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Abstract

Industrial anomaly detection is crucial for quality control and predictive maintenance, but it
presents challenges due to limited training data, diverse anomaly types, and external factors
that alter object appearances. Existing methods commonly detect structural anomalies,
such as dents and scratches, by leveraging multi-scale features from image patches extracted
through deep pre-trained networks. However, significant memory and computational demands
often limit their practical application. Additionally, detecting logical anomalies—such as im-
ages with missing or excess elements—requires an understanding of spatial relationships that
traditional patch-based methods fail to capture. In this work, we address these limitations by
focusing on Deep Feature Reconstruction (DFR), a memory- and compute-efficient approach
for detecting structural anomalies. We further enhance DFR into a unified framework, called
ULSAD, which is capable of detecting both structural and logical anomalies. Specifically, we
refine the DFR training objective to improve performance in structural anomaly detection,
while introducing an attention-based loss mechanism using a global autoencoder-like network
to handle logical anomaly detection. Our empirical evaluation across five benchmark datasets
demonstrates the performance of ULSAD in detecting and localizing both structural and
logical anomalies, outperforming eight state-of-the-art methods. An extensive ablation study
further highlights the contribution of each component to the overall performance improvement.
Our code is available at https://github.com/sukanyapatra1997/ULSAD-2024.git.

1 Introduction
Anomaly detection (AD) is a widely studied problem in many fields that is used to identify rare events or
unusual patterns (Salehi et al., 2022). It enables the detection of abnormalities, potential threats, or critical
system failures across diverse applications such as predictive maintenance (PdM) (Tang et al., 2020; Choi
et al., 2022), fraud detection (Ahmed et al., 2016; Hilal et al., 2022), and medicine (Tibshirani & Hastie,
2007; Fernando et al., 2021). Despite its importance and widespread applicability, it remains a challenging
task as characterising anomalous behaviours is difficult and the anomalous samples are not known a priori
(Ruff et al., 2021). Therefore, AD is often defined as an unsupervised representation learning problem (Pang
et al., 2020; Reiss et al., 2022) where the training data contains predominantly normal samples. The aim is
to learn the normal behaviour using the samples in the training set and identify anomalies as deviations from
this normal behaviour. This setting is also known as one-class classification (Ruff et al., 2018).

Our study focuses on Industrial Anomaly Detection (IAD) (Bergmann et al., 2019), with an emphasis on the
detection of anomalies in images from industrial manufacturing processes. Image-based IAD methods assign
an anomaly score to each image. Further, this study looks into anomaly localization where each pixel of an
image is assigned an anomaly score. It enables fine-grained localization of the anomalous regions in the image.
Over the years, it has attracted attention from both industry and academia as AD can be used for various
tasks like quality control or predictive maintenance, which are of primal interest to industries. Despite the
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Figure 1: Types of anomalies for the categories “breakfast box” and “pushpin” in MVTecLOCO dataset. Two
normal samples (Left) along with structural (Middle) and logical anomalies (Right) where the anomalous
regions are highlighted in blue and red, respectively.

necessity, addressing IAD is challenging because: (i) evolving processes result in different manifestations of
anomaly (Gao et al., 2023), and (ii) object appearances vary due to external factors such as background,
lighting conditions and orientation (Jezek et al., 2021). Furthermore, the anomalies in IAD can be broadly
categorized into: (i) structural anomalies where subtle localized structural defects can be observed in the
images (Bergmann et al., 2019), and (ii) logical anomalies where violations of logical constraints result
in anomalies (Bergmann et al., 2022). Figure 1 shows examples of both structural and logical anomalies in
industrial images.

To detect structural anomalies, state-of-the-art methods divides the image into smaller patches and
leverage multi-scale features of the image patches obtained using deep convolutional neural networks (Salehi
et al., 2021). PatchCore (Roth et al., 2022) and CFA(Lee et al., 2022) achieved state-of-the-art (SOTA)
performance by storing the extracted features in a memory bank during the training phase and comparing
the features of the image with their closest neighbour from the memory bank during inference. However,
such approaches require considerable storage to accumulate the extracted features, which can be challenging
for large-scale datasets. The first alternative is knowledge distillation-based approaches (Bergmann et al.,
2020; 2022), where a student network is trained to mimic the teacher for normal samples. During inference,
anomalies are identified based on the discrepancy between the student and teacher output. A key requirement
of these distillation-based approaches is that the student network must be less expressive than the teacher to
prevent it from mimicking the teacher on anomalous samples. Thus, regularization methods, such as penalty
based on an external dataset or hard-mining loss (Batzner et al., 2024) are applied, that slows down the
training and increases the requirement of computing resources. Moreover, excessive regularization can prevent
learning representations for normal images. The second alternative is to model the features of normal images
using a multivariate Gaussian distribution (Defard et al., 2021) or learn to reconstruct the features using a
deep feature reconstruction (DFR) network (Yang et al., 2020).

Besides structural anomalies, logical anomalies occur when elements in the images are missing, misplaced,
in surplus or violate geometrical constraints (Bergmann et al., 2022). Methods relying on multi-scale features
of image patches would fail as they would still be considered normal. It is the combination of objects in
the image that makes the image anomalous. Thus, to detect such logical anomalies, it is necessary to look
beyond image patches and develop a global understanding of the spatial relationships within normal images.
Distillation-based methods, which are predominantly used for the detection of logical anomalies, rely on an
additional network to learn the spatial relationships between items in the normal image (Batzner et al., 2024).

In this paper, we focus on DFR, the benefits of which are four-fold. First, it does not need large memory for
storing the features, unlike PatchCore (Roth et al., 2022). Second, unlike PaDiM (Defard et al., 2021), it
does not make any assumption about the distribution of features. Third, learning to reconstruct features in
the latent space of a pre-trained network is less impacted by the curse of dimensionality than learning to
reconstruct images which are high-dimensional. Fourth, deep networks trained to reconstruct normal images
using the per-pixel distance suffer from the loss of sharp edges of the objects or textures in the background.
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As a consequence, AD performance deteriorates due to an increase in false positives, i.e., the number of
normal samples falsely labelled anomalies. On the contrary, computing the distance features maps and their
corresponding reconstructions during training is less likely to result in such errors (Assran et al., 2023).

We revisit DFR to develop a unified framework for the detection of both structural and logical anomalies.
First, we modify the training objective by considering a combination of ℓ2 and cosine distances between
each feature and the corresponding reconstruction. The incorporation of the cosine distance addresses the
curse of dimensionality, where high-dimensional features become orthogonal to each other in Euclidean space
and the notion of distance disappears (Aggarwal et al., 2001). Second, to simultaneously allow for the
detection of logical anomalies, we introduce an attention-based loss using a global autoencoder-like network.
We empirically demonstrate that with our proposed changes, not only do the detection and localization
capabilities of DFR improve for structural anomalies, but also it delivers competitive results on the detection
of logical anomalies. Our contributions can be summarized as:

• Building on DFR, we propose a Unified framework for Logical and Structural Anomaly Detection
referred as ULSAD, a framework for detection and localization of both structural and logical anomalies.

• To detect structural anomalies, we consider both magnitude and angular differences between the
extracted and reconstructed feature vectors.

• To detect logical anomalies, we propose a novel attention-based loss for learning the logical constraints.

• We demonstrate the effectiveness of ULSAD by comparing it with 8 SOTA methods across 5 widely
adopted IAD benchmark datasets.

• Through extensive ablation study, we show the effect of each component of ULSAD on the overall
performance of the end-to-end architecture.

2 Related Work
Several methods have been proposed over the years for addressing Industrial AD (Bergmann et al., 2019; 2022;
Jezek et al., 2021). They can be broadly categorized into feature-embedding based and reconstruction-based
methods. We briefly highlight some relevant works in each of the category. For an extended discussion on the
prior works we refer the readers to the survey by Liu et al. (2024).

Feature Embedding-based methods. There are mainly three different types of IAD methods which
utilize feature embeddings from a pre-trained deep neural network: memory bank (Defard et al., 2021; Roth
et al., 2022; Lee et al., 2022), student-teacher (Zhang et al., 2023; Batzner et al., 2024), and density-based
(Gudovskiy et al., 2021; Yu et al., 2021). The main idea of memory bank methods is to extract features
of normal images and store them in a memory bank during the training phase. During the testing phase,
the feature of a test image is used as a query to match the stored normal features. There are two main
constraints in these methods: how to learn useful features and how to reduce the size of the memory bank.
While PatchCore (Roth et al., 2022) introduces a coreset selection algorithm, CFA (Lee et al., 2022) clusters
the features in the memory bank to reduce the size of the memory bank. Nonetheless, the performance
of the memory bank methods heavily depends on the completeness of the memory bank, which requires
a large number of normal images. Moreover, the memory size is often related to the number of training
images, which makes these methods not suitable for large datasets or very high-dimensional images. In
the student-teacher approach, the student network learns to extract features of the normal images, similar
to the teacher model. For anomalous images, the features extracted by the student network are different
from the teacher network. Batzner et al. (2024) propose to use an autoencoder model in addition to the
student network to identify logical anomalies. For leveraging the multiscale feature from the teacher network
to detect anomalies at various scales, Deng & Li (2022) propose Reverse Distillation. Zhang et al. (2023)
extended it by proposing to utilize two student networks to deal with structural and logical anomalies. Yang
et al. (2020) propose to learn a deep neural network for learning to reconstruct the features of the normal
images extracted using the pre-trained backbone. For density-based methods, first, a model is trained to
learn the distribution of the features obtained from normal samples. Then, during inference, anomalies are
detected based on the likelihood of features extracted from the test images. PaDiM (Defard et al., 2021) uses
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Figure 2: Overview of the end-to-end architecture of ULSAD.

a multivariate Gaussian to estimate the density of the features corresponding to the samples from the normal
class while FastFlow (Yu et al., 2021) and CFLOW (Gudovskiy et al., 2021) utilize normalizing flows.

