall and correct identification of lagged dependencies. This underscores the practical
importance of integrating lag-agnostic edge presence information when available.
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E.5 EVALUATION UNDER VARYING PRIOR RATES

This section studies how the proportion of available lag-agnostic priors influences the structure
learning performance of our method. We systematically vary the prior rate and evaluate its effect on
several metrics, including F1 score, Structural Hamming Distance (SHD), recall (TPR), accuracy
(1–FDR), and the recovery rate of the prior edges.

Figure 5: Results under varying prior rates on 250 samples.

Experimental Setup We use synthetic time-series data generated from ER-2 and ER-4 graphs with
30 nodes, under both Gaussian and Exponential noise settings. For each configuration, we compare
DYNOTEARS, DYNOTEARS* (logic-dual), and DYNOTEARS& (binary-masked), each evaluated
with two initialization strategies: zero initialization (Init 0) and data-driven initialization (Init Data).
The lag-agnostic prior rate is varied from low to high values, and performance results are summarized
in Figure 5 for 250 samples and Figure 6 for 1000 samples.

Results and Observations As the prior rate increases, we observe consistent improvements in
F1 score, SHD, and recall across all methods and settings. This confirms that incorporating more
prior knowledge improves the model’s ability to recover the true causal structure. Notably, accuracy
(1–FDR) for some Init 0 methods exhibits a slight decline in certain cases, likely due to unstable
convergence or early overfitting to incorrect lag selections. In contrast, Init Data methods maintain
higher and more stable accuracy, demonstrating the benefit of principled initialization under am-
biguous prior constraints. These findings highlight the robustness of our approach and reinforce the
importance of both informative priors and strong initialization in achieving reliable structure recovery
from time-series data.

E.6 EVALUATION WITH VARYING MAXIMUM LAG NUMBERS

To investigate the influence of the maximum allowable lag L our method, we generate synthetic
time-series data with true lag-specific structures ranging from L = 1 to L = 10. We evaluate
the methods, DYNOTEARS, DYNOTEARS*, and DYNOTEARS&, with both Init 0 and Init Data
strategies, using metrics: SHD, F1 score, recall (TPR), accuracy (1–FDR), and edge recovery rate.

Experimental Setup Experiments are conducted on synthetic datasets with 30 nodes and two
different sample sizes: 250 and 1000. The results on 250 samples are presented in Figure 7, while
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Figure 6: Results under varying prior rates on 1000 samples.

those on 1000 samples are shown in Figure 8. These experiments assess the robustness of each
method under increasing temporal complexity.

Results and Analysis On datasets with 250 samples, performance generally decreases as the
maximum lag increases. This is expected, as longer lags increase the effective model complexity
and introduce more potential for overfitting or misidentification of spurious lagged dependencies,
especially under limited data. In contrast, when 1000 samples are available, performance improves as
L increases, suggesting that the additional temporal depth can be beneficial when supported by suffi-
cient data. Among the methods, DYNOTEARS* (both Init 0 and Init Data) and DYNOTEARS& (Init
Data) consistently outperform the data-only baseline across lag values. However, DYNOTEARS&
with Init 0 underperforms relative to the baseline when L > 5. We attribute this to the increasing
non-convexity of the optimization landscape as the number of lag candidates grows, which introduces
more local optima. The non-differentiability of the binary-masked loss exacerbates this issue when the
model is initialized poorly, leading to unstable optimization. These results underscore the importance
of both smooth loss design and principled initialization for scaling lag-agnostic priors to longer
temporal horizons.

E.7 EVALUATION WITH VARYING PRIOR LOSS WEIGHTS

To analyze the sensitivity of our method to the strength of the lag-agnostic prior constraint, we
conduct experiments by varying the weight λp of the prior loss term from 0.01 to 1.0. We evaluate all
five model variants, DYNOTEARS, DYNOTEARS*, and DYNOTEARS&, with both Init 0 and Init
Data strategies, using five evaluation metrics: SHD, F1 score, recall (TPR), accuracy (1–FDR), and
edge recovery rate.

Experimental Setup Experiments are conducted on synthetic time-series datasets with 30 nodes
under two sample size conditions: 250 and 1000 samples. For each value of λp, we apply the
lag-agnostic constraint to the structure learning objective and compare performance across methods.
Results on 250 samples are reported in Figure 9, and results on 1000 samples are reported in Figure
10.
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Figure 7: Results under varying maximum lags on 250 samples

Figure 8: Results under varying maximum lags on 1000 samples.

