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Abstract

Dialogue systems are frequently updated to ac-
commodate new services (e.g. booking restau-
rants, setting alarm clocks, etc.), but naive up-
dates with new data compromises performance
on previous services due to catastrophic for-
getting. To mitigate this issue, we propose a
simple but powerful reformulation for dialogue
state tracking (DST), a key component of dia-
logue systems that estimates the user’s goal as
a conversation proceeds. We restructure DST
to eliminate service-specific structured text and
unify data from all services by decomposing
each DST sample to a bundle of fine-grained
example-guided question answering tasks. Our
reformulation encourages a model to learn the
general skill of learning from an in-context ex-
ample to correctly answer a natural language
question that corresponds to a slot in a dialogue
state. With a retriever trained to find exam-
ples that introduce similar updates to dialogue
states, we find that our method can significantly
boost continual learning performance, even for
a model with just 60M parameters. When com-
bined with dialogue-level memory replay, our
approach attains state-of-the-art performance
on continual learning metrics without relying
on any complex regularization or parameter ex-
pansion methods.

1 Introduction

As conversational digital assistants are becoming
increasingly popular and versatile, it is important
to continuously update them to accommodate more
services.1 One of their key components is a dia-
logue state tracking (DST) model that estimates the
user’s goal, i.e. the dialogue state (Williams et al.,
2013). The dialogue state is used for queries sent
to application programming interfaces to retrieve

∗This work was done while at Meta AI.
1In this work, we use services and domains interchange-

ably to denote high-level services supported by digital assis-
tants, e.g. setting an alarm or booking a restaurant. Task refers
to lower-level functions, e.g. question answering, sentiment
classification, and dialogue state tracking.

Figure 1: Left: When continually learning with the orig-
inal DST format, DST models need to memorize new
slot keys when learning each subsequent service. Right:
Instead, reformulating DST into a bundle of granular
question answering tasks with help from similar exam-
ples (symbolized by the light bulbs) makes training data
uniform across all services. Learning new services ef-
fectively becomes additional training for the general
task of example-guided question answering and is more
conducive to continual learning.

information that grounds the dialogue model’s re-
sponse.

Unfortunately, naively updating a model for
a new service by training with new data causes
catastrophic forgetting (McCloskey and Cohen,
1989; French, 1999): upon learning from new data,
the model’s performance for previous services re-
gresses. To mitigate this issue while also avoiding
the impracticality of training a model from scratch



with data from all services each time new data be-
comes available, three main approaches have been
established as generally effective approaches to
continual learning (CL): memory replay, regular-
ization, and parameter expansion. Variations and
combinations of the three have been applied for
DST in previous work (Liu et al., 2021; Madotto
et al., 2021; Zhu et al., 2022).

However, most previous work has focused on
improving CL performance with service-specific
inputs or outputs, a paradigm that limits knowledge
transfer between services (left side of Figure 1).
This approach introduces a large distribution shift
from one service to another since the model needs
to memorize service-specific slots that it needs to
predict as part of the output. However, DST can
become a significantly more consistent task across
services by simply reformulating it as a collection
of example-guided question answering tasks. Our
approach, Dialogue State Tracking as Example-
Guided Question Answering (DST-EGQA2) trains
a model to learn to answer natural language ques-
tions that correspond to dialogue state slots (right
side of Figure 1) with the help of in-context ex-
amples instead of predicting service-specific struc-
tured outputs all at once without any explicit guid-
ance (left side of Figure 1). We hypothesize that
DST-EGQA benefits continual learning because it
transforms the DST task to become more granular,
easy, and consistent across services.

We discover that this is indeed the case, as our
approach leads to significant gains in CL perfor-
mance without using any of the aforementioned CL
approaches or data augmentation methods. Specifi-
cally, we transform DST into the TransferQA (Lin
et al., 2021) format and add examples from a re-
triever that is trained to identify turns that result in
similar dialogue state updates (Hu et al., 2022). In
addition, our approach does not require complex
partitioning of the full training set into training
samples and retrieval samples. We find that we
can use each sample in the training set as both tar-
get samples and examples in the retrieval database
without causing any label leakage. Also, we ex-
periment with a wide array of retrievers and find
that models trained to perform DST-EGQA can be
effective even with lower quality retrievers by inten-
tionally training it with subpar examples such that
it can learn when to leverage good examples and

2Code available at https://github.com/
facebookresearch/DST-EGQA

ignore bad ones. Lastly, we simply tweak the sam-
pling approach for memory replay to sample at the
dialogue-level instead of the turn-level and achieve
significant gains to CL performance even with a
single dialogue sample, resulting in state-of-the-
art performance on the Schema Guided Dialogue
(SGD) dataset (Zhu et al., 2022).

