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Abstract

The use of planning techniques in traffic signal optimisa-
tion has proven effective in managing unexpected traffic con-
ditions as well as typical traffic patterns. However, signifi-
cant challenges concerning the deployability of generated sig-
nal plans remain, as planning systems need to consider con-5

straints and features of the actual real-world infrastructure on
which they will be implemented. To address this challenge,
we introduce a range of PDDL+ models embodying techno-
logical requirements as well as insights from domain experts.
The proposed models have been extensively tested on histor-10

ical data using a range of well-known search strategies and
heuristics, as well as alternative encodings. Results demon-
strate their competitiveness with the state of the art.

Introduction
There is a growing interest in the use of automated plan-15

ning and scheduling techniques for urban traffic control
(Smith 2020), specially for traffic signal optimisation. The
use of automated planning, in particular, yields the benefits
of great flexibility in terms of goals that can be described
and achieved, and a centralised overview of the target re-20

gion. The problem of traffic signal control has been tack-
led using PDDL+ automated planning (Vallati et al. 2016;
Antoniou et al. 2019), with knowledge models subsequently
re-engineered by McCluskey and Vallati (2017) and highly
effective domain-specific heuristics introduced by Percassi25

et al. (2023). This line of research leads to approaches that
are capable of efficiently generating good quality signal
plans with significant benefits in terms of congestion and
emissions reduction. As with other applications of planning
that are actually deployed to the real world, however, techno-30

logical constraints are very specialised and may well change
drastically, even within the same area, when faced with a
different deployment infrastructure. This is because, in any
application area, the constraints and features of the infras-
tructure that will implement plans need to be accounted for,35

and shape the capabilities and characteristics of the planning
systems.

In this paper, we report on the process of adapting pre-
vious automated planning techniques for traffic signal opti-
misation to cope with a legacy traffic control infrastructure40

which is common in urban areas of the UK, forming the ba-
sis of Urban Traffic Control (UTC) technology. To do so,

the knowledge models have to be redesigned to incorporate
extra constraints and features that take into account the pe-
culiar deployment constraints of the infrastructure. 45

More specifically, we introduce three new PDDL+ models
which enable domain-independent planning engines to pro-
duce deployable signal plans on UTC. For the purposes of
comparison and collecting real-world data, we use a region
where normally the traffic reactive SCOOT (Taale, Fransen, 50

and Dibbits 1998) control system is in operation within the
UTC architecture. We extensively test the introduced mod-
els to assess their capabilities and to evaluate the impact of
different language features on the performance of a wide
range of domain-independent search techniques and heuris- 55

tics. Finally, we show that the generated plans are compara-
ble with the state-of-the art, and ready to be deployed in the
real world.

Research Context
In essence, traffic signal control is the problem of determin- 60

ing the optimal green length for each signal in a set of traf-
fic signals, which may be dispersed around a region con-
sisting of several spatially-close traffic junctions. The prob-
lem is structured by grouping sets of green lit signals into
stages: each signal in a stage shares the same green time, 65

is situated in the same junction, and collectively lets traffic
flow through the junction in a safe manner. This structur-
ing leads to the simpler problem of determining the optimal
green length for each stage.

The goal of the traffic signal problem could be as gen- 70

eral as minimising average traffic delay in the region, or
as specific as alleviating the extreme delays of traffic exit-
ing major city events and passing through the region. Typi-
cal traffic engineering mechanisms to solve this problem are
traffic-reactive, and make decisions in real-time on how to 75

change stage duration from cycle to cycle, based on sensor
data (a cycle is the time taken to move through a sequence of
stages of the junction, starting at a distinguished stage one,
and returning back to stage one). Constraints on the prob-
lem include the legal and practical restrictions on the mini- 80

mum and maximum length of each stage, as well as on the
minimum and maximum length of the overall traffic signal
cycle. While traffic local-reactive technology is essential (in
particular, the presence of a stage within a cycle may be de-
mand driven, so that stages are used by a single junction only 85
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Figure 1: A simplified overview of the modelled urban re-
gion, in terms of junctions (circles), links, and boundaries
(rectangles). For readability, the map is not correctly scaled.

when needed), our research has concentrated on producing
plans that coordinate junctions working together for periods
of time, with the aim of achieving goals given the knowl-
edge of traffic demands in a region. E.g., the knowledge that
1,000 vehicles will attempt to leave a city centre at a partic-90

ular time after a large leisure event forms part of an initial
state to construct a plan alleviating the extreme delays that
happen when purely local-reactive technology is used.

Although we have exported our technology to other parts
of the UK, for illustration we focus on an urban region lo-95

cated in the Kirklees council area within West Yorkshire,
United Kingdom. It encompasses a major corridor that con-
nects the Huddersfield ring road with the M1 highway and
extends to the southern part of the Kirklees council. This
corridor serves as a crucial route for commuters and deliv-100

ery vans travelling to Huddersfield town or moving between
the M62 and M1 highways, as well as for people joining
or leaving events hosted at the nearby John Smith’s Sta-
dium. Spanning approximately 1.3 kilometres, it comprises
six junctions and 34 road links. Each junction consists of105

four to six stages, accommodating between 10 and 17 valid
traffic movements. The 6 junctions sit in a single SCOOT re-
gion, i.e., an area where all of them are controlled by the
SCOOT system and information between nearby junctions
are shared to minimise overall delay for vehicles navigating110

the corridor. Figure 1 provides a simplified representation of
this urban area.