Reconstruction-based methods. Reconstruction-based methods assume that encoder-decoder models
trained on normal samples will exhibit poor performance for anomalous samples. However, relying solely
on the reconstruction objective can result in the model collapsing to an identity mapping. To address
this, structural assumptions are made regarding the data generation process. One such assumption is the
Manifold Assumption, which posits that the observed data resides in a lower-dimensional manifold within
the data space. Methods leveraging this assumption impose a bottleneck by restricting the encoded space
to a lower dimensionality than the actual data space. Common deep reconstruction models used include
AE or VAE-based approaches. Advanced strategies encompass techniques like reconstruction by memorised
normality (Gong et al., 2019), model architecture adaptation (Lai et al., 2019) and partial/conditional
reconstruction (Yan et al., 2021; Nguyen et al., 2019). Generative models like GANs are also widely employed
for anomaly detection, as the discriminator inherently calculates the reconstruction loss for samples (Zenati
et al., 2018). Variants of GANs, such as denoising GANs (Sabokrou et al., 2018) and class-conditional GANs
(Perera et al., 2019), improve anomaly detection performance by increasing the challenge of reconstruction.
Some methods utilize the reconstructed data from GANs in downstream tasks to enhance the amplification of
reconstruction errors for anomaly detection (Zhou et al., 2020). Lastly, DRÆM (Zavrtanik et al., 2021) trains
an additional discriminative network alongside a reconstruction network to improve the AD performance.

In this paper, we focus on feature embedding-based methods motivated by their effectiveness in the current
SOTA methods. Specifically, we build on DFR (Yang et al., 2020), which has several benefits. First, it is
memory-efficient as it does not rely on a memory bank of extracted features, unlike PatchCore (Roth et al.,
2022). Second, unlike PaDim (Defard et al., 2021), it does not make any assumption about the distribution of
the extracted features. Third, it is computationally efficient and less impacted by the curse of dimensionality
as it operates in the lower-dimensional latent space of a deep neural network. Last, by avoiding the use of
per-pixel distance in its reconstruction objective, it is less prone to false positives (Assran et al., 2023).

3 The ULSAD Framework for Anomaly Detection
We propose ULSAD, a framework for simultaneously detection and localization of anomalies in images as
shown in Figure 2. Firstly, we utilize a feature extractor network for extracting low-dimensional features from
high-dimensional images, which we discuss in Section 3.1. Then, for the detection of both structural and
logical anomalies, we rely on a dual-branch architecture. The local branch detects structural anomalies with
the help of a feature reconstruction network applied to the features corresponding to patches in the image.
We elaborate on this in Section 3.2. Conversely, the global branch, as discussed in Section 3.3, detects logical
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anomalies using an autoencoder-like network, which takes as input the image. Lastly, we provide an overview
of the ULSAD algorithm in Section 3.4 followed by a discussion on the inference process in Section 3.5.

We consider a dataset D = {(Xi, yi)}ni=1 with n samples where Xi ∈ X is an image and yi ∈ {0, 1} is the
corresponding label. We refer to the normal class with the label 0 and the anomalous class with the label
1. The samples belonging to the anomalous class can contain either logical or structural anomalies. We
denote the train, validation and test partitions of D as Dtrain, Dvalid and Dtest, respectively. The training and
validation sets contains only normal samples, i.e., y = 0. For the sake of simplicity, we refer to the training
set as DN = {X | (X, 0) ∈ Dtrain}. The test set Dtest includes both normal and anomalous samples.

3.1 Feature Extractor
High-dimensional images pose a significant challenge for AD (Reiss et al., 2022). Recent studies have shown
that deep convolutional neural networks (CNNs) trained on ImageNet (Russakovsky et al., 2015) capture
discriminative features for several downstream tasks. Typically, AD methods (Salehi et al., 2021; Defard et al.,
2021; Yoon et al., 2023) leverage such pre-trained networks to extract features maps corresponding to partially
overlapping regions or patches in the images. Learning to detect anomalies using the lower-dimensional
features is beneficial as it results in reduced computational complexity. A key factor determining the efficiency
of such methods is the size of the image patches being used, as anomalies can occur at any scale. To overcome
this challenge, feature maps are extracted from multiple layers of the CNNs and fused together (Salehi et al.,
2021; Roth et al., 2022; Yang et al., 2020). Each element in a feature map obtained from different layers of a
convolutional network corresponds to a patch of a different size in the image depending on its receptive field.
Thus, combining feature maps from multiple layers results in multi-scale representation of the image patches,
which we refer to as patch features.

Similar to DFR, we extract low-dimensional feature maps by combining features from multiple layers of a
feature extractor which is a pre-trained CNN Nθ parameterized by θ. In this paper, we consider ResNet-like
architectures for Nθ. With the increasing number of layers, the computation becomes increasingly expensive
as the resulting tensor becomes high-dimensional. In order to overcome this, we consider two intermediate or
mid-level features. Our choice is guided by the understanding that the initial layers of such deep networks
capture generic image features, while the latter layers are often biased towards the pre-training classification
task (Roth et al., 2022). We denote the features extracted at a layer j for an image X as N j

θ (X). Following
this convention, we express the feature map U ∈ U = Rc

∗×h∗×w∗ produced by the Feature Aggregator (FA) as
a concatenation of N j

θ (X) and N j+1
θ (X) obtained from layers j and j + 1 of Nθ. Furthermore, to facilitate

the concatenation of features extracted from multiple layers of the extractor Nθ, the features at the lower
resolution layer j + 1 are linearly rescaled by FA to match the dimension of the features at layer j. We define
an invertible transformation f : Rc

∗×h∗×w∗ → Rc
∗×k∗ where k∗ = h∗ × w∗ to convert tensor to matrix and

vice versa using f−1. The function f can be computed in practice by reshaping the tensor to obtain a 2D
matrix. Now, using f , we compute Z = f(U). We denote each patch feature within the feature map Z by
zk = Z[:, k] = U[:, h, w], where k = (h− 1)× w∗ + w, h ∈ {1, 2, . . . , h∗}, w ∈ {1, 2, . . . , w∗}.

3.2 Detecting Structural Anomalies
Having defined Z in the previous section, we elaborate on the local branch of ULSAD for the detection of subtle
localized defects in the images, i.e. structural anomalies. Specifically, our goal is to learn the reconstruction
of the patch features using the dataset DN composed of only normal images. Therefore, we can identify the
structural anomalies when the network fails to reconstruct a patch feature during inference.

Figure 3: Feature Reconstruction Network

Feature Reconstruction Network (FRN). As shown
in Figure 3, ULSAD utilizes a convolutional encoder-decoder
architecture with a lower-dimensional bottleneck for learn-
ing to reconstruct the feature map U using the training
dataset DN . First, the encoder network Nψe

compresses
the feature U to a lower dimensional space, which in-
duces the information bottleneck. It acts as an implicit
regularizer, preventing generalization to features corre-
sponding to anomalous images. The encoded represen-
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tation is then mapped back to the latent space using a decoder network Nψd
. The output of FRN is

Ũ = Nψ(U) ∈ R2c∗×h∗×w∗ where Nψ = Nψe
◦Nψd

. Besides using the FRN to learn the reconstruction of the
patch features for the detection of structural anomalies, we also utilize it to reduce errors during the detection
of logical anomalies, as discussed in Section 3.3. To minimizing computation costs and avoid the use of two
separate FRNs, we adopt a shared FRN. This is achieved by doubling the number of output channels in the
decoder to simultaneously produce two feature maps Ũ

′
and Ũ

′′
for the detection of structural and logical

anomalies, respectively, with both having dimension c∗ × h∗ × w∗.

Although the feature maps U have significantly lower dimensionality compared to the input images X, they
can still be considered high-dimensional tensors. In high-dimensional spaces, the ℓ2 distance is not effective
at distinguishing between the nearest and furthest points (Aggarwal et al., 2001), making it an inadequate
measure for computing the difference between feature maps during training. Therefore, similar to Salehi et al.
(2021), we propose combining ℓ2 and cosine distances to account for differences in both the magnitude and
direction of the patch features as:

Lpl(Z̃ ′,Z) = 1
k∗

k∗∑
k=1

lv(z̃′
k, zk) + λl ld(z̃′

k, zk), (1)

where Z̃ ′ = f(Ũ
′
), Z = f(Z) and λl ≥ 0 controls the effect of ld. Furthermore, lv(z̃′

k, zk) and ld(z̃′
k, zk)

measure the differences in magnitude and direction between the patch features zk and z̃′
k, respectively, as

lv(z̃′
k, zk) = ∥z̃′

k − zk∥2
2, and ld(z̃′

k, zk) = 1− (z̃′

k)Tzk
∥z̃′
k∥2∥zk∥2

. (2)

3.3 Detecting Logical Anomalies
Although the feature reconstruction task discussed in Section 3.2 allows us to detect structural anomalies, it
is not suited for identifying logical anomalies that violate the logical constraints of normal images. Recall
that such violations appear in the form of misplaced, misaligned, or surplus objects found in normal images.
If we consider the example of misaligned objects, the previously discussed approach will fail as it focuses on
the individual image patches, which would be normal. It is the overall spatial arrangement of objects in the
image which is anomalous. Thus, to identify such anomalies, our goal is to learn the spatial relationships
among the objects present in the normal images of the training dataset DN . We achieve this with the global
branch of ULSAD, shown in Figure 4, which leverages the entire image and not just its individual patches.

