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ABSTRACT

While large reasoning models trained with critic-free reinforcement learning and
verifiable rewards (RLVR) represent the state-of-the-art, their practical utility is
hampered by “overthinking”, a critical issue where models generate excessively
long reasoning paths without any performance benefit. Existing solutions that pe-
nalize length often fail, inducing performance degradation due to a fundamental
misalignment between trajectory-level rewards and token-level optimization. In
this work, we introduce a novel framework, DECS, built on our theoretical dis-
covery of two previously unaddressed flaws in current length rewards: (1) the
erroneous penalization of essential exploratory tokens and (2) the inadvertent re-
warding of partial redundancy. Our framework’s innovations include (i) a first-of-
its-kind decoupled token-level reward mechanism that surgically distinguishes and
penalizes redundant tokens, and (ii) a novel curriculum batch scheduling strategy
to master the efficiency-efficacy equilibrium. Experimental results show DECS
can achieve a dramatic reduction in reasoning tokens by over 50% across seven
benchmarks while simultaneously maintaining or even improving performance.
It demonstrates conclusively that substantial gains in reasoning efficiency can be
achieved without compromising a model’s underlying reasoning power. Code is
available at https://github.com/pixas/DECS.
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Figure 1: Left: Two major flaws of prior practice apply sequence-level length reward without con-
trol of training data. Negative advantage values penalize correct high entropy tokens from long
sequences while positive ones reward redundant tokens from short sequences; Middle: Flaws of
length rewards lead to inferior performance and suboptimal efficiency gains on AIME2024 dataset;
Right: DECS improves pass@]1 of base models while reducing ~ 60% token costs compared to the
base model across 7 benchmarks. Experimental details are presented in Appendix @
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1 INTRODUCTION

Recent large reasoning models (LRM;|Guo et al.|(2025)); OpenAll (2025);/Qwen| (2025))) trained with
critic-free reinforcement learning (RL) algorithms, such as GRPO (Shao et al., 2024), DAPO (Yu
et al.}2025), and REINFORCE++ (Hu et al.,|2025a)), have demonstrated impressive reasoning capa-
bilities through verifiable outcome rewards. A hallmark of such models is their increased propensity
to generate high-entropy tokens (e.g., “wait”, “however”, “alternatively”), which serve to bridge
logical transitions between reasoning steps (Wang et al., [2025b). While these tokens reflect ac-
tive reasoning mechanisms that enhance performance, the propagation of trajectory-level rewards to
all tokens can inadvertently encourage prolonged generation led by high-entropy tokens even after
reaching a correct answer, a phenomenon known as “overthinking” (Ji et al.| [2025). To address
this inefficiency without sacrificing reasoning quality, recent approaches incorporate a small length
penalty into the correctness reward (Hou et al., 2025; |Su & Cardie, [2025]; [Aggarwal & Welleck,
2025 [Zhang et al.||2025d; Kimi et al., 2025; (Wu et al.| [2025)), using critic-free RL frameworks like
GRPO to promote concise yet effective reasoning.

Despite these advancements, we find that existing methods still fall short of achieving the optimal
efficiency-performance trade-off: improvements in reasoning speed often come at the expense of
degraded reasoning fidelity. This suboptimality raises a fundamental question: why do current re-
ward designs fail to effectively balance brevity and capability? To investigate this, we conduct a
theoretical analysis of the logit dynamics of two key groups of tokens within the GRPO framework:
(1) high-entropy tokens that initiate exploratory reasoning paths, and (ii) those belonging to the Nec-
essary Reasoning Prefix (NRP), defined as the minimal prefix of a reasoning trajectory that suffices
to justify the final correct answer. Our analysis reveals two critical limitations arising from the mis-
alignment between sequence-level length regularization and token-level policy updates (depicted in
Fig. [[(Left)), revealing inherent tensions in how efficiency is incentivized during training.

First, sequence-level length penalties inherently suppress high-entropy tokens, even when they con-
tribute to valid reasoning (§3.2)). Specifically, in GRPO, overlong (yet correct) trajectories receive
uniformly negative advantages across all tokens from length penalties. Consequently, when all re-
sponses to a given prompt are correct but differ in length, shorter trajectories yield positive advan-
tages while longer ones receive negative ones. This leads to a reduction in the logits of high-entropy
tokens through policy gradient updates. When easy prompts dominate the batch and response lengths
vary significantly, this negative gradient becomes dominant over iterations, causing the policy to
avoid generating these tokens, even if they are essential for productive exploration (Theorem [I]).
This leads to premature convergence and deviation from the optimal efficiency-efficacy trade-off.

Second, training convergence is impeded by misaligned incentives (§3.3). Without explicitly de-
coupling the NRP serving as the minimal sufficient reasoning prefix from subsequent generations,
tokens produced after the NRP in shorter trajectories may still receive positive advantages. This
falsely reinforces redundant steps, encouraging the model to continue generating beyond logical ne-
cessity. These spurious rewards not only distort the learning signal but also slow down convergence,
limiting the extent of achievable efficiency gains under finite training updates.

Building on these insights, we propose DECS, a novel framework with Decoupled token-level re-
wards and Curriculum data Scheduling for overthinking reduction (§4). To enable precise inter-
vention, we fine-tune a lightweight judge model to identify NRP boundaries. Based on this, we
design a decoupled reward function that ensures redundant tokens generated after the NRP are con-
sistently penalized, thereby suppressing overthinking during autoregressive decoding. Meanwhile,
we introduce a curriculum batching strategy that adaptively balances the proportion of easy prompts
according to the average NRP ratio in the current batch, mitigating undue suppression of exploratory
behavior. Experimental results on two base models show that DECS reduces reasoning tokens by
over 50%, while maintaining or surpassing performance on both deterministic (Pass@1; Table [I))
and exploratory (Pass@K; Fig. metrics. In summary, we conclude our contributions as follows:

1. Misalignment Analysis: We identify a fundamental misalignment between sequence-level
length penalties and token-level policy optimization in critic-free RL. Our theoretical analysis
demonstrates that this misalignment not only inhibits the generation of high-entropy tokens,
which are essential for valid reasoning, but also hampers efficiency improvements due to mis-
guided gradient signals.
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2. Adaptive Sampling with Decoupled Reward: We introduce DECS, a novel method that em-
ploys a decoupled reward system to consistently penalize redundancy. Coupled with a dynamic
batching strategy, this approach mitigates the over-penalization of exploration by incorporating
adaptive curriculum control.

3. Comprehensive Evaluation: We perform extensive evaluations across two model scales and
seven benchmarks, showing that DECS consistently reduces over 50% thinking tokens without
sacrificing base models’ capability boundary.