SCOOT (Taale, Fransen, and Dibbits 1998) is a traffic re-
active control mechanism used widely around the world, and
is aimed at handling cycle-to-cycle changes in demand. In115

response to changes in traffic flows, SCOOT would gradu-
ally adapt and adjust the traffic signal timings of a set of
managed neighbouring junctions. SCOOT is dependent on
its own local data sensors, usually inductive loops embed-
ded in the road surface, and stores sensed data and opera-120

tional information in a dedicated database; for details about
the extraction process to create planning knowledge from the
database, the interested reader is referred to Bhatnagar et al.
(2022b). Using this historical data, one can ensure that the
PDDL+ simulation of traffic plans is as accurate as possi-125

ble, since one can simulate the SCOOT plans in the PDDL+
model and check the data from the simulation against the
historical records in the database.

We leverage on the architecture proposed by Bhatnagar

et al. (2023) for generating and simulating traffic plans in 130

areas controlled by SCOOT systems, by means of PDDL+
planning. The idea of the architecture is to exploit the exist-
ing infrastructure deployed in an urban region and to use the
planning-enhanced traffic signal control module as a plugin
that can be activated when needed, with goals either spec- 135

ified by a human operator or pre-defined for routine inter-
ventions. This modular solution has a number of benefits: (i)
minimising costs for traffic authorities, that can reuse what
is already available; (ii) maximising robustness and safety,
as generated plans are implemented and checked by an ex- 140

isting and extensively validated system, and (iii) supporting
maintenance and continuous improvements, as the planning
system can be modified and swapped with no implications
for the rest of the system. It is worth noting that the models
proposed in this paper are agnostic with regard to the deploy- 145

ment architecture, but are designed to support the constraints
imposed by the underlying UTC architecture.

When moving to generated plan deployment, two main
technological constraints that need to be addressed, and that
emerged by recent trials on the target UTC are: (i) for each 150

junction, the length of the stages can not be modified arbi-
trarily; instead, configuration of cycles (i.e., the specification
of the length of every stage in the cycle) can only be selected
from a predefined set, and (ii) traffic engineers involved in
the trials require all the cycles to have the same duration. 155

The reason for (i) is that configurations need to be uploaded
into the UTC system at least one day in advance; the reason
for (ii) is that the synchronisation between junctions needs
to be maintained to avoid disrupting the signal offsets (aka
green wave) along a corridor of connected links. 160

Existing PDDL+ Models
A region of the urban road network is modelled as a di-
rected graph, where edges represent road links and vertices
represent junctions. One special vertex represents the exter-
nal area of the modelled region. Essentially, vehicles enter 165

(leave) the network via links connected to the external area,
which represents the demand for the modelled region. Each
road link has a specified maximum occupancy, indicating the
maximum number of vehicles allowed on the road simulta-
neously, and a current occupancy, representing the current 170

number of vehicles on the road. Traffic at junctions is reg-
ulated by flow rates assigned to pairs of road links, that en-
code the valid traffic movements. For two road links, rx and
ry , connected to a junction i, and a traffic signal stage p, the
flow is active when rx is the incoming link, ry is the out- 175

going link, and the traffic signal for i is green during stage
p. Flow rates represent the number of vehicles, measured in
Passenger Car Units, that can move from rx, through i, and
into ry per unit of time.

Junctions are associated with a sequence of traffic signal 180

stages, where each stage is either fixed (it must occur) or de-
mand driven (it will occur if the demand is there for it). In
our models, we assume all stages as fixed, and allow the traf-
fic controller to skip them if no demand is present. We use
the next predicate to define the sequence of stages. The ac- 185

tive traffic signal stage determines the flow rates correspond-
ing to the green lights. For each stage, there is a specified



1 (:event triggerChange

2 :parameters (?p1 ?p2 - stage ?j - junction)

3 :precondition (and

4 (inter ?p2) (contains ?j ?p1) (next ?p ?p2)

5 (>= (intertime ?j) (- (interlimit ?p1) 0.1)))

6 :effect (and

7 (not (inter ?p1))

8 (active ?p2)

9 (assign (intertime ?j) 0)))

Figure 2: PDDL+ triggerChange event for transitioning from
a stage p1 to the next one p2 over junction j.

range for the minimum and maximum stage length. A sig-
nal plan determines the length within this range. Each stage
ends with an ”intergreen” period, which is the time required190

for a signal to change to green while allowing for stacked ve-
hicles in the middle of the junction to clear and/or providing
time for pedestrian crossings. Intergreens have fixed mini-
mum and maximum limits, and in operation vary in length
depending on demands. In our current implementation, their195

lengths are fixed and estimated by utilising relevant histori-
cal data.

Processes are used to model the continuous flow of ve-
hicles through a junction and to track the duration of time
stages and intergreens. The limits and boundaries are man-200

aged through PDDL+ events. An important event, which will
be exploited later, is the one for handling the transition from
a stage to the following one on the same junction. Specifi-
cally, given two stages p1 and p2, such that p2 follows p1,
and a junction j, the event triggerChange(p1, p2, j) is trig-205

gered when p1, including its intergreen time, has been com-
pleted, enabling p2 on j. Figure 2 provides an excerpt from
the model of the lifted event triggerChange.

