

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE EVER-EVOLVING SCIENCE EXAM

Anonymous authors

Paper under double-blind review

ABSTRACT

As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad **Range**, wide **Reach**, and high **Rigor**, yet they often face two major challenges: **data leakage risks** that compromise benchmarking validity, and **evaluation inefficiency** due to large-scale testing. To address these issues, we introduce the **Ever-Evolving Science Exam (EESE)**, a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public **EESE-Pool** with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring Range, Reach, and Rigor, 2) a periodically updated 500-instance subset **EESE**, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions.

1 INTRODUCTION

With the rapid development of large-scale foundation models, there arises an urgent need to evaluate their scientific abilities in a reliable and systematic way (Zhang et al., 2025b; Bommasani et al., 2021; Ouyang et al., 2022; Wang et al., 2025c; Firoozi et al., 2025). Science benchmarks play a vital role in this process, offering a standardized, quantitative foundation for assessing how well models understand and reason about scientific concepts. As science benchmarks continue to evolve, the research community is gradually converging on a shared understanding of what defines a high-quality science benchmark (e.g., MMLU (Hendrycks et al., 2020), SuperGPQA (Du et al., 2025), GSM8K (Cobbe et al., 2021), ScienceQA (Lu et al., 2022), HLE (Phan et al., 2025), SciEval (Sun et al., 2024)). Naturally, this prompts the question:

What constitutes a good science benchmark?

In general, an ideal benchmark should meet three essential criteria: broad **Range**, wide **Reach**, and high **Rigor**, which together ensure that it is: 1) *Extensive in scale* (Range): comprising a large volume of instances to support robust and statistically meaningful evaluation, 2) *Diverse in scope* (Reach): spanning a broad array of scientific disciplines and offering varied question formats to capture different cognitive and reasoning skills, 3) *Sound in methodology* (Rigor): constructed through a careful, principled pipeline with rigorous quality assurance and verification processes.

While many existing benchmarks strive to meet these criteria, new challenges emerge that limit their effectiveness in evaluating the scientific capacities of foundation models. First, there is a growing concern about **data leakage** (Xu et al., 2024; Zhou et al., 2025b; López et al., 2024; Wu et al., 2024). Once a benchmark is publicly available, there is a non-negligible risk that it could be inadvertently included in training data, especially when data is gathered via large-scale web scraping. Such leakage distorts the evaluation valid-

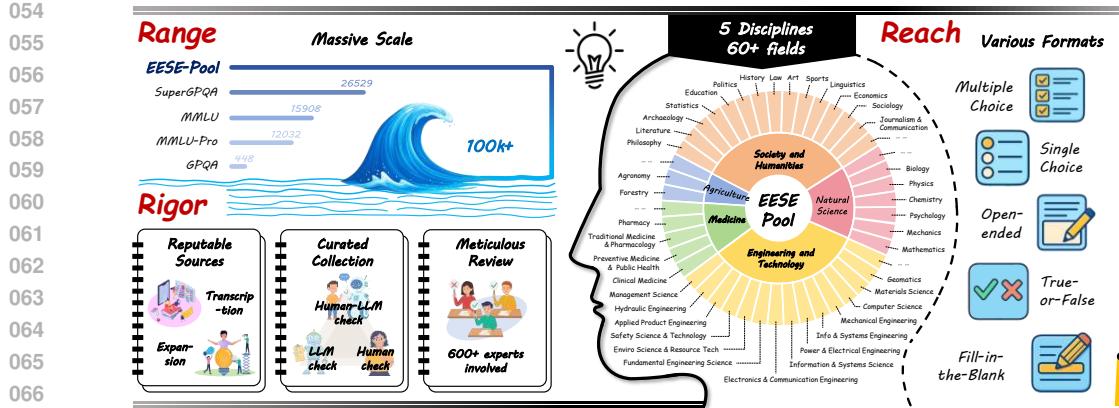


Figure 1: Overview of EESE-Pool construction, which adheres to the principles of **Range** (vast quantity of instances), **Reach** (diverse field and question format), and **Rigor** (systematic and rigor data construction). Specifically, EESE-Pool comprises over 100K science question–answer pairs spanning 5 disciplines and over 500 subfields.

ity, making performance scores unreliable. Second, there is the issue of **evaluation inefficiency** (Zhou et al., 2025a; Zhang et al., 2025c; Gupta et al., 2024; Wen et al., 2025). While increasing the number of evaluation instances can improve benchmark reliability, large-scale evaluation introduces significant computational and financial overheads. This evaluation cost can hinder rapid iteration in model development.

To balance high-quality benchmark design with practical needs like leakage-resistance and evaluation efficiency, we propose a new benchmark: **The Ever-Evolving Science Exam (EESE)**. Concretely, a two-level strategy is adopted: 1) We build a large-scale, high-quality, non-public instances repository, named EESE-Pool, which contains over 100,000 science instances. This pool is constructed under strict principles of **Range**, **Reach**, and **Rigor**. 2) We periodically sample a dynamic subset of 500 instances, called EESE, for actual evaluation. This subset is carefully curated to maintain Range, Reach, and Rigor, while mitigating **leakage risk** and reducing **evaluation inefficiency** through regular updates. Hence, EESE not only faithful and aligned with the principles of a good science benchmark, but offers low-cost, leakage-resistant, and continuously refreshed evaluations that better reflect real-world generalization and robustness of model.

To construct EESE-Pool, we design a streamlined **Data Engine** that ensures Range, Reach, and Rigor through three stages. In the *Transcription* stage, we collect raw instances from textbooks, public databases, and online sources. These instances are then standardized into a unified format and classified into 163 subfields based on academic taxonomy (Press, 2009). In the *Expansion* stage, these initial fields are enriched by engaging experts to develop high-quality instances, expanding the coverage to over 500 subfields. In the *Categorization* stage, we assign difficulty levels to each instance by evaluating model performance and manually validating correctness. To raise instance quality and mitigate trivial or ambiguous cases, a dedicated **Data Refinement** process is introduced. This process strategically improves the instance through a *Parallel Three-Branch Refinement Framework*: Enhancement By Distraction, Enrichment By Cross-Disciplinary, and Refinement By Expert.

To derive EESE, a representative, regular-updating, leakage-resilient, and low-overhead, evaluation set, we adopt a dynamic sampling strategy alongside expert check on EESE-Pool. Notably, we evaluate 32 leading models on EESE-Pool and EESE, and provide actionable guidance for the development of forward-compatible science benchmarks. In summary, our key contributions are as follows:

- **A large-scale, high-quality science benchmark pool:** We construct EESE-Pool, a 100K+ science question–answer pair pool across 5 disciplines and 500+ subfields, with diverse formats and rigorous quality control. We design three-stage Data Engine (Transcription, Expansion, and Categorization) and Data Refinement (a Parallel Three-Branch Refinement Framework) to ensure range, reach, and rigor.

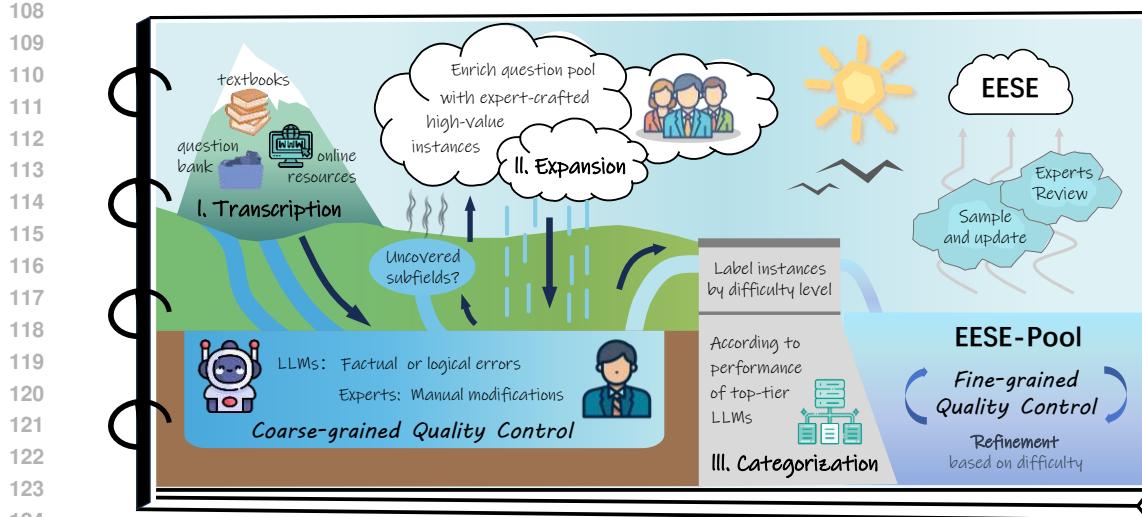


Figure 2: EESE-Pool Construction Framework. The three-stage **Data Engine** (Transcription, Expansion, Categorization) with a systematic **Data Refinement** process ensures large-scale coverage, expert-enriched content, difficulty stratification, and iterative quality improvement, laying a foundation for dynamic, leakage-resilient EESE.

- **A dynamic, leakage-resilient evaluation set:** We propose EESE, a 500-instance subset periodically updated (regular resampling 500 instances from the EESE-Pool), maintaining representativeness while reducing leakage risk and evaluation overhead.
- **Comprehensive evaluation of LLMs:** We evaluate 32 leading models (open- and closed-source) on EESE-Pool and EESE, revealing significant performance gaps across disciplines, the effectiveness of refinement in improving quality, and the trade-offs between inference cost and science ability. The findings offer insights for future science benchmarks.

2 PRINCIPLES

An ideal science benchmark is expected to embody large scale, broad disciplinary, format diversity, and methodological robustness. In alignment with these expectations, **EESE-Pool** is founded upon the principles of **Range**, **Reach**, and **Rigor**. As illustrated in Figure 1, these three principles together define EESE-Pool as a reliable question pool for evaluating scientific capabilities in foundation models:

I. Range → The vast quantity of science instances within EESE-Pool.

We construct EESE-Pool as a dynamic and expansive question pool, containing over 100,000 carefully collected instances (question-answer pairs). These instances are collected from a wide spectrum of scientific disciplines, ensuring that the pool covers a broad and representative **Range**.

This Range significantly exceeds most existing science benchmarks, supporting the long-term stability of the evaluation system and laying a solid foundation for diverse instance selection. Building on this comprehensive Range, we construct EESE, *a regularly updated subset of 500 instances*. The breadth of EESE-Pool ensures that EESE remains representative across field, difficulty levels, and cognitive dimensions.

II. Reach → The coverage of EESE-Pool across disciplines and question formats.

EESE-Pool spans five disciplines and over 500 subfields based on standard academic taxonomy (Press, 2009). It also supports a wide range of question formats, including single-choice, multiple-choice, fill-in-the-blank, true/false, and open-ended questions.