2 PRELIMINARY

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

The RL objective for the policy my is to maximize the cumulative rewards r received from the
verifier. Specifically, Policy Gradient (Williams| [1992)) gives the following objective function:

T

vj(a) - EqND7ONﬂ'9(q) Z v9 log 7T9(0j ‘ O<j)A(O<jaj)a (1)
j=0

where D is the training distribution, ¢ is an input prompt, o is an output sequence consisting of
T tokens {o1,02,...,0r}, and A(o«;,7) is the advantage of the j-th token given the state o;.
Recently, DeepSeek-R1 (Guo et al.2025)) boosted large language models’ reasoning ability via the
Group Relative Policy Optimization (GRPO; Shao et al.| (2024)) algorithm. Each rollout is labeled
with a verifiable reward r(-), while its advantage is estimated using the group average and standard
deviation values of rewards from a group of G trajectories O = {0;}$, generated based on the
same prompt q:

g - r(0;) — mean(r(o1),...,r(0g)) 2)
! std(r(01), - ..,7(0g))
GRPO optimizes the policy using the PPO surrogate loss (Schulman et al.,|2017):
1 G oil
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where p; j = 79(0i; | 0i,<j,q)/To1a(0i,; | 0i,<j,q) is the importance sampling ratio, |o;| is the
sequence length. The KL term is reduced to align with Hu et al.[(2025b)). Models are incentivized to
explore new trials, cross-verifying temporary results using diverse approaches, and correct existing
results, based on high-entropy decisive tokens (Wang et al.,2025b)). However, although the high fre-
quency of generating high-entropy triggers does boost the model for challenging problems (Muen-
nighoff et al.| [2025)), such improvements are not consistent (Ghosal et al., | 2025)), and introduce great
verbosity and “over-thinking” for vanilla queries (J1 et al., 2025).

2.2  EFFICIENT REASONING WITH LENGTH PENALTIES

One of the most straightforward methods is to add a length-based reward along with the fundamental
correctness reward to encourage shorter yet correct responses (Hou et al., [2025; |Su & Cardie} 2025
Aggarwal & Welleck, 2025). Specifically, if adopting a monotonically decreasing length reward

function f(I) = —~l accepting the sequence length [ as input, the combined reward is defined as:
, r(0;) — v|o] 0; is correct
i) = . 4
r'(0i) {r(oi) otherwise @

where v is a small factor to prevent the length reward from leading the overall reward, which could
be adaptively computed (Zhang et al.,[2025d) or preset as a hyperparameter (Kimi et al., 2025)).

3 ON THE LIMITATIONS OF LENGTH-GUIDED REASONING OPTIMIZATION

In this section, we formally reveal two significant limitations of current length-reward driven ef-
ficiency reasoning under the representative critic-free RLVR algorithm, GRPO, by analyzing the
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misalignment between the trajectory-level advantage score and the token-level optimization objec-
tive for redundant thinking tokens. Through an analysis of logit dynamics, we demonstrate that
this misalignment degrades reasoning performance (§3.2) and fails to reduce early redundancies,
thereby limiting potential gains in efficiency (§3.3). The concepts for each involved notation and
abbreviation are illustrated in Table [

3.1 LOGIT DYNAMICS UNDER POLICY GRADIENT

The LRM policy at step m, as a softmax policy, is parameterized by

eXp<ZO<t,0t)

)
o'e|v| 8XP Zocs 0

(&)

my' (01 | 0<t) = >

where z,_, o, is the output logit of token o, given prefix o<, and o; ~ 75" (- | 0«;). Under the
learning objective of the policy gradient, we have the following lemma (Cui et al.l 2025)):

Lemma 1 (Difference of policy logits in vanilla policy gradient). Let the actor policy 7y be a
tabular softmax policy and updated using Eq. [Z] with a learning rate 7, the difference of zo_, 0,
between two consecutive steps m and m + 1 satisfies

ZZ:‘;}Ot - Z?<t,0t =n- 7r6(075 | O<t) : A(O<t7 Ot)

3.2 OPTIMIZATION WITH ILL-POSED EFFICIENCY

GRPO estimates an advantage with intra-group relative reward by sampling G rollouts repeatedly
for a prompt. When G rollouts contain both correct and incorrect trajectories, correct sequences
always receive positive advantages, differing only in their magnitude and contributing little to effi-
ciency optimization. In contrast, when rollouts generated by the policy 7y on an easy prompt gg
are all correct, the correctness reward becomes constant across trajectories, leaving length as the
sole discriminative signal. As a result, correct yet overlong trajectories receive negative advantage
estimates through the GRPO algorithm, which activates efficiency optimization.

Recently, Wang et al.| (2025b) observes that the superior performance of LRMs is driven by high-
entropy tokens, which lead the policy to conduct exploration and reflection. However, trajectory-
level negative advantages would back-propagate to all tokens in Eq. |3} including the essential high-
entropy tokens. Under Lemmal|[T] the negative advantages will cause the decline of probability for
generating high-entropy tokens, and thereby the optimization process shifts from its intended goal,
i.e., improving efficiency while preserving performance, to one that trades correctness for shorter
trajectories. Formally, we could derive the following lemma:

Lemma 2 (Decreased logits for correct high-entropy tokens). (Proof in Appendix For f
defined in Eq. 4] the expected change of logit for high-entropy tokens {onign } from G correct rollouts
{0}, ~ ma(- | qo.c;) sampled from g i between two consecutive optimization steps m and m+1,
is strictly negative:

EOE{Ohigh} [Zgn—’_l - Zgn] <0

In the above lemma, the correctly generated high-entropy tokens produced by gy ¢ have their genera-
tion probabilities reduced, which may disrupt or even distort the learning direction of an entire batch
with respect to high-entropy tokens, subject to the constraints specified by the following theorem:

Theorem 1 (Maintenance of High-entropy Tokens Under Batch Learning). (Proof in Ap-
pendix Let the ratio of prompts qg . be k. Assume that the length reward is defined as Eq.
and oy, is the standard deviation of response lengths of qp ¢ on average, the condition for which the
expected logit change for correct high-entropy tokens among a batch is greater than 0 is as follows:

kop < C,

where C'is a constant with respect to the rollout tokens generated during a mini-batch.

This theorem implies the condition under which the policy would suffer from performance degrada-
tion when applying length reward with GRPO. When xo 1, becomes too large, the policy no longer
follows the performance-efficiency trade-off frontier. Instead, it shifts into a regime where gains in
efficiency come at the cost of the proactivity of high-entropy tokens, thereby degrading performance.
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3.3 INSUFFICIENT EFFICIENCY

In addition to the decreased performance, current length-based reward methods also fail to achieve
sufficient reduction of overthinking. Specifically, we differentiate the redundant tokens to be re-
duced by formally defining the necessary reasoning prefix as the most compact thinking process that
supports deriving a correct answer for the first time:

Definition 1 (Necessary Reasoning Prefix). Let q be an input prompt, y* be the ground truth
answer, and o = (01,09, ...,0r) be a generated response sequence on q, where L = |o|. The
necessary reasoning prefix (NRP) of o with respect to q is the shortest prefix o1.x~ such that
ANSWER(01.x+) = y* and Vk < K*, either ANSWER(01.,) = null or ANSWER(01.) # y*.