In summary, our main contributions are:

1. We show that simply reformulating DST as a
fine-grained example-guided question answer-
ing task (DST-EGQA) significantly improves
continual learning performance by enhancing
task consistency across services.

2. We propose a simple but highly effective
dialogue-level sampling strategy for choos-
ing memory samples that leads to state-of-the-
art performance when combined with DST-
EGQA.

3. We share a thorough analysis on DST-EGQA
to establish its effectiveness, robustness, and
limitations as a method for continual learning.

2 Dialogue State Tracking as
Example-Guided Question Answering
(DST-EGQA)

The goal of continual learning for DST is to sequen-
tially train on a stream of n services T1...Tn with
the goal of minimal degradation, i.e. catastrophic
forgetting, of peak performance that was achieved
when the model was trained on for each service Ti.
In this section, we motivate and elaborate on the
methodology of DST-EGQA for attaining this goal.
Figure 2 presents an illustrated overview.

2.1 DST as question answering

Dialogue state tracking (DST) is defined as esti-
mating the beliefs of a user’s goals at every turn
in a dialogue. It was traditionally formulated as a
slot-filling task (Wu et al., 2020; Heck et al., 2020),
and more recently as a structured text generation
task (Hosseini-Asl et al., 2020; Peng et al., 2021;
Su et al., 2022), shown in (0) in Figure 2. If a
user were to say “Find me a 3 star hotel.", the goal
is to deduce hotel-star = 3. However, we
can also indirectly achieve the same predictions
by reformulating DST as a collection of per-slot
questions to answer (Gao et al., 2019; Lin et al.,
2021). Given the same user request, we can ask our
model to answer “What is the hotel star rating the

https://github.com/facebookresearch/DST-EGQA
https://github.com/facebookresearch/DST-EGQA


Figure 2: DST-EGQA overview. We factor (0) the original dialogue state tracking task into a (1) granular question
answering task with the TransferQA format (Lin et al., 2021) and extend it to (2) pair each question with retrieved
examples that are provided in-context such that the domain-shift is reduced further to an example-guided question
answering task. In TransferQA, the original dialogue state is mapped to templated questions that correspond to each
slot key and value pair, which in aggregate request the equivalent information. DST-EGQA applies TransferQA for
continual learning and uses the target dialogue as the query to retrieve similar examples from the database, which is
formed from the training set excluding the target.

user wants?" and have it predict 3. We hypothe-
size that this question answering approach is more
conducive to continual learning because it lever-
ages a general skill that is understandable through
natural language. We only need to ask different
questions to predict slot values we are interested
in. On the other hand, directly predicting a struc-
tured dialogue state requires training the model to
generate slots that is has never generated before.

To transform DST into question answering as
shown in (1) in Figure 2, we leverage the Trans-
ferQA (Lin et al., 2021) format. Given DSt, the
dialogue state of a dialogue until turn t expressed
as (key, value) pairs {(st,i, vt,i) | i ∈ I} for slot i,
I = {1, ..., NT }, where NT is the number of slots
of interest for domain T , each st,i is transformed
into a question with a manually pre-defined tem-
plate Q : si → qi. The overhead of creating these
templates is minimal as it only has to be done once
and is as simple as transforming the name slot in
the hotel domain to a natural text question equiv-
alent, e.g. “What is the name of the hotel that the
user wants?”. Thus, with dialogue history until
turn t as Ht = {u1, b1, ..., ut−1, bt−1, ut}, where
ui is the user’s utterance on the ith turn and bi is
that of the bot’s, the original single input output
pair of

Ht ⊕ T → {(st,i = vt,i) | i ∈ I} (1)

becomes NT granular question answer pairs:

{Q(st,i)⊕Ht → vt,i | i ∈ I} (2)

where ⊕ denotes simple text concatenation. A dif-
ference from the original TransferQA approach is
that since we will be finetuning the model, we skip
the step of training with external question answer-
ing datasets and do not take any special measures to
handle none, i.e., empty slots, because our models
will learn to generate none as the answer for these
slots. Further detail on the TransferQA format and
additional examples of the fully constructed inputs
are shared in Appendix A.1.

2.2 Fine-tuning with in-context examples

Adapting to new services can be made even more
seamless by providing in-context examples (Wang
et al., 2022; Min et al., 2022; Ouyang et al., 2022).
Even when faced with a question it has never seen
before, the examples provide guidance on how
it should be answered. This kind of task refor-
mulation enables the development of models that
achieve state-of-the-art zero-shot performance and
generalizability even with small models (60M pa-
rameters) by explicitly fine-tuning with instructions
and in-context examples. Since most recent work
that focus on generalizabilty and zero-shot models
leverages generation models because of their open



vocabulary, we also place our focus on generation
models.