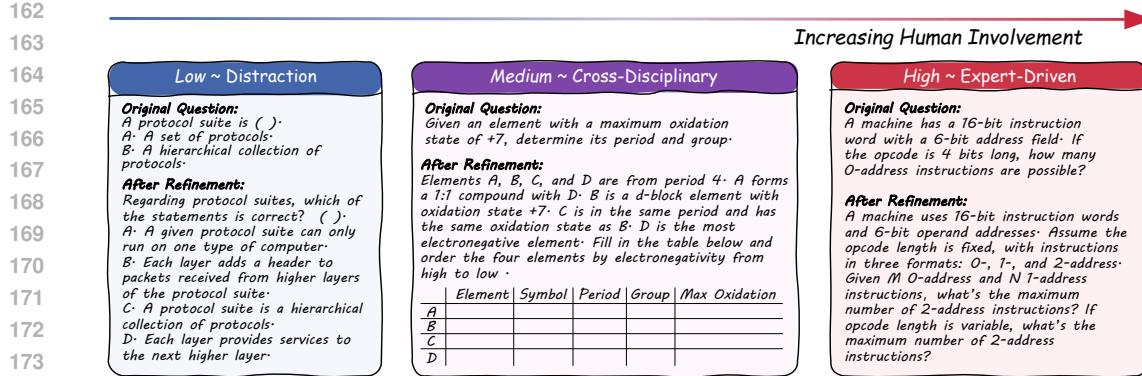


Figure 3: Data refinement of EESE-Pool. Candidate instances are systematically improved through three refinement paths: *Enhancement by Distraction*, *Enrichment by Cross-Disciplinary*, and *Expert-Driven Refinement*. This multi-level human involvement strategy effectively raises instance difficulty, ensuring robust and discriminative evaluation.

This broad field **Reach** includes both natural and social sciences, enhancing the evaluation of reasoning and social cognition. The diverse formats enable the benchmark to assess a wide spectrum of capabilities, from knowledge retrieval to complex reasoning.

III. Rigor → The systematic and principled processes that ensure quality in EESE-Pool and EESE.

EESE-Pool undergoes a **Rigor** construction process that incorporates both coarse- and fine-grained quality control. Coarse-grained control is implemented via the **Data Engine**, while fine-grained control is achieved through **Data Refinement** using a three-branch refinement pathway strategy. EESE is then randomly sampled and further manually modified by field experts.

This rigorous construction process ensures that EESE-Pool maintains consistent quality standards, and that EESE reliably reflects the intended challenge level.

3 THE EESE

3.1 DATA ENGINE

To construct the EESE-Pool with broad **Range**, wide **Reach**, and high **Rigor**, we build a streamlined Data Engine pipeline, as shown in Figure 2. This pipeline comprises three sequential stages: *Transcription*, *Expansion*, and *Categorization*, described in detail below.

I. Transcription → Raw data from diverse sources is collected and uniformly transcribed.

Transcription is collecting and standardizing raw data into a unified format, forming the foundation of EESE-Pool. Transcription represents a widely adopted, efficient methodology for rapid large-scale benchmark construction (Zhong et al., 2023; Hendrycks et al., 2020; Huang et al., 2023; Chen et al., 2025). To implement this, over 300 experts from academic institutions collect instances from textbooks, question banks, and online resources, transcribing them into a standardized format. Notably, a two-step coarse-grained quality control measure is employed: 1) Experts deploy a suite of powerful LLMs to flag instances with errors in formatting, factual accuracy, or logical coherence. 2) Experts review and manually modify the flagged instances. Subsequently, the transcribed instances are categorized into 163 subfields according to the standard disciplinary taxonomy (Press, 2009), and classified by format including multiple-choice, multiple-answer, fill-in-the-blank, true/false, and open-ended questions.

II. Expansion → Enrich question pool with expert-crafted instances for specific fields.

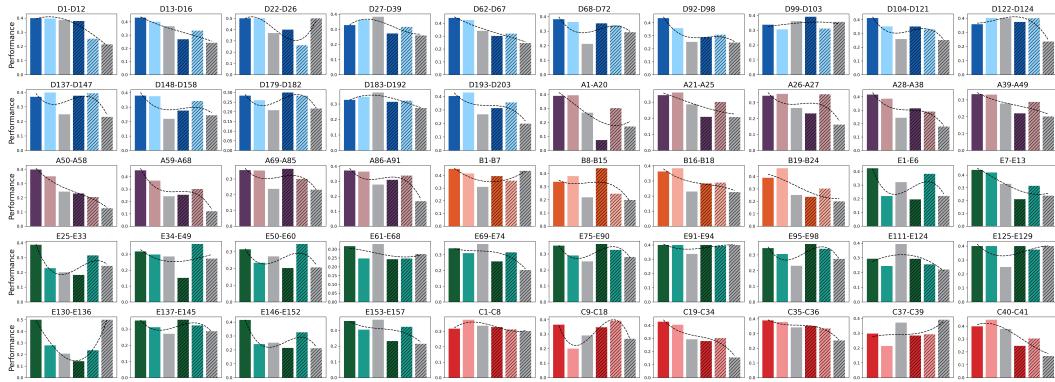


Figure 4: Performance of six leading models evaluated on the EESE-Pool, leveraging over 100K expertly verified instances and comprising more than 600k model inferences (evaluated across 50 representative fields). Each subplot corresponds to a field by its label (such as ‘D1-D12’, see appendix) and is color-coded by its parent discipline: ETS (blue), NS (purple), AS (orange), SSH (green), and MS (red). Bars from left to right in each subplot represent the average performance for O3, Gemini-2.5-Pro, GPT-4o, DeepSeek-R1, Qwen-2.5, 72B-Instruct, and Grok-3.

Expansion is systematically extending the benchmark to over 500 subfields, addressing initial field coverage gaps while enforcing strict quality control. For predefined subfields that are currently uncovered or insufficiently represented, experienced specialists are responsible for contributing high-value instances. These instances are developed through the synthesis of field knowledge, practical experience, and pedagogical insights. To address potential deviations in human-crafted answers, all instances undergo rigorous verification (coarse-grained quality control) to ensure consistency and reliability. This stage ensures **comprehensive coverage of over 500 subfields** while guaranteeing the quality of EESE-Pool.

III. Categorization → Label instances with difficulty-level to support subsequent Refinement.

Categorization refers to annotating difficulty levels for all instances, which is essential for subsequent targeted **Refinement**. To implement this, all instances are independently answered by multiple top-tier LLMs. Based on their aggregated performance, instances are classified into three difficulty tiers: easy, medium, and hard according to predefined thresholds. For outlier cases such as inconsistent model performances or ambiguous instances, experts perform coarse-grained quality control by manual difficulty annotation and calibration. This stage yields a **difficulty-stratified instance pool**, establishing the essential foundation for subsequent **Data Refinement**.

3.2 DATA REFINEMENT

For improving the data quality of EESE-Pool, we establish **Refinement**, which minimizes easy/medium- instances while amplifying high-difficulty ones.

This stage begins with a systematic check, which identifies instances requiring revision (primarily targeting easy-level instances, but also covering medium and high-difficulty ones). Instances marked for revision undergo additional analysis of the proportion of key information, the extent of cross-disciplinary knowledge, and the cognitive dimensions. Based on the analysis results, they are routed into a **Parallel Three-Branch Refinement Framework: Enhancement By Distraction, Enrichment By Cross-Disciplinary, and Refinement By Expert-Driven**, depending on the level of **Human Involvement (HI)** shown in Figure 3.

Enhancement By Distraction (Low HI) increases instance difficulty by introducing plausible yet misleading information to test the attention and discrimination abilities of model (Qu et al., 2024; Zhang et al., 2024; Wang et al., 2025b). This approach facilitates the

270 transformation of simple instances into more robust measures of fine-grained reasoning
 271 (Çavuşoğlu et al., 2024; Parikh et al., 2025). In application, multiple-choice instances receive
 272 high-quality distractors that appear credible but are incorrect, while open-ended instances
 273 include extraneous details that must be filtered out. Most distractors are auto-generated
 274 and undergo experts verify correctness and relevance (fine-grained quality control). Over-
 275 all, this method efficiently elevates question difficulty with low HI.

276 **Enrichment By Cross-Disciplinary (Medium HI)** incorporates contexts or concepts from
 277 other field to add difficulty. This strategy is effective since tasks requiring knowledge inte-
 278 gration across fields impose greater cognitive demands than single-field tasks (Skulmowski
 279 & Xu, 2022; Chen et al., 2024; Knar, 2025; Zhou et al., 2025c; Guo et al., 2025). Typically, ini-
 280 tial interdisciplinary content is generated by LLMs, followed by a fine-grained review and
 281 refinement by experts to ensure factual precision and educational alignment. This method
 282 raises instance difficulty through multi-field scenarios with medium HI.

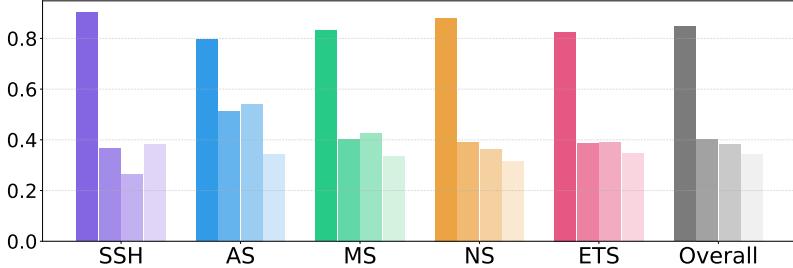
283 **Expert-Driven Refinement (High HI)** entails manual rewriting or restructuring by human
 284 experts to enhance clarity, embed subtle complexity, or decompose multi-step reasoning.
 285 This process is essential for instances that require nuanced logical relationships or interdis-
 286 ciplinary synthesis. All revisions are performed manually and undergo fine-grained qual-
 287 ity validation to ensure consistency with targeted difficulty and scientific rigor. In sum-
 288 mary, this method guarantees instance quality through high HI.

289 In summary, the **Refinement** systematically increases instance difficulty through the Par-
 290 allel Three-Branch Refinement Framework, transforming candidate instances into a more
 291 scientific EESE-Pool.

293 3.3 EESE FROM EESE-POOL

295 To tackle the issues of leakage risk and evaluation inefficiency, we design EESE as a dy-
 296 namic benchmark derived from the large-scale EESE-Pool. Specifically, we periodically re-
 297 sample 500 instances from the EESE-Pool to create a new EESE, ensuring its continued
 298 representativeness. By periodically sampling and strictly verifying, EESE ensures that each
 299 release remains fresh, robust, and difficult to leakage into training data. Unlike static bench-
 300 marks, this evolving mechanism makes EESE far more resilient against data leakage and
 301 evaluation inefficiency.

302 Meanwhile, although EESE inherits the core principles of Range, Reach, and Rigor from
 303 the EESE-Pool, these design factors are intentionally balanced to serve the primary goal:
 304 providing a trustworthy, low-cost, and leakage-resistant scientific benchmark that better
 305 reflects real-world model generalization.