In early works (McCluskey and Vallati 2017; Franco et al.
2018), the proposed knowledge model supported traffic sig-210

nal optimisation through an action switchStage(p, i), where
p is a stage and i is a junction. This action allows for inter-
rupting the currently ongoing stage and switching to the next
one, provided that p has reached the preset minimum dura-
tion. This model has a significant drawback: it is not pos-215

sible to effectively impose constraints on the minimum and
maximum length of a cycle, as required by the regulations.
To overcome this issue, Percassi et al. (2023) introduced
an improved version of the PDDL+ model, where stages’
length can be modified with a given granularity, and cycles’220

length constraints can be modelled and taken into account.
The main improvement of this model is the decoupling of
the switchStage action into two different actions, namely
extendStage(p, i) and reduceStage(p, i). Figure 3 provides
an excerpt from the model of the lifted action extendStage225

for increasing the duration of a running stage. Such an ac-
tion is applicable if junction i is controllable, stage p be-
longs to junction i, and importantly, if the increase in the
duration of the greentime (gt) does not violate the over-
all maximum cycle length for i (maxct) and the maximum230

length of an individual stage p (maxgt). The execution of
this action results in an increase, equal to the chosen gran-
ularity, of the duration of stage p and the cycle to which

1 (:action extendStage

2 :parameters (?p - stage ?i - junction)

3 :precondition (and

4 (controllable ?i) (contains ?i ?p)

5 (active ?p)

6 (< (+ (gt ?p) (gran)) (maxgt ?p))

7 (< (+ (ct ?i) (gran)) (maxct ?i)))

8 :effect (and

9 (increase (gt ?p) (gran))

10 (increase (ct ?i) (gran))))

Figure 3: PDDL+ extendStage action for extending the dura-
tion of a stage p referring to the junction j.

it belongs. The use of these two actions allows a planning
engine to effectively “trade” green time between different 235

stages in a cycle, thus supporting overall cycles’ length con-
straints. This model also introduced a numeric fluent counter
for each link, used to record the number of vehicles that en-
tered the link over the plan duration, which is then exploited
for defining goal conditions. 240

As apparent, even the most recent model based on extend
and reduce actions does not support the constraints of the
UTC infrastructure, since it is not possible to use only a fixed
set of predefined cycles configurations, and therefore leads
to traffic signal plans that can not be deployed in the real 245

world. In the following, we will refer to the model based on
extend and reduce actions as EXRE.

Engineering PDDL+ Models for Deployability
In this section, we propose three planning models whose
solutions can be deployed in the UTC infrastructure. Their 250

common feature is that cycles configurations have to be se-
lected from a provided pool of candidates. The three mod-
els are denoted as Cycle by Cycle (CBC), Fixed Repeti-
tion (FIRE), and Variable Repetition (VARE). Before delv-
ing into the details of the models, let us more formally de- 255

fine cycles configurations. Let j be a junction, and let Sj =
⟨s1, ..., skj

⟩ be the sequence of stages associated with j, also
referred to as a cycle. Additionally, let Gj = {gt1, ..., gtkj

}
be a set of numeric variables that track the current duration
of each stage within j. A cycle configuration of j is a com- 260

plete assignment over Gj . E.g., given a junction j having a
cycle involving 3 stages Sj = ⟨s1, s2, s3⟩, a configuration
for j is {⟨gt1 = 20⟩, ⟨gt2 = 20⟩, ⟨gt3 = 50⟩}, assigning 20
secs, 20 secs, and 50 secs to the duration of the three stages.

In the proposed models, each junction has a set of prede- 265

fined configurations. For example, suppose that j has two
possible configurations, i.e., C = {Ca, Cb}. The duration
of the stages Sj are represented as constants, i.e., Gj =
{gta1 , gta2 , gta3 , gtb1, gtb2, gtb3}, where gtck is the fixed duration
of the stage k ∈ {1, 2, 3} for the configuration c ∈ {a, b}. 270

A possible set of configurations can be defined by the fol-
lowing predefined assignments Ca = {⟨gta1 = 20⟩, ⟨gta2 =
20⟩, ⟨gta3 = 50⟩} and Cb = {⟨gtb1 = 20⟩, ⟨gtb2 = 50⟩, ⟨gtb3 =
20⟩}. Notably, the sum of the lengths of the three stages is 90
secs for both configurations, so that the offset in the corridor 275

is kept. Essentially, configurations Ca and Cb give priority to
the 3rd and 2nd stage of the junction, respectively. The plan-



1 (:action changeConfiguration

2 :parameters (?p - stage ?j - junction ?c1 ?c2 -

configuration)

3 :precondition (and

4 (inter ?p) (controllable ?j) (endcycle ?j ?p)

5 (availableconf ?j ?c2) (activeconf ?j ?c1)

6 (not (activeconf ?i ?c2)))

7 :effect (and

8 (not (activeconf ?j ?c1))

9 (activeconf ?i ?c2)))

Figure 4: PDDL+ changeConfiguration action for changing
the configuration of the junction j from c1 to c2.

ning problem hence entails the selection of the configuration
for j to be used, and when, between Ca and Cb.

Cycle by Cycle280

In CBC, flexibility is maximised, allowing the configuration
of a junction to be selected in every cycle transition. This
model aims at assessing whether it is worth allowing higher
degrees of freedom to the planning system. In real-world de-
ployment, however, instead of changing configuration every285

cycle, it is preferable to repeat the same configuration for
several consecutive cycles to minimise the overhead of the
signal plan change, hence increasing robustness.

The flexible behaviour is achieved by the action
changeConfiguration(p, j, c1, c2), where p denotes a stage,290

j represents a junction, and c1 and c2 are two distinct config-
urations for j. In this context, c1 denotes the currently active
configuration on j, while c2 represents the new configura-
tion that will be adopted by j. To prevent redundant decision
points, which would not enhance the expressive power of the295

model, the configuration selection can only occur at the end
of the cycle, during the intergreen of the cycle’s final stage.
Figure 4 shows the lifted action changeConfiguration.