Motivated by the results from Tk-instruct (Wang
et al., 2022) and MetaICL (Min et al., 2022) that
showed even relatively small models can general-
ize well if explicitly trained to follow instructions
with examples, we explore whether we can pre-
vent a model from overfitting to domain-specific
questions and instead continually develop example-
based question answering capabilities to enhance
continual learning performance. Therefore, we ex-
tend Equation 2 to include in-context examples that
are retrieved from the training set, as shown in (2)
in Figure 2. To retrieve relevant examples, we use
Ht to form a query that retrieves the top k samples
{H

′j
t′ |j ≤ k} to use as in-context examples.3 By

inserting the retrieved examples and their relevant
slot values for each slot question qi, the final format
becomes:

{Q(st,i)⊕{H
′j
t′ ⊕v

′j
t′,i|j ≤ k}⊕Ht → vt,i | i ∈ I}

(3)
Throughout this work, we use k = 1 unless other-
wise specified.

2.3 Retrieving relevant in-context examples

The goal of the retrieval system is to find an exam-
ple turn H ′

t′ that requires similar reasoning for an-
swering the target sample Ht, such that fine-tuning
with it as an in-context example will help enable the
model to apply the same reasoning for answering
the question for the target sample. Hu et al. (2022)
found that instead of matching for dialogue state
overlap, matching for similar dialogue state change
∆DS, i.e. state change similarity (SCS), yields
more relevant examples. State changes are simply
a subset of DS that is different from the previous
turn: ∆DS = {(st,i, vt,i) | i ∈ I, vt,i ̸= vt−1,i}.

We found that computing similarity with this def-
inition of state change results in many ties that leads
to less relevant examples being lumped into the
same rank as more relevant ones, so we make minor
modifications by including the ∆DS operations,
e.g. INSERT, DELETE, and UPDATE, as part of
the slot key: ∆DSours = {(s1 ⊕ o1, v1), ...(sm ⊕
om, vm)}, where o is the slot operation. To resolve
ties that still remain with this modification, we use
the BM25 (Robertson et al., 2009) score between
the target and example’s last bot and user utter-

3Note that t ̸= t′ because the retrieved example may not
occur at the same tth turn.

ances (bt − 1, ut).4 With our changes, we were
able to observe a much better top k = 1 match,
which we verified manually with 100 random sam-
ples. We denote examples retrieved with this new
SCS+BM25 score as the Oracle because getting
∆DS requires knowing the DS that we would like
to predict ahead of time, and therefore cannot be
used at test time. However, the Oracle score is
useful for training a retriever that can retrieve ex-
amples with similar ∆DS and for estimating the
upper bound for DST-EGQA.

Using the Oracle score, for each sample in the
training set, we calculate its similarity with other
training samples and select the top 200 samples.
From the selected samples, we pair the top ten
and bottom ten as hard positive and hard negative
samples, respectively, to train a SentenceBERT-
based (Reimers and Gurevych, 2019) retriever us-
ing contrastive loss. We call the resulting retriever
IC-DST-retriever v2 (IDR2). This is the same con-
figuration for creating the dataset that was used to
train the original retriever used for IC-DST, but
instead of using x% of the entire training data, we
use the entire training set of the first domain T1

to train separate retrievers for each of the five do-
main orderings. We impose this constraint such
that we conduct our experiments under the practi-
cal assumption that we are only provided data for
T1 at the beginning and we do not want to extend
the continual learning problem for training the re-
triever. More details of IDR2’s training procedure
can be found in Section A.3.

2.4 Dialogue-level sampling for memory
The approaches that we outlined thus far are not
orthogonal to existing continual learning methods.
Therefore, they can be combined to further boost
performance. One of the simplest methods is mem-
ory replay, which samples training data from previ-
ous tasks and adds them to the current training set
so that the models forget less. For memory replay
to be effective, it is important to select representa-
tive and nonredundant training samples.

In DST, a training sample is a single turn in a
dialogue, since dialogue state is predicted for every
turn. To reduce redundant instances, we propose
a simple change to selecting training samples. In-
stead of combining turns from all dialogues and
then randomly sampling turns, we propose sam-

4Refer to Appendix A.2 for the details of the original
definition of state change similarity and the reasoning behind
our modification details.



pling at the dialogue-level first and then including
all turns from the sampled dialogues to form the
memory. The motivation is that there are rarely
the same type of dialogue state updates within a
dialogue, but there is a high chance that frequent
dialogue state updates across dialogues may be
sampled multiple times when using turn-level sam-
pling.