As the correct answer is logically justified at position /*, the token set {o; | j > K} is considered
redundant by many works (Dai et al 2025} [Yue et al.| 2025). To prohibit the policy from contin-
ually generating further tokens after the already generated NRP tokens, we convert the objective to
minimizing the probability of generating the first thinking token after the NRP, which functions on
the reduction of holistic redundancy due to the autoregressive generation of LRMs:

minEo oz, (1g6.0) |:ZZ;K*7OJ — Zg;;l*,oj} st. j=K"+1 6)
Applying LemmalT] this objective could be converted into a policy weighted expectation of advan-
tages, which is shown to be positive:

Theorem 2 (Suboptimal Reduction of Redundant Tokens). (Proof in Appendix Let the re-
ward function f be defined as Eq. 4| Let j = K + 1 denote the position of the first redundant
token beyond the NRP in a correct rollout o. Let A(0) be the group-relative advantage computed
via Eq. 2| Then, the expected policy gradient signal for the first overthinking token, denoted as

T(A;j = K" +1) = Eonry(lge,0) [Ta(0j | 0<5)A(0) | j = K5 + 1] satisfies:
JA;j=K*+1)>0

This theorem tells us that although the policy would reduce thinking length by penalizing tokens far
from the end of NRP from overlong responses, the policy cannot learn to stop at the end of NRP
given no penalization on the first redundant token. This undesired property keeps partial overthink-
ing tokens, leading to suboptimal reduction of redundancies.

4 DECS

Given the above analysis, we propose DECS, which contains three main designs to achieve the high-
est efficacy-efficiency tradeoff. First, to ensure that redundant tokens are penalized deterministically,
we train a small module that precisely identifies necessary reasoning prefix (NRP) components for
correct trajectories (§4.1)). After that, we design a decoupled token-level reward and differentiate
the reward scale for necessary and redundant tokens, to ensure enhanced efficiency without com-
promising performance (§4.2)). Based on the conception of NRP, we propose to prevent aggressive
penalization on high-entropy tokens following NRP by refactoring the data distribution of a batch
according to the current levels of redundancy incrementally (§4.3). Fig. 2] illustrates the overall
algorithm.

4.1 DETECTION OF NRP

It is common practice to train a token-level classification model to annotate NRP components. How-
ever, it requires the same tokenizer as the policy, which hinders adaptation to other policies. To this
end, we implement this detector as a lightweight generator model Mjyqgc, determining whether a
reasoning chunk contains the correct answer to a given problem. Specifically, given a correct rollout
o, we first extract the reasoning tokens as O¢hink = (01, - - -, 0< /think> ). Using pre-defined separator
tokens, the reasoning process is segmented into multiple chunks: S = {s1, 52, -, 5|5/}, Where s
is the c-th chunk of O¢pink. The judgment js, € {yes,no} for substep s.. is generated by prompting
Miudge given the problem ¢ and corresponding ground truth y* as:

Jse ™~ Mjudge( : ‘ q, Scay*) (N
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Figure 2: Overview of the DECS training pipeline. (1) Decoupled Token-level Reward: We fine-
tune a small language model to detect the necessary reasoning prefix (NRP) from other redundancy,
which are separately rewarded to penalize overthinking consistently while maintaining the proba-
bility for generating necessary reasoning steps. As the running example “What is 2+3?” shows, the
NRP contains the reasoning chunks from the starting token to the first time the model generates the
correct answer “5”. After that, any leading redundant token like “Wait” receives negative advan-
tages, and thereby discourage any redundant tokens to be generated via autoregressive generation.
a =14 —19. (2) Curriculum Prompt Schedule: The number of easy prompts gg ¢z grows in step
with the progressive decline in remaining redundancy.

The NRP spans all reasoning chunks from the start through the first chunk whose judgment is “yes”:

NRP = @si, where ¢* = min {c € [1,|5]] : js, = yes} (8
i=1
Here, € denotes the concatenation of reasoning chunks, and the ¢*-th reasoning chunk is the first
to entail the correct answer y*. The training details are illustrated in Appendix [G.6]

4.2 DECOUPLED REWARD ASSIGNMENT

For a group of rollouts {0; }$_, generated based on a given prompt ¢, we design a token-level reward
which ensures a maximum reward for NRP tokens and preferences for short yet correct responses:

T T+ ]-oi is correct -] S K:i v 0 ¢ Othink v i = @ (9)
i = ro—10) L .
(T’O — %) : 101', is correct J > K;: A 0j € Othink

where 7 and r( are respectively the maximum and minimum positive rewards, K is the last NRP
token index of o; and () denotes a padded token. Since the inverse proportional functlon enforces
a far lower reward for redundant tokens compared to r , any token followed by the NRP would
consistently receive negative advantages. Such penalization, as a result, helps to reduce verbosity
via the autoregressive generation property of LRM regardless of sequence lengths. Besides, only
redundant thinking tokens are possible to receive negative advantages, which prevents biased penalty
on essential reasoning tokens and answer conclusion tokens, and sustains the policy during the RL
training. Finally, the token-level advantage is computed similarly to GRPO and updated with Eq.[3}

A,DECS _ Ti,j — mean(rlyj, . 7TG,j) ' (10)
Std(TLj, . ,TGJ‘)
Appendix[Clin detail explains the functionality of Eq.[9for penalizing any leading redundant tokens.
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4.3 CURRICULUM PROMPT SCHEDULE

After identifying NRP tokens, penalization of high-entropy tokens occurs only in redundant tokens
following the NRP. Therefore, we schedule x,, based on the proportion of NRP R,, in correct
sequences within a batch, which reflects how many correct high-entropy tokens would be penalized:

Ko = clip(km—1 + B(Rm — Rm_1),0,£>) (11)
where 2, is the ratio of gp ¢ among the current sampled batch and 3 is a hyperparameter to con-
trol the learning progress. As trajectories with zero advantages would not provide any learning
signal, we follow [Yu et al.| (2025) to filter prompts whose G rollouts are all incorrect and fill the
batch by over-sampling. This curriculum strategy, designed to be bounded and monotonic, en-
ables smooth adjustment in response to the observed NRP ratio, which aligns with the principle of
curriculum learning (Bengio et al.,[2009). By setting a moderate value /5 with grid search (see Ap-
pendix [H.T), DECS can satisfy the condition elucidated in Theorem|I]to maintain unbiased learning
of high-entropy tokens throughout the whole training process. This yields stable convergence with
no observed training instability or performance degradation, which is reflected in Fig. [ and