Figure 4: Global Branch of ULSAD

In order to achieve our goal, we start by analyz-
ing the feature maps extracted using the pre-
trained network Nθ. Pre-trained CNNs tend to
have similar activation patterns for semantically
similar objects (Tung & Mori, 2019; Zagoruyko
& Komodakis, 2017). In Figure 5, we visual-
ize four self-attention maps computed from the
features of a pre-trained Wide-Resnet50-2 net-
work. It can be seen that in the first map, all
the items for the semantic class “fruits” receive
a high attention score. The remaining attention
maps focus on individual semantic concepts like
“oranges”, “cereal” and “plate”, respectively.
Based on this observation and inspired by the
attention-transfer concept for knowledge distil-
lation (Zagoruyko & Komodakis, 2017; Tung &
Mori, 2019), we propose to learn the spatial relationships (Dosovitskiy et al., 2021) among the patch features
in U obtained from normal images. Recall that each patch feature corresponds to a patch in the image.
Therefore, learning the spatial relationships among the patch features would allow us to learn the spatial
relationships among the patches in the image. This forces ULSAD to learn the relative positions of objects in
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Figure 5: (First) Example image belonging to the category “breakfast box” in the MVTecLOCO dataset.
(Rest) Visualization of attention maps computed using the intermediate features from a pre-trained model.

the normal images, thereby enabling it to capture the logical constraints. Starting from Z = f(U), we first
compute the self-attention weight matrix W ∈ Rk

∗×k∗ as:

W [p, q] =
exp(zTp zq/

√
c∗)∑k∗

k=1 exp(zTk zq/
√
c∗)

. (3)

Then, the attention map A ∈ Rc
∗×k∗ is computed as A = ZW . For learning the spatial relations using A

as our target, we use a convolutional autoencoder-like network Nϕ = Nϕe ◦Nϕd
where Nϕe is the encoder

and Nϕd
is the decoder. Similar to a standard autoencoder, Nϕe

compresses the input image X to a lower
dimensional space. However, Nϕd

maps the encoded representation to the feature space U , which has a lower
dimension than the input space X . We denote the output of Nϕ as Û = Nϕ(X).

A direct approach would be to compute the self-attention map for Û and minimize its distance from A.
However, it makes the optimization problem computationally challenging as each vector in Û is coupled
with every other vector by the network weights Nϕ (Zhang et al., 2023). To overcome this, we compute the
cross-attention map Â ∈ Rc

∗×k∗ between U and Û. Given Ẑ = f(Û), we first compute Ŵ as:

Ŵ [p, q] =
exp(zTp ẑq/

√
c∗)∑k∗

k=1 exp(zTk ẑq/
√
c∗)

. (4)

Then, the attention map Â can be computed as Â = ZŴ . Given, the self-attention map A and the
cross-attention map Â, we define a consistency loss Lpg as:

Lpg(Â,A) = 1
k∗

k∗∑
k=1

lv(âk,ak) + λg ld(âk,ak), (5)

where ak = A[:, k], âk = Â[:, k] and λg ≥ 0 controls the effect of ld. A limitation of this approach is
that autoencoders usually struggle with generating fine-grained patterns as also observed by prior works
(Dosovitskiy & Brox, 2016; Assran et al., 2023). As a result, the global branch is prone to false positives in
the presence of sharp edges or heavily textured surfaces due to the loss of high-frequency details. To address
this limitation, we utilize the FRN Nψ in the local branch to learn the output Û. Recall that the output
of FRN Ũ ∈ R2c∗×h∗×w∗ has 2c∗ number of channels to simultaneously generate two feature maps Ũ

′
and

Ũ
′′
, both having dimension c∗ × h∗ × w∗. Out of which, Ũ

′
is used for learning the patch features. Here, we

define the loss Llg to relate the local feature map Ũ
′′

with the global feature map Û as:

Llg(Z̃ ′′, Ẑ) = 1
k∗

k∗∑
k=1

lv(z̃′′
k , ẑk) + λg ld(z̃′′

k , ẑk), (6)

where Z̃ ′′ = f(Ũ
′′
). Therefore, during inference, a difference between the Ũ

′′
and Û indicates the presence

of logical anomalies. The benefits of such a framework are two-fold: (1) it allows for learning the spatial
relationships in the normal images while reducing the chance of having false positives, and (2) doubling the
channels in the decoder allows sharing the encoder architecture, reducing the computational costs.
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Algorithm 1: Unified Logical and Structural AD (ULSAD) // Local branch Global branch
Require: Training dataset DN , Feature extractor Nθ, Feature reconstruction network Nψ
Global autoencoder Nϕ, Number of epochs e, Learning rate η, Pre-trained feature statictics µ, σ

1 for (epoch ∈ 1, · · · , e) and (X ∈ DN ) do
2 Extract normalized features maps using the pre-trained network:
3 U← Nθ(X)
4 U← (U− µ)/σ
5 Z ← f(U)
6 Reconstruct the features maps using the local branch:
7 Ũ← Nψ(U)
8 Z̃ ← f(Ũ)
9 Compute local loss (Eq. 1):

10 ll ← Lpl(Z̃ ′,Z)
11 Obtain the output of the global autoencoder:
12 Û← Nϕ(X)
13 Ẑ ← f(Û)
14 Compute consistency loss (Eq. 5):
15 lg ← Lpg(Ẑ,Z)
16 Compute local-global loss (Eq. 6):
17 llg ← Llg(Ẑ, Z̃ ′′)
18 Compute overall loss:
19 l← ll + lg + llg
20 Update model parameters:
21 ψ ← ψ − η∇ψl
22 ϕ← ϕ− η∇ϕl
23 end
Return: Nψ, Nϕ

3.4 ULSAD Algorithm Overview
An overview of ULSAD is outlined in Algorithm 1, which can simultaneously detect structural and logical
anomalies. Firstly, we pass a normal image X from the training dataset DN through the feature extractor Nθ
to obtain feature maps U. We normalize the features (line 4, Algorithm 1) with the channel-wise mean µ and
standard deviation σ computed over all the images in DN . We do not include this step in Algorithm 1 as
the calculation is trivial. Instead, we consider the values µ and σ to be given as input parameters for the
sake of simplicity. Secondly, we obtain Ũ by passing U through the feature reconstruction network Nψ (line
7, Algorithm 1). Recall that, Ũ has a dimension 2c∗ × h∗ × w∗ which can be decomposed into two feature
maps Ũ

′
and Ũ

′′
each with a dimension c∗ × h∗ × w∗. The feature reconstruction loss Lpl is then computed

between Z and Z̃ ′, where Z = f(U) and Z̃ ′ = f(Ũ
′
). Thirdly, we obtain the features Û by passing the input

sample X through the autoencoder Nϕ. Then for learning the spatial relationships from the normal images,
we compute Lpg between the self-attention map of Z and the cross-attention map between Z and Ẑ = f(Û)
(line 15, Algorithm 1). In the fourth step, we compute the loss Llg between Ẑ and Z̃ ′′ = f(Ũ

′′
). Finally, the

model parameters ψ and ϕ are updated based on the gradient of the total loss (line 21− 22, Algorithm 1).
The end-to-end pipeline is illustrated in Figure 2.

3.5 Anomaly Detection and Localization
After discussing how ULSAD is trained to detect structural and logical anomalies, we now focus on the inference
process. The first step is to compute an anomaly map M for a given test image X, which assigns a per-pixel
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anomaly score. We begin by calculating the local anomaly map M l ∈ Rh
∗×w∗ based on the difference between

the output of the local branch Ũ
′

and the feature map U, as follows:

M l[h,w] = lv(Ũ
′
[:, h, w], U[:, h, w]) + λl ld(Ũ

′
[:, h, w], U[:, h, w]), (7)

where Ũ
′

= f−1(Z̃ ′) and U = f−1(Z). Similarly, the global anomaly map Mg is computed using the output
from the global autoencoder Û and the local reconstruction branch Ũ

′′
:

Mg[h,w] = lv(Ũ
′′
[:, h, w], Û[:, h, w]) + λg ld(Ũ

′′
[:, h, w], Û[:, h, w]), (8)

where Ũ
′′

= f−1(Z̃ ′′) and Û = f−1(Ẑ).

Since M l and Mg may have different ranges of anomaly scores, we normalize each map independently. This
normalization ensures consistent score ranges and prevents noise in one map from overwhelming anomalies
detected in the other. Given the variability in anomaly score distributions across datasets, we adopt a
quantile-based normalization method, which makes no assumptions about the underlying score distribution.

To normalize the maps, we generate two sets of anomaly maps: Ml = {M l | X ∈ Dvalid} and Mg = {Mg |
X ∈ Dvalid}, using images from the validation set Dvalid. For each set, we pool together the pixel values
from all the anomaly maps in that set to compute the empirical quantiles at significance levels α and β.
Specifically, for the local anomaly maps, the quantiles are denoted as qlα and qlβ , while for the global anomaly
maps, the quantiles are denoted as qgα and qgβ . Values below qα are considered normal, while those above qβ
are marked as highly abnormal.