Results and Analysis We observe a clear difference in behavior between the two initialization
strategies. For methods with Init 0, performance tends to improve initially as λp increases, but
then deteriorates when the loss weight becomes too large. This pattern aligns with our theoretical
understanding: as the influence of the prior grows, the optimization becomes increasingly dominated
by the ambiguous lag-agnostic constraint, which can distort the loss surface and lead to premature
convergence to poor local optima, especially in the absence of a guiding initialization.
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Figure 9: Results under varying prior loss weights on 250 samples.

Figure 10: Results under varying prior loss weights on 1000 samples.

In contrast, the Init Data variants show a more stable trend. Performance improves with increasing
λp and then plateaus at a high level, indicating that data-driven initialization effectively mitigates the
non-convexity introduced by the lag-agnostic formulation. These results reinforce the importance of
principled initialization, especially when prior constraints are strongly enforced.
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This experiment confirms that the stability of optimizing the problem with lag-agnostic prior con-
straints can be significantly improved with informed initialization, maintaining good performance
even with large prior strengths.

E.8 EVALUATION UNDER LARGER MAXIMUM LAGS THAN GROUND TRUTH

This experiment investigates how our method behaves when the model’s assumed maximum lag
Lmodel is larger than the true maximum lag Ltrue, as we may not know the specific maximum lag in
practice. Specifically, we set Ltrue = 5 and set the used model with Lmodel = 10. The underlying
graph is an ER-2 network with 30 nodes, and Gaussian noise is used to simulate the time-series data.

Metrics and Evaluation We report two key evaluation metrics: (1) the data-fitting loss (including
regularization) computed using the recovered parameters up to lag k (i.e., lag-0 to lag-k), and (2)
the maximum absolute edge weight within each lag-specific matrix Wk, which reflects the relative
contribution of each lag to the fitted model.

Figure 11: Results under larger maximum lags than ground truth.

Results and Observations Figure 11 presents the results for all five methods. We observe that the
data-fitting loss decreases as more lags are included up to the true maximum lag Ltrue = 5, and then
remains relatively stable as k increases beyond this point. This indicates that the methods correctly
prioritize learning causal dependencies within the correct temporal horizon and do not overfit to
spurious long-lag dependencies.

In terms of the maximum edge weight per lag, all methods identify significant causal strengths for
lags 0 through 5, while edge magnitudes beyond lag 5 drop sharply and remain close to zero. This
behavior suggests that even when the model is allowed to consider more lags than necessary, it can
accurately isolate the true temporal dependencies and avoid overestimating long-lag effects.

Among the methods, DYNOTEARS* shows more stable performance than DYNOTEARS&, par-
ticularly when k > Ltrue. This is likely due to its fully differentiable loss design, which enables
smoother optimization across lagged parameters. Additionally, Init Data consistently outperforms
Init 0 for both loss functions, resulting in more stable data fit and sparser edge recovery in the extra
lag dimensions. Specifically, the better-performing methods exhibit lower fitting loss and maintain
near-zero maximum edge weights in higher lag levels, confirming their ability to resist overfitting
when the model includes excessive lags.

E.9 VISUALIZATION OF LAG-SPECIFIC EDGE WEIGHTS

To qualitatively assess the effectiveness of incorporating lag-agnostic priors, we visualize the recov-
ered lag-specific edge weights in a representative example. We consider a synthetic dataset with 5
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Edges recovered  
using priors

Missing edges

Figure 12: Visualized results of the lag-specific edge weights.

nodes and a maximum lag of 3. The true lagged structures, the structure learned by the baseline
method (DYNOTEARS, using data only), and the structure learned by our lag-agnostic prior-based
method (DYNOTEARS*) are visualized and compared. The results are shown in Figure 12.

Results and Observations From the visualization, we observe that the model incorporating lag-
agnostic priors (DYNOTEARS*) more accurately recovers both the locations and magnitudes of
the lag-specific edges compared to the data-only baseline. Many true causal connections that are
missed by the baseline are correctly recovered under the guidance of lag-agnostic priors. Importantly,
the recovered weights not only reflect the correct lags but also closely match the ground-truth edge
strengths, demonstrating the precision of the proposed method.