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Evaluation We use MATHS500 (Lightman et al., 2023), AMC23 (AI-MO, 2024), Olympiad-
Bench (He et al., 2024), AIME2024 (Mathematical Association of America, 2025a) and
AIME2025 (Mathematical Association of America, [2025b) as in-domain testbeds, GPQA-
Diamond (GPQA-D; Rein et al. (2024)) and LiveCodeBench-v6 (LCB; Jain et al.| (2025)) as
held-out testbeds, covering math, coding, and science tasks with diverse complexity. We choose
ThinkPrune (Hou et all 2025), TLMRE (Arora & Zanette, 2025), AdaptThink (Zhang et al.,
2025b), LC-R1 (Cheng et al.,[2025) as baselines, and also include GRPO to serve as a performance
reference. For fair comparison, we set the temperature as 0.6, top_p as 0.95, and use a maximum
token limit of 16384 suggested by |Guo et al.| (2025). We conduct 128 rollouts for AIME2024,
AIME2025, and AMC23, 16 rollouts for OlympiadBench, MATHS500 and GPQA-D, and 10 roll-
outs for LCB to compute pass@ 1. We also compute the Average Efficiency Score (AES; Luo et al.
(20254a)) for a comprehensive assessment of efficiency and efficacy. The details of both metrics are

presented in Appendix

Training We adopt DeepScaleR (Luo et al.,|2025b) as the training set and choose DeepSeek-R1-
Distill-1.5B (DS-1.5B), DeepSeek-R1-Distill-7B (DS-7B) as base policies. We perform 16 rollouts
per prompt and use veRL (Sheng et al.| 2025) as the training framework. 7., o in Eq.[9]are set to 1.1
and 1.0, respectively, while 3 in Eq.[I1]is set to 0.2 with grid-search. Additional hyperparameters
are presented in Table[§]

5.2 RESULTS

As shown in Table [T} DECS reduces average reasoning length by 57.17% on the 1.5B model while
improving pass@1 accuracy by +2.48 points, demonstrating simultaneous gains in efficiency and
performance. On the 7B model, which exhibits less overthinking, DECS still cuts thinking tokens
by 49.50%, outperforming all baselines, with a +0.8 point accuracy gain. Compared to the previous
best, DECS improves the AES score by 0.12 and 0.14 on the 1.5B and 7B backbones, respectively,
establishing a superior efficiency-performance trade-off that compresses the computation without
sacrificing output quality. Meanwhile, although the NRP detector is specialized for math reasoning
and the training data only cover the math corpus, such superiority of efficiency generalizes robustly
to out-of-domain tasks (56.33% fewer tokens in GPQA-D and 33.52% fewer tokens in LCB), con-
firming DECS ’s strong transferability and practical value for broader reasoning tasks.

5.3 ABLATION STUDY

In this section, we conduct an ablation study on the DS-1.5B base policy, to reveal the critical
complementary relationship between the schedule prompt scheduling (CS) and decoupled token-
level reward (DR). We show the results in Table [3| and plot the comparison in Fig. We observe
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Table 1: Pass@1 (Acc) and the number of tokens (#Tok.) used across seven benchmarks. “LCB.”
denotes LiveCodeBench-v6, “OlympiadB.” denotes the OlympiadBench, and “GPQA-D” denotes
GPQA-Diamond. The best performing score is marked in bold and the second-best is underlined.

AIME2024 AIME2025 AMC23 MATHS500 OlympiadB GPQA-D LCB Average
Model Acc  #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. AES
DS-1.5B
Base 2799 12202 2294 12138 69.84 7875 84.55 4847 5378 9217 3286 8540 2453 10560 4521 9340 0.00

AdaptThink  27.92 6914 2195 7400 6473 2644 81.57 1488 5040 3501 2592 4093 2698 OI81 4278 5031 0.19
ThinkPrune 2693 5306 20.86 4937 72.87 2869 8427 1879 5504 3477 3551 3839 2536 5515 4583 3975 0.2
TLMRE 2987 7550 2224 7151 7451 3043 84.86 2376 56.08 4833 33.74 4896 26.13 7737 4678 5498 052
LCRI 2365 6904 19.64 6681 68.69 3715 8202 2277 5157 4519 3093 5377 2354 6940 4286 5202 0.18
DECS 3125 5550 2378 4965 7537 2988 84.40 1817 5610 3396 3592 3255 27.66 6026 47.78 4000 0.74

DS-7B
Base

AdaptThink
ThinkPrune
TLMRE
LC-R1
DECS

Table 2: Generalization to the Qwen3-4B model. DECS still achieves 0.61 AES score, with 54.80%
reduction to overthinking and 1.32 pass@ 1 improvement.

AIME2024 AIME2025 AMC23 MATHS500 OlympiadB GPQA-D LCB Average
Acc  #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. AES

Qwen3-4B  64.82 11611 5630 12870 91.60 7478 93.74 4839 71.07 9144 39.11 8072 62.17 9713 68.40 9104 0.00
DECS 6538 5431 56.96 5758 93.59 2864 93.78 1648 74.09 3646 41.00 3260 6327 6196 69.72 4115 0.61

Model

that without adaptive scheduling of easy problems, there is a noticeable performance drop, which
verifies the impacts elucidated in Theorem [I] Meanwhile, without decoupled rewards, the policy
remains nearly 25% of overthinking tokens, verifying that the sequence-level length reward fails to
fully reduce overthinking as Theorem [2]implies.

5.4 BACKBONE GENERALIZATION

In this section, we generalize DECS to Qwen3 backbone model, where we apply DECS to Qwen3-
4B (Yang et al.,[2025) with the same training hyperparameters introduced in §5.1] Results in Table[2]
demonstrates that DECS successfully extends to Qwen3-4B, with 54.80% reduction of reasoning
tokens and 1.32 pass@1 improvement on average. This strongly implies that DECS is backbone-
robust, and remains effective on a stronger base model.

6 ANALYSIS

In this section, we discuss the following research questions:

RQ1: How do the decoupled rewards help DECS to achieve the highest efficiency?

RQ2: How can DECS balance the exploration and exploitaiton when compressing reasoning?
RQ3: How does DECS perform with variable token budget?

RQ4: How do representative high-entropy tokens distribute after applying DECS?

RQS5: How does compressed thinking spread over various difficulty levels?

Response to RQ1:  Most of the tokens reduced by DECS stem from non-NRP tokens. To
reveal the significance of decoupled learning for reducing redundancy, we compute the proportion
of NRP tokens in all thinking tokens (PNRP) of correct trajectories generated on AIME2024. We
plot the average token costs and the average PNRP score in Fig.[3b] Although ThinkPrune reduces
a similar number of thinking tokens as DECS, it achieves a relatively lower PNRP score. This
inconsistency reflects that part of the reduced tokens stems from necessary reasoning tokens that
contribute to the final correctness, which explains its performance drops in Table [l Compared to
LC-R1 remaining ~ 10% redundancy, DECS further reduces non-NRP tokens and improves the
PNRP score, highlighting the utility of the decoupled reward for a unified reduction of overthinking.
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Figure 3: (a) Ablation study with two major components of DECS on the DS-1.5B base model.
(b) Comparison of DECS with other baselines on the proportion of NRP tokens (PRNP) and actual
reasoning tokens in the AIME2024 testbed. (c) DECS performs on par with the base policy (DS-
1.5B) in terms of Pass@K scores on three challenging benchmarks.
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Figure 4: (a) Average tokens and Pass@1 performance with 5 increasing generation budgets; (b)
Frequency of reasoning behavior tokens after applying DECS; (¢) Consistent compression rates of
DECS on six difficulty levels sourced from MATHS500 and AIME2024.