Following Batzner et al. (2024), we define linear transformations tl(·) and tg(·) for the local and global
anomaly maps to map normal pixels to values ≤ 0 and highly anomalous pixels to values ≥ 0.1:

tl(M l) = 0.1
(

M l −

(
qlα

qlβ − qlα

)
1h∗×w∗

)
, tg(Mg) = 0.1

(
Mg −

(
qgα

qgβ − q
g
α

)
1h∗×w∗

)
,

where 1h∗×w∗ is a matrix of ones. Mapping the empirical quantiles at α and β to values of 0 and 0.1 helps
highlight the anomalous regions on a 0-to-1 color scale for visualization. Normal pixels are assigned a score
of 0, while pixels with scores between qα and qβ gradually increase in color intensity. Pixels with scores
exceeding qβ change more rapidly toward 1. Note that this transformation does not affect AU-ROC scores,
as these depend only on the ranking of the scores.

Finally, we compute the overall anomaly map M for the image X by averaging the normalized local and
global maps:

M = tl(M l) + tg(Mg)
2 .

The final anomaly score for X is the maximum value in the combined anomaly map:

s = max
h∈{1,2,...,h∗},w∈{1,2,...,w∗}

M(h,w).

4 Experimental Evaluation
In this section, we answer the following three questions: (i) How does ULSAD perform as compared to the
SOTA methods? (ii) How effective is the local and global branch for the detection of structural and logical
anomalies? (iii) How does each component in ULSAD impact the overall performance?

4.1 Setup
Benchmark Datasets. We evaluate our method on the following five IAD benchmarking datasets:

[1] BTAD (Mishra et al., 2021). It comprises real-world images of three industrial products, with anomalies
such as body and surface defects. Training data includes 1,799 normal images across the three categories,
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while the test set contains 290 anomalous and 451 normal images.

[2] MVTec AD (Bergmann et al., 2019). It consists of images from industrial manufacturing across 15
categories comprised of 10 objects and 5 textures. In totality, it contains 3,629 normal images for training.
For evaluation, 1,258 anomalous images with varying pixel level defects and 467 normal images.

[3] MVTec-Loco (Bergmann et al., 2022). An extension of MVTec dataset, it encompasses both local
structural anomalies and logical anomalies violating long-range dependencies. It consists of 5 categories, with
1,772 normal images for training and 304 normal images for validation. It also contains 1568 images, either
normal or anomalous, for evaluation.

[4] MPDD (Jezek et al., 2021). It focuses on metal part fabrication defects. The images are captured in
variable spatial orientation, position, and distance of multiple objects concerning the camera at different light
intensities and with a non-homogeneous background. It consists of 6 classes of metal parts with 888 training
images. For evaluation, the dataset has 176 normal and 282 anomalous images.

[5] VisA (Zou et al., 2022). It contains 10,821 high-resolution images (9,621 normal and 1,200 anomalous
images) across 12 different categories. The anomalous images contain different types of anomalies such as
scratches, bent, cracks, missing parts or misplacements. For each type of defect, there are 15-20 images, and
an image can depict multiple defects.

Evaluation metrics. We measure the image-level anomaly detection performance via the area under the
receiver operator curve (AUROC) based on the assigned anomaly score. To measure the anomaly localization
performance, we use pixel-level AUROC and area under per region overlap curve (AUPRO). Furthermore,
following prior works (Roth et al., 2022; Gudovskiy et al., 2021; Bergmann et al., 2019), we compute the
average metrics over all the categories for each of the benchmark datasets. Moreover, for ULSAD, we report all
the results over 5 runs with different random seeds.

Baselines. We compare our method with existing state-of-the-art unsupervised AD methods, namely
PatchCore (Roth et al., 2022), PaDim (Defard et al., 2021), CFLOW (Gudovskiy et al., 2021), FastFLOW
(Yu et al., 2021), DRÆM (Zavrtanik et al., 2021), Reverse Distillation (RD) (Deng & Li, 2022), EfficientAD
(Batzner et al., 2024) and DFR (Yang et al., 2020). In this study, we only consider baselines that are capable
of both anomaly detection and localization.

Implementation details. ULSAD is implemented in PyTorch (Paszke et al., 2019). For the baselines, we
follow the implementation in Anomalib (Akcay et al., 2022), a widely used AD library for benchmarking. In
ULSAD, we use a Wide-ResNet50-2 pre-trained on ImageNet (Zagoruyko & Komodakis, 2016) and extract
features from the second and third layers, similar to PathCore (Roth et al., 2022). We use a CNN for the
autoencoder Nϕ in the global branch and the feature reconstruction network Nψ in the local branch. It
consists of convolution layers with LeakyReLU activation in the encoder and deconvolution layers in the
decoder. The architecture is provided in the Appendix A. Unless otherwise stated, for all the experiments,
we consider an image size of 256× 256. We train ULSAD over 200 epochs for each category using an Adam
optimizer with a learning rate of 0.0002 and a weight decay of 0.00002. We set α = 0.9 and β = 0.995 unless
specified otherwise. For the baselines, we use the hyperparameters mentioned in the respective papers.

4.2 Evaluation Results

We summarize the anomaly detection performance of ULSAD in Table 1 and the localization performance in
Table 2. On the BTAD dataset, we improve over the DFR by approximately 2% in detection. Inspecting
the images from the dataset, we hypothesize that the difference stems from the use of a global branch in
ULSAD as the structural imperfections are not limited to small regions. For localization, Reverse Distillation
performs better owing to the use of anomaly maps computed per layer of the network. We can observe similar
improvements over DFR on the MVTec dataset. Although PatchCore provides superior performance on
MVTec, it should be noted that even without using a memory bank, ULSAD provides comparable results. Then,
we focus on more challenging datasets such as MPDD and MVTecLOCO. While MPDD contains varying
external conditions such as lighting, background and camera angles, MVTecLOCO contains both logical
and structural anomalies. We can observe improvements over DFR (∼ 12 − 16%) in both datasets. This
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highlights the effectiveness of our method. We visualize the anomaly maps for samples from the “pushpin”
and “juice bottle” categories in Figure 6. It can be seen that while the global branch is more suited to the
detection of logical anomalies, the local branch is capable of detecting localized structural anomalies.

Table 1: Average Detection Performance in AUROC (%). Style: best and second best

Method BTAD MPDD MVTec MVTec-LOCO VisA
PatchCore (Roth et al., 2022) 93.27 93.27 98.75 81.49 91.48
CFLOW (Gudovskiy et al., 2021) 93.57 87.11 94.47 73.62 87.77
DRÆM (Zavrtanik et al., 2021) 73.42 74.14 75.26 62.35 77.75
EfficientAD (Batzner et al., 2024) 88.26 85.42 98.23 80.62 91.21
FastFlow (Yu et al., 2021) 91.68 65.03 90.72 71.00 87.49
PaDiM (Defard et al., 2021) 93.20 68.48 91.25 68.38 83.28
Reverse Distillation (Deng & Li, 2022) 83.87 79.62 79.65 61.56 86.24
DFR (Yang et al., 2020) 94.60 79.75 93.54 72.87 85.18
ULSAD (Ours) 96.17 ± 0.45 95.73 ± 0.45 97.65 ± 0.38 84.1 ± 0.86 92.46 ± 0.45

Table 2: Average Segmentation Performance in AUROC (%) and AUPRO (%). Style: best and second best

Method BTAD MPDD MVTec MVTec-LOCO VisA
PatchCore (Roth et al., 2022) 96.85 | 71.48 98.07 | 90.84 97.71 | 91.15 75.77 | 69.09 97.93 | 85.12
CFLOW (Gudovskiy et al., 2021) 96.60 | 73.11 97.42 | 88.56 97.17 | 90.14 76.99 | 66.93 98.04 | 85.29
DRÆM (Zavrtanik et al., 2021) 59.04 | 22.48 86.96 | 70.04 75.01 | 49.72 63.69 | 40.06 71.31 | 54.68
EfficientAD (Batzner et al., 2024) 82.13 | 54.37 97.03 | 90.44 96.29 | 90.11 70.36 | 66.96 97.51 | 84.45
FastFlow (Yu et al., 2021) 96.15 | 75.27 93.60 | 76.89 96.44 | 88.79 75.55 | 53.04 97.32 | 81.70
PaDiM (Defard et al., 2021) 97.07 | 77.80 94.51 | 81.18 96.79 | 91.17 71.32 | 67.97 97.09 | 80.80
Reverse Distillation (Deng & Li, 2022) 97.85 | 81.47 97.83 | 91.86 97.25 | 93.12 68.55 | 66.28 98.68 | 91.77
DFR (Yang et al., 2020) 97.62 | 59.06 97.33 | 90.46 94.93 | 89.42 61.72 | 69.78 97.90 | 91.72

96.73 | 75.41 97.45 | 92.02 97.61 | 91.67 80.06 | 73.73 98.24 | 87.12
ULSAD (Ours)

± 0.51 | ± 3.95 ± 0.99 | ± 2.64 ± 0.64 | ± 1.36 ± 0.20 | ± 0.35 ± 0.20 | ± 0.89

Figure 6: Example of anomaly maps obtained from global and local branches along with the combined map.
Overall, ULSAD demonstrates competitive results in anomaly detection compared to the baseline methods
across all benchmark datasets. Additionally, the difference in performance between ULSAD and the baselines
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for anomaly localization is minimal. The most notable difference is in the AUPRO score on the BTAD,
MVTec, and VisA datasets. Nonetheless, while the SOTA methods provide slightly better performance in the
localization of structural anomalies, ULSAD provides similar performance across both logical and structural
anomalies. We present anomaly maps obtained from different methods in Figure 9 of Appendix B. Extended
versions of Tables 1 and 2 are provided in Appendix B. Additionally, we provide the results on MVTecLOCO,
split between logical and structural anomalies, in Appendix B.1.