The simple difference between the sampling
strategies are clearer when observing their code
snippets in Python 3:

Turn-level sampling.
1 # flatten() turns a nested list into a

single-level list.
2 chosen_turn_samples = random.sample(

flatten(dialogue), memory size)

Dialogue-level sampling.
1 samples = random.sample(dialogue,

memory size//10);
2 chosen_turn_samples = random.sample(

flatten(samples), memory size)

3 Experimental Setup

3.1 Data

We use the continual learning setup proposed by
Zhu et al. (2022), which uses 15 single domains
from the Schema Guided Dialogue dataset (Ras-
togi et al., 2020), and aggregate our results over the
same five domain orders to make the most reliable
comparisons with their results. Comparing results
with the same order is crucial as we find that re-
sults can have significant variance depending on
the chosen domains and their order. For multi-task
training, there is only a single permutation, and
therefore we aggregate results over runs with three
different seed values. Our formulation described
in Section 2.2 shows that we are operating under
the assumption that the domain of interest will be
known ahead of time.

3.2 Evaluation

DST performance is mainly measured by joint goal
accuracy (JGA), which indicates the percentage
of turns for which all slot values are correctly
predicted. For CL, given JGA for domain i af-
ter training up to the tth domain at,i and the to-
tal number of domains T , we compare our ap-
proaches with three metrics from Zhu et al. (2022):

(i) Average JGA =
1

T

T∑
i=1

aT,i, the average of JGA

on each domain after training on all domains in

the continual learning setup, (ii) Forward Trans-

fer (FWT) =
1

T − 1

T∑
i=2

ai−1,i, how much training

on the current domain boosts JGA on future un-
seen domains, and (iii) Backward Transfer (BWT)

=
1

T − 1

T−1∑
i=1

aT,i−ai,i, how much the training on

the current domain reduces JGA on data from previ-
ously seen domains. We place the most importance
on Final JGA, while FWT and BWT provide addi-
tional signal on how different approaches provide
more transferability, and hence task consistency,
between domains.

3.3 Baselines
We replicate the baseline results from Zhu et al.
(2022) using their implementation, which include
approaches from Madotto et al. (2021):

• SimpleTOD (Hosseini-Asl et al., 2020): per-
form DST as a structured text generation task,
predicting the full state as a single sequence.
As was done in Zhu et al. (2022), we modify
the SimpleTOD format to append the domain
name at the end of the dialogue history as
described in Equation 1.

• Memory: randomly select M turns from the
training data for each previous domain and in-
clude it in the current domain’s training data.

• EWC: use the same samples selected for mem-
ory replay to regularize with the Fisher infor-
mation matrix (Kirkpatrick et al., 2017)

• AdapterCL (Madotto et al., 2021): freeze
the base model and train parameter efficient
adapters for each domain with number of
weights that are equivalent to 2% of that of
the pretrained model.

• Continual Prompt Tuning (Zhu et al., 2022):
freeze the base model and continually train
soft prompts after reformulating DST as a
masked-span recovery task (Raffel et al.,
2020). We include their best results, which
take advantage of a memory buffer for replay
and for memory-guided backward transfer, a
form of regularization that prevents updates if
doing so would increase the current model’s
loss on the memory samples by computing
gradients on them.

For DST-EGQA, we compare various configura-
tions to better understand the strengths and weak-



nesses of our approach. We vary the retriever used
during training and combine with other memory re-
play strategies. We also show CPT Multi-task and
DST-EGQA Multi-task to show the multi-tasking
upper bound performance for average JGA.

3.4 Retrieval baselines
We also experiment with various retrieval tech-
niques as baselines to IDR2:

• Random sampling

• BM25 (Robertson et al., 2009)

• OpenAI’s text-embedding-ada-002
model5

• SentenceBERT (Reimers and Gurevych,
2019): the all-mpnet-base-v26

• The original IC-DST retriever (oIDR): the re-
triever from Hu et al. (2022) that was trained
with the original SCS formulation and pairs
created from the MultiWOZ 2.1 dataset (Eric
et al., 2020).

Other than random sampling and BM25, re-
trieval ranking is based on the similarity between
sentence embeddings, which is the dot product be-
tween the query and the key. With the exception of
oIDR, which was trained to identify similarity with
the last turn’s dialogue state and last utterance pairs
between the bot and user: {(st−1,i = vt−1,i) | i ∈
I} ⊕ ut−1 ⊕ ut, the query and key of the database
uses only the last utterance pairs: ut−1 ⊕ ut. We
found this approach to be better as it diminishes the
undesirably high similarity assigned to examples
from the same dialogue that have the same previous
dialogue state.