Response to RQ2: DECS maintains similar exploration potentials as the base model.
To investigate whether DECS achieves good pass@ l-efficiency tradeoffs by sacrificing the
problem-solving potentials compared to base models, we compare the pass@k scores (kK =
{2,4,8,16,32,64, 128}) on AIME2024, AIME2025 and AMC23. Results in Fig. [3c|and Fig.
reveal that across nearly all sample numbers, the success rate on the performance curve of the model
compressed by our method almost perfectly overlaps with that of the original model. This result
strongly demonstrates that the model’s exploration ability to find a correct solution through multiple
attempts is not injured by DECS. It suggests that preventing high-entropy tokens from receiving
negative gradients sufficiently preserves most exploratory and creative properties.

Response to RQ3: DECS consistently improves the token efficiency across diverse token bud-
gets. To validate whether the protection of NRP and exploratory high-entropy tokens would both
improve the model’s performance on token-constrained scenarios and not impair its performance

with a less-constrained token limit (Snell et al.| | , we evaluate under 5 increasing token lim-
its: [2,048, 4,096, 8,192, 16,384, 32,768]. Fig. and|§_5|demonstrate the Pass@1 scores and

average token costs on AIME2024, AIME2025 and AMC23 with the 1.5B policy. After applying
DECS, the policy could use far fewer tokens to achieve competitive performance across diverse to-
ken limits, which holds even for the 32,768 context limit. For the 7B policy (depicted in Fig. [T0),
DECS performs on par with the base model with a negligible performance gap under the 32,768 to-
ken limit, but consuming fewer than 30% tokens. This further validates that DECS achieves superior
efficiency compression without sacrificing the model’s capability boundary excessively.
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Response to RQ4: DECS reduces unnecessary reflective and conclusion tokens, but remains
a consistent tendency for creative and context formulation tokens. To investigate how DECS
refines the reasoning process and modulate the distribution for high-entropy decisive tokens, we
analyzed the frequency of representative tokens with different reasoning behaviors, including “Self-
Correction & Verification”, “Exploration & Alternatives”, “Context Setting” and “Conclusion Draw-
ing” (Wu et al, [2025). Results in Fig. @b| reveal a significant shift in the tendency for correction
tokens with DECS, which is the main source of overthinking. Meanwhile, the negligible change in
the frequency of exploratory tokens also suggests that the shearing of tokens after NRP hardly cause
degradation of creative thinking. Also, the dramatic decrease of conclusion tokens reflects that after
applying DECS the policy is more confident in their reasoning intermediate results, which leads to
similar or even higher pass@1 scores across diverse benchmarks.

Response to RQ5: DECS compresses non-NRP tokens under variable input complexity.
Since large reasoning models (LRMs) often overthink even on easy queries, we examine whether
DECS consistently reduces overthinking across varying difficulty levels. We compute the PNRP
score on the MATHS500 and AIME2024 datasets, which provide self-contained difficulty gradients
across six levels. As shown in Fig.{dc]| PNRP scores increase with problem difficulty, and DECS con-
sistently achieves scores above 90% across all levels. This trend holds for the 7B model (Fig. [Ob)),
with even higher scores on AIME2024, likely due to its improved reasoning ability and reduced
inherent overthinking. These results confirm that DECS enhances reasoning efficiency in LRMs
across diverse inputs, demonstrating its effectiveness and generality.

7 CONCLUSION

In this paper, we theoretically identify two key flaws in current critic-free RL methods for reducing
the overthinking phenomenon, which stems from the misalignment between token-level overthink-
ing reduction and sequence-level reward assignment. To mitigate these two drawbacks, we propose
DECS, which proposes a decoupled reward system for NRP and non-NRP tokens for consistent
reduction of overthinking, and introduces curriculum batch scheduling for maintaining exploratory
potentials. Experiments show that DECS reduces ~50% of reasoning tokens while maintaining or
improving performance, achieving more efficient reasoning without sacrificing accuracy.
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A THEORETICAL SUPPORT

A.1 PROOF OF LEMMA 2]

Lemma 2t For qg ¢ defined as above and f defined in Eq. || for any correct token that belongs to
the high-entropy token defined in|Wang et al.|((2025D)), the expected change of logit for high-entropy
tokens {onign } from G correct rollouts {0; }1 ~ (- | qo,c¢) between two consecutive optimization
steps m and m + 1 is strictly negative: :

+1 L
]EOG{Ohigh} [Zgn - Z(T] <0

Proof. We assume that the high-entropy token is distributed uniformly. For any sequence with L;
tokens, there will be h - L; high-entropy tokens on average, where h is defined as 20% in|Wang et al.

(2025b). For simplicity, we denote E,¢ oy} [Zm“ - ZZ,”} asE [zmH — 2z |. Since the length

o Ohigh Ohigh
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reward is a linear function w.r.t. length, the logit difference expectation is computed as:

G L;

m—+1 m A

E |:Zohigh Oh)gh:| E : E :79 Olj OZJ) 10i,j€{ohigh}
=1 j=1
L;
= § : E : OZ’J) 10i,_j€{01ﬁgh}
i=1 j=1
GRPO Broadcast
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-
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- —G - Z —L2 + LE[L]
Linear transformation of length
hG
= —(-E[L*] + E[L])
oL
= —hGop <0
As aresult, E {zomh:i 2 gh} < 0 for prompt gp - O

A.2 PROOF OF THEOREMIII

Theorem[I]: Let the ratio of prompts qg.c be k. Assume that the length reward is defined as Eq.
and oy, is the standard deviation of response lengths of qo ¢ on average, the condition for which the
expected logit change for correct high-entropy tokens among a batch is greater than 0 is as follows:

k-or <C,

where C' is a constant with respect to the rollout tokens generated during a mini-batch.

Proof. Following the proof process of Lemma [2] we can compute the upper bound of

Egp [zﬁ}gh zhlgh } by computing the upper bound of Zn 1 El 1 Z'o a A(0%) - Leorrect Lhigh,
which is the sum of advantage values of all correct high-entropy tokens:

3

O

Ep [Zgilgh — Zhigh } (037)A(037) - Leorrect - Thigh (12)

HM

) : 1correct

H'MQ i MQ

»y
e

where 0%7 is the j-th token of i-th output within a group of responses generated based on n-th
prompt. Assume that the output distribution for any gy ¢ is i.i.d, we expand this term as follows:

B G kB G c
Z Z hLzA(O:{J) . 1C0rrect — HBhZ L Mf(L + Z Z LZ — n : lcorrect
n=11:=1 n=1i=1 (13)
kB G - c
= —kBhGoy, + Z Z LZ M * Leorrect
n=1i=1
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where p5, o¢ is the average and variance of the correctness reward for n-th prompt. Assume that

the number of correct responses for each prompt b is a,,, u& = a, and /ol = \/a,(1 — ay), we
expand the second term as:

kB G kB G
Z Z Ll n . correct Z Z correct = CB (14)
n=1i=1 n=11i=1 \ an 1 o an

Therefore, the second term is always positive as a,, < 1 and is a constant within the batch B. As
a result, the objective would be less than 0 if and only if the first term of Eq. [13]is sufficiently
negative. Solving the inequality that Eq.[I3]is positive, we obtain the following condition for which
the learning signal across the batch would not penalize correct high-entropy tokens:

Cg

There are two ways to break this condition: (1) more gy ¢ within a prompt, parameterized as a larger
; and (2) a larger range of output length, parameterized as larger values of o,.