Similarly to the extendStage action, the action change-
Configuration can be applied if the junction j is control-300

lable. Additionally, the action requires that the stage p is cur-
rently in the intergreen phase (predicate (inter ?p)) and
p is the last stage for the cycle referring to junction j (pred-
icate (endCycle ?i ?p)). This condition ensures that the
configuration selection action can only be executed during305

the intergreen phase of the last stage of the cycle.
For the transition from c1 to c2, it is necessary that c1

is currently active for junction j (predicate (activeconf
?j ?c1)) and that configuration c2 is available for junction
j (static predicate (availableconf ?j ?c2)). To ensure310

that the action is executed only when c1 and c2 are different,
it is also required that configuration c2 is not currently in ex-
ecution, thus avoiding the generation of ineffective actions.
The execution of this action deactivates (activates) configu-
ration c1 (c2). Consequently, all events employed to manage315

the execution of the cycle will be conditioned to use the stage
durations prescribed by c2.

Fixed Repetition
The FIRE model enforces the retaining of the selected con-
figuration for a minimum of k cycles. Once the minimum320

number of cycles has been reached, there is the option to
change the configuration for the considered junction. This
model allows a number of decision points lower than CBC.
Our conjecture tested with an experimental study is that this
can lead to better performance. 325

To track the number of completed cycles associ-
ated with the current configuration for each junction,
we introduce variable (countcycle ?j), and event
trigger-change(p1, p2, j), which models stage transitions
from p1 to p2 for j. When trigger-change(p1, p2, j) triggers 330

and p1 is the last stage of the cycle, the cycle counter is in-
creased by one. This state-dependent effect is implemented
through the following conditional effect added to the effects
of the trigger-change event:
1 (when 335

2 (endcycle ?j ?p1)

3 (increase (countcycle ?i) 1))

Here, the static predicate (endcycle ?j ?p1) is used to
verify if p1 corresponds to the last stage of the cycle for j.

The FIRE model adopts the same action 340

changeConfiguration as the CBC one, with slight mod-
ifications. In addition to the original preconditions, it is
required that the minimum number of cycles (cyclelim)
has been reached; this is done by adding the precondition
(>= (countcycle ?i) (cyclelim)). Also, the use of 345

the action causes the reset of the counter, modelled by the
additional effect (assign (countcycle ?i) 0).

Variable Repetition
VARE takes control to a deeper level by allowing decisions
on how many times a selected configuration has to be re- 350

peated for a specific junction. Given a junction j, we denote
by kj the minimum number of repetitions of a configuration
in j. Such a value can vary within a defined range, namely
{kmin, ..., kmax}. Notably, when kmin = 1, VARE’s control
capability is equivalent to that of CBC. On the one hand, it 355

introduces additional decision points related to the choice of
kj w.r.t. FIRE; on the other hand, the number of decision
points related to the change of configurations can be lower,
as kmax can be higher than the value of (cyclelim) for
FIRE. We experimentally evaluated if this modelling pays 360

off in terms of the achieved performance.
kj is modelled in PDDL+ as the numeric variable

(varlimit ?j), serving a similar role as (cyclelim) in
the action for changing the configuration in FIRE. However,
since kj is linked to a specific junction j, the correspond- 365

ing numeric variable is also parameterised with the object
?j representing the junction. The admissible values for kj
are modelled as constant numeric variables (conflim ?l),
where ?l is an object of type limit associated with each pos-
sible value in the range. VARE allows setting the value of 370

kj whenever the action for changing a configuration is exe-
cuted. Specifically, the action changeConfiguration activates
an additional action, changeLimit(p, j, l), where p is a stage,
j is a junction, and l is a limit, which assigns to (varlimit
?j) the value (conflim ?l). 375

Once the value of kj has been set, the remaining part of
the model for managing the duration of the stages and the
cycle count remains unchanged w.r.t. the model FIRE.



Reformulation and Optimisation
The proposed models make use of PDDL features that380

are known as potentially problematic for PDDL+ planners,
namely conditional effects and numeric assignments. Be-
cause of that, we designed reformulations of the models
where such features are compiled away. In the experimen-
tal analysis, presented in the next section, we also take the385

occasion to empirically assess whether removing these fea-
tures could result in models that are more manageable for
state-of-the-art planning systems.

The introduced models allow us to take decisions dur-
ing the last intergreen phase of a given cycle (called In-390

tergreen Time-window). In our experiments, we also tested
a variant of these models for which deciding a cycle can
be done exactly at the end of the last intergreen phase
(called Instantaneous Time-window). Given the discretisa-
tion of the time utilised for our experiments, the num-395

ber of decision points for Instantaneous Time-window is
usually 5 times lower than for Intergreen Time-window.
Therefore, in our experiments, we also study if and how
much this variant pays off. All the models and variants are
available at: https://anonymous.4open.science/r/utc-models-400

deployable-74BD/.

Empirical Evaluation
The experimental analysis aims to assess the capabilities and
performance of the proposed models and considered lan-
guage features, and to understand the ability of the result-405

ing system to generate effective strategy plans for real-world
scenarios. For this reason, the evaluation consists of two
parts. First, we perform a comparison across the proposed
models and formulations, using a broad range of search con-
figurations provided by the PDDL+ planner ENHSP version410

20 (Scala et al. 2020a). This planner, in addition to providing
the possibility of performing customised searches in PDDL+,
has proven to be very effective in dealing with traffic con-
trol problems modelled in PDDL+ (Bhatnagar et al. 2023;
Percassi et al. 2023). This first extensive analysis aims to415

identify the best candidate, understood as a model combined
with a search configuration, to be compared with state-of-
the-art signal plans in the second part of the experimental
evaluation. To compare against the state of the art, we con-
sider the historical signal plans implemented by the SCOOT420

system, and the signal plans generated by a domain-specific
heuristic working on the EXRE model (Percassi et al. 2023).