3.5 Technical details
We conduct our experiments with the T5-small
model (Raffel et al., 2020). We train with a sin-
gle GPU using the AdamW optimizer, a learning
rate of 1e-4, and a batch size of 16. We train on
each domain for ten epochs without early stopping.
We select the checkpoint with the best validation
set performance when moving on to the next do-
main. Our experiments are run on V100, A40, and
A100 GPUs, based on availability.7

5https://platform.openai.com/docs/
guides/embeddings

6https://www.sbert.net/docs/
pretrained_models.html

7Our preliminary experiments with different GPU types
with otherwise identical configurations showed that the choice

4 Experiments and Analysis

4.1 Main results

TransferQA’s format is more CL-friendly. The
results for only transforming the DST from prior
work (Equation 1) to that of granular question an-
swering using the TransferQA (Equation 2) format
is shown in the row for DST-EGQA − In-context
examples in Table 1. Without the help of any in-
context examples, the transformation alone yields a
dramatic improvement in CL performance, increas-
ing average JGA from 14.4 to 43.2, and also im-
proving on both FWT and BWT. These results sup-
ports our hypothesis that a question answering task
that is understandable through natural language is
more conducive to better continual learning than
learning to generate service-specific structured out-
put.

Example-guided question answering further en-
hances CL performance. The subsequent rows
for DST-EGQA shows that fine-tuning with in-
context examples can further enhance all CL met-
rics by a large margin. Most notable is the boosts
that are seen in the FWT, for which memory replay
has almost a negligible effect. Augmenting DST-
EGQA with memory replay leads to even larger
boosts, even exceeding the CPT Multi-task model,
with most gains coming from BWT, which is ex-
pected with memory replay methods. Using the
Oracle retriever at test time leads to statistically in-
significant improvements, indicating that IDR2 can
retrieve examples that are on par with the Oracle
examples. Lastly, we can see that the relative gains
in Average JGA and BWT from memory replay
becomes less pronounced with models trained with
in-context examples, indicating that memory re-
play and example-guided question answering have
overlapping gains.

Double-dipping the training set as a retrieval
database does not lead to overfitting. It is im-
portant to note that, because our retrieval methods
are commutative, a target sample that is paired
with an example will serve as an example when
the example becomes the target sample. Therefore,
the answers for all training samples are seen as
part of the context during training with our setup
described in Section 2.3. This raises overfitting
concerns that the model could easily memorize the

of GPU in final performance introduces minimal variability to
the final result.

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html


Method Retriever Avg. JGA FWT BWT +Memory +Params +Reg.

SimpleTOD (2020)

-

14.42.7 7.11.0 -42.52.4 - - -
EWC (2017) 13.91.1 8.40.9 -50.84.3 ! ! !

Memory (2021) 58.63.5 10.90.5 -3.22.3 ! - -
Adapter (2021) 49.81.7 - - - ! -
CPT + Memory (2022) 61.22.5 13.70.8 0.50.4

† ! ! !

DST-EGQA
IDR2

54.13.3 22.81.8 -22.34.5 -
- -+ Dialogue Memory 68.90.3

† 21.21.5 -6.11.7 !
− In-context examples - 43.23.4 14.11.9 -31.04.2 -

DST-EGQA
Oracle

55.53.5 23.62.1 -19.14.2 -
- -

+ Dialogue Memory 69.31.0 22.51.8 -5.91.9 !

CPT Multi-task (2022) - 64.01.9 - - - ! !
DST-EGQA Multi-task - 74.21.8 - - - - -

Table 1: CL metric results with a checklist on the reliance of other continual learning techniques. We compare
models sequentially trained on 15 tasks from the SGD dataset and aggregate results across five different domain
permutations. DST-EGQA achieves the best results without any additional parameters or regularization methods.
The last two rows provide the multi-tasking results, which serve as an upper bound. In this table, results with
retrievers are with a single in-context example and the indicated retriever is used for training and test time, while the
Oracle retriever is used for the validation set. Memory here refers to samples that are added for the training data of
subsequent services for memory replay. All rows that use memory are with memory budget of M = 50. † indicates
statistically significant at p < 0.05 with the next best comparable value.

Train Dev Test Avg. JGA FWT BWT

- - - 43.23.4 14.11.9 -31.04.2

IDR2 IDR2
IDR2

45.13.0 21.41.4 -31.93.4
IDR2 Oracle 54.13.3

† 22.81.8 -22.34.5
Oracle Oracle 48.53.2 19.61.6 -27.11.4

Oracle
Oracle Oracle

53.74.4 24.12.6 -21.34.1
IDR2 55.53.5 23.62.1 -19.14.2

Table 2: Train-validation-test retrieval method compari-
son. Keeping the Training and Test-time retrieval meth-
ods the same while keeping the development set as the
Oracle leads to the best results, except for the last row,
which requires knowing the correct answer ahead of
time. † indicates statistically significant at p < 0.05
with the next best value.

answers for all samples and thus not learn general-
izable question-answering. Interestingly, this does
not seem to be the case, as training in this setup
leads to improved or on-par final test set perfor-
mance compared to training without any examples.
This implies that our approach does not impose
additional data constraints of having to split the
training set into dedicated training samples and
retrieval samples for it to be effective.