O

A.3 PROOF OF THEOREM[2]

Theorem [2] Let the reward function f be defined as Eq. | Let j = K} + 1 denote the position
of the first redundant token beyond the NRP in a correct rollout o. Let A(0) be the group-relative
advantage computed via Eq.[2} Then, the expected policy gradient signal for the first overthinking
token, denoted as J(A;j = K* + 1)Eqgry(q0.c) [To(0j | 0<j)A(0) | = K} + 1] satisfies:

JA;j=K*"+1)>0

Proof. Considering an arbitrary easy prompt ¢, suppose the LRM 7y generates a group of G correct
rollouts {0;}$ , with lengths Ly, Lo, ..., Lg. The advantage for each rollout is computed via
group-wise standardization (Eq. 2)):

A(o;) = f(Li) —pa 77Li - L

(el gy,
where L and o, are the mean and standard deviation of L within the group. Assume a simplified
optimal reward function A°P* = —~ forall¢ = 1,2,..., G. Now consider the first redundant token

Oij=K?+1 generated after the Necessary Reasoning Prefix (NRP) in rollout o;. In GRPO, this token
inherits the sequence-level advantage A(o; ), and contributes to the policy gradient through the term:
(05 | 0<;5) - A(0s).

Taking the expectation over the group:
Eonro(lq) [To(0; | 0<5)A(0) [ j = Kg+1].
Formally, Let w; := my(0;,<; | ¢) be the probability of generating the prefix up to the first redundant

token and simplify J(A4;j = K* + 1) as J(A). Under the typical behavior of autoregressive
policies, shorter rollouts have higher generation probability: if L; < Ly, then w; > wy.

We only consider the case where all rollouts are redundant, i.e., for any rollout o;, its thinking length
is larger than its NRP length L; > K. By the definition of conditional expectation:

a _ _
- Wy A O; Lw — L
j(A):M L mw T
D1 Wi oL
— G
where L,, = 2757“’ is the policy weighted average length. Subtracting L., with L, we obtain:

i=1W

Therefore, L, — L < 0,0 J(A) > 0
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Table 3: Ablation study with two major components of DECS on the DS-1.5B base model. “CS”
denotes adaptive data sampling and “DR” denotes the decoupled reward mechanism.

AIME2024  AIME2025 AMC23 MATH500  OlympiadB GPQA-D LCB Avg
Model ~"Acc  #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Iok. Acc #Tok. Acc #Tok.

DECS 31.25 5550 23.78 4965 7537 2988 84.40 1817 56.10 3396 3592 3255 27.66 6026 47.78 4000
w/oCS 2878 5676 2328 5206 71.99 3125 83.77 1830 55.12 3477 3444 3375 2679 5972 4631 4095
w/oDR  30.23 6942 2260 6850 7350 3548 83.94 1917 5585 4513 3371 4444 27.05 7561 4670 5111

B RELATED WORK
In this section, we introduce three categories of work to improve reasoning efficiency with training:

Methods based on length rewards As is introduced in the main text, length reward is one of the
most influential strategies to improve efficiency for large reasoning models (LRM). |Su & Cardie
(2025) proposes to determine the reward scale coefficient  defined in Eq. ff] by comparing the
average accuracy of the current step with that of the reference model. |Aggarwal & Welleck] (2025)
proposes L1, which optimizes the LRM to generate a correct reasoning path within a certain context
window. [Lyu et al.|(2025)) also proposes to use length penalties to encourage the model to answer
problems with different complexity with adaptive token limits. (Cheng et al.| (2025) uses a specialized
model to separate the necessary reasoning part and the redundant tokens, and reinforce the policy to
output the response with the shortest NRP length. However, although they have made great efforts to
encourage correct yet short reasoning paths, they do not consider the internal logit dynamics when
applying sequence-level length rewards with token-level optimization objectives, and thus suffer
from performance degradation.

Methods based on Adaptive Reasoning Another line of work is to teach the policy to directly
enclose the reasoning process and directly output the answer for easy problems, while conducting
sufficient reasoning for difficult queries. AdaptThink (Zhang et al.| [2025b)) proposes to generate a
group of responses for a single prompt, half of which is generated with no thinking content, and
thereby guides the policy for necessary thinking. |[Zhang et al.[(2025d) combines the length reward
and AdaptThink to teach the policy to conduct further thinking for already enclosed reasoning pro-
cesses, to avoid the policy from outputting incorrect conclusions with insufficient reasoning. Zhang
et al.| (2025c)) constructs a dataset containing both responses from thinking models and non-thinking
models, respectively and proposes to fine-tune the policy to choose thinking modes according to the
difficulty of problems. Although reducing the average output tokens successfully, these methods
often erroneously adopt non-thinking modes for challenging problems, which leads to performance
degradation. Meanwhile, they lack a penalty for overlong responses generated in thinking mode,
thereby still remaining overthinking.

Methods based on substep truncation As most overthinking contents could be separated into
thinking chunks with some high-entropy tokens, some methods propose to truncate the redundant
chunks following the NRP to achieve efficiency optimization. MinD (Zeng et al., |2025b)) uses su-
pervised fine-tuning to teach the policy to output its thinking contents with explicit separator tokens
in a cold-start manner. After that, it uses GRPO to teach the policy to stop after generating the NRP
part. S-GRPO (Dai et al.l |2025) splits a full reasoning trace into multiple segments, and manually
prompts the policy to derive the final answer with a different number of chunks so that the policy
could output trajectories containing only the NRP part. |Yue et al.| (2025) shares a similar philosophy
with S-GRPO, but proposes to assign process-level rewards after each split segment to encourage
the policy to stop generation on the token with max cumulative rewards. However, most of these
methods either introduce additional rollouts, or are not end-to-end frameworks, which hinders their
actual adaptation to large-scale training or agentic applications (Zhang et al., [2025a)).

C DETAILED ANALYSIS OF DECOUPLED REWARD DESIGN

While the decoupled reward formulation in Eq. [0] does not explicitly differentiate between lead-
ing redundant tokens (i.e., the first token immediately following the Necessary Reasoning Prefix,
NRP) and other redundant tokens, the combination of this design with the group-relative advantage
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Table 4: Concepts of involved mathematical notations, symbols and abbreviations.

Symbol Description

g The policy model parameterized by 6.

q A given input prompt or question.

o A reasoning trace (output sequence) generated by the policy 7.

o The sub-sequence of the output o up to (but not including) the j-th token.
0j The j-th token in the output sequence o.

r The reward signal received from the verifier.

VJ(0) The gradient of the policy objective function with respect to parameters 6.

A(o<;,j) The advantage function at step j given the state o ;, indicating how much
better the action is compared to average.

NRP Necessary Reasoning Prefix, the minimal set of prefix tokens of a reasoning
trace required to reach a correct answer. Formal definition in Definition

PNRP Proportion of the NRP tokens among a complete reasoning trace.