Experimental Settings
We use an extended version of the benchmark used by Per-
cassi et al. (2023), focusing on the corridor presented in Fig-425

ure 1. We consider six scenarios in two distinct days: the
26th (referred to as day A), which is a Wednesday, and the
30th (referred to as day B), a Sunday, both in January 2022.
It is important to highlight that COVID-19 restrictions were
no longer in effect during that period in the United King-430

dom. Each day was examined at three different time slots:
the morning peak hour at 8:30 am (morn), noon at 12:30 pm
(noon), and the evening peak hour at 4:30 pm (eve). This
variation aimed to assess diverse traffic volumes and con-
ditions. The notation used for the scenarios is expressed as435

day-slot, e.g., A-morn. Further, we include a scenario (Con-
cert) involving exceptional traffic circumstances, pertaining
to a concert held at John Smith’s Stadium on Tuesday the
20th of June 2023, which attracted an approximate audience
of 30, 000 people. The time considered is 4:00 pm, which 440

is before the start of the concert. This timing is challenging
for the considered corridor because there is a clash between
commuters leaving the town and spectators arriving at the
concert, creating two opposed traffic demands.

For each scenario, we generate multiple UTC planning 445

problems, progressively expanding the set of explicitly con-
sidered corridor links in the goal. Specifically, for a given
scenario, we create five UTC planning problems denoted as
Πi

UTC, where i ∈ {1, ..., 5}. In Πi
UTC, the goal is represented

as a conjunction involving the first i links of the corridor, i.e., 450

G =
∧

l∈{l1,...,li}⟨counterl ≥ ql⟩. To illustrate, if i = 2,
then G = ⟨counterl1 ≥ ql1⟩ ∧ ⟨counterl2 ≥ ql2⟩, signi-
fying that to solve Π2

UTC, a state must be reached wherein
at least ql1 and ql2 vehicles have traversed links l1 and l2,
respectively. This strategy demonstrated the ability to sup- 455

port different kinds of goals for the network, and different
behaviours of planning systems: for example, a single goal
link at the end of the corridor can lead to signal plans that
focus on “flushing” vehicles already in the network towards
the goal link, while multiple goal links require also reason- 460

ing in terms of congestion and ability of vehicles to move
through different junctions. Here, we consider a uniform q
value of 350.

All plans generated by the new models have been vali-
dated against the EXRE model, to confirm compliance with 465

existing requirements, and simulated on historical data via
the architecture designed by Bhatnagar et al. (2022a), to as-
sess deployability and ability to model traffic evolution.

Experiments were run on a machine equipped with Intel
Xeon Gold 6140M CPU with 2.30 GHz, 8 GBs of RAM. 470

Cycle Configuration Distillation The proposed models
require a set of cycle configurations. To explore how dif-
ferent configurations may impact the models’ ability to gen-
erate effective signal plans, we have outlined three method-
ologies for their distillation. 475

The first methodology involves generating configurations
synthetically. Let j be a junction, and Sj be the sequence
of stages associated with it. The maximum-1 strategy, de-
noted as MAX1, generates a number of configurations equal
to |Sj |, which in our region is at most 6. Specifically, each 480

configuration prioritises one stage over the others while pre-
serving a fixed duration of the cycle. In this methodology,
the prioritisation is flat: the maximised stage has a higher
duration, while the remaining stages have an equally short
green time allocated. 485

The other two methodologies, instead, draw from the con-
figurations historically adopted by SCOOT in the considered
region. S-HIST generates configurations by looking at con-
figurations implemented by SCOOT in the previous year at
the same day of the week and time of the day. From these 490

configurations, six are then selected following the idea of the
MAX1 above, i.e., maximising different stages’ lengths at a
time. G-HIST employs a similar approach but considers as



potential candidates all the configurations implemented by
SCOOT in the entire past year, without restrictions in terms495

of days and times. These two approaches aim to provide the
planning approach with configurations that have been useful
in the past, hence aligned with the needs of the region.

Following the instructions of traffic engineers from the lo-
cal traffic authority, we use configurations with a total length500

of 90 seconds, and we keep the same 90 seconds value for all
junctions to support the synchronisation of flows and green
waves implicitly.

Comparison of PDDL+ Models
In the PDDL+ intra-model experimental analysis, we per-505

form a detailed comparison among the novel models, along
with their different formulations, employing various search
strategies and different heuristics. Given a model M ∈
{CBC, FIRE, VARE}, we denote by M the base model and
with M(-f), where f ∈ {ce, asgn} (conditional effects and510

numeric assignments, respectively), the formulation of M
in which the language feature f has been removed.

For the FIRE model, we chose to keep the configuration
for a number k of cycles equal to 4 as it represents a good
trade-off between stability and flexibility. This way, once a515

configuration is chosen, it is maintained for 6 minutes in the
real world, and at most 3 configurations are needed for a 15-
minute strategy. As for VARE, we considered the range of
k ∈ {4, . . . , 10}, where the minimum value is the same as
the one chosen for FIRE, and the maximum corresponds to a520

real-world duration of 15 minutes. Values beyond this range
are not useful, as simulations after 15 minutes diverge from
the real-world behaviour due to the shifting of underlying
turnrates factors (Bhatnagar et al. 2022b).