4.3 Ablation study

In this section, we analyze the impact of the key components of ULSAD, backbone architectures and the choice
of α and β for normalization, using the MVTecLOCO dataset.

Table 3: Ablation of the main components of ULSAD.
Local Branch Global Branch Performance (%)

λl λg Llg Ld
pg Lpg I-AUROC | P-AUROC | P-AUPRO

1 0.0 - - - - 77.67 | 75.17 | 73.37
2 0.0 0.0 - ✓ - 77.69 | 79.77 | 75.26
3 0.0 0.0 - - ✓ 71.67 | 73.92 | 67.22
4 0.0 0.0 ✓ ✓ - 81.40 | 82.12 | 77.47
5 0.0 0.0 ✓ - ✓ 81.08 | 81.97 | 76.45
6 0.5 - - - - 79.14 | 76.57 | 73.41
7 0.5 0.5 - ✓ - 80.50 | 81.85 | 77.35
8 0.5 0.5 - - ✓ 74.51 | 76.59 | 69.01
9 0.5 0.5 ✓ ✓ - 82.19 | 81.25 | 75.50

84.10 | 80.06 | 73.7310 0.5 0.5 ✓ - ✓
± 0.86 | ± 0.20 | ± 0.35

Analysis of main components.
We investigate the impact of key
components in ULSAD as presented
in Table 3. Initially, we set both
λl and λg to 0, focusing solely on
differences in magnitude when com-
puting Lpg, Llg, and Lpl. The first
row corresponds to using only the
local branch. In the third row, the
consistency loss Lpg is applied to
capture spatial relationships for de-
tecting logical anomalies. However,
when used in isolation, it limits ULSAD’s performance to detecting only logical anomalies and fails to capture
localized structural anomalies. Additionally, as discussed in Section 3.3, the global branch is prone to false
positives in the presence of sharp edges or heavily textured surfaces. When incorporating Llg, which connects
the global and local branches, we observe a significant improvement in performance, as shown in the fifth
row. For the sake of completeness, we also consider here a variant of the consistency loss Lpg where we
compute the ℓ2 distance between the feature maps instead of computing the self- and cross-attention maps.
We refer to the alternative in the table as Ldpg. We observe that the difference between the two variants
becomes negligible when combined with Llg (row 4 and 5). Further, incorporating differences in direction
when computing Lpg, Llg, and Lpl leads to improved performances across all settings as shown in the last five
rows. Overall, the best performance is obtained when both Llg and Lpg is used while considering differences
in both direction and magnitude for computing the losses.

Figure 7: Ablation study of the backbone network

Effect of backbone. We investigate the impact
of using different pre-trained backbones in ULSAD
in Figure 7. We can observe that the overall best
performance is obtained by using a Wide-ResNet101-
2 architecture in both detection and localization.
More specifically, for detection, Wide-ResNet vari-
ants are more effective than the ResNet architec-
tures, whereas, for localization performance mea-
sured using Pixel AUROC, the deeper networks such
as ResNet152 and Wide-ResNet101-2 seem to have
precedence over their shallower counterparts. Over-
all, we can see that performance is robust to the
choice of pre-trained model architecture. In our experiments, we utilize a Wide-ResNet50-2 architecture
which is used by most of our baselines for fair comparison.

Effect of normalization. We analyze the impact of the quantile-based normalization on the performance
metrics by considering multiple values for α and β. The results are shown in Figure 8. It can be seen that
the final performance is robust to the choice of α and β.
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(a) Image AUROC (b) Pixel AUROC (c) Pixel AUPRO

Figure 8: Ablation study of α and β for normalization of anomaly maps with selected value highlighted.
Table 4: Memory and Computational Efficiency on MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSAD
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

I-AUROC ↑ 73.62 62.35 71.00 68.38 81.49 61.56 72.87 80.62 84.10 ± 0.86

P-AUROC ↑ 76.99 63.69 75.55 71.32 75.77 68.55 61.72 70.36 80.06 ± 0.20

P-AUPRO ↑ 66.93 40.06 53.04 67.97 69.09 66.28 69.78 66.96 73.73 ± 0.35

Throughput (img / s) ↑ 11.69 10.06 30.21 33.45 32.70 34.87 15.08 23.33 33.42
GPU Memory (GB) ↓ 2.57 7.95 1.69 1.92 6.80 1.93 5.85 3.48 2.17

5 Memory and Computational Complexity
We report the computational cost and memory requirements of ULSAD compared to the baselines in Table 4.
For this analysis, we ran inference on the test samples in the MVTecLOCO dataset using an NVIDIA A100
GPU. We measured throughput with a batch size of 32, as a measure of computational complexity, following
EfficientAD (Batzner et al., 2024). Throughput is defined as the number of images processed per second
when processing in batches. ULSAD demonstrates higher throughput than most baselines while maintaining
competitive anomaly detection and localization performance. In addition to throughput, we also report peak
GPU memory usage in Table 4 to highlight the memory efficiency of ULSAD. It is evident that ULSAD requires
approximately one-third of the memory compared to retrieval-based methods such as PatchCore, which is
one of the state-of-the-art methods for IAD. For DFR (Yang et al., 2020), we follow the authors’ approach by
using a multiscale representation, concatenating features from 12 layers of the pre-trained network Nθ for
anomaly detection. This approach results in reduced throughput and increased memory usage, as shown in
Table 4. With our proposed modifications in ULSAD, we achieve superior performance using features from
only 2 layers of Nθ, drastically reducing memory requirements to approximately one-third of DFR’s and
increasing throughput by approximately two times.

6 Limitations
For training ULSAD, we follow the common assumption in unsupervised anomaly detection (Ruff et al., 2021;
Chandola et al., 2009; Roth et al., 2022; Batzner et al., 2024) that the training dataset is “clean”, meaning
it contains no anomalous samples. This setup is known in the literature as one-class classification (Ruff
et al., 2018). However, this assumption could impact performance in real-world scenarios where anomalies
are unknown a priori. Investigating the effects of dataset contamination (Wang et al., 2019; Jiang et al.,
2022; Yoon et al., 2022; Perini et al., 2023; 2022) is an active area of research, which is beyond the scope
of our current work. We leave for future research the analysis of contamination’s impact on ULSAD and the
development of strategies to make the learning process robust in the presence of anomalies.

7 Conclusion
Our study focuses on Deep Feature Reconstruction (DFR), a memory- and compute-efficient method for
detecting structural anomalies. We propose ULSAD, a unified framework that extends DFR to detect both
structural and logical anomalies using a dual-branch architecture. In particular, we enhance the local branch’s
training objective to account for differences in the magnitude and direction of patch features, thereby improving
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structural anomaly detection. Additionally, we introduce an attention-based loss in the global branch to
capture logical anomalies effectively. Extensive experiments on five benchmark image anomaly detection
datasets demonstrate that ULSAD achieves competitive performance in anomaly detection and localization
compared to eight state-of-the-art methods. Notably, ULSAD also performs well against memory-intensive,
retrieval-based methods like PatchCore (Roth et al., 2022). Finally, ablation studies highlight the impact of
various components in ULSAD and the role of the pre-trained backbone on overall performance.
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A Implementation Details

ULSAD is implemented in PyTorch (Paszke et al., 2019). Specifically, we used the Anomalib (Akcay et al., 2022)
library by incorporating our code within it. It helps us have a fair comparison as we use the implementations
of baselines from Anomalib. Moreover, we used a single NVIDIA A4000 GPU for all the experiments unless
mentioned otherwise. The architecture of FRN and global autoencoder-like model is provided in Table 5 and
6, respectively.

Table 5: Feature Reconstruction Network of ULSAD.

Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 2 3× 3 768 1 ReLU
BatchNorm-1 - - - - -
Conv-2 2 3× 3 1536 1 ReLU
BatchNorm-2 - - - - -
Conv-3 1 3× 3 1536 1 ReLU

Encoder

BatchNorm-3 - - - - -
ConvTranspose-1 2 4× 4 768 1 ReLU
BatchNorm-4 - - - - -
ConvTranspose-2 2 4× 4 384 1 ReLU
BatchNorm-5 - - - - -
ConvTranspose-3 1 5× 5 384 1 ReLU

Decoder

BatchNorm-6 - - - - -

Table 6: Global Autoencoder of ULSAD.

Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 2 4× 4 32 1 ReLU
BatchNorm-1 - - - - -
Conv-2 2 4× 4 32 1 ReLU
BatchNorm-2 - - - - -
Conv-3 2 4× 4 64 1 ReLU
BatchNorm-3 - - - - -
Conv-4 2 4× 4 64 1 ReLU
BatchNorm-4 - - - - -
Conv-5 2 4× 4 64 1 ReLU
BatchNorm-5 - - - - -
Conv-6 1 8× 8 64 1 ReLU

Encoder

BatchNorm-6 - - - - -
Interpolate-1 (31, mode= "bilinear") - - - - -
Conv-1 1 4× 4 64 2 ReLU
BatchNorm-1 - - - - -
Interpolate-2 (8, mode= "bilinear") - - - - -
Conv-2 1 4× 4 64 2 ReLU
BatchNorm-2 - - - - -
Interpolate-3 (16, mode= "bilinear") - - - - -
Conv-3 1 4× 4 64 2 ReLU
BatchNorm-3 - - - - -
Interpolate-4 (32, mode= "bilinear") - - - - -
Conv-4 1 4× 4 64 2 ReLU
BatchNorm-4 - - - - -
Interpolate-5 (64, mode= "bilinear") - - - - -
Conv-5 1 4× 4 64 2 ReLU
BatchNorm-5 - - - - -
Interpolate-6 (32, mode= "bilinear") - - - - -
Conv-6 1 3× 3 64 1 ReLU
BatchNorm-6 - - - - -

Decoder

Conv-7 1 3× 3 384 1 ReLU
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B Extended Results
Extended versions of the Table 1 and 2 are provided in Tables 7-21. It shows the performance of ULSAD per
category of the benchmark datasets for anomaly detection and localization. Additionally, we provide a visual
comparison of the generated anomaly maps using the MVTecLOCO dataset in Figure 9.