307 4 EXPERIMENT RESULTS

310 4.1 BENCHMARK CANDIDATES

312 To ensure the results are comprehensive and up-to-date, we select 32 competitive LLMs for
 313 evaluation, including open-source, proprietary closed-source, and thinking-series models.
 314 Specifically, the leading proprietary models includes O3 (OpenAI, 2025b), O3-mini (Ope-
 315 nAI, 2025b), GPT-4o (OpenAI, 2024), GPT-4.1 (OpenAI, 2025a) from OpenAI, Gemini-2.5-
 316 pro (Gemini Team, Google DeepMind, 2025) and Gemini-1.5-pro (Team et al., 2024) from
 317 Google, Claude-3-5-sonnet (Anthropic, 2024) from Anthropic, Grok-4 (xAI Team, 2025b),
 318 Grok-2 (xAI Team, 2024) and Grok-3 (xAI Team, 2025a), as well as other popular mod-
 319 els (Bai et al., 2023; Mistral AI Team, 2024). The open-source models cover DeepSeek-
 320 R1 (DeepSeek-AI and collaborators, 2025), Qwen3-235b-A22b (Yang et al., 2025), Qwen2.5-
 321 72B-Instruct (Yang et al., 2024), Qwen2.5-32B (Yang et al., 2024), GLM-4-32B (GLM et al.,
 322 2024), InternLM Cai et al. (2024); Team (2025), Llama-3 series (Grattafiori et al., 2024),
 323 Gemma-3 (Team et al., 2025), and Phi-4-mini (Microsoft et al., 2025). Thinking-series mod-
 324 els such as O3, Grok-4, and Gemini-2.5-pro serve as optimized reference points for eval-
 325 uating the trade-off between performance and deployment costs. All LMMs are tested with

324
 325 Table 1: Performance comparison of human experts and 32 open- and closed-source LLMs
 326 on EESE across five disciplines and overall scores. Top three performance are highlighted
 327 (Best in **bold**, second and third best underlined). ‘Org.’ denotes the organization. ‘Params.’
 328 is the parameter number. ‘Open.’ indicates open-sourced situation.

Model	Model Attribute			Evaluation Dimensions					
	Org.	Params	Open.	SSH	AS	MS	NS	ETS	Overall
Human Expert	/	/	/	0.9030	0.7950	0.8310	0.8815	0.8260	0.8473
<i>Models With Thinking</i>									
O3	OpenAI	N/A	✗	<u>0.3686</u>	<u>0.5121</u>	<u>0.4041</u>	<u>0.3922</u>	<u>0.3865</u>	<u>0.4025</u>
Gemini-2.5-pro	Google	N/A	✗	0.2629	0.5414	0.4276	0.3640	0.3892	0.3813
Grok-4	xAI	N/A	✗	<u>0.3829</u>	0.3431	0.3357	0.3160	0.3480	0.3442
Deepseek-R1	Deepseek	671B	✓	0.2600	0.3431	0.3428	0.3632	0.3180	0.3251
O3-mini	OpenAI	N/A	✗	0.2438	0.4034	0.2327	<u>0.3848</u>	0.2926	0.3068
Qwen3-235B-A22B	Alibaba Cloud	235B	✓	0.2105	0.2397	0.2510	0.2848	0.2740	0.2543
<i>Models Without Thinking</i>									
Claude-3-7-sonnet	Anthropic	N/A	✗	0.2486	0.2655	0.2429	0.2304	0.3461	0.2648
Deepseek-V3	DeepSeek	671B	✓	0.2019	0.2431	0.2551	0.2624	0.3197	0.2572
Claude-3-5-sonnet	Anthropic	N/A	✗	<u>0.2591</u>	0.1948	0.2633	0.2049	<u>0.3274</u>	0.2521
GPT-4.1	OpenAI	N/A	✗	0.2419	0.3603	<u>0.2837</u>	0.2112	0.2176	0.2514
GPT-4o	OpenAI	N/A	✗	0.2029	0.2448	0.3041	0.2216	0.2354	0.2397
Grok-2	xAI	N/A	✗	0.2771	0.2224	0.1796	0.2184	0.2841	0.2372
Qwen2.5-VL-32B-Instruct	Alibaba Cloud	32B	✓	0.2194	0.2345	0.2286	0.1736	0.2540	0.2183
Qwen-vl-max	Alibaba Cloud	N/A	✗	0.2114	0.2448	0.2041	0.1784	0.2540	0.2142
Gemini-1.5-pro	Google	N/A	✗	0.2401	0.2793	0.1173	0.2040	0.2334	0.2093
GLM-4-32B	Zhipu AI	4B	✓	0.2194	0.2052	0.2347	0.1623	0.2202	0.2056
Qwen2.5-32B-Instruct	Alibaba Cloud	32B	✓	0.2114	0.2724	0.1898	0.1288	0.2548	0.2019
Grok-3	xAI	N/A	✗	0.2210	0.1759	0.1735	0.1752	0.2493	0.1998
Mistral-large	Mistral AI	N/A	✗	0.2011	0.2069	0.1694	0.1768	0.2368	0.1963
Qwen2.5-72B-Instruct	Alibaba Cloud	72B	✓	0.1914	0.2466	0.1694	0.1617	0.2410	0.1957
Qwen2.5-VL-72B-Instruct	Alibaba Cloud	72B	✓	0.2057	0.2172	0.1694	0.1456	0.2610	0.1955
Phi-4	Microsoft	14B	✓	0.1829	0.2052	0.2012	0.1304	0.2134	0.1817
Internlm3-8b-instruct	OpenGVLab	8B	✓	0.1438	0.2034	0.2031	0.1123	0.2441	0.1745
Llama-3.3-70B-Instruct	Meta	70B	✓	0.1819	0.1776	0.1408	0.1504	0.2024	0.1691
Llama-3.1-70B-Instruct	Meta	70B	✓	0.1724	0.2345	0.1490	0.1216	0.1691	0.1613
gemma-3-27b-it	Gemma Team	27B	✓	0.1914	0.1569	0.1327	0.1448	0.1432	0.1535
Internlm2.5-20b-chat	OpenGVLab	20B	✓	0.1486	0.1724	0.1388	0.1256	0.1833	0.1545
internlm2-chat-20b	OpenGVLab	20B	✓	0.1219	0.1672	0.0982	0.0984	0.1603	0.1243
Llama-3.2-11B-Vision-Instruct	Meta	11B	✓	0.1524	0.0862	0.1122	0.0847	0.1443	0.1152
Llama-3.1-8B-Instruct	Meta	8B	✓	0.1314	0.1172	0.1092	0.1024	0.0887	0.1088
Internlm2.5-7b-chat	OpenGVLab	7B	✓	0.1695	0.1001	0.1306	0.0648	0.0675	0.1053
Phi-4-mini-instruct	Microsoft	3.8B	✓	0.1429	0.0828	0.0469	0.0824	0.0881	0.0895

361
 362 Figure 5: Quick comparison of human performance and top-performing *models with thinking* on EESE.
 363 Each bar group corresponding to the specific discipline represents the scores
 364 of Human, O3, Gemini-2.5-Pro, and Grok-4 (from left to right) respectively.

366 zero-shot setting. In addition, the average accuracy of 10 experts is recorded to illustrate
 367 performance differences.

4.2 PERFORMANCE ANALYSIS

371 **I. EESE-Pool demonstrates significant disciplinary variations across models while ex-
 372 posing their limitations in scientific abilities.** Figure 4 presents the performance distri-
 373 bution of six representative models on EESE-Pool. The results reveal significant discipline-
 374 specific variations. Crucially, no single model establishes comprehensive superiority across
 375 all disciplines. Besides, the average accuracy of the six models remains low, highlighting
 376 the challenges of scientific questions for current foundation models. Overall, the results
 377 confirm that EESE-Pool effectively reveals nuanced weaknesses in scientific questions, and
 378 serves as comprehensive question pool for robustly differentiating model capabilities.

378 Table 2: Speed, cost, and performance comparison on EESE between top *models with thinking*
 379 and the best *models without thinking* from Anthropic, DeepSeek, and OpenAI. ‘ \times ’ denotes
 380 relative value to the (best models without thinking). Speed: avg. inference time/question
 381 (s). Cost: avg. cost per 10 questions (USD).

Model	Model Attribute			Evaluation Dimensions		
	Org.	Params	Open.	Speed _{s/q}	Cost _{\$/10q}	Overall (EESE)
<i>Models With Thinking</i>						
O3	OpenAI	N/A	X	15.100 \times 1.064	0.125 \times 2.551	0.4025 \times 1.561
Gemini-2.5-pro	Google	N/A	X	19.570 \times 1.379	0.442 \times 9.001	0.3813 \times 1.479
Grok-4	xAI	N/A	X	41.450 \times 2.920	0.440 \times 8.943	0.3442 \times 1.335
Deepseek-R1	Deepseek	671B	✓	107.480 \times 7.572	0.039 \times 0.786	0.3251 \times 1.261
O3-mini	OpenAI	N/A	X	7.240 \times 0.510	0.048 \times 0.972	0.3068 \times 1.190
Qwen3-235B-A22B	Alibaba Cloud	235B	✓	79.000 \times 5.566	0.058 \times 1.178	0.2543 \times 0.986
Average	/	/	/	44.973 \times 4.243	0.192 \times 4.492	0.3357 \times 1.302
<i>Models Without Thinking</i>						
Claude-3-7-sonnet	Anthropic	N/A	X	10.400 \times 0.733	0.106 \times 2.155	0.2648 \times 1.027
Deepseek-V3	DeepSeek	671B	✓	24.000 \times 1.691	0.006 \times 0.116	0.2572 \times 0.998
GPT-4.1	OpenAI	N/A	X	9.082 \times 0.640	0.036 \times 0.729	0.2514 \times 0.975
Average	/	/	/	14.194 \times 1.000	0.0491 \times 1.000	0.2578 \times 1.000

391 **II. EESE reveals that models with thinking and proprietary designs tend to perform**
 392 **better, yet clear discipline-specific weaknesses, substantial gaps between models and**
 393 **humans, and the high quality of EESE remain evident.** Table 1 and Figure 5 provide a
 394 quantitative comparison and a quick visualized comparison between human experts and
 395 32 leading Large Language Models (LLMs), covering 5 disciplines.

401 From the results, several findings can be drawn. First, models with thinking consistently
 402 outperform models without thinking, demonstrating the benefit of thinking-augmented
 403 design. Second, closed-source models generally score higher than open-source ones, likely
 404 due to proprietary data, tuning strategies, or infrastructure. Third, large discipline-specific
 405 gaps persist, as no model excels uniformly across all scientific fields, highlighting ongoing
 406 challenges in specialized or interdisciplinary areas. Fourth, a considerable performance
 407 gap persists between even the best models and human experts. Overall, the clear and
 408 consistent performance differences confirm that EESE is sufficiently challenging and discrimi-
 409 native to reveal meaningful gaps in scientific proficiency.