For each model in this analysis, we show the results of the525

optimised variant in which there is a single cycle decision
point (Instantaneous Time-window). This had a strongly
beneficial impact on performance, when compared to the In-
tergreen Time-window variant. A comparison is shown in
Figure 5 (left) and discussed later in this section.530

The considered search strategies are greedy best-first
search (GBFS) and A⋆ (Hart, Nilsson, and Raphael 1968),
and the adopted heuristics included hadd, hmax, and hmrp

(Scala et al. 2020b). A search configuration is defined as
the combination of a search strategy along with a particular535

heuristic. Given the large number of systems obtainable (7
models and 6 search configurations), we rank their perfor-
mance using the IPC quality score, calculated based on the
makespan.1 Makespan provides an idea of the effectiveness
of the implemented signal plans in quickly reaching goals.540

Out of all the considered search configurations, the best
performing across all models is GBFS with hadd, except
for the FIRE(-asgn) model, where the best configuration
is GBFS with hrmp. In the following, we focus on results
achieved using such search configurations, as they represent545

the top performance that each model can deliver in the con-
sidered settings.

Table 1 provides scenario-by-scenario makespan results
for all models. Results are aggregated across scenarios ac-

1https://ipc2023-classical.github.io/ for details on IPC Score.

Scenario Cycle CBC FIRE VARE

B -asgn B -ce B -asgn -ce

A-morn
MAX1 3.0 3.1 3.2 3.2 2.8 2.8 2.7
S-HIST 4.9 4.9 4.9 4.9 4.9 4.9 4.9
G-HIST 4.9 4.9 4.9 4.9 4.9 3.9 4.9

A-noon
MAX1 2.9 2.9 2.9 2.9 2.9 2.8 2.9
S-HIST 4.9 4.9 4.9 4.9 4.9 4.9 4.9
G-HIST 4.8 4.9 4.9 4.9 4.9 4.9 4.9

A-eve
MAX1 3.0 3.0 3.0 2.8 3.0 2.4 3.0
S-HIST 4.8 4.8 4.7 4.7 4.8 4.8 4.8
G-HIST 4.7 4.6 4.8 4.7 4.8 4.8 4.7

B-morn
MAX1 5.0 5.0 5.0 4.9 4.8 4.9 4.9
S-HIST 1.0 4.9 4.9 4.9 2.9 2.9 1.0
G-HIST 5.0 5.0 5.0 4.9 3.9 3.9 5.0

B-noon
MAX1 2.8 2.8 2.8 2.8 2.8 2.8 2.9
S-HIST 5.0 4.9 5.0 4.9 5.0 5.0 5.0
G-HIST 5.0 4.9 5.0 4.9 5.0 5.0 5.0

B-eve
MAX1 3.5 3.3 3.5 3.6 3.1 3.2 3.1
S-HIST 5.0 5.0 5.0 5.0 5.0 5.0 5.0
G-HIST 5.0 5.0 5.0 5.0 5.0 5.0 5.0

Concert
MAX1 3.0 2.8 2.9 3.1 2.7 2.8 2.7
S-HIST 4.9 4.7 4.6 4.6 4.5 4.6 4.6
G-HIST 4.6 4.8 4.6 4.8 4.6 4.6 4.6

Σ
MAX1 23.2 22.8 23.3 23.1 22.1 21.6 22.2
S-HIST 30.4 34.0 34.0 33.9 32.1 32.1 30.2
G-HIST 33.9 34.1 34.0 34.2 33.1 32.1 34.1

Σ Σ 87.6 90.9 91.3 91.2 87.3 85.8 86.4

Table 1: IPC-Score results for the makespan across the mod-
els and their different formulations (B stands for the base
model). The results are split according to the cycle configu-
ration strategy adopted. Best results are in bold.

cording to the exploited cycle configurations, offering pre- 550

liminary insights into the impact of injected configurations
on different models. In terms of makespan, all the models
tend to provide similar results across the scenarios, with sig-
nificant variations emerging when different cycle configu-
rations are used. Unsurprisingly, MAX1 is the distillation 555

approach that leads to the worst results, while S-HIST and
G-HIST allow to achieve plans of very similar quality. Turn-
ing our attention to the models, the top-performing one is
FIRE in both of its formulations, followed by CBC in its
version without numeric assignments, i.e., FIRE(-asgn). It 560

is interesting to note that the higher flexibility provided by
the CBC formulation is not reflected in better performance,
while the tradeoff between flexibility and complexity pro-
vided by FIRE seems to better support the generation of
good quality signal plans. Further, removing the use of as- 565

signments in CBC leads to better results but only in a single
scenario, namely B-morn, as it increases coverage.