Table 7: Anomaly detection based on Image AUROC on MVTec dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

bottle 100.0 94.6 98.57 99.37 100.0 98.10 94.92 100.0 100.0 ± 0.00

cable 93.46 74.29 89.30 86.94 98.54 95.41 79.54 94.61 97.92 ± 0.18

capsule 91.74 65.46 86.04 88.43 97.93 81.01 96.01 95.57 94.61 ± 0.28

carpet 93.26 57.70 98.76 97.31 97.91 57.95 97.59 99.70 98.50 ± 0.17

grid 93.57 76.02 99.08 84.04 97.24 93.07 94.57 100.0 92.67 ± 1.20

hazelnut 100.0 84.43 81.57 86.07 100.0 99.82 100.0 93.39 99.93 ± 0.05

leather 99.97 79.31 100.0 99.66 100.0 42.39 99.46 99.92 100.0 ± 0.00

metal_nut 99.76 45.06 94.53 96.92 99.61 67.20 93.06 99.34 98.88 ± 0.07

pill 90.73 44.65 87.53 88.52 94.35 54.66 92.06 99.08 96.17 ± 0.39

screw 88.30 89.38 66.00 75.24 98.26 94.57 93.69 98.09 95.20 ± 0.15

tile 100.0 90.15 95.42 95.49 98.67 97.37 92.97 99.85 99.99 ± 0.02

toothbrush 83.33 80.28 79.44 93.61 100.0 84.72 100.0 100.0 100.0 ± 0.00

transistor 91.50 88.37 94.42 92.29 100.0 83.29 80.54 96.57 97.65 ± 0.57

wood 98.33 90.96 97.54 98.33 99.30 53.16 98.77 98.13 98.81 ± 0.23

zipper 93.07 68.17 92.54 86.48 99.47 92.04 89.97 99.22 94.36 ± 0.13

Mean 94.47 75.26 90.72 91.25 98.75 79.65 93.54 98.23 97.65 ± 0.38

Table 8: Anomaly segmentation performance based on Pixel AUROC on MVTec dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

bottle 98.58 76.53 97.8 98.3 97.98 98.31 90.83 98.31 96.21 ± 2.21

cable 96.1 66.59 95.71 96.81 98.03 96.37 91.37 98.5 97.71 ± 0.06

capsule 98.71 86.96 98.37 98.67 98.77 98.96 98.46 98.33 98.95 ± 0.03

carpet 98.57 71.95 98.27 98.68 98.67 99.05 98.46 94.83 99.18 ± 0.06

grid 97.49 53.56 98.39 92.82 97.86 99.01 97.41 96.02 95.47 ± 1.09

hazelnut 98.64 84.66 94.79 97.85 98.43 98.91 98.53 96.15 98.81 ± 0.03

leather 99.42 63.32 99.62 99.30 98.87 99.17 99.33 97.5 98.68 ± 0.01

metal_nut 97.97 80.25 97.01 96.71 98.51 97.68 93.02 98.07 97.62 ± 0.03

pill 97.83 77.17 96.38 95.03 97.53 96.96 96.86 98.63 96.67 ± 0.09

screw 97.64 83.38 89.87 97.89 99.19 99.43 99.07 98.50 99.33 ± 0.01

tile 96.68 85.75 93.14 92.42 94.86 95.47 90.82 91.61 95.78 ± 0.05

toothbrush 98.16 90.70 97.50 98.83 98.67 98.99 98.49 96.0 98.42 ± 0.02

transistor 89.91 63.23 96.45 96.85 96.84 86.77 79.11 94.77 98.89 ± 0.05

wood 94.70 71.73 95.71 93.83 93.31 95.06 95.36 90.85 95.20 ± 0.31

zipper 97.08 69.31 97.62 97.82 98.06 98.54 96.85 96.21 97.24 ± 0.07

Mean 97.17 75.01 96.44 96.79 97.71 97.25 94.93 96.29 97.61 ± 0.64
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Table 9: Anomaly segmentation performance based on Pixel AUPRO on MVTec dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

bottle 94.19 50.05 92.0 95.11 92.28 95.12 83.14 93.84 90.16 ± 3.24

cable 85.85 28.58 86.65 89.65 90.77 90.32 83.09 92.53 88.63 ± 0.48

capsule 90.47 81.11 90.15 92.62 92.4 93.93 96.33 91.09 93.77 ± 0.16

carpet 92.64 48.64 94.63 95.59 92.7 96.41 95.47 90.99 96.39 ± 0.24

grid 90.52 17.71 93.95 82.52 89.46 96.39 91.15 93.14 83.3 ± 3.96

hazelnut 96.12 76.19 93.92 92.95 94.44 96.92 97.17 83.25 94.87 ± 0.3

leather 98.39 52.1 99.06 97.91 96.33 97.97 98.34 97.32 97.44 ± 0.01

metal_nut 88.97 35.79 85.89 90.45 91.9 94.4 87.01 92.97 91.58 ± 0.19

pill 93.67 64.26 91.0 93.88 93.92 94.76 95.86 95.93 94.5 ± 0.08

screw 90.25 53.22 68.6 92.14 95.39 97.05 95.96 96.04 96.45 ± 0.1

tile 91.49 58.48 81.01 78.32 79.64 88.4 79.36 83.54 87.82 ± 0.15

toothbrush 81.05 54.02 80.62 93.52 86.48 92.23 92.93 88.61 86.28 ± 0.46

transistor 78.75 51.37 88.92 89.04 94.06 75.05 64.25 82.82 91.61 ± 0.68

wood 90.5 45.29 93.26 91.39 85.08 92.69 92.48 76.16 91.34 ± 0.29

zipper 89.3 28.98 92.12 92.48 92.43 95.18 88.74 93.48 90.89 ± 0.35

Mean 90.14 49.72 88.79 91.17 91.15 93.12 89.42 90.11 91.67 ± 1.36

Table 10: Anomaly detection performance based on Image AUROC on MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 71.86 70.26 74.04 63.66 85.24 52.69 65.46 74.80 83.54 ± 0.23

juice_bottle 81.70 62.55 78.03 88.42 92.51 76.28 86.81 98.89 97.12 ± 0.10

pushpins 73.43 51.32 61.20 61.30 75.54 50.72 72.68 80.58 86.85 ± 0.94

screw_bag 65.48 59.39 68.04 60.14 69.90 65.15 63.55 67.42 70.71 ± 1.49

splicing_connectors 75.63 68.25 73.71 68.40 84.24 62.95 75.87 81.39 82.30 ± 0.72

Mean 73.62 62.35 71.00 68.38 81.49 61.56 72.87 80.62 84.1 ± 0.86

Table 11: Anomaly segmentation performance based on Pixel AUROC on MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 89.6 63.61 82.73 87.35 88.53 85.78 76.25 80.76 89.14 ± 0.11

juice_bottle 91.37 80.71 86.33 91.99 90.54 90.41 87.06 88.40 89.07 ± 0.10

pushpins 70.66 54.74 82.94 40.72 67.67 41.42 29.42 59.96 75.64 ± 0.36

screw_bag 69.94 65.23 58.07 65.35 62.40 67.33 59.74 61.64 71.35 ± 0.12

splicing_connectors 63.40 54.16 67.69 71.20 69.71 57.82 56.14 61.02 75.10 ± 0.20

Mean 76.99 63.69 75.55 71.32 75.77 68.55 61.72 70.36 80.06 ± 0.20
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Table 12: Anomaly segmentation performance based on Pixel AUPRO on MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 67.27 36.11 63.8 74.28 73.08 69.67 63.56 58.44 71.36 ± 0.38

juice_bottle 80.75 51.51 77.90 88.78 85.42 84.95 82.88 86.51 87.72 ± 0.09

pushpins 61.09 24.68 50.62 52.71 63.52 53.52 59.12 59.25 68.34 ± 0.55

screw_bag 54.39 31.27 38.1 61.42 56.12 59.66 71.66 62.45 66.52 ± 0.33

splicing_connectors 71.15 56.72 34.77 62.64 67.29 63.62 71.67 68.14 74.70 ± 0.25

Mean 66.93 40.06 53.04 67.97 69.09 66.28 69.78 66.96 73.73 ± 0.35

Table 13: Anomaly detection performance based on Image AUROC on MPDD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

tubes 99.64 61.28 89.36 56.48 87.50 89.67 94.47 95.28 93.39 ± 0.57

metal_plate 97.42 80.05 86.92 42.69 99.72 91.87 68.31 100.0 93.81 ± 0.28

connector 99.52 83.33 52.38 86.07 100.0 93.10 100.0 50.00 96.00 ± 0.82

bracket_white 79.89 84.00 50.78 80.33 89.67 83.67 54.55 96.48 100.0 ± 0.00

bracket_black 96.48 65.36 62.83 66.69 86.97 50.73 72.63 85.45 93.09 ± 0.32

bracket_brown 49.70 70.81 47.89 78.66 95.78 68.70 88.54 85.32 98.08 ± 0.14

Mean 87.11 74.14 65.03 68.48 93.27 79.62 79.75 85.42 95.73 ± 0.45

Table 14: Anomaly segmentation performance based on Pixel AUROC on MPDD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