410 **III. Though models with thinking achieve better performance, their overall cost-**
 411 **effectiveness remains limited.** Table 2 provides a comparative overview of inference ef-
 412 ficiency (Speed), economic cost (Cost), and performance (Overall) between models with
 413 thinking and the best models without thinking. To better highlight the advantages and
 414 limitations, we use the average of the best models without thinking as baseline.

415 Table 2 highlights several key observations. First, models with thinking consistently out-
 416 perform models without thinking, which confirms that thinking possibly improving in-
 417 stance difficulty. Second, the efficiency trade-offs are significant. Models with thinking take
 418 about 4.2 \times longer and 4.5 \times more, only improve performance by 1.3 \times compared to mod-
 419 els without thinking. This imbalance suggests that the marginal gains may not justify the
 420 extra cost and burden, raising concerns about the practicality of high-difficulty approaches
 421 in real-world deployments. Third, even the best-performing models with thinking far be-
 422 low human expert performance. This further illustrates the high quality and substantial
 423 difficulty of the EESE.

424 **IV. EESE serves as a representative, low-cost proxy for the EESE-Pool.** Figure 6 (a)
 425 presents the spearman rank-order correlation coefficient (SRCC) (Wang et al., 2025a; Zhang
 426 et al., 2025a) heatmap within EESE, covering five disciplines and the overall score. Figure 6
 427 (b) displays the SRCC heatmap between EESE and EESE-Pool across the same disciplines.
 428 The SRCC is calculated by ranking models based on the performance in each discipline
 429 and then computing the Spearman correlation between these rankings.

430 As shown in Figure 6 (a), the consistently high SRCC values indicate strong internal consis-
 431 tency and balanced instance coverage. As shown in Figure 6 (b), the high diagonal values
 432 indicates that the rankings derived from the EESE closely match those from the 100K+

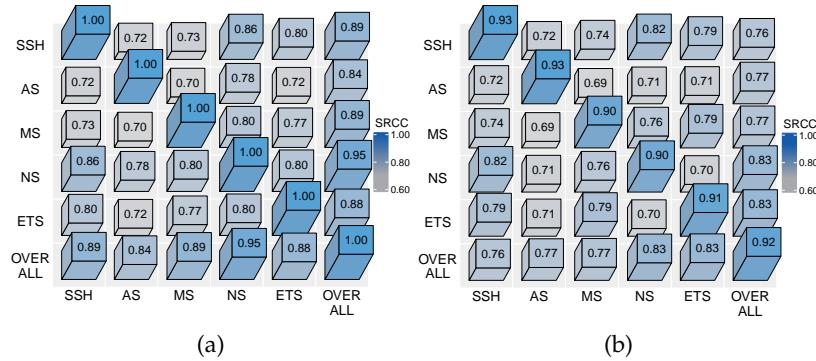


Figure 6: Discipline correlation heatmaps with spearman rank-order correlation coefficient (SRCC). (a) shows internal correlations of EESE across five disciplines and overall scores (X-axis → EESE, Y-axis → EESE) while (b) presents the discipline correlations between EESE (X-axis) and EESE-Pool (Y-axis).

Table 3: Comparison of model performance *Before* and *After Refinement* on EESE.

Model	Before Refinement			After Refinement		
	AS	MS	overall	AS	MS	overall
O3	0.6214	0.5134	0.5218	0.5121	0.4041	0.4025
Gemini-2.5-pro	0.6201	0.5243	0.4880	0.5414	0.4276	0.3813
Deepseek-R1	0.4545	0.3398	0.4332	0.3431	0.3428	0.3251
O3-mini	0.5001	0.3294	0.4035	0.4034	0.2327	0.3068
Claude-3-7-sonnet	0.3622	0.3396	0.3615	0.2655	0.2429	0.2648
Deepseek-V3	0.3398	0.3518	0.3539	0.2431	0.2551	0.2572
Claude-3-5-sonnet	0.2915	0.3600	0.3488	0.1948	0.2633	0.2521

EESE-Pool for each corresponding discipline, confirming that EESE reliably reflects the performance trends of broader benchmark. In summary, EESE is a reliable, low-cost and leak-resistant proxy for EESE-Pool, which faithfully reflects the EESE-Pool’s ability to differentiate the science capabilities of models.

V. Refinement successfully increases the instance quality. As shown in Table 3, all representative models exhibit lower accuracy after refinement across disciplines and the overall score. This consistent decrease confirms that the refinement effectively increases instance difficulty and reduces trivial or overly simple items. By additional plausible distractors, interdisciplinary contexts, and expert-driven rewrite, the refined EESE instances impose higher quality. This leads to clearer performance gaps among models, and demonstrates that EESE achieves the intended rigor while maintaining reliability for evaluation.

5 CONCLUSION

In this work, we present EESE, a dynamic benchmark that systematically balances Range, Reach, and Rigor through a large, high-quality EESE-Pool (constructed via a multi-stage Data Engine and a three-branch Data Refinement process). By periodically sampling and updating, EESE minimize leakage risks and evaluation inefficiency while remaining representative of the larger pool. Extensive experiments show that EESE effectively raises instance difficulty, exposes significant performance differences across disciplines, and highlights trade-offs between inference cost and science ability. In addition, we show that benchmark developers no longer need to choose between scale and security: the two-level EESE design provides a practical way to continually refresh test sets, adapt to evolving model capabilities, and sustain benchmark difficulty over time. More broadly, EESE demonstrates how a dynamic, well-curated benchmark can reveal subtle differences in science evaluation, drive the development of more robust models, and serve as a practical blueprint for building more trustworthy benchmarks.

486 6 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal
489 experimentation was involved. All datasets used, including EESE, are sourced in compli-
490 ance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
491 to avoid any biases or discriminatory outcomes in our research process. No personally
492 identifiable information is used, and no experiments are conducted that could raise pri-
493 vacy or security concerns. We are committed to maintaining transparency and integrity
494 throughout the research process.495
496 7 REPRODUCIBILITY STATEMENT
497498 We have made every effort to ensure that the results presented in this paper are repro-
499 ducible. We guarantee that all relevant code and datasets will be made publicly available,
500 thereby enabling the research community to replicate and verify our findings. The experi-
501 mental setup, including training steps, model configurations, and hardware details, is de-
502 scribed in detail in the paper. We have also provided a full description of EESE to assist
503 others in reproducing our experiments.504 Additionally, datasets used in the paper are publicly available, ensuring consistent and
505 reproducible evaluation results.506 We believe these measures will enable other researchers to reproduce our work and further
507 advance the field.509
510 REFERENCES

511 Anthropic. Claude 3.5 sonnet. Model announcement / system card, Anthropic, June 2024.

512 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin,
513 Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for un-
514 derstanding, localization, text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.515 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
516 Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On
517 the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.518 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen,
519 Zehui Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, et al.
520 Internlm2 technical report, 2024. URL <https://arxiv.org/abs/2403.17297>.521 Devrim Çavuşoğlu, Seçil Şen, and Ulaş Sert. Disgem: Distractor generation for multiple
522 choice questions with span masking. In *Findings of the Association for Computational Lin-*
523 *guistics: EMNLP 2024*, pp. 9714–9732, 2024.524 Joya Chen, Ziyun Zeng, Yiqi Lin, Wei Li, Zejun Ma, and Mike Zheng Shou. Livecc: Learning
525 video llm with streaming speech transcription at scale. In *Proceedings of the Computer*
526 *Vision and Pattern Recognition Conference*, pp. 29083–29095, 2025.527 Zhiyu Zoey Chen, Jing Ma, Xinlu Zhang, Nan Hao, An Yan, Armineh Nourbakhsh, Xianjun
528 Yang, Julian McAuley, Linda Petzold, and William Yang Wang. A survey on large lan-
529 guage models for critical societal domains: Finance, healthcare, and law. *arXiv preprint*
530 *arXiv:2405.01769*, 2024.531 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
532 Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
533 Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL
534 <https://arxiv.org/abs/2110.14168>.

540 DeepSeek-AI and collaborators. DeepSeek-R1: Incentivizing Reasoning Capability in
 541 LLMs via Reinforcement Learning. Technical Report, arXiv preprint arXiv:2501.12948,
 542 DeepSeek-AI, January 2025.

543

544 Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu,
 545 Yiming Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across
 546 285 graduate disciplines. *arXiv preprint arXiv:2502.14739*, 2025.

547

548 Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu
 549 Liu, Yuke Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models
 550 in robotics: Applications, challenges, and the future. *The International Journal of Robotics
 Research*, 44(5):701–739, 2025.

551

552 Gemini Team, Google DeepMind. Gemini 2.5: Pushing the Frontier with Advanced Rea-
 553 soning, Multimodality, Long Context, and Next-Generation Agentic Capabilities. Tech-
 554 nical Report v2.5, Google DeepMind, June 2025.

555

556 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
 557 Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, et al.
 558 Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024. URL
<https://arxiv.org/abs/2406.12793>.

559

560 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
 561 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
 562 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

563

564 Yijin Guo, Kaiyuan Ji, Xiaorong Zhu, Junying Wang, Farong Wen, Chunyi Li, Zicheng
 565 Zhang, and Guangtao Zhai. Human-centric evaluation for foundation models. *arXiv
 preprint arXiv:2506.01793*, 2025.

566

567 Vipul Gupta, Candace Ross, David Pantoja, Rebecca J Passonneau, Megan Ung, and Ad-
 568 ina Williams. Improving model evaluation using smart filtering of benchmark datasets.
 569 *arXiv preprint arXiv:2410.20245*, 2024.

570

571 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 572 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 arXiv:2009.03300*, 2020.

573

574 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Jun-
 575 teng Liu, Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-
 576 discipline chinese evaluation suite for foundation models. *Advances in Neural Information
 Processing Systems*, 36:62991–63010, 2023.

577

578 Eldar Knar. Pandava: Semantic and reflexive protocol for interdisciplinary and cognitive
 579 knowledge synthesis, 2025. URL <https://arxiv.org/abs/2505.13456>.

580

581 José Antonio Hernández López, Boqi Chen, Mootez Saad, Tushar Sharma, and Dániel
 582 Varró. On inter-dataset code duplication and data leakage in large language models.
IEEE Transactions on Software Engineering, 2024.

583

584 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
 585 Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via
 586 thought chains for science question answering, 2022. URL <https://arxiv.org/abs/2209.09513>.

587

588 Microsoft, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla,
 589 Nguyen Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, et al. Phi-4-
 590 mini technical report: Compact yet powerful multimodal language models via mixture-
 591 of-loras, 2025. URL <https://arxiv.org/abs/2503.01743>.

592

Mistral AI Team. Pixtral Large. Technical report, Mistral AI, November 2024.

593

OpenAI. Hello gpt-4o. System card / technical report, OpenAI, May 2024.