These results visually support our quantitative findings, showing that even coarse-grained prior
knowledge can lead to more accurate and interpretable recovery of fine-grained, lag-specific temporal
structures.

E.10 SUPPLEMENTARY RESULTS

This section presents supplementary experimental results that extend the findings reported in the
main text. These additional results cover a broader range of evaluation metrics, graph configurations,
and data sample sizes to provide a more comprehensive view of method performance. The specific
settings for each experiment are detailed in the corresponding figure or table captions.
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Figure 13: Supplementary results of the overall comparison on 250 samples.

Figure 14: Supplementary results of the overall comparison on 1000 samples.
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Table 5: Supplementary results of the overall comparison with lag-specific prior integration on 200
samples.

GT NT Method 5% Priors 10% Priors 30% Priors 50% Priors
SHD ↓ F1 ↑ SHD ↓ F1 ↑ SHD ↓ F1 ↑ SHD ↓ F1 ↑

ER-2 Exp

DYNOTEARS 40.00±6.63 0.58±0.06 40.00±6.63 0.58±0.06 40.00±6.63 0.58±0.06 40.00±6.63 0.58±0.06
LS-0, Perfect Lags 37.17±6.05 0.61±0.05 36.33±5.68 0.62±0.05 30.17±5.00 0.70±0.04 31.17±6.18 0.69±0.05
LS-10, 10% Error 39.17±6.24 0.60±0.05 37.33±5.57 0.62±0.05 34.17±5.91 0.66±0.05 33.50±5.01 0.67±0.04
LS-30, 30% Error 39.17±6.24 0.60±0.05 38.33±4.13 0.61±0.03 35.83±5.49 0.64±0.04 37.00±5.83 0.63±0.04
LS-50, 50% Error 39.17±6.24 0.60±0.05 38.33±4.13 0.61±0.03 38.00±4.00 0.62±0.03 41.17±2.71 0.60±0.02
Ours (Lag Agnostic) 37.83±5.46 0.61±0.04 37.00±4.82 0.62±0.04 34.17±4.26 0.66±0.03 33.50±6.25 0.66±0.05

ER-2 Gauss

DYNOTEARS 17.33±4.84 0.77±0.07 17.33±4.84 0.77±0.07 17.33±4.84 0.77±0.07 17.33±4.84 0.77±0.07
LS-0, Perfect Lags 16.50±4.37 0.78±0.06 14.50±4.64 0.81±0.07 10.00±3.16 0.88±0.04 9.17±3.43 0.89±0.04
LS-10, 10% Error 17.17±4.26 0.77±0.06 15.83±4.54 0.79±0.06 12.33±4.89 0.84±0.07 12.50±5.36 0.85±0.07
LS-30, 30% Error 17.17±4.26 0.77±0.06 16.33±4.80 0.79±0.07 13.00±3.52 0.84±0.05 13.33±3.50 0.84±0.04
LS-50, 50% Error 17.17±4.26 0.77±0.06 16.33±4.80 0.79±0.07 15.33±4.97 0.81±0.06 15.17±3.19 0.81±0.03
Ours (Lag Agnostic) 16.50±3.99 0.78±0.06 15.67±5.54 0.80±0.08 12.33±5.20 0.85±0.06 9.50±2.26 0.88±0.03

ER-4 Exp

DYNOTEARS 36.50±5.54 0.77±0.03 36.50±5.54 0.77±0.03 36.50±5.54 0.77±0.03 36.50±5.54 0.77±0.03
LS-0, Perfect Lags 32.83±6.21 0.79±0.03 29.33±7.37 0.82±0.04 26.00±6.90 0.84±0.04 25.83±5.20 0.84±0.03
LS-10, 10% Error 33.83±6.37 0.79±0.04 30.00±6.60 0.81±0.04 28.83±6.62 0.83±0.03 31.17±6.46 0.81±0.04
LS-30, 30% Error 36.00±5.48 0.77±0.03 32.17±6.97 0.80±0.04 33.83±6.97 0.80±0.04 35.33±4.84 0.79±0.03
LS-50, 50% Error 36.00±5.48 0.77±0.03 32.83±7.88 0.80±0.04 36.33±7.55 0.78±0.04 41.83±7.03 0.76±0.04
Ours (Lag Agnostic) 33.17±7.19 0.79±0.04 29.33±5.13 0.82±0.03 26.50±6.86 0.84±0.04 27.00±4.82 0.84±0.03