tubes 99.15 76.87 98.44 91.35 98.45 99.08 98.62 98.98 98.55 ± 0.10

metal_plate 98.56 96.23 92.99 91.67 98.30 97.50 93.59 96.52 96.77 ± 0.09

connector 97.38 90.01 92.69 97.93 99.11 98.55 98.68 99.32 99.40 ± 0.18

bracket_white 96.74 86.64 90.23 97.21 97.90 98.13 96.63 97.71 98.73 ± 0.1

bracket_black 97.68 95.89 94.39 93.79 97.52 96.40 98.42 97.17 97.43 ± 0.21

bracket_brown 95.04 76.11 92.84 95.13 97.15 97.34 98.06 92.46 93.83 ± 2.41

Mean 97.42 86.96 93.60 94.51 98.07 97.83 97.33 97.03 97.45 ± 0.99

Table 15: Anomaly segmentation performance based on Pixel AUPRO on MPDD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

tubes 96.76 44.84 94.85 71.53 93.83 95.98 95.20 96.27 94.33 ± 0.33

metal_plate 91.53 82.83 74.62 75.47 92.50 92.00 83.99 83.59 90.07 ± 0.22

connector 91.32 72.06 76.98 92.74 96.89 95.29 95.60 97.77 97.98 ± 0.60

bracket_white 78.66 69.13 49.65 81.16 83.13 84.71 77.02 93.27 95.33 ± 0.37

bracket_black 89.48 93.12 79.65 83.51 93.65 89.14 95.57 89.98 90.17 ± 0.67

bracket_brown 83.62 58.29 85.62 82.69 85.07 94.04 95.37 81.77 84.24 ± 6.38

Mean 88.56 70.04 76.89 81.18 90.84 91.86 90.46 90.44 92.02 ± 2.64
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Table 16: Anomaly detection performance based on Image AUROC on BTAD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

01 98.64 80.17 94.46 99.51 98.09 92.23 99.51 94.15 100.0 ± 0.00

02 82.12 65.23 84.27 82.17 81.73 61.73 85.68 75.42 88.5 ± 0.78

03 99.95 74.87 96.3 97.92 100.0 97.65 98.62 95.22 100.0 ± 0.00

Mean 93.57 73.42 91.68 93.20 93.27 83.87 94.60 88.26 96.17 ± 0.45

Table 17: Anomaly segmentation performance based on Pixel AUROC on BTAD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

01 95.44 59.11 93.05 96.54 95.94 96.98 96.93 64.59 95.86 ± 0.03

02 94.81 69.29 96.16 95.11 95.18 96.83 96.77 85.67 94.76 ± 0.88

03 99.55 48.73 99.25 99.56 99.44 99.74 99.12 96.12 99.55 ± 0.02

Mean 96.60 59.04 96.15 97.07 96.85 97.85 97.62 82.13 96.73 ± 0.51

Table 18: Anomaly segmentation performance based on AUPRO on BTAD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

01 66.79 21.57 60.83 75.76 64.34 79.45 83.77 29.75 72.88 ± 0.12

02 54.32 27.64 67.98 59.19 52.36 66.05 65.58 44.37 55.16 ± 6.83

03 98.21 18.24 96.99 98.45 97.76 98.92 27.83 88.98 98.18 ± 0.08

Mean 73.11 22.48 75.27 77.80 71.48 81.47 59.06 54.37 75.41 ± 3.95

Table 19: Anomaly detection performance based on Image AUROC on VisA dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

candle 94.38 79.43 93.18 86.19 98.59 85.54 89.65 80.52 87.11 ± 0.29

capsules 69.9 72.77 81.05 61.72 69.92 87.37 76.75 63.73 79.61 ± 0.72

cashew 94.7 95.5 87.78 90.94 96.29 85.38 93.80 96.11 94.72 ± 0.16

chewinggum 99.02 83.68 95.18 98.20 99.29 81.92 99.22 98.27 99.49 ± 0.12

fryum 92.98 70.46 92.60 85.06 93.5 77.94 96.58 95.70 95.86 ± 0.14

macaroni1 92.72 72.8 82.48 78.62 91.50 82.06 95.14 95.23 90.66 ± 0.76

macaroni2 63.44 47.85 69.75 70.05 71.36 81.75 86.25 83.82 82.84 ± 1.05

pcb1 91.06 72.27 88.07 87.59 95.08 92.60 97.57 93.78 92.92 ± 0.11

pcb2 79.95 91.17 86.47 83.20 92.46 87.57 91.55 94.95 93.67 ± 0.18

pcb3 82.23 81.29 81.47 72.79 92.46 90.87 97.27 95.92 93.62 ± 0.16

pcb4 96.29 90.44 95.68 95.67 99.20 96.17 97.62 97.89 99.43 ± 0.03

pipe_fryum 96.54 75.32 96.16 89.28 98.07 85.68 98.36 98.59 99.61 ± 0.11

Mean 87.77 77.75 87.49 83.28 91.48 86.24 85.18 91.21 92.46 ± 0.45
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Table 20: Anomaly segmentation performance based on Pixel AUROC on VisA dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

candle 98.75 83.1 97.24 97.68 98.92 99.11 98.41 89.93 97.77 ± 0.03

capsules 96.88 62.39 97.13 90.60 97.62 99.56 99.13 96.93 98.31 ± 0.31

cashew 99.25 74.17 98.57 97.45 98.88 97.23 95.63 98.85 99.49 ± 0.02

chewinggum 99.02 84.11 98.83 98.82 98.72 99.37 99.16 98.69 98.10 ± 0.41

fryum 97.08 85.7 93.20 96.20 94.30 96.33 95.45 96.52 97.38 ± 0.19

macaroni1 98.71 63.95 98.60 97.85 98.13 99.48 99.73 99.59 99.00 ± 0.13

macaroni2 97.35 79.02 94.65 95.40 96.79 99.33 99.43 98.84 98.20 ± 0.28

pcb1 99.05 27.98 99.29 98.67 99.47 99.65 99.30 98.98 99.61 ± 0.01

pcb2 96.40 59.49 97.12 98.12 97.72 98.28 96.13 98.37 98.03 ± 0.09

pcb3 97.23 76.43 97.04 98.06 98.13 98.98 97.99 98.91 98.45 ± 0.05

pcb4 97.97 83.42 97.51 97.00 97.83 98.29 96.58 95.49 95.22 ± 0.27

pipe_fryum 98.79 75.99 98.72 99.19 98.68 98.6 97.97 98.99 99.29 ± 0.03

Mean 98.04 71.31 97.32 97.09 97.93 98.68 97.90 97.51 98.24 ± 0.20

Table 21: Anomaly segmentation performance based on AUPRO on VisA dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

candle 92.7 80.29 91.65 92.77 94.08 95.30 95.56 77.31 92.49 ± 0.15

capsules 74.64 34.4 81.8 48.42 68.88 92.20 92.09 83.8 82.76 ± 1.18

cashew 93.0 48.33 85.54 82.36 88.01 91.81 90.51 91.57 91.85 ± 1.15

chewinggum 89.58 62.66 84.69 84.33 83.86 88.57 85.52 74.87 84.34 ± 1.0

fryum 85.62 71.94 72.39 75.54 78.25 84.8 92.08 82.93 85.47 ± 0.66

macaroni1 89.46 63.37 91.89 88.55 91.74 95.53 97.59 96.06 92.8 ± 0.74

macaroni2 78.74 56.69 71.94 75.76 87.49 94.01 94.23 89.74 88.29 ± 1.89

pcb1 87.24 27.43 85.89 86.39 89.07 95.0 93.55 90.53 90.22 ± 0.28

pcb2 77.83 33.99 77.99 83.68 83.00 89.17 87.26 90.43 84.53 ± 0.53

pcb3 75.03 71.9 71.33 81.37 79.69 90.89 92.48 92.08 85.86 ± 0.38

pcb4 86.53 73.26 83.41 82.47 84.91 89.17 84.38 75.25 73.37 ± 0.81

pipe_fryum 93.14 31.86 81.89 87.99 92.42 94.76 95.46 68.77 93.49 ± 0.08

Mean 85.29 54.68 81.70 80.80 85.12 91.77 91.72 84.45 87.12 ± 0.89
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Figure 9: Visualization of anomaly maps on anomalous images from MVTecLOCO dataset.
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B.1 Performance on MVTecLOCO: Logical and Structural AD

In Tables 22, 23, 24, 25, 26, and 27, we report the anomaly detection and localization results on MVTec
LOCO separately for structural and logical anomalies. It can be observed that although PatchCore performs
slightly better than ULSAD on structural anomalies, ULSAD delivers competitive results on logical anomalies.
Moreover, as discussed previously in Section 5, the improvement in performance with PatchCore comes with
three times the memory requirement. Therefore, we consider ULSAD to be an efficient and effective approach
for the detection and localization of both logical and structural anomalies.