L;,|o;] The total length of the i-th rollout (total number of tokens generated).

Km The proportion of easy prompts among a batch at iteration m

B8 Coefficient for increasing the « value for each iteration.

T4 Maximum reward assigned to necessary reasoning tokens.

0 Base reward value.

AES Average Efficiency Score, a metric combining pass@1 score and token cost.

53] Concatenation operator for reasoning chunks.

c* The index of the first reasoning chunk that entails the correct answer.

KL The cumulative token count up to the end of the c¢*-th chunk in the ¢-th rollout.

mechanism in DECS ensures that all redundant tokens consistently receive negative advantages dur-
ing training. This property arises from the interplay between the reward structure and the relative
advantage computation:

1. Reward Structure: For any correct rollout o;, tokens within the NRP receive a fixed high reward
r4+ = 1.1. Tokens after the NRP (redundant tokens) receive a length-scaled reward:

(14 —70)L;

here L; = |o;|.
Lo e b= 10

Tij =To—
2. Group-Relative Advantage Mechanism: A token receives positive advantage only if its reward
exceeds the average reward at that position across the group of G rollouts.

Consider the leading redundant token in a sequence:

Case 1: The current sequence has the longest NRP in the group. Its reward computed by Eq.[9]
is generally below-average the average reward among the token group. In this case, it receives
negative advantages. This could be empirically verified across different training steps and model
architectures. To be more specific, we evaluated rollouts from the DS-1.5B/DS-7B model at training
steps [1, 60, 120, 180, 240] and counted how many leading redundant tokens have an above-average
reward computed by Eq.[0]in Table[5] Results demonstrate that across all batches and positions, no
instance was found where a leading redundant token received a positive advantage.

Case 2: At least one sequence in the group has an equally long or longer NRP. Then, there
exists at least one token in that sequence receiving the full reward r = 1.1. Meanwhile, under the
condition where a longer sequence has longer NRP length, we could sort the 16 sequence lengths
in descending order and assume that for a sequence length Lj which is the k—th largest among the
remaining 15 sequences. In this situation, there would be at least k rewards that equal to 1.1 and the
remaining rewards are all less than or equal to r. Therefore,

16—k
1
rk— =10 =01 Ly/Lmax — 7511 x b + > 1.0-0.1 X Li/Liax)
i=1
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Table 5: Comparison of erronously rewarded Table 6: Human evaluation results on the
redundant tokens using Eq.[9Jon DS-1.5B/DS- classification accuracy of math-specialized
7B. NRP detector on other domains, including sci-

ence and coding.

Step 1 60 120 180 240

DS-1.5B 0 0 0 0 N/A
DS-7B 0 0 0 0 0 GPQA-D 99.18 98.96 99.23
LiveCodeBench ~ 97.88 97.63 97.49

Dataset Humanl Human2 Human3

Table 7: Timing consumption (seconds) for the NRP detector within a full training step.

Step 1 60 120 180 240
Total time 3791 3038 2972 2368 2583
NRP detect time 130 121 101 121 94
Ratio 0.034 0.040 0.034 0.051 0.036

where Vi, L; < L by above conditions. Simplifying the right term, we could obtain:

Ly, k*(16*k)LL7k
—u<1-0.1 —1-0.1 max
reops 1m0l 10 16
k L
= 01 (14 R
TR

<0

This holds for any leading redundant tokens for any sequence that does not have longest NRP length,
which also represents a negative advantage value.

In both cases, the reward for the leading redundant token is strictly below the group average, result-
ing in a negative advantage. This guarantees it will be penalized by the policy gradient update. Thus,
the decoupled reward design, in conjunction with the advantage estimator of GRPO, inherently pe-
nalizes leading redundant tokens, thereby penalizing all redundancies by autoregressiveness.

D CORRELATION TO RELATIVE OVERGENERALIZATION IN MULTI-AGENT
RL

In this section, we discuss the parallels between the “erroneous penalization” issue presented in this
paper and concepts like relative overgeneralization in Multi-Agent RL (MARL). The core problem,
the misalignment between global reward signals and local token-level updates, resonates with
broader challenges in the RL literature.

* The Parallel: Relative overgeneralization in MARL occurs when agents learn suboptimal joint
behaviors due to misleading credit assignment from shared rewards. Analogously, in our single-
agent sequence setting, the coarse-grained, sequence-level length penalty acts as a blunt signal.
This signal fails to accurately attribute cost to specific redundant tokens, leading to the erroneous
suppression of useful, high-entropy tokens. This is essentially a form of token-level overgen-
eralization.

* The Solution: This parallel highlights a fundamental challenge in policy gradient methods: the
need for fine-grained, temporally precise feedback to avoid spurious credit assignment. Our pro-
posed decoupled reward mechanism (Eq.[9) can be viewed as an instance of structured credit
assignment. By explicitly disentangling necessary and redundant reasoning steps, we ensure that
only truly redundant tokens are penalized, effectively mitigating this token-level overgeneraliza-
tion.
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Table 8: Hyperparameters for DECS training.

Hyperparameter R1-Distill-Qwen-1.5B  R1-Distill-Qwen-7B

max response length 16384 8192
batch szie 128 128
rollout batch size 128 128
learning rate 2.0e-06 2.0e-06
total training epochs 2 3
rollout number 16 16

€ 0.2 0.2

B 0.2 0.2

E LIMITATION & FUTURE WORK

Our approach effectively mitigates the performance—efficiency trade-off in length-rewarded GRPO
by dynamically separating necessary reasoning from redundant tokens. That said, two practical
considerations remain.

First, the NRP detector is implemented as a small auxiliary model (1.5B parameters). While this
adds a minor component to the pipeline, it incurs only 5.1% training overhead (Table[7) and achieves
near-perfect accuracy (Fig. [6c), making it a lightweight and reliable proxy. Integrating NRP detec-
tion directly into the policy, e.g., via confidence (Yan et al.l [2025) or entropy signals (Cui et al.
2025)), is a promising future direction but not required for the current solution to work well.

Second, we evaluate DECS on models up to 7B due to resource constraints. However, since our
method is model-agnostic and controls learning solely through the curriculum schedule with Eq.[TT}
we expect it to scale smoothly to larger architectures with adequate compute.

Importantly, neither limitation affects the validity or effectiveness of our core contribution: a simple,
low-overhead strategy that achieves strong efficiency gains without sacrificing performance across
both in-domain and out-of-domain tasks.

F USE OF LARGE LANGUAGE MODELS

We mainly use large language models for proofreading and polishing of this paper.

G EXPERIMENTAL DETAILS

In this section, we provide the details of each experiment conducted throughout this paper. We
provide detailed descriptions of the training hyperparameters, the test sets and prompts used for
evaluation, the metrics employed to evaluate each method, and detailed procedures for reproducing
important experiments.