ER-4 Gauss

DYNOTEARS 23.00±4.47 0.85±0.03 23.00±4.47 0.85±0.03 23.00±4.47 0.85±0.03 23.00±4.47 0.85±0.03
LS-0, Perfect Lags 20.67±4.18 0.86±0.03 16.83±4.07 0.89±0.03 12.00±3.03 0.92±0.02 11.83±2.99 0.93±0.02
LS-10, 10% Error 22.67±4.84 0.85±0.03 19.67±5.13 0.87±0.03 17.33±3.93 0.89±0.02 16.67±4.59 0.90±0.03
LS-30, 30% Error 23.17±4.07 0.85±0.03 19.33±5.16 0.87±0.03 17.67±2.88 0.89±0.02 18.83±4.22 0.88±0.02
LS-50, 50% Error 23.17±4.07 0.85±0.03 21.33±5.28 0.86±0.03 20.67±3.20 0.87±0.02 23.33±4.46 0.85±0.02
Ours (Lag Agnostic) 21.83±4.45 0.85±0.03 17.33±4.41 0.89±0.03 13.17±4.26 0.92±0.03 13.33±3.56 0.92±0.02

Table 6: Supplementary results of the overall comparison with lag-specific prior integration on 1000
samples.

GT NT Method 5% Priors 10% Priors 30% Priors 50% Priors
SHD ↓ F1 ↑ SHD ↓ F1 ↑ SHD ↓ F1 ↑ SHD ↓ F1 ↑

ER-2 Exp

DYNOTEARS 14.17±5.91 0.80±0.09 14.17±5.91 0.80±0.09 14.17±5.91 0.80±0.09 14.17±5.91 0.80±0.09
LS-0, Perfect Lags 12.17±5.88 0.83±0.09 11.83±5.12 0.84±0.07 8.17±5.91 0.90±0.08 7.67±4.27 0.90±0.05
LS-10, 10% Error 13.00±5.87 0.82±0.09 12.33±5.13 0.83±0.07 12.00±6.26 0.84±0.09 11.00±5.06 0.86±0.07
LS-30, 30% Error 13.00±5.87 0.82±0.09 14.17±5.19 0.81±0.08 13.17±5.64 0.83±0.08 12.17±5.00 0.85±0.06
LS-50, 50% Error 13.00±5.87 0.82±0.09 14.17±5.19 0.81±0.08 14.17±4.92 0.82±0.07 17.00±8.22 0.79±0.10
Ours (Lag Agnostic) 12.33±6.09 0.83±0.09 12.00±5.14 0.84±0.07 8.33±5.32 0.89±0.07 9.83±5.04 0.87±0.06

ER-2 Gauss

DYNOTEARS 10.50±3.02 0.85±0.05 10.50±3.02 0.85±0.05 10.50±3.02 0.85±0.05 10.50±3.02 0.85±0.05
LS-0, Perfect Lags 9.00±3.10 0.87±0.05 7.33±1.97 0.90±0.03 2.83±2.32 0.96±0.03 3.50±1.52 0.95±0.02
LS-10, 10% Error 10.00±2.45 0.86±0.04 8.50±3.02 0.88±0.05 4.83±1.94 0.94±0.03 4.33±1.21 0.94±0.02
LS-30, 30% Error 10.00±2.45 0.86±0.04 8.83±2.99 0.87±0.05 6.17±2.40 0.92±0.04 5.83±1.83 0.92±0.03
LS-50, 50% Error 10.00±2.45 0.86±0.04 8.83±2.99 0.87±0.05 7.50±1.97 0.90±0.03 8.17±1.94 0.89±0.03
Ours (Lag Agnostic) 9.00±2.97 0.87±0.05 8.00±2.68 0.89±0.04 4.00±1.67 0.95±0.02 4.00±1.67 0.95±0.02