Table 2 sheds some light on the results by also showing
coverage (number of solved instances) and IPC-Score for
expanded nodes and planning time. These results provide 570

additional insights into Table 1. It is evident that the use
of FIRE-based models achieves the highest coverage, suc-
cessfully solving all considered instances. This outcome is



CBC FIRE VARE

B -asgn B -ce B -asgn -ce

Coverage

MAX1 (35) 35 35 35 35 35 34 35
S-HIST (35) 31 35 35 35 33 33 31
G-HIST (35) 35 35 35 35 34 33 35
Σ (115) 101 105 105 105 102 100 101

Score(ExpNodes)

MAX1 9.7 9.9 17.4 16.7 4.6 4.7 4.8
S-HIST 7.0 11.1 16.9 16.1 8.6 8.2 8.0
G-HIST 8.1 9.7 17.9 17.1 8.3 7.3 7.1

Σ 24.7 30.6 52.1 49.9 21.6 20.2 19.9

Score(PTime)

MAX1 25.4 24.5 26.5 27.0 18.4 13.8 18.7
S-HIST 19.1 22.1 24.2 22.8 19.5 13.8 18.7
G-HIST 20.7 21.5 25.1 24.6 19.9 13.6 19.8

Σ 65.2 68.1 75.8 74.4 57.8 41.2 57.2

Table 2: Coverage and IPC-Score about expanded Nodes
(ExpNodes) and planning time (Ptime) across the mod-
els and their different formulations (B stands for the base
model). The results are split according to the cycle configu-
ration strategy adopted. The best results are in bold.

also reflected in the makespan score, positioning FIRE as the
most promising model among those evaluated. Indeed, many575

of the makespan score variations from Table 1 can largely
be attributed to discrepancies in coverage. For instance, in
the CBC and VARE(-ce) models, four problems remain un-
solved in B-morn (compare with the B-morn S-HIST entry
in Table 1). This scenario is characterised by a low influx580

of vehicles in the network, causing the plan solutions to be
much longer compared to other instances with a higher num-
ber of vehicles. As a consequence, models characterised by
greater flexibility, and thus more degree of freedom, suffer
more in terms of search effort.585

Results in Table 2 also show that FIRE models allow
domain-independent planning systems to solve problems
quickly, compared to the other variants, with also a smaller
number of nodes expanded during the search. It is also worth
highlighting that for CBC (VARE) the use of assignments590

in the code has a slight detrimental (incremental) effect
on performance. This is somehow surprising as it is gen-
erally known that assignments lower the performance for
PDDL2.1 models; in VARE, this can be because removing
assignments between different numeric variables leads to a595

larger number of ground actions in the encodings. These re-
sults offer a different perspective on the impact of that spe-
cific PDDL feature in the context of challenging PDDL+ ap-
plications. Surprisingly, the use of conditional effects is ben-
eficial for performance. Both FIRE and VARE allow to de-600

liver best performance when conditional effects are in use.
Turning our attention to the importance of the time-

window optimisation, Figure 5 (left) compares the planning
time achieved when using the three proposed models with

Figure 5: (Left) Planning times obtained by comparing the
models using Instantaneous Time-windows, compared to
the models that do not employ this optimisation. (Right)
Whisker plot of expanded nodes across different models.

all possible reformulations, with and without the time win- 605

dow optimisation. Such optimisation brings an outstanding
benefit in terms of planning time (points above diagonal are
those where the optimisation has a beneficial impact). The
VARE model is the only one where there are some cases
where the optimisation reduces performance, but the over- 610

all positive impact is also true for this class of models. The
right part of Figure 5 provides a whisker plot comparing the
number of expanded nodes across the three models. The ob-
tained results confirm that the varying levels of freedom in
the models have repercussions in terms of the search effort. 615

Taking a closer look at the generated plans, we investi-
gate if they include cycle configuration changes, or whether
solutions are generated by keeping the starting configura-
tion on all junctions. In all cases, the solution plans include
changes to the configurations, suggesting that despite ex- 620

ploiting domain-independent approaches, the models allow
the planning engine to reason to improve traffic conditions.
More specifically, the CBC model generates a much higher
number of configuration changes w.r.t. FIRE and VARE. The
maximum number of changes encountered in a plan for the 625

three models is 98, 33, and 26, respectively. This is somehow
expected, as CBC has the greatest degree of freedom.

FIRE is the most promising model, producing plans with
less computational effort due to its good tradeoff between
flexibility and effectiveness, and is used in the next section. 630

Comparison Against the State-of-the-art
We are now in the position to compare the plans generated
by FIRE with the plans historically implemented by SCOOT
in the reference region. Additionally, we consider plans ob-
tained by a domain-specific planning approach designed for 635

the EXRE model, that utilises a domain-specific heuristic,
hTSO, combined with GBFS (Percassi et al. 2023).

All traffic signal plans are evaluated in simulation, util-
ising the simulation environment introduced in (Bhatnagar
et al. 2022a). For the comparison, to provide a well-rounded 640

performance overview, we rely on the metrics proposed by
Percassi et al. (2023): 0 ≤ µZ(occC) ≤ 1 represents the
average occupancy, normalised in relation to the maximum
capacity of the links in the west-to-east corridor direction;
a value close to one indicates a high level of congestion. 645



Scenario Approach µZ countC in middle out

A-morn

MAX1 0.22 738.4 326.8 163.0 159.6
S-HIST 0.17 1088.7 417.1 248.9 221.6
G-HIST 0.16 1085.6 417.1 248.4 224.9
hTSO 0.13 1108.8 417.1 253.6 235.8
H 0.28 887.4 417.1 221.0 181.7

A-noon

MAX1 0.32 814.0 415.5 160.4 181.3
S-HIST 0.31 1225.3 551.5 244.7 249.4
G-HIST 0.3 1212.6 551.5 243.8 250.3
hTSO 0.16 1268.4 547.6 261.2 264.8
H 0.35 1138.3 551.5 270.9 227.3

A-eve

MAX1 0.43 833.5 526.2 166.4 197.4
S-HIST 0.39 1204.3 614.7 245.1 258.0
G-HIST 0.39 1209.0 614.7 245.1 260.3
hTSO 0.15 1437.0 599.9 298.5 292.8
H 0.4 1317.9 614.7 309.1 271.9