However, not shown in Table 1 is that we find
that DST-EGQA is sensitive to the training dynam-
ics (Section 4.2) and the quality of the retrieved
examples (Section 4.3).

4.2 Training dynamics

In practical settings we don’t have an oracle re-
triever, and our database may not contain the a
perfect example for each case seen at test time.
Thus, we may in fact retrieve irrelevant examples.
It is important for the model to be able to handle
these situations. Specifically, it should be able to
leverage relevant examples, yet ignore irrelevant
ones. To become more robust to these realistic cir-
cumstances, it may be useful to intentionally mix in
irrelevant examples during training for DST-EGQA.
We vary the combination of IDR2 and Oracle used
for training, validation, and test time. Results in
Table 2 support our hypothesis, showing that align-
ing the retrieval method from training time with the
method used at test time leads to the best perfor-
mance. Interestingly, best performance is achieved
by using the Oracle retriever at validation time,
shown by the large gap between IDR2 → IDR2
→ IDR2 and IDR2 → Oracle → IDR2 (second
and third row). This is somewhat surprising given
that one may expect selecting a checkpoint that
performs the best in the same setting as test time
would lead to better test time performance.

4.3 Retrieval method sensitivity

The findings from Section 4.2 raises a question
on whether training with other retrievers that may
provide a different mixture of good and bad exam-



Train, Test Dev Avg. JGA FWT BWT
- - 43.23.4 14.11.9 -31.04.2

Random

Oracle

45.54.5 14.22.2 -31.45.1
BM25 46.73.3 21.61.6 -20.15.0
SentBERT 46.26.0 17.32.0 -29.76.9
GPT 47.87.9 17.52.4 -27.08.7
oIDR 49.24.7 19.92.1 -26.25.2
IDR2 (ours) 54.13.3

† 22.81.8 -22.34.5

Table 3: Retrieval methods comparison. Although mix-
ing in irrelevant examples can boost performance at
training time, our results show that lacking a reliable
retrieval method at test time is detrimental to perfor-
mance. Our IDR2 model captures this balance the most
effectively.

Size Method Avg. JGA FWT BWT

- - 43.23.4 14.11.9 -31.04.2

10
Turn 50.13.8 15.01.4 -23.74.4
Dialogue 59.11.5

† 15.22.7 -14.72.3†

50
Turn 59.81.6 15.61.7 -12.82.0
Dialogue 64.20.8

† 15.02.1 -7.42.2†

100
Turn 63.91.2 15.61.7 -8.71.3
Dialogue 66.81.5

† 15.42.1 -3.32.5†

Table 4: Memory size analysis for DST-EGQA. Sam-
pling at the dialogue-level is much more effective than
sampling at the turn-level, especially for a constrained
memory budget.

ples can lead to a further boost performance with
DST-EGQA. We apply all the retrievers defined
in Section 2.3 and use the same training dynamics
that led to best results previously to examine each
retriever’s effectiveness. As shown in Table 3, our
IDR2 model seems to capture this balance the most
effectively, as it is significantly better than all other
retrieval methods.

4.4 Memory sampling strategy and size

We study the effect of the memory sampling strat-
egy and the size of the memory budget. We do not
use in-context examples for all configurations to
study their effects in isolation. As hinted by the
results in Table 1, dialogue-level sampling seems
to be a superior sampling strategy to turn-level sam-
pling. We take a deeper dive into the relationship
between the two sampling techniques and how both
approaches scale with memory budgets by varying
the memory budget sizes to 10, 50, and 100. Here,
size refers to the number of training samples. To
make sure the comparison between turn-level and
dialogue-level samples is fair, we sample dialogues
until the total number of turns in sampled dialogues
exceed the target size, and then sample the targeted

Train, Test # Ex. Avg. JGA FWT BWT

- - 43.23.4 14.11.9 -31.04.2

Random
1 43.26.8 14.51.7 -33.35.7
2 45.24.5 15.51.8 -31.66.2
3 43.96.2 16.91.6 -31.46.7