ER-4 Exp

DYNOTEARS 15.00±1.90 0.90±0.01 15.00±1.90 0.90±0.01 15.00±1.90 0.90±0.01 15.00±1.90 0.90±0.01
LS-0, Perfect Lags 11.83±2.64 0.92±0.02 8.67±2.66 0.94±0.02 6.50±1.52 0.96±0.01 7.00±2.45 0.95±0.02
LS-10, 10% Error 13.50±2.43 0.91±0.02 11.50±3.94 0.92±0.03 11.67±6.09 0.92±0.04 13.00±2.68 0.92±0.02
LS-30, 30% Error 14.33±2.80 0.90±0.02 13.83±2.79 0.91±0.02 15.17±4.71 0.90±0.03 17.50±1.38 0.89±0.01
LS-50, 50% Error 14.33±2.80 0.90±0.02 14.83±2.99 0.90±0.02 17.17±3.82 0.89±0.02 23.33±4.76 0.85±0.03
Ours (Lag Agnostic) 13.17±2.56 0.91±0.02 11.00±3.29 0.93±0.02 10.50±4.97 0.93±0.03 9.83±2.79 0.94±0.02

ER-4 Gauss

DYNOTEARS 13.00±3.10 0.91±0.02 13.00±3.10 0.91±0.02 13.00±3.10 0.91±0.02 13.00±3.10 0.91±0.02
LS-0, Perfect Lags 10.33±2.73 0.93±0.02 8.00±2.37 0.95±0.02 4.83±1.94 0.97±0.01 4.83±1.33 0.97±0.01
LS-10, 10% Error 11.67±3.44 0.92±0.02 8.17±2.64 0.95±0.02 6.67±2.58 0.96±0.02 6.50±2.43 0.96±0.02
LS-30, 30% Error 12.50±3.62 0.92±0.03 9.50±3.27 0.94±0.02 8.83±1.33 0.94±0.01 8.33±2.16 0.95±0.02
LS-50, 50% Error 12.50±3.62 0.92±0.03 10.67±2.73 0.93±0.02 11.17±1.47 0.93±0.01 11.83±1.94 0.92±0.01
Ours (Lag Agnostic) 10.50±2.35 0.93±0.02 8.00±2.37 0.95±0.02 5.33±1.86 0.97±0.01 5.67±2.16 0.96±0.01
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Figure 15: Supplementary results of various initialization strategies on 250 samples.

Figure 16: Supplementary results of various initialization strategies on 1000 samples.
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Figure 17: Supplementary results of comparison to maximum-based formulation on 250 samples.

Figure 18: Supplementary results of comparison to maximum-based formulation on 1000 samples.
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Figure 19: Results on non-stationary and non-linear time-series data with the backbone algorithm
LIN. This figure illustrates the performance of the LIN algorithm under various prior rates, evaluated
on simulated data with sample sizes of 1000 and 5000. The data was generated using 1D and 2D
Brownian motion on Barabási-Albert (BA) and Erdős-Rényi (ER) graph structures with 5 nodes. The
evaluation metrics include Structural Hamming Distance (SHD), F1 Score, Accuracy, and Recall
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Figure 20: Results on non-stationary and non-linear time-series data with the backbone algorithm
RHINO. This figure illustrates the causal discovery capabilities of the RHINO algorithm under
various prior rates on simulated data generated from Erdős-Rényi (ER) and Scale-Free (SF) networks
with 5, 10, and 20 nodes. The simulation involved a sample size of 5000, a lag order of 2, a noise level
of 0.5, and utilized spline functions to model historical noise. The evaluation specifically assesses the
algorithm’s accuracy in identifying three distinct graph structures: the Instantaneous graph (Inst),
which represents causal relationships among variables within the current time point (t); the Lagged
graph (Lag), which details causal influences from past time points (t-k) on the current time point (t);
and the comprehensive Temporal graph, which combines both instantaneous and lagged relationships.
All results are measured using the Scaled Structural Hamming Distance (Scaled SHD) and the F1
Score.
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Table 7: Supplementary results on the DERAM4 dataset.

Sample size DREAM4-63 DREAM4-126 DREAM4-189

Prior Rate Method Loss AUROC Loss AUROC Loss AUROC

25%

NOTEARS 8.20±0.73 0.54±0.03 8.02±0.92 0.55±0.03 7.89±0.73 0.55±0.03
NOTEARS+Prior 7.57±0.52 0.66±0.02 7.57±0.72 0.67±0.02 7.66±0.61 0.68±0.03
DYNOTEARS 7.81±1.14 0.58±0.03 5.61±1.04 0.62±0.04 4.08±0.60 0.65±0.05
DYNOTEARS-RandomLag 7.26±0.63 0.64±0.03 6.01±0.83 0.68±0.04 4.94±0.61 0.71±0.06
DYNOTEARS& (Init 0) 6.60±0.57 0.72±0.02 5.79±0.70 0.74±0.03 4.99±0.49 0.75±0.05
DYNOTEARS& (Init Data) 7.24±0.91 0.69±0.02 5.19±0.88 0.73±0.04 3.80±0.53 0.74±0.04
DYNOTEARS* (Init 0) 6.66±0.54 0.71±0.02 5.82±0.82 0.74±0.04 5.08±0.49 0.75±0.05
DYNOTEARS* (Init Data) 7.19±1.01 0.69±0.02 5.27±0.92 0.73±0.03 3.85±0.54 0.74±0.05