594 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, April 2025a.
 595
 596 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, April 2025b.
 597
 598 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
 599 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
 600 models to follow instructions with human feedback. *Advances in neural information pro-*
 601 *cessing systems*, 35:27730–27744, 2022.
 602
 603 Nisarg Parikh, Nigel Fernandez, Alexander Scarlato, Simon Woodhead, and Andrew
 604 Lan. Lookalike: Consistent distractor generation in math mcqs. *arXiv preprint*
 605 *arXiv:2505.01903*, 2025.
 606
 607 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, et al. Hu-
 608 manity’s last exam. <https://arxiv.org/abs/2501.14249>, 2025.
 609
 610 Standards Press. Classification and code of disciplines, 5 2009.
 611
 612 Fanyi Qu, Hao Sun, and Yunfang Wu. Unsupervised distractor generation via large
 613 language model distilling and counterfactual contrastive decoding. *arXiv preprint*
 614 *arXiv:2406.01306*, 2024.
 615
 616 Alexander Skulmowski and Kate Man Xu. Understanding cognitive load in digital and
 617 online learning: A new perspective on extraneous cognitive load. *Educational psychology*
 618 *review*, 34(1):171–196, 2022.
 619
 620 Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and
 621 Kai Yu. Scieval: A multi-level large language model evaluation benchmark for scientific
 622 research. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 623 19053–19061, 2024.
 624
 625 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 626 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding,
 627 Xinyang Geng, et al. Gemini 1.5: Unlocking multimodal understanding across millions
 628 of tokens of context, 2024. URL <https://arxiv.org/abs/2403.05530>.
 629
 630 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
 631 Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis
 632 Rouillard, Thomas Mesnard, Geoffrey Cideron, et al. Gemma 3 technical report, 2025.
 633 URL <https://arxiv.org/abs/2503.19786>.
 634
 635 InternLM Team. Internlm3-8b-instruct. Technical report, Shanghai Artificial Intelligence
 636 Laboratory, January 2025.
 637
 638 Jiarui Wang, Huiyu Duan, Yu Zhao, Junlong Wang, Guangtao Zhai, and Xiongkuo Min.
 639 Lmm4lmm: Benchmarking and evaluating large-multimodal image generation with
 640 lmms. *arXiv preprint arXiv:2504.08358*, 2025a.
 641
 642 Junying Wang, Wenzhe Li, Yalun Wu, Yingji Liang, Yijin Guo, Chunyi Li, Haodong Duan,
 643 Zicheng Zhang, and Guangtao Zhai. Affordance benchmark for mllms. *arXiv preprint*
 644 *arXiv:2506.00893*, 2025b.
 645
 646 Junying Wang, Hongyuan Zhang, and Yuan Yuan. Adv-cpg: A customized portrait gener-
 647 ation framework with facial adversarial attacks. In *Proceedings of the Computer Vision and*
 648 *Pattern Recognition Conference (CVPR)*, pp. 21001–21010, June 2025c.
 649
 650 Farong Wen, Yijin Guo, Junying Wang, Jiaohao Xiao, Yingjie Zhou, Chunyi Li, Zicheng
 651 Zhang, and Guangtao Zhai. Improve mllm benchmark efficiency through interview.
 652 *arXiv preprint arXiv:2506.00883*, 2025.
 653
 654 Xiaobao Wu, Liangming Pan, Yuxi Xie, Ruiwen Zhou, Shuai Zhao, Yubo Ma, Mingzhe Du,
 655 Rui Mao, Anh Tuan Luu, and William Yang Wang. Antileakbench: Preventing data con-
 656 tamination by automatically constructing benchmarks with updated real-world knowl-
 657 edge. *arXiv preprint arXiv:2412.13670*, 2024.

648 xAI Team. Grok-2: upgraded crypto SUCCESS. Technical report, xAI, August 2024.
 649
 650 xAI Team. Grok-3: The Age of Reasoning Agents. Technical report, xAI, February 2025a.
 651
 652 xAI Team. Grok 4. Technical report, xAI, July 2025b.
 653
 654 Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage
 655 in large language models. *arXiv preprint arXiv:2404.18824*, 2024. URL <https://arxiv.org/abs/2404.18824>.
 656
 657 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 658 Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint*
 659 *arXiv:2412.15115*, 2024.
 660
 661 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 662 Chang Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei
 663 Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong
 664 Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
 665 Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li,
 666 Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao
 667 Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng
 668 Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun
 669 Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report.
 670 *arXiv preprint arXiv:2505.09388*, 2025.
 671
 672 Zhichao Zhang, Xinyue Li, Wei Sun, Zicheng Zhang, Yunhao Li, Xiaohong Liu, and Guang-
 673 tao Zhai. Leveraging multimodal large language models for joint discrete and contin-
 674 uous evaluation in text-to-image alignment. In *Proceedings of the Computer Vision and*
 675 *Pattern Recognition Conference*, pp. 977–986, 2025a.
 676
 677 Zicheng Zhang, Haoning Wu, Chunyi Li, Yingjie Zhou, Wei Sun, Xiongkuo Min, Zijian
 678 Chen, Xiaohong Liu, Weisi Lin, and Guangtao Zhai. A-bench: Are lmms masters at eval-
 679 uating ai-generated images? *arXiv preprint arXiv:2406.03070*, 2024.
 680
 681 Zicheng Zhang, Junying Wang, Yijin Guo, Farong Wen, Zijian Chen, Hanqing Wang, Wen-
 682 zhe Li, Lu Sun, Yingjie Zhou, Jianbo Zhang, Bowen Yan, Ziheng Jia, Jiahao Xiao, Yuan
 683 Tian, Xiangyang Zhu, Kaiwei Zhang, Chunyi Li, Xiaohong Liu, Xiongkuo Min, Qi Jia,
 684 and Guangtao Zhai. Aibench: Towards trustworthy evaluation under the 45° law.
 685 <https://aiben.ch/>, 2025b.
 686
 687 Zicheng Zhang, Xiangyu Zhao, Xinyu Fang, Chunyi Li, Xiaohong Liu, Xiongkuo Min,
 688 Haodong Duan, Kai Chen, and Guangtao Zhai. Redundancy principles for mllms bench-
 689 marks. *arXiv preprint arXiv:2501.13953*, 2025c.
 690
 691 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin
 692 Saied, Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for eval-
 693 uating foundation models. *arXiv preprint arXiv:2304.06364*, 2023.
 694
 695 Qing Zhou, Junyu Gao, and Qi Wang. Scale efficient training for large datasets. In *Proceed-
 696 ings of the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 20458–20467,
 697 June 2025a.
 698
 699 Xin Zhou, Martin Weyssow, Ratnadira Widyasari, Ting Zhang, Junda He, Yunbo Lyu, Jian-
 700 ming Chang, Beiqi Zhang, Dan Huang, and David Lo. Lessleak-bench: A first investi-
 701 gation of data leakage in llms across 83 software engineering benchmarks, 2025b. URL
<https://arxiv.org/abs/2502.06215>.
 702
 703 Yuxuan Zhou, Xien Liu, Chenwei Yan, Chen Ning, Xiao Zhang, Boxun Li, Xiangling Fu,
 704 Shijin Wang, Guoping Hu, Yu Wang, et al. Evaluating llms across multi-cognitive lev-
 705 els: From medical knowledge mastery to scenario-based problem solving. *arXiv preprint*
 706 *arXiv:2506.08349*, 2025c.
 707

702 A LLM USAGE
703
704

705 Large Language Models (LLMs) are used to aid in the writing and polishing of the
706 manuscript. Specifically, we use an LLM to assist in refining the language, improving read-
707 ability, and ensuring clarity in various sections of the paper. The model helps with tasks
708 such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

709 It is important to note that the LLM is not involved in the ideation, research methodology,
710 or experimental design. All research concepts, ideas, and analyses are developed and
711 conducted by the authors. The contributions of the LLM are solely focused on improving
712 the linguistic quality of the paper, with no involvement in the scientific content or data
713 analysis.

714 The authors take full responsibility for the content of the manuscript, including any text
715 generated or polished by the LLM. We ensure that the LLM-generated text adheres to eth-
716 ical guidelines and does not contribute to plagiarism or scientific misconduct.

718
719 B REFINEMENT METHODS AND OPTIMIZATION ANALYSIS
720
721

722 The refinement methods can be categorized into three levels: (1) Enhancement by Dis-
723 traction (Low HI), (2) Enrichment by Cross-Disciplinary Integration (Medium HI), and (3)
724 Expert-Driven Refinement (High HI). Below, we present examples of each method, com-
725 paring the original questions with their refined versions and analysing the enhancement
726 process. The differences between the original and refined versions are highlighted in red.

728
729 1. ENHANCEMENT BY DISTRACTION (LOW HI)
730731
732 Original Question

733 **Original Question:** A protocol suite is ()=.

734 • A) A set of protocols.

735 • B) A hierarchical collection of protocols.

739
740 Refined Question

741 **Refined Question:** Regarding protocol suites, which of the following statements is
742 correct? ()

743 • A) TCP/IP only includes two protocols.

744 • B) The OSI model has seven layers, each corresponding to a specific protocol in a
745 suite.

746 • C) HTTP is not part of any protocol suite.

747 • D) FTP operates independently of any protocol suite.

750
751 **Analysis:** The refined version builds upon the original options by expanding the abstract
752 terms “a set of protocols” and “a hierarchical collection of protocols” through the inclusion
753 of concrete examples such as TCP/IP, OSI, HTTP, and FTP. This enrichment enhances the
754 informational depth of the question and elevates its professional and technical specificity,
755 thereby reducing the probability of correct guessing and strengthening the assessment’s
effectiveness in evaluating true conceptual understanding.

756 2. ENRICHMENT BY CROSS-DISCIPLINARY INTEGRATION (MEDIUM HI)
757758 Original Question
759760 **Original Question:** Given an element with a maximum oxidation state of +7, deter-
761 mine its period and group.
762763 Refined Question
764765 **Refined Question:** Elements A, B, C, and D are from period 4:
766767

- 768 • A forms a 1:1 compound with an oxidation state of +7;
- 769 • B is a d-block element with an oxidation state of +7;
- 770 • C is in the same period and has the same oxidation state as B;
- 771 • D is the most electronegative element in the set.