BM25
1 45.94.5 20.31.9 -21.46.2
2 46.26.1 23.31.6 -17.17.5
3 47.05.3 20.82.0 -21.85.5

IDR2
1 54.13.3 22.81.8 -22.34.5
2 50.23.7 22.01.8 -29.35.2
3 48.04.4 21.81.9 -22.34.1

Oracle
1 53.74.4 24.12.6 -21.34.1
2 54.33.0 28.72.6 -18.53.6
3 53.93.8 30.51.5 -14.12.6

Table 5: Number of in-context examples analysis. Small
models are unable to leverage more than one in-context
example when explicitly finetuned to perform in-context
learning.

number of samples from the exceeded set.
Table 4 shows that dialogue-level sampling

achieves a significantly better performance for all
equivalent memory budget sizes for turn-level sam-
pling and is even on par with the next budget size
used for turn-level sampling. This is likely due to
dialogue-sampling leading to a more comprehen-
sive set of samples that cover a wider diversity of
dialogue state updates in these smaller sizes of the
memory budget as described in subsection 2.4. As
the memory budget becomes larger, however, the
gap between turn-level sampling and dialogue-level
sampling diminishes, since both methods converge
to multi-task training when the memory budget is
unlimited.

4.5 Number of in-context examples

We also study the effect of having more than one in-
context example and share the results in Table 5. In-
cluding only one example to learn from in-context
creates a single point of failure, which is especially
risky for suboptimal retrieval methods. Having ad-
ditional examples to learn from can help mitigate
this risk. Therefore, we repeat our experiments
using multiple in-context examples. However, at
least with small model sizes, the DST models are
not able to effectively leverage additional examples.
This is not surprising for the Oracle retriever, where
in most cases the top example is the best example
that can be leveraged from the training set.

5 Related Work

Continual learning Continual learning prolongs
the lifetime of a model by training it further with
new incoming data without incurring the cost of



catastrophic forgetting (McCloskey and Cohen,
1989; French, 1999). There are three main branches
of continual learning: architecture-based methods,
replay-based methods, and regularization-based
methods. Architecture-based methods propose dy-
namically adding model weights when learning
new data (Fernando et al., 2017; Shen et al., 2019).
Replay-based methods mitigate catastrophic for-
getting by keeping a small sample of the previous
data as part of a a memory budget to train with the
new data (Rebuffi et al., 2017; Hou et al., 2019).
These methods mainly experiment with sampling
strategies and memory budget efficiency. Lastly,
regularization-based methods place constraints on
how the model becomes updated during training
with the new data such that its performance on pre-
vious data is maintained (Kirkpatrick et al., 2017;
Li and Hoiem, 2018).

Dialogue state tracking Continual learning for
DST has been explored by a series of recent work
that applied a combination of methods mentioned
above. Liu et al. (2021) expanded on SOM-
DST (Kim et al., 2020) with prototypical sample
selection for the memory buffer and multi-level
knowledge distillation as a regularization mecha-
nism. Madotto et al. (2021) applied various contin-
ual learning methods to end-to-end task-oriented
dialogue models and found that adapters are most
effective for the intent classification and DST while
memory is most effective for response generation.
More recently, Zhu et al. (2022) proposed Contin-
ual Prompt Tuning (CPT), which is most related to
our work. CPT improves continual learning perfor-
mance by finetuning soft prompts for each domain
and reformulating DST to align with T5’s masked-
span recovery pretraining objective (Raffel et al.,
2020). Compared to CPT, we suggest a more gran-
ular reformulation to facilitate the learning from
examples and do not rely on any regularization nor
additional weights.

Task reformulation and in-context learning
Enhancing a model’s generalizability to various
tasks by reformulating input and/or outputs to
become more uniform has become an increas-
ingly popular method for massive multi-task learn-
ing (Aghajanyan et al., 2021), even for tasks that
are considered distant from one another. T5 (Raffel
et al., 2020) accelerated this movement by pro-
viding dataset or task-specific labels or minimal
instructions to the inputs and then doing multi-task

training. Building on T5, Sanh et al. (2022) and
Wei et al. (2021) used more elaborate and diverse
set of instruction templates and showed that this
can significantly boost zero-shot performance. Cho
et al. (2022) applied a similar idea to a more se-
lective set of pre-finetuning tasks before training
on the target DST dataset to improve DST robust-
ness. Tk-instruct (Wang et al., 2022) takes a step
further by scaling up the amount of tasks included
in T0 and also provides positive and negative ex-
amples in the context in addition to the instructions.
Similarly, Min et al. (2022) introduced MetaICL,
which explicitly trains a model with the few-shot
in-context learning format used for large language
models (Brown et al., 2020), and showed that it
showed better in-context learning performance than
larger models. Task reformulation has also been
recently explored to help the model better under-
stand the task at hand and reduce domain-specific
memorization and thus boost zero-shot DST per-
formance (Li et al., 2021; Lin et al., 2021; Gupta
et al., 2022; Zhao et al., 2022).