B-morn

MAX1 0.04 454.1 173.8 103.0 94.7
S-HIST 0.02 454.4 173.8 104.7 94.8
G-HIST 0.03 463.8 173.8 105.1 93.1
hTSO 0.02 468.3 173.8 108.6 97.2
H 0.07 417.8 173.8 102.6 83.2

B-noon

MAX1 0.34 768.8 400.4 161.1 169.0
S-HIST 0.34 1220.2 560.6 246.9 243.8
G-HIST 0.34 1214.7 560.6 246.9 238.6
hTSO 0.17 1322.0 557.7 279.4 259.0
H 0.73 612.9 558.9 146.1 74.9

B-eve

MAX1 0.16 678.2 283.5 148.6 163.7
S-HIST 0.1 944.3 353.4 206.2 207.6
G-HIST 0.1 944.4 353.4 206.2 209.2
hTSO 0.1 943.9 353.4 208.2 207.0
H 0.48 606.3 353.4 166.6 89.8

Concert

MAX1 0.52 1163.5 612.8 176.1 351.5
S-HIST 0.74 1356.9 612.8 228.9 357.9
G-HIST 0.73 1408.5 612.8 244.3 344.9
hTSO 0.64 1492.8 612.8 269.2 386.6
hTSO
⋆ 0.45 1628.2 612.8 308.7 409.7

Table 3: Comparison between the best planning system ob-
tained, i.e., GBFS+hmax applied to FIRE for different kinds
of cycle configurations, and the state-of-the-art results, i.e.,
GBFS+hTSO applied to EXRE, and the historical strategy im-
plemented by SCOOT (H) or hTSO

⋆ . Best results are in bold.

countC is the total number of vehicles that have moved in
the corridor during the simulation. in/mid/out is the total
number of vehicles that have entered from the western entry
points, crossed the middle of the corridor (between J3 and
J4), and exited from the eastern exit points, respectively.650

Table 3 (top) presents the results of the comparison for
days A and B. Each sub-table, corresponding to a specific
scenario, displays the metrics obtained for the FIRE model
tested with different stage configurations, hTSO, and the his-
torical data generated by SCOOT (denoted by H). For the655

FIRE-based and hTSO models, the results are reported for the
problem that maximised the metric countC .

The use of cycle configurations derived from historical
data (S-HIST and G-HIST) enhances the results obtained
from the FIRE model also in terms of traffic-related met-660

rics. Specifically, the combination of FIRE and S-HIST (G-
HIST) yields a value of countC slightly lower than that

recorded in historical data on day A. Overall, the counter for
this combination is better than for H in 5 out of 6 instances.
Simultaneously, the counter is marginally lower than that ob- 665

tained by hTSO in 5 out of 6 instances. It is worth reminding
that the comparison with hTSO is biased in favour of hTSO,
since it relies on the EXRE model, which provides a de-
gree of freedom that is beyond the capabilities of FIRE, and
which, differently from FIRE, is driven by a domain-specific 670

heuristic. More importantly, hTSO leads to signal plans that
can not be deployed in the region due to the technological
constraints of the UTC infrastructure. Another observation
is that FIRE consistently generates plans that reduce corri-
dor congestion w.r.t. H, albeit to a lesser extent compared to 675

hTSO. An example is the B-noon scenario, where the number
of moved vehicles is roughly double while halving the over-
all congestion level (middle and out values are much higher).

Table 3 (bottom) focuses on the Concert scenario, where
significant opposed traffic flows navigate the area. This sce- 680

nario differs significantly from the previous ones. Firstly,
it involves exceptional traffic conditions, and secondly, his-
torical data where SCOOT is in operation is not available.
This is because the strategy implemented in the real-world
on that occasion was generated by leveraging a plan pro- 685

duced by hTSO and then manually modified by traffic en-
gineers, according to their knowledge, to make it deploy-
able on the SCOOT infrastructure. This variant of hTSO is de-
noted as hTSO

⋆ , and should be regarded as the best possible
performance achievable by merging human experience and 690

planning capabilities. Unsurprisingly, hTSO
⋆ delivers the best

overall performance. FIRE with G-HIST achieves slightly
lower results than hTSO in terms of vehicles moved through
the corridor, and interestingly, the MAX1-based variant at-
tains lower congestion levels, but this appears to be because 695

it creates a bottleneck at the start of the corridor (middle and
out values are very low). All the approaches allow an equal
number of vehicles to enter from the West entry point (in),
but for FIRE and hTSO middle and out are lower than for
hTSO
⋆ ; this is because the implemented plans –being gener- 700

ated in advance– include all stages of all cycles, while the
SCOOT system that operates in real-time can skip optional
(demand-only) stages, for instance pedestrian crossings or
cross-flow traffic, if there is no demand.

Overall, the introduced FIRE model allows a domain- 705

independent planning engine to deliver plans that are com-
parable with the state of the art and that, differently from the
state of the art, can be continuously deployed.

Conclusions
In this paper, we demonstrated how we adapted planning 710

models to generate deployable traffic signal plans for a spe-
cific UTC infrastructure, widely used in the UK. In the pro-
cess, we designed three new PDDL+ models that support the
use of domain-independent planning engines for the task.
The large experimental analysis, performed using real-world 715

data, demonstrated the capabilities of the models and shed
some light on the impact of some advanced language fea-
tures. Future work will focus on investigating more sophisti-
cated techniques for cycle configurations distillation, and on
extending to additional urban regions. 720
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