772 Fill in the table below and order the four elements by electronegativity from high to
773 low.774
775

	Element	Symbol	Period	Group	Max Oxidation
776 A					
777 B					
778 C					
779 D					

780
781 Table 4: Element Properties
782783 **Analysis:** The refined question improves upon the original by integrating cross-
784 disciplinary knowledge and contextual clues, promoting higher-order thinking. While the
785 original question only asked students to identify the period and group of an element with
786 a +7 oxidation state—requiring basic recall—the revised version introduces four elements
787 from period 4, each with specific properties tied to oxidation states, electronegativity, and
788 element classification. Students must analyze multiple clues, apply periodic trends, and
789 reconcile inconsistencies (e.g., fluorine not being in period 4), which fosters critical think-
790 ing. They also complete a table and rank elements by electronegativity, combining factual
791 knowledge with synthesis and evaluation. This enhancement increases cognitive demand,
792 integrates multiple chemistry concepts, and reduces guessing, transforming a simple recall
793 question into a comprehensive reasoning task.
794795 3. EXPERT-DRIVEN REFINEMENT (HIGH HI)
796797 Original Question
798800 **Original Question:** A machine has a 16-bit instruction field and a 6-bit address field.
801 If the opcode is 8 bits long, how many 0-address instructions are possible?
802803 Refined Question
804805 **Refined Question:** A machine uses 16-bit instruction words and 6-bit operand ad-
806 dresses. Assume the opcode length is fixed, with instructions in three formats: 0-, 1-,
807 and 2-address. Given M 0-address and N 1-address instructions, what is the maxi-
808 mum number of 2-address instructions? If the opcode length is variable, what is the
809 maximum number of 2-address instructions?

Analysis: The refined question improves upon the original by introducing multiple instruction formats (0-, 1-, and 2-address) and asking students to calculate the maximum number of 2-address instructions under both fixed and variable opcode length assumptions. This requires a deeper understanding of instruction encoding and opcode space management. Unlike the original, which involved a simple calculation based on fixed field sizes, the enhanced version tests students' ability to analyze how opcode and address fields are shared across different instruction types, apply multi-step reasoning to maximize opcode space under architectural constraints, and understand advanced encoding techniques such as opcode expansion in variable-length models. By embedding theoretical concepts into a practical design problem, the question promotes higher-order thinking and better assesses students' grasp of computer architecture principles.

C DIFFICULTY-STRATIFIED SAMPLES

💡 Easy Sample

Question:

Regarding the structures of PROM and PAL, which of the following statements are correct? ()

- A) PROM has a fixed AND array that is not programmable
- B) Both AND array and OR array of PROM are not programmable
- C) Both AND array and OR array of PAL are programmable
- D) The AND array of PAL is programmable

Answer: AD

Discipline: Engineering and Technological Sciences

Field: Electronics and Communication Technology

Subfield: Electronic Technology

Question:

According to the causes of dyspnea and its manifestations, dyspnea can be divided into three types.

Answer: inspiratory dyspnea, expiratory dyspnea, mixed dyspnea

Answer: inspiratory dry spica, exp Discipline: Agricultural Sciences

Field: Animal Husbandry and Veterinary Science

Field: Animal Husbandry and Subfield: Veterinary Medicine

Question:

The main issues to note when designing a social survey research plan are ().

The main issues to note when designing a social survey research plan are ().

- A. Practicality B. Systematicness C. Timeliness D. Economy E. Accuracy F. Flexibility

Flexibility

Answer: ABCD

Discipline: Social
Field: Sociology

Field: Sociology

864

865

Question:

866 Among the following drugs, those with optical activity are ()

867 A. Ranitidine B. Ephedrine C. Pethidine D. Omeprazole E. Naproxen

868 **Answer:** ABCDE

869 **Discipline:** Medical Sciences

870 **Field:** Pharmacy

871 **Subfield:** Medicinal Chemistry

872

873

874

875

Question:

876 Judge whether the following statement is correct: According to the change law of the
877 resistance coefficient along the path, the Nikuradse experimental curve is divided
878 into three regions.

879 **Answer:** False

880 **Discipline:** Natural Sciences

881 **Field:** Mechanics

882 **Subfield:** Fluid Mechanics

883

884

885

886

Q Middle Sample

887

888

889

890 **Question:** The Foreign Trade Import and Export Service Company under the Foreign
891 Trade Bureau of City A signed a sales contract with Enterprise B of City A. A dispute
892 arose during the performance of the contract. Later, the Foreign Trade Import and
893 Export Service Company was divided into two separate legal entities: the Foreign
894 Trade Commodity Trading Company of City A and the Import and Export Service
895 Company of City A. No arrangements were made regarding the aforementioned sales
896 contract during the division. Now, Enterprise B has filed a lawsuit in court over the
897 contract dispute. The defendant(s) in this lawsuit should be ()

898

899

900

901

902

903

904

905

A) The Foreign Trade Import and Export Service Company of City A

B) The Foreign Trade Bureau of City A

C) Either the Foreign Trade Commodity Trading Company of City A or the Im-
port and Export Service Company of City A

D) Both the Foreign Trade Commodity Trading Company of City A and the Im-
port and Export Service Company of City A

906

Answer: C

Discipline: Social Sciences and Humanities

Field: Law

Subfield: Sectoral Law

910

911

912

913

Question:

914 Determine whether the following statement is correct: Both the in-duct dilution probe
915 and the out-of-duct dilution probe use critical sonic orifice sampling.

916 **Answer:** False

917 **Discipline:** Engineering and Technological Sciences

918
919
920
921
922
923
924

Field: Environmental Science and Technology and Resource Science and Technology
Subfield: Environmental Engineering

925
926
927
928
929
930
931
932
933
934
935
936
937

Question:

The damage caused by above-zero low temperature to thermophilic plants is generally divided into two steps:

Step 1: _____, Step 2: _____

Answer: Change in membrane phase / Membrane phase transition; Death resulting from metabolic disorder due to membrane damage

Discipline: Agricultural Sciences

Field: Agronomy

Subfield: Basic Agricultural Sciences

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

Question:

What is the natural reaction method? What is its application value in infant research?

Answer:

1. Definition: By examining the innate reflex activities of infants and young children, make inferences on the development and changes of their psychological abilities and their essence.

2. Application value:

- Many innate reflexes have important survival value
- Typical examples: visual tracking and cliff response

Discipline: Natural Sciences

Field: Psychology

Subfield: Developmental Psychology

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Question:

Which of the following statements about weighted imaging is correct?

- A) T1WI is the T1 value map of tissue
- B) Proton density affects signal intensity in any pulse sequence image
- C) The longer the T1 value of tissue, the higher the signal on T1WI
- D) The longer the T2 value of tissue, the lower the signal intensity
- E) T2WI refers to imaging parameters that extend the tissue's T2 value

Answer: A

Discipline: Medical Sciences

Field: Basic Medical Sciences

Subfield: Radiology

972
973
974
975
976**• Hard Sample**977
978
979
980
981
982
983**Question:**

A certain machine has an instruction word length of 16 bits, and each operand's address code is 6 bits. Assume the opcode length is fixed, and instructions are divided into three formats: zero-address, one-address, and two-address. If there are M zero-address instructions and N one-address instructions, what is the maximum number of two-address instructions? If the opcode length is variable, what is the maximum number of two-address instructions allowed?

984
985**Answer:**986
987
988

1) If a fixed-length opcode is used, the two-address instruction format is as follows:
Let K be the number of two-address instructions. Then

$$K = 2^4 - M - N$$

989
990

When $M = 1$ (minimum) and $N = 1$ (minimum), the maximum number of two-address instructions is

$$K_{\max} = 16 - 1 - 1 = 14.$$

991
992

2) If a variable-length opcode is used, the two-address instruction format is still as shown in 1), but the opcode length can vary with the number of address codes. In this case,

$$K = 2^4 - \left(\frac{N}{2^6} + \frac{M}{2^{12}} \right).$$

993
994
1000
1001
1002

When $\frac{N}{2^6} + \frac{M}{2^{12}} \leq 1$, K is maximized. So the maximum number of two-address instructions is

$$K_{\max} = 16 - 1 = 15$$

1003
1004
1005

(leaving one encoding as an extension flag).

1006
1007

Discipline: Engineering and Technological Sciences

Field: Computer Science and Technology

1008
1009
1010

Subfield: Computer System Architecture

1011
1012**Question:**1013
1014
1015

It is known that two of the following four statements are true.

1016
1017
1018

- 1) Everyone in Class A is from Shanghai.
- 2) Zhao Yun in Class A is from Shanghai.
- 3) Some people in Class A are from Shanghai.
- 4) Some people in Class A are not from Shanghai.

1019
1020
1021

Question: Can we determine whether Zhao Yun in Class A is from Shanghai?

1022
1023
1024

Answer: Cannot be determined

1025

Discipline: Social Sciences and Humanities

Field: Philosophy

Subfield: Logic

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Question:

The pharmacological effects of thiazide diuretics include: ()

- A) Antihypertensive effect
- B) Decrease in glomerular filtration rate
- C) Increase in blood glucose levels
- D) Increase in urate excretion
- E) Antidiuretic effect

Answer: ABCE

Discipline: Agricultural Sciences

Field: Animal Husbandry and Veterinary Science

Subfield: Veterinary Medicine

1043

1044

1045

1046

1047

1048

1049

Question:

Some *Nocardia* species are acid-fast positive, but only with

_____.

Prolonged decolorization renders them negative, which helps differentiate them from _____ bacteria. **Answer:** 1% hydrochloric acid ethanol;

Mycobacterium tuberculosis

Discipline: Medical Sciences

Field: Basic Medical Sciences

Subfield: Medical Microbiology

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

Question:

Suppose $\{N(t), t \geq 0\}$ is a Poisson process with intensity λ , X_n ($n \geq 1$) represents the time interval between the $(n-1)$ st and n th event, then $\mathbb{E}(X_1 \mid N(t) = 1) =$

_____.

Answer: $t/2$

Discipline: Natural Sciences

Field: Mathematics

Subfield: Probability Theory

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **D THE SUBFIELD OF EESE-POOL**
10811082 **1. NATURAL SCIENCES**
1083

1087 Natural Sciences	
1088 Field	1089 Subfield
1090 Mathematics	A1: History of Mathematics (35)
	A2: Algebra (48)
	A3: Geometry (34)
	A4: Function Theory (155)
	A5: Ordinary Differential Equations (207)
	A6: Probability Theory (263)
	A7: Mathematical Statistics (80)
	A8: Discrete Mathematics (79)
	A9: Mathematical Logic and Foundations (80)
	A10: Number Theory (80)
	A11: Algebraic Geometry (80)
	A12: Topology (80)
	A13: Mathematical Analysis (85)
	A14: Integral Equations (81)
	A15: Applied Statistical Mathematics (80)
	A16: Operations Research (80)
	A17: Combinatorial Mathematics (80)
	A18: Fuzzy Mathematics (80)
	A19: Computational Mathematics (80)
	A20: Applied Mathematics (80)
1109 Information Science and Systems Science	A21: Basic Disciplines of Information Science and Systems Science (120)
	A22: Systems Science (73)
	A23: Control Theory (80)
	A24: System Evaluation and Feasibility Analysis (80)
	A25: Systems Engineering Methodology (72)
1113 Mechanics	A26: Basic Mechanics (141)
	A27: Fluid Mechanics (1334)
	A28: History of Physics (23)
	A29: Theoretical Physics (59)
	A30: Acoustics (25)
	A31: Thermodynamics (488)
	A32: Optics (30)
	A33: Electromagnetism (404)
1119 Physics	A34: Electronic Physics (108)
	A35: Condensed Matter Physics (95)
	A36: Atomic and Molecular Physics (85)
	A37: Computational Physics (35)
	A38: Applied Physics (202)
	A39: Inorganic Chemistry (156)
	A40: Organic Chemistry (24)
1130 Chemistry	A41: Analytical Chemistry (31)
	A42: Physical Chemistry (604)
	A43: Polymer Physics (30)
	A44: Materials Chemistry (61)
	A45: History of Chemistry (86)
	A46: Chemical Physics (70)
	A47: Polymer Chemistry (71)
	A48: Nuclear Chemistry (80)
	A49: Applied Chemistry (80)