6 Conclusion

In this paper, we propose Dialogue State Track-
ing as Example-Guided Question Answering as
a method for enhancing continual learning per-
formance that factors dialogue state tracking into
granular question answering tasks and fine-tunes
the model to leverage relevant in-context examples
to answer these questions. Our method is an ef-
fective alternative to existing continual learning
approaches that does not rely on complex regular-
ization, parameter expansion, or memory sampling
techniques. Analysis of our approach reveals that
even models as small as 60M parameters can be
trained to perform in-context learning for contin-
ual learning and that complementing such a model
with a randomly sampled memory achieves state-
of-the-art results compared to strong baselines.

Limitations

Using the TransferQA idea and retrieved examples
for in-context fine-tuning adds a lot of configura-
tions, which we have not been exhaustively ex-
plored, in lieu of prioritization of, we judged, more
important experiments. For example, we did not
explore sensitivity to the specific wording of ques-
tions, as was done with T0 (Sanh et al., 2022). We
leave as future work the testing of the hypothesis
that having more diverse questions per slot can lead



to even more generalizability between domains and
bring even further improvements to DST-EGQA.

Another limitation of DST-EGQA is that the re-
trieval database stores all previously seen samples
from training and thus can be considered a memory
with infinite size in our current formulation. Al-
though the samples in the retrieval database are not
used as training samples and provided as in-context
examples during inference after being trained with
subsequent services, the memory requirement for
maintaining the database may be quite high. How-
ever, we believe that this memory requirement is
still less restrictive than having the compute for
fully retraining the model with all data whenever
the model needs to learn a new service, especially
when the training data set is large.

Lastly, an important practical consideration is
the varying technical overhead in implementation
and portability of different approaches. Compared
to other approaches, training and inference is rel-
atively simple, as we use an autoregressive text
generation objective without special modifications.
However, while our approach does not require any
additional parameters, it does require a database
and a retrieval model that is comparable in size to
the DST model. Therefore, depending on the tech-
nical constraints, managing these two components
may be less desirable.
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Appendix

A Additional details

A.1 TransferQA format
The TransferQA format (Lin et al., 2021) has two
different formats depending on whether the ques-
tion is multiple choice or extractive. Categori-
cal questions with fixed answer choices are given
as multiple choice questions where the options
are provided as part of the context, prepended by
[opt]. Extractive questions do not have a spe-
cial format. We remove the prefix Extractive
Question: and Multi-choice QA as the
presence of [opt] already allows the model to
distinguish between the two. In addition, when
there are in-context examples, we add [target]
and [example] so that the model can distinguish
between the examples and the target. The original
and our modifications are shown in Figure 3.

A.2 State change similarity
Given two sets of state changes represented as
∆DSa = {(s1, v1), ...(sm vm)} and ∆DSb =
{(s1, v1), ...(sn vn)}, where s is the slot key and v
is the slot value to update the slot to, Hu et al.
(2022) defines state change similarity (SCS) as
the average of the similarity between slot keys s,
Fslot and the similarity between key value pairs,
Fslot−value:

SCS(∆DSa,∆DSb) =
1

2
(Fslot + Fslot−value)

Similarity F between the two sets is measured by
computing the average of two F1 scores using each
set as the target. We use the standard calculation:
F1 =

2PR
P+R , where P is precision and R is recall.

The resulting ties with this formula were not as
critical for IC-DST (Hu et al., 2022), because top k
examples, where k is a sizeable value that includes
most ties, were all provided as in-context learning
examples.

A.3 IC-DST retriever v2
We use the same hyperparameter settings as
oIDR (Hu et al., 2022), which uses a learning rate
of 2e−5, 1000 warm-up steps, and the contrastive
loss objective. We experimented with a binary clas-
sification and triplet evaluator at test time for dis-
criminating between similar and dissimilar samples
and selecting the best checkpoint to use. The binary
classification evaluator determines accuracy based

on cosine similarity between the paired examples
and an automatically calculated similarity thresh-
old that results in the best accuracy. The triplet
evaluator, on the other hand, compares whether
distance(q, p) > distance(q, n), where p is the
similar pair, n is the negative pair, and q is the query
that serves as the anchor between the similar and
dissimilar samples. We find that the two evaluators
yield statistically insignificant differences in the
final performance for our approach and therefore
we use the triplet evaluator for all the results in-
cluded in this work. We exclude the previous turn’s
dialogue state as the input query when fine-tuning
SentBERT (Reimers and Gurevych, 2019).



Figure 3: An illustration of the original and modified version of the TransferQA format. The desired output is in
green, which is the text that comes after the last Answer:.