Table 22: Anomaly detection performance based on Image AUROC on structural anomalies of MVTecLOCO
dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 62.3 75.37 71.67 64.17 84.3 48.74 58.67 69.04 81.94 ± 0.74

juice_bottle 73.45 52.18 76.52 86.17 96.47 78.29 62.75 99.71 95.53 ± 0.45

pushpins 71.03 66.51 60.17 72.4 77.42 50.17 40.06 92.07 85.17 ± 0.65

screw_bag 78.0 69.78 75.07 67.7 86.79 80.35 57.76 82.2 83.01 ± 1.56

splicing_connectors 74.35 80.33 70.31 66.85 88.67 63.04 55.84 90.2 80.59 ± 0.35

Mean 71.83 68.83 70.75 71.46 86.73 64.12 55.02 86.64 85.25 ± 0.86

Table 23: Anomaly segmentation performance based on Pixel AUROC on structural anomalies of
MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 94.72 61.6 84.86 88.41 94.31 91.75 82.79 67.36 95.35 ± 0.16

juice_bottle 88.81 83.75 85.67 90.73 95.98 89.57 80.74 97.24 89.67 ± 0.23

pushpins 91.4 46.14 85.54 90.82 95.16 87.83 48.52 89.48 88.38 ± 0.22

screw_bag 95.37 72.27 91.74 94.97 97.45 97.78 66.67 97.37 97.64 ± 0.24

splicing_connectors 98.3 93.03 95.79 96.25 98.82 97.25 91.82 98.55 98.3 ± 0.1

Mean 93.72 71.36 88.72 92.24 96.34 92.84 74.12 90.0 93.87 ± 0.2

Table 24: Anomaly segmentation performance based on Pixel AUPRO on structural anomalies of
MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 70.0 41.92 71.29 81.97 78.71 76.67 26.67 65.87 75.43 ± 0.67

juice_bottle 80.56 50.44 87.61 92.64 95.1 90.81 61.67 92.08 90.1 ± 0.31

pushpins 68.34 20.04 61.72 70.01 75.88 62.63 45.30 78.62 68.34 ± 0.84

screw_bag 82.07 39.41 73.69 85.1 88.92 93.77 53.95 91.38 91.98 ± 0.73

splicing_connectors 87.75 68.61 67.8 82.35 91.69 83.57 63.44 94.19 90.84 ± 0.35

Mean 77.74 44.08 72.42 82.41 86.06 81.49 50.21 84.43 83.34 ± 0.62
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Table 25: Anomaly detection performance based on Image AUROC on logical anomalies of MVTecLOCO
dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 76.86 68.71 75.81 62.0 83.43 55.27 61.55 83.54 83.33 ± 1.63

juice_bottle 80.52 70.09 80.89 92.94 94.61 76.4 77.07 99.12 98.82 ± 0.14

pushpins 71.15 37.9 58.81 50.72 74.53 52.98 60.27 72.0 85.23 ± 0.72

screw_bag 60.72 52.34 64.01 55.29 59.36 55.09 63.64 58.8 66.33 ± 0.9

splicing_connectors 67.5 56.15 74.54 69.43 80.27 61.74 53.10 75.64 86.27 ± 1.33

Mean 71.35 57.04 70.81 66.08 78.44 60.3 63.13 77.82 84.0 ± 1.07

Table 26: Anomaly segmentation performance based on Pixel AUROC on logical anomalies of MVTecLOCO
dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 90.43 65.5 85.35 89.23 90.32 87.35 74.55 85.58 91.41 ± 0.1

juice_bottle 92.56 80.49 90.23 95.29 93.97 92.97 86.95 91.98 93.74 ± 0.08

pushpins 70.38 56.06 82.91 41.95 69.39 41.86 67.93 61.12 75.96 ± 1.11

screw_bag 67.75 65.43 58.93 66.02 63.81 68.4 75.75 61.85 72.3 ± 0.41

splicing_connectors 60.8 52.1 66.82 69.83 68.06 55.5 57.67 59.01 74.19 ± 0.19

Mean 76.38 63.92 76.85 72.46 77.11 69.22 72.57 71.91 81.52 ± 0.54

Table 27: Anomaly segmentation performance based on Pixel AUPRO on logical anomalies of MVTecLOCO
dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore RD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 68.79 32.23 64.39 69.74 72.27 68.77 43.60 52.19 73.97 ± 0.8

juice_bottle 79.67 52.72 77.9 91.69 87.88 84.22 62.87 87.82 91.36 ± 0.12

pushpins 59.07 26.21 47.71 51.93 63.47 53.84 41.80 58.36 68.78 ± 0.98

screw_bag 50.7 26.98 25.58 53.92 46.8 48.72 54.59 52.8 61.48 ± 0.45

splicing_connectors 65.86 53.71 26.66 57.66 62.21 58.85 34.72 62.7 72.66 ± 0.27

Mean 64.82 38.37 48.45 64.99 66.53 62.88 47.52 62.77 73.65 ± 0.61
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C Extended Ablations
In this section, we provide additional ablations on the local branch in Table 28 and the total architecture in
Table 29. Lastly, in Table 30 we provide the per-category results for the ablation on the pre-trained backbone
which is summarized in Figure 7.

Table 28: Abalations for local branch. Style: I-AUROC | P-AUROC | P-AUPRO.

category λl = 0 λl = 0.01 λl = 0.5 λl = 0.9 λl = 1.0
breakfast_box 78.64 | 88.28 | 74.22 79.2 | 88.51 | 74.35 77.86 | 87.79 | 71.27 77.95 | 86.89 | 67.06 79.44 | 86.96 | 65.36
juice_bottle 97.82 | 92.14 | 89.24 97.76 | 92.23 | 89.38 97.56 | 88.78 | 88.16 97.36 | 84.39 | 84.63 97.08 | 83.61 | 83.47
pushpins 72.4 | 69.81 | 65.69 72.77 | 69.84 | 65.68 79.92 | 74.49 | 69.03 76.98 | 74.35 | 63.17 76.53 | 73.69 | 65.18
screw_bag 66.42 | 66.6 | 64.39 67.18 | 68.47 | 65.92 68.06 | 69.13 | 66.22 67.56 | 69.33 | 63.61 66.34 | 69.31 | 62.09
splicing_connectors 73.05 | 59.04 | 73.3 72.84 | 59.15 | 73.29 72.29 | 62.66 | 72.39 72.79 | 64.33 | 70.74 72.36 | 64.5 | 70.57
Mean 77.67 | 75.17 | 73.37 77.95 | 75.64 | 73.72 79.14 | 76.57 | 73.41 78.53 | 75.86 | 69.84 78.35 | 75.61 | 69.33

Table 29: Abalations for total architecture. Style: I-AUROC | P-AUROC | P-AUPRO.

category Ldpg Ldpg; Llg Lpg Lpg; Llg
λl = λg = 0.0

breakfast_box 77.29 | 90.41 | 77.16 82.82 | 89.85 | 76.92 66.01 | 87.36 | 67.5 85.08 | 90.19 | 75.36
juice_bottle 96.48 | 92.01 | 88.82 97.93 | 91.82 | 89.26 91.2 | 91.98 | 85.38 97.29 | 92.0 | 89.18
pushpins 70.89 | 80.89 | 70.67 78.66 | 88.09 | 79.11 74.67 | 77.37 | 58.75 74.61 | 85.86 | 76.33
screw_bag 65.48 | 65.87 | 64.04 63.02 | 68.13 | 65.51 61.14 | 59.51 | 57.75 66.93 | 68.67 | 65.35
splicing_connectors 78.29 | 69.68 | 75.61 84.55 | 72.71 | 76.54 65.31 | 53.4 | 66.74 81.5 | 73.11 | 76.01
Mean 77.69 | 79.77 | 75.26 81.4 | 82.12 | 77.47 71.67 | 73.92 | 67.22 81.08 | 81.97 | 76.45

λl = λg = 0.5
breakfast_box 79.22 | 90.87 | 78.32 82.45 | 88.49 | 71.03 71.36 | 87.64 | 67.38 83.36 | 89.34 | 72.36
juice_bottle 96.3 | 91.17 | 88.89 98.08 | 87.06 | 88.05 91.14 | 91.84 | 85.92 97.46 | 88.81 | 87.71
pushpins 79.86 | 84.89 | 77.97 82.46 | 87.62 | 80.49 78.64 | 81.14 | 65.12 88.07 | 74.22 | 66.45
screw_bag 66.58 | 68.83 | 66.11 65.11 | 70.04 | 62.81 62.09 | 67.32 | 62.92 70.6 | 71.58 | 67.01
splicing_connectors 80.53 | 73.47 | 75.44 82.85 | 73.03 | 75.13 69.33 | 55.02 | 63.69 81.27 | 74.94 | 74.89
Mean 80.5 | 81.85 | 77.35 82.19 | 81.25 | 75.5 74.51 | 76.59 | 69.01 84.15 | 79.78 | 73.68

Table 30: Abalations for backbone on MvTec-LOCO. Style: I-AUROC | P-AUROC | P-AUPRO.

Class ResNet50 ResNet152 Wide-ResNet50-2 Wide-ResNet100-2
breakfast_box 82.41 | 89.74 | 73.09 85.11 | 91.15 | 72.0 84.46 | 89.18 | 72.21 82.37 | 89.25 | 74.02
juice_bottle 96.9 | 92.23 | 89.38 97.64 | 91.66 | 89.78 97.11 | 88.9 | 87.94 98.74 | 92.87 | 91.07
pushpins 81.79 | 79.49 | 75.15 73.28 | 76.49 | 63.71 85.48 | 75.46 | 67.82 82.48 | 76.55 | 70.67
screw_bag 66.46 | 69.14 | 67.01 68.06 | 68.63 | 66.97 71.14 | 71.57 | 66.82 73.1 | 68.99 | 66.88
splicing_connectors 80.88 | 72.76 | 74.39 83.53 | 76.31 | 77.24 82.59 | 75.21 | 75.05 84.71 | 79.95 | 78.65
Mean 81.79 | 79.49 | 75.15 81.52 | 80.85 | 73.94 84.16 | 80.06 | 73.97 84.28 | 81.52 | 76.26
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