Natural Sciences	
Field	Subfield
Astronomy	A50: Celestial Mechanics (72)
	A51: Astrophysics (70)
	A52: Cosmochemistry (70)
	A55: Galaxies and Cosmology (80)
	A53: Stellar Evolution (80)
	A54: Stars and the Milky Way (80)
	A56: The Sun and Solar System (76)
	A57: Astrogeodynamics (80)
Earth Science	A58: Chronometry (80)
	A59: Geology (153)
	A60: Atmospheric Science (70)
	A61: Solid Earth Geophysics (80)
	A62: Space Physics (80)
	A63: Geochemistry (80)
	A64: Geodesy (80)
	A65: Cartography (79)
Biology	A66: Geography (80)
	A67: Hydrology (77)
	A68: Ocean Science (82)
	A69: Biophysics (21)
	A70: Biochemistry (48)
	A71: Cell Biology (70)
	A72: Immunology (42)
	A73: Physiology (108)
Psychology	A74: Developmental Biology (171)
	A75: Genetics (43)
	A76: Molecular Biology (67)
	A77: Evolutionary Biology (44)
	A78: Ecology (565)
	A79: Neurobiology (46)
	A80: Botany (1697)
	A81: Entomology (734)
	A82: Zoology (1007)
	A83: Microbiology (513)
	A84: Virology (22)
	A85: Anthropology (21)
	A86: Social Psychology (167)
	A87: Developmental Psychology (916)
	A88: Psychometrics (366)
	A89: Physiological Psychology (454)
	A90: Managerial Psychology (169)
	A91: Educational Psychology (319)

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

3. MEDICAL SCIENCE

Medical Science		
Field	Subfield	
Basic Medical Sciences	C1: History of Medicine (35)	
	C2: Human Anatomy (1358)	
	C3: Human Physiology (108)	
	C4: Radiology (1597)	
	C5: Medical Parasitology (159)	
	C6: Medical Microbiology (1147)	
	C7: Pathology (388)	
	C8: Medical Laboratory Animal Science (247)	
Clinical Medicine	C9: Clinical Diagnostics (90)	
	C10: Preventive Medicine (58)	
	C11: Anesthesiology (183)	
	C12: Internal Medicine (549)	
	C13: Surgery (1263)	
	C14: Ophthalmology (514)	
	C15: Stomatology (2186)	
	C16: Nuclear Medicine (188)	
Preventive Medicine and Public Health	C17: General Practice (120)	
	C18: Nursing (520)	
	C19: Environmental Medicine (281)	
	C20: Health Statistics (578)	
	C21: Nutrition (80)	
	C22: Toxicology (75)	
	C23: Disinfection Science (80)	
	C24: Epidemiology (80)	
Military and Special Medicine	C25: Vector Biology Control (80)	
	C26: Occupational Disease (80)	
	C27: Endemic Disease (80)	
	C28: Social Medicine (80)	
	C29: Health Inspection (78)	
	C30: Food Hygiene (72)	
	C31: Environmental Hygiene (79)	
	C32: Eugenics (80)	
Pharmacy	C33: Health Promotion and Health Education (80)	
	C34: Health Management (80)	
	C35: Military Medicine (70)	
	C36: Special Medicine (72)	
	C37: Medicinal Chemistry (2041)	
	C38: Pharmaceutics (24)	
	C39: Pharmaceutical Administration (888)	
Traditional Chinese Medicine and Materia Medica	C40: Traditional Chinese Medicine (3226)	
	C41: Chinese Materia Medica (2362)	

1296

4. ENGINEERING AND TECHNOLOGICAL SCIENCES

1297

Engineering and Technological Sciences

1298

1299

Field	Subfield
	D1: Engineering Mechanics (50)
	D2: Engineering Geology (81)
	D3: Engineering Mathematics (76)
	D4: Engineering Cybernetics (80)
Basic Disci- plines of Engin- eering and Tech- nological Sciences	D5: Engineering Hydrology (80)
	D6: Engineering Bionics (80)
	D7: Engineering Psychology (80)
	D8: Standards Science and Technology (80)
	D9: Metrology (80)
	D10: Exploration Technology (80)
	D11: General Engineering Technology (80)
	D12: Industrial Engineering (80)
	D13: Control Science and Technology (98)
Engineering and Technol- ogy	D14: Information Security Technology (761)
Related to Information and	D15: Systematic Application of Information Technology (82)
Systems Science	D16: Simulation Science and Technology (80)
Engineering and Technology Related to	D17: Engineering and Technology Related to Physics (70)
Nat- ural Sciences	D18: Optical Engineering (125)
	D19: Marine Engineering and Technology (80)
	D20: Bioengineering (79)
	D21: Agricultural Engineering (83)
Surveying and Mapping	D22: Geodetic Surveying Technology (87)
Sci- ence and Technology	D23: Photogrammetry and Remote Sensing Technology (72)
	D24: Cartographic Technology (89)
	D25: Engineering Surveying Technology (540)
	D26: Marine Surveying (80)
Materials Science	D27: Basic Disciplines of Materials Science (327)
	D28: Surveying Instruments (80)
	D29: Material Surfaces and Interfaces (70)
	D30: Material Failure and Protection (80)
	D31: Material Testing and Analysis Technology (72)
	D32: Material Experiments (80)
	D33: Material Synthesis and Processing Technology (80)
	D34: Metallic Materials (79)
	D35: Inorganic Non-Metallic Materials (72)
	D36: Organic Polymer Materials (77)
	D37: Composite Materials (74)
	D38: Biomaterials (75)
	D39: Nanomaterials (80)

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Engineering and Technological Sciences	
Field	Subfield
	D40: Mining Geology (88)
	D41: Mine Surveying (70)
	D42: Mine Design (75)
	D43: Surface Mining Engineering (78)
	D44: Underground Mining Engineering (80)
	D45: Mining Engineering (86)
	D46: Mineral Processing Engineering (78)
	D47: Drilling Engineering (80)
	D48: Oil and Gas Field Development Engineering (84)
Mining Engineering Technology	D49: Petroleum and Natural Gas Storage and Transportation Engineering (83)
	D50: Mining Machinery Engineering (80)
	D51: Mining Electrical Engineering (80)
	D52: Mining Environmental Engineering (87)
	D53: Mine Safety (93)
	D54: Comprehensive Utilization of Mining Resources Engineering (84)
	D55: Metallurgical Physical Chemistry (72)
	D56: Metallurgical Thermal Engineering (80)
Metallurgical Engineering Technology	D57: Metallurgical Technology (70)
	D58: Ferrous Metallurgy (70)
	D59: Non-Ferrous Metallurgy (70)
	D60: Rolling (80)
	D61: Metallurgical Machinery and Automation (70)
	D62: Mechanical Design (1941)
	D63: Mechanical Manufacturing Processes and Equipment (231)
Mechanical Engineering	D64: Cutting Tool Technology (80)
	D65: Machine Tool Technology (80)
	D66: Fluid Transmission and Control (83)
	D67: Mechanical Manufacturing Automation (80)
	D68: Electrical Engineering (681)
	D69: Engineering Thermophysics (80)
Power and Electrical Engineering	D70: Thermal Engineering (80)
	D71: Power Machinery Engineering (80)
	D72: Refrigeration and Cryogenic Engineering (80)

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Engineering and Technological Sciences	
Field	Subfield
	D73: Energy Chemistry (72)
Energy Science and Technology	D74: Energy Computing and Measurement (80)
	D75: Energy Storage Technology (80)
	D76: Energy-Saving Technology (80)
	D77: Nuclear Detection Technology and Nuclear Electronics (70)
	D78: Radiometric Metrology (70)
	D79: Nuclear Instruments and Equipment (78)
	D80: Nuclear Materials and Process Technology (70)
	D81: Particle Accelerators (70)
	D82: Fission Reactor Engineering Technology (70)
Nuclear Science and Technology	D83: Nuclear Fusion Engineering Technology (80)
	D84: Nuclear Power Engineering Technology (79)
	D85: Isotope Technology (95)
	D86: Nuclear Explosion Engineering (92)
	D87: Nuclear Safety (80)
	D88: Spent Fuel Reprocessing Technology (80)
	D89: Radiation Protection Technology (80)
	D90: Nuclear Facility Decommissioning Technology (80)
	D91: Radioactive Waste Treatment and Disposal Technology (80)
	D92: Electronic Technology (736)
	D93: Information Processing Technology (27)
Electronics and Communication Technology	D94: Communication Technology (50)
	D95: Optoelectronics and Laser Technology (81)
	D96: Semiconductor Technology (80)
	D97: Broadcasting and Television Engineering Technology (80)
	D98: Radar Engineering (80)
	D99: Basic Disciplines of Computer Science and Technology (922)
Computer Science and Technology	D100: Computer System Architecture (999)
	D101: Computer Software (228)
	D102: Computer Engineering (41)
	D103: Computer Applications (285)

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Engineering and Technological Sciences	
Field	Subfield
	D104: Basic Disciplines of Chemical Engineering (64)
	D105: Chemical Measurement Technology and Instrumentation (80)
	D106: Chemical Transport Processes (80)
	D107: Chemical Separation Engineering (80)
	D108: Chemical Reaction Engineering (80)
	D109: Chemical Systems Engineering (80)
	D110: Chemical Machinery and Equipment (75)
	D111: Inorganic Chemical Engineering (74)
Chemical Engineering	D112: Organic Chemical Engineering (80)
	D113: Electrochemical Engineering (77)
	D114: Coal Chemical Engineering (79)
	D115: Petrochemical Engineering (79)
	D116: Natural Gas Chemical Engineering (80)
	D117: Fine Chemical Engineering (76)
	D118: Papermaking Technology (86)
	D119: Fur and Leather Engineering (83)
	D120: Pharmaceutical Engineering (127)
	D121: Biochemical Engineering (116)
Engineering and Technology	D122: Product-Specific Application Technology (21)
Related to Product Applications	D123: Instrumentation Technology (80)
	D124: Weapons Science and Technology (90)
	D125: Textile Materials (80)
	D126: Fiber Manufacturing Technology (80)
	D127: Textile Technology (80)
Textile Science and Technolog	D128: Dyeing and Finishing Technology (80)
	D129: Clothing Technology (80)
	D130: Textile Machinery and Equipment (80)
	D131: Basic Disciplines of Food Science and Technology (80)
	D132: Food Packaging and Storage (77)
	D133: Food Machinery (80)
Food Science and Technol	D134: Processing and Utilization of By-Products in Food Processing (80)
	D135: Food Industry Business Management (86)
	D136: Food Engineering and Grain and Oil Engineering (80)