50%

NOTEARS 8.20±0.73 0.54±0.03 8.02±0.92 0.55±0.03 7.89±0.73 0.55±0.03
NOTEARS+Prior 7.13±0.49 0.77±0.01 7.16±0.62 0.78±0.01 7.20±0.50 0.78±0.02
DYNOTEARS 7.81±1.14 0.58±0.03 5.61±1.04 0.62±0.04 4.08±0.60 0.65±0.05
DYNOTEARS-RandomLag 7.25±0.76 0.66±0.03 6.16±0.93 0.71±0.04 5.12±0.66 0.72±0.06
DYNOTEARS& (Init 0) 5.75±0.53 0.81±0.01 5.09±0.59 0.82±0.02 4.56±0.47 0.83±0.02
DYNOTEARS& (Init Data) 6.67±0.82 0.79±0.01 4.90±0.58 0.81±0.02 3.52±0.33 0.83±0.02
DYNOTEARS* (Init 0) 6.01±0.48 0.80±0.01 5.37±0.61 0.82±0.01 4.54±0.41 0.83±0.03
DYNOTEARS* (Init Data) 6.96±0.90 0.79±0.01 5.08±0.83 0.80±0.02 3.65±0.45 0.82±0.02

75%

NOTEARS 8.20±0.73 0.54±0.03 8.02±0.92 0.55±0.03 7.89±0.73 0.55±0.03
NOTEARS+Prior 6.68±0.42 0.89±0.01 6.61±0.53 0.89±0.01 6.65±0.42 0.89±0.01
DYNOTEARS 7.81±1.14 0.58±0.03 5.61±1.04 0.62±0.04 4.08±0.60 0.65±0.05
DYNOTEARS-RandomLag 7.45±0.98 0.70±0.02 6.20±0.72 0.75±0.03 5.43±0.84 0.77±0.05
DYNOTEARS& (Init 0) 5.24±0.57 0.91±0.01 4.70±0.70 0.92±0.01 4.29±0.64 0.92±0.02
DYNOTEARS& (Init Data) 6.02±0.78 0.90±0.01 4.46±0.64 0.91±0.01 3.25±0.33 0.92±0.02
DYNOTEARS* (Init 0) 5.28±0.84 0.90±0.01 4.66±0.74 0.92±0.01 4.27±0.39 0.92±0.02
DYNOTEARS* (Init Data) 6.22±0.72 0.89±0.01 4.88±0.85 0.90±0.01 3.40±0.42 0.92±0.02

100%

NOTEARS 8.20±0.73 0.54±0.03 8.02±0.92 0.55±0.03 7.89±0.73 0.55±0.03
NOTEARS+Prior 6.27±0.39 0.99±0.00 6.32±0.50 1.00±0.00 6.30±0.31 1.00±0.00
DYNOTEARS 7.81±1.14 0.58±0.03 5.61±1.04 0.62±0.04 4.08±0.60 0.65±0.05
DYNOTEARS-RandomLag 7.19±0.79 0.75±0.03 6.13±0.92 0.77±0.04 5.73±0.76 0.79±0.03
DYNOTEARS& (Init 0) 4.91±0.57 1.00±0.00 4.42±0.63 1.00±0.00 3.97±0.39 1.00±0.00
DYNOTEARS& (Init Data) 5.67±0.58 0.99±0.00 4.29±0.53 0.99±0.00 3.16±0.36 0.99±0.00
DYNOTEARS* (Init 0) 5.07±0.55 1.00±0.00 4.42±0.75 0.99±0.00 4.18±0.36 0.99±0.00
DYNOTEARS* (Init Data) 6.30±0.80 0.98±0.00 4.63±0.68 0.99±0.00 3.31±0.38 0.99±0.00
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