Engineering and Technological Sciences	
Field	Subfield
Civil and Architectural Engineering	D137: History of Architecture (85)
	D138: Building Materials (175)
	D139: Civil and Architectural Structures (108)
	D140: Civil and Architectural Engineering Design (235)
	D141: Basic Disciplines of Civil and Architectural Engineering (80)
	D142: Civil and Architectural Engineering Surveying (80)
	D143: Engineering Structures (80)
	D144: Civil and Architectural Engineering Construction (80)
	D145: Civil Engineering Machinery and Equipment (80)
	D146: Municipal Engineering (80)
Hydraulic Engineering	D147: Architectural Economics (80)
	D148: Basic Disciplines of Hydraulic Engineering (173)
	D149: Hydraulic Engineering Surveying (70)
	D150: Hydraulic Materials (79)
	D151: Hydraulic Structures (80)
	D152: Hydraulic Machinery (74)
	D153: Hydraulic Engineering Construction (92)
	D154: River Sediment Engineering (85)
	D155: Environmental Hydraulics (96)
	D156: Water Resources Management (72)
Transportation Engineering	D157: Flood Control Engineering (78)
	D158: Hydraulic Economics (69)
	D159: Road Engineering (79)
	D160: Highway Transportation (76)
	D161: Railway Transportation (80)
	D162: Waterway Transportation (80)
	D163: Ship and Vessel Engineering (80)
	D164: Air Transportation (80)
	D165: Transportation Systems Engineering (80)
	D166: Transportation Safety Engineering (80)
Aviation and Aerospace Science and Technology	D167: Basic Disciplines of Aviation and Aerospace Science and Technology (80)
	D168: Aircraft Structure and Design (80)
	D169: Spacecraft Structure and Design (80)
	D170: Aviation and Aerospace Propulsion Systems (80)
1549	
1550	
1551	
1552	
1553	
1554	
1555	
1556	
1557	
1558	
1559	
1560	
1561	
1562	
1563	
1564	
1565	

Engineering and Technological Sciences	
Field	Subfield
Aviation and Aerospace Science and Technology	D171: Aircraft Instruments and Equipment (80) D172: Aircraft Control and Navigation Technology (78) D173: Aviation and Aerospace Materials (80) D174: Aircraft Manufacturing Technology (84) D175: Aircraft Testing Technology (80) D176: Aircraft Launch, Recovery, and Flight Technology (84) D177: Aviation and Aerospace Ground Facilities and Technical Support (79) D178: Aviation and Aerospace Systems Engineering (89)
Environmental Science and Technology and Resource Science and Technology	D179: Basic Disciplines of Environmental Science and Technology (203) D180: Environmental Science (138) D181: Environmental Engineering (493) D182: Resource Science and Technology (24) D183: Public Safety (259) D184: Basic Disciplines of Safety Science and Technology (70) D185: Safety Social Science (75) D186: Safety Material Science (75) D187: Safety Ergonomics (83) D188: Safety Systems Science (82)
Safety Science and Technology	D189: Safety Engineering Technology (78) D190: Safety and Health Engineering Technology (82) D191: Safety Social Engineering (83) D192: Sector-Specific Safety Engineering Theory (96) D193: History of Management Thought (84) D194: Management Theory (80) D195: Management Metrology (81) D196: Sector Economic Management (80) D197: Regional Economic Management (80)
Management Science	D198: Science and Technology Management (80) D199: Public Administration (80) D200: Human Resource Development and Management (80) D201: Futures Studies (80) D202: Enterprise Management (600) D203: Management Engineering (71)

1620 5. HUMANITIES AND SOCIAL SCIENCES

1621 Humanities and Social Sciences	
1622 Field	1623 Subfield
1624 Marxism	E1: Studies on Marx, Engels, Lenin, and Stalin (103)
	E2: Scientific Socialism (88)
	E3: Foreign Marxism Studies (81)
	E4: Mao Zedong Thought Studies (888)
	E5: History of Marxist Thought (416)
	E6: History of Socialist Movements (104)
1625 Philosophy	E7: Marxist Philosophy (769)
	E8: History of Chinese Philosophy (21)
	E9: History of Western Philosophy (548)
	E10: Modern Foreign Philosophy (1)
	E11: Logic (368)
	E12: Ethics (69)
	E13: Aesthetics (976)
	E14: Religious Theory (60)
	E15: Primitive Religions (80)
	E16: Ancient Religions (80)
	E17: Buddhism (70)
	E18: Christianity (74)
	E19: Islam (80)
1626 Religious Studies	E20: Taoism (80)
	E21: Judaism (80)
	E22: Hinduism (80)
	E23: Zoroastrianism (80)
	E24: Manichaeism (80)
	E25: General Linguistics (199)
	E26: Comparative Linguistics (44)
	E27: Linguistic Geography (26)
	E28: Sociolinguistics (86)
	E29: Psycholinguistics (52)
1627 Linguistics	E30: Applied Linguistics (861)
	E31: Chinese Language Studies (439)
	E32: Languages and Scripts of Chinese Ethnic Minorities (24)
	E33: Foreign Languages (202)
	E34: Literary Theory (231)
	E35: Literary Aesthetics (99)
	E36: Literary Criticism (89)
	E37: Comparative Literature (81)
	E38: Modern Chinese Literature (80)
	E39: Ancient Chinese Literature (355)
1628 Literature	E40: Chinese Genre Literature (82)
	E41: Chinese Folklore Literature (80)
	E42: Literature of Chinese Ethnic Minorities (80)
	E43: World Literature History (80)
	E44: Eastern Literature (80)

1665
1666
1667
1668
1669
1670
1671
1672
1673

Humanities and Social Sciences	
Field	Subfield
1674	
1675	
1676	E45: Russian Literature (80)
1677	E46: Chinese Children's Literature (390)
1678	E47: British Literature (81)
1679	E48: French Literature (81)
1680	E49: German Literature (21)
1681	E50: Art Psychology (82)
1682	E51: Music (36)
1683	E52: Drama (45)
1684	E53: Traditional Chinese Opera (31)
1685	E54: Dance (30)
1686	Art Studies
1687	E55: Film (29)
1688	E56: Radio and Television Arts (21)
1689	E57: Fine Arts (869)
1690	E58: Applied Arts (46)
1691	E59: Calligraphy (26)
1692	E60: Photography (27)
1693	E61: Ancient Chinese History (66)
1694	History
1695	E62: World General History (82)
1696	E63: Asian History (76)
1697	E64: African History (21)
1698	E65: European History (87)
1699	E66: Historiography Theory (80)
1700	E67: Historical Documentation (72)
1701	E68: General Chinese History (80)
1702	E69: Archaeological Theory (81)
1703	Archaeology
1704	E70: History of Archaeology (80)
1705	E71: Archaeological Technology (80)
1706	E72: Chinese Archaeology (26)
1707	E73: Foreign Archaeology (30)
1708	E74: Specialized Archaeology (22)
1709	E75: Political Economics (21)
1710	E76: Economic Geography (29)
1711	E77: Developmental Economics (87)
1712	E78: Economic History (691)
1713	E79: World Economics (462)
1714	E80: Management Economics (21)
1715	E81: Accounting (718)
1716	Economics
1717	E82: Technical Economics (328)
1718	E83: Labor Economics (22)
1719	E84: Urban Economics (229)
1720	E85: Resource Economics (21)
1721	E86: Logistics Economics (644)
1722	E87: Commercial Economics (418)
1723	E88: Information Economics (544)
1724	E89: Public Finance (427)
1725	E90: Finance (404)
1726	
1727	

Humanities and Social Sciences	
Field	Subfield
	E91: Political Science Theory (303)
	E92: Political Systems (87)
Political Science	E93: Public Administration (398)
	E94: International Politics (84)
	E95: Theoretical Jurisprudence (376)
Law	E96: Legal History (155)
	E97: Sectoral Law (6471)
	E98: International Law (476)
	E99: Military Theory (80)
	E100: Military History (80)
	E101: Military Psychology (80)
	E102: Strategic Studies (80)
	E103: Operational Studies (80)
	E104: Tactical Studies (80)
Military Science	E105: Military Command Studies (80)
	E106: Military Organization Studies (80)
	E107: Military Political Work Studies (80)
	E108: Military Logistics (80)
	E109: Military Geography (80)
	E110: Military Technology (80)
	E111: History of Sociology (48)
	E112: Sociological Theory (1089)
	E113: Sociological Methods (324)
	E114: Experimental Sociology (21)
	E115: Applied Sociology (1016)
	E116: Social Geography (30)
Sociology	E117: Cultural Sociology (45)
	E118: Economic Sociology (56)
	E119: Social Anthropology (63)
	E120: Organizational Sociology (168)
	E121: Developmental Sociology (34)
	E122: Welfare Sociology (115)
	E123: Demography (8)
	E124: Labor Science (29)
	E125: Cultural Anthropology and Folklore (79)
	E126: Cultural Studies (86)
Ethnology and Cultural Studies	E127: Tibetology (95)
	E128: Xinjiang Ethnic Studies (85)
	E129: World Ethnic Studies (47)
	E130: Journalism Theory (170)
	E131: History of Journalism (872)
	E132: Journalism Practice (35)
Journalism and Communication Studies	E133: Journalism Business Management (92)
	E134: Radio and Television (81)
	E135: Communication Studies (458)
	E136: Journalism Operations (80)

1774
1775
1776
1777
1778
1779
1780
1781

Humanities and Social Sciences	
Field	Subfield
	E137: History of Education (592)
	E138: Principles of Education (82)
	E139: Teaching Methodology (56)
	E140: Moral Education Principles (590)
Education	E141: Educational Sociology (339)
	E142: Educational Management (26)
	E143: Educational Technology (2125)
	E144: General Education (277)
	E145: Vocational and Technical Education (34)
	E146: Exercise Physiology (907)
	E147: History of Sports (86)
	E148: Sports Theory (80)
Sports Science	E149: Sports Biomechanics (81)
	E150: Sports Psychology (80)
	E151: Sports Health Science (80)
	E152: Physical Education (80)
	E153: Economic Statistics (70)
	E154: Science and Technology Statistics (85)
Statistics	E155: Environmental and Ecological Statistics (80)
	E156: Biological and Medical Statistics (82)
	E157: Biological and Medical Statistics (82)
Library, Information, and Documentation	E158: Information Science (89)
	E159: Archival Science (52)
Science	E160: Museum Studies (112)

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835