G.1 TRAINING HYPERPARAMETERS

We present the other hyperparameters adopted during training in Table[8] Since we schedule prompts
during a batch in §4.3]and use over-sampling to complement a full batch, the number of total training
steps is half-reduced. To align with a similar number of training updates with other baselines, we
train the base model for 2 epochs for the 1.5B model. Note that we train one more epoch for the
7B base model, as we set a max response length to 8192 and hence many responses exceeding this
limit would be filtered out. As a result, to achieve a similar number of prompts participating in the
training process, we extend the training process by allowing for training one more epoch.

G.2 DESCRIPTIONS OF TESTBEDS

We present the detailed description of the evaluation datasets as follows:
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1. AIME2024, AIME2025 (Mathematical Association of Americal [2025ajb): These two datasets
contain High school Olympiad-level assessment from American Invitational Mathematics Exam-
ination in 2024 and 2025. Each dataset contains 30 challenging problems covering Algebra/Ge-
ometry/Number theory.

2. AMC23 (AI-MO, 2024): This dataset is sourced from American Mathematics Competitions
system in 2023, which contains 40 problems with hybrid question types.

3. OlympiadBench (He et al.| 2024): This dataset contains comprehensive math Olympiad prob-
lems from various nations. We only select the English version related to Math and keep the
problems that require an answer with a number, leaving 581 problems for evaluation in total.

4. MATHS00 (Lightman et al., 2023): This dataset is an advanced mathematics evaluation set
curated by OpenAl containing 500 problems with formal mathematical notations.

5. GPQA-Diamond (Rein et al.| [2024): This dataset is a subset of the GPQA (Graduate-Level
Google-Proof Q&A) dataset, which contains 198 challenging multiple-choice questions authored
and verified by domain experts in biology, physics, and chemistry.

6. LiveCodeBench (Jain et al.,2025): This dataset is designed to evaluate the live code generation
capabilities of large language models, focusing on immediate correctness and practical coding
skills. We use its v6 version, containing 1,055 problems in total.

G.3 EVALUATION PROMPTS

For AIME2024, AIME2025, AMC23, OlympiadBench, and MATH500, we prompt the LRM
with “Please reason step by step and output the final answer within
\boxed{}” and use Math-Verif to evaluate the correctness. For GPQA-Diamond, we
prompt the LRM with “Please reason step by step and put the answer
index after ANSWER: ”. For LiveCodeBench, we prompt the LRM with “You will
be given a question (problem specification) and will generate a
correct Python program that matches the specification and passes
all tests.\n\nQuestion: {question}\n\nRead the inputs from stdin
solve the problem and write the answer to stdout (do not directly
test on the sample inputs). Enclose your code within delimiters
as follows. Ensure that when the python program runs, it reads
the inputs, runs the algorithm and writes output to STDOUT.”

G.4 COMPUTATION OF METRICS

AES The AES score (Luo et al.,[2025a) is computed by comprehensively comparing the pass@ 1
score and average token costs of the tuned policy and the base policy.

pass@l—pass@1, .
A Liase — L 3- <) A b pass@l > pass@1, ..
ES = I7 + 5 pass@Q1, .. —pass@Q1 @l @l (16)
base O T pass@lin,.. pass < pass@ly .o

This metric incorporates both the ratio of tokens reduced and the impact on model performance: it
penalizes methods that degrade performance while rewarding those that improve upon the baseline.

Pass@K The pass@K (Chen et al.,2021) scores are computed as below:

("<°)
passQK =1 — Irf (17)
(%)
where n is the number of samples and c is the number of correct samples. When K is set to 1, this
metric is reduced to the average accuracy among the n samples.

G.5 DETAILS OF EXPERIMENTS OF FIGURE(I

To compute the optimal curve, we use the results obtained in Fig. fa] to serve as the points to be
fitted. Specifically, when setting the maximum context length to [2048, 4096, 8192, 16384, 32768,

"https://github.com/huggingface/Math- Verify
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we record the actual output tokens of DECS as [2010, 3504, 4985, 5518, 5808], and corresponding
pass@1 scores as [15.42,25.00,30.57,31.25,31.77]. After that, we use the well-established log-
linear scaling law function y = alog, x + b (Muennighoff et al, [2025} |Zeng et al.l [2025a; Ballon
et al.,2025) to fit these data points, and obtain the fitter function as y = 0.1083 log, —1.0306 where
x represents the average tokens and y represents the pass@1 score, with an R?2 = 0.9936 (Hastie
et al., [2009). After that, we plot the base model’s performance (labeled as ‘Base’) and LC-R1’s
performance (labeled as ‘Previous Method’) to show that previous length-penalty based methods fail
to drive the policy towards the optimal trade-off between token efficiency and model expressiveness.

G.6 DETAILS OF TRAINING NRP DETECTOR

Training Details We build the training data using Opean-Math-220KE] with the large language
model Qwen2.5-72B (Team, 2025)), which demonstrates strong mathematical reasoning capabil-
ities and friendly deployment requirements. Specifically, we split each model response using a
predefined list of discourse markers, includingWait, But, Alternatively, Hmm, However, Let, which
prior work has shown to signal reasoning transitions or overthinking behaviors (Chen et al.| [2024;
Wang et al, [2025a; Sui et al., [2025). These markers naturally segment the reasoning trace into
semantically coherent chunks. For each chunk, we prompt Qwen2.5-72B with the original prob-
lem, ground-truth answer, and the chunk itself (using the prompt in Fig. [5) to judge whether the
chunk semantically contains the correct answer. We filter out responses that violate the expected
output format and collect valid annotations until reaching 5,000 unique problems. To assess an-
notation quality, we manually verify 100 randomly sampled (chunk, judgment) pairs and find no
clear misclassifications, indicating high reliability of the teacher model’s labels. We then fine-tune a
Qwen2.5-1.5B-Instruct model on this dataset for 2 epochs via supervised learning, constraining its
output to \boxed{yes |no} for efficient online inference. The model is served via vLLM (Kwon
et al.| 2023) using the same prompt during training. As shown in Fig.[6c| the detector achieves high
accuracy (>99%) on the development set and stabilizes quickly during training. Given its strong
agreement with human judgment and consistent performance, we treat its predictions as a reliable
proxy for the ground-truth NRP position in our downstream training pipeline.

Generalization Tests To test its generalization, we evaluated the NRP detector’s predictions on
model generations from two out-of-domain benchmarks: GPQA-Diamond (science) and Live-
CodeBench (coding), under the DeepSeek-R1-Distill-1.5B model. Three expert annotators inde-
pendently assessed the correctness of predictions from the NRP detector. The overall evaluation
protocol is the same as illustrated above, where the NRP detector classifies whether a reasoning
chunk contains the correct final answer and the human expert judges whether such classification is
correct. The prediction is incorrect only if (1) a chunk containing a correct answer is classified as
“False” and (2) a chunk without a correct answer is classified as “True”. We compute the classifica-
tion accuracy as the proportion of chunks correctly labeled across 100 correct responses from each
dataset in Table [f] These results confirm that the math-trained NRP detector exhibits near-perfect
reliability on science questions and very high (>97%) accuracy on coding tasks. This high classi-
fication accuracy provides a solid foundation for the observed zero-shot transfer success of the full
DECS framework.

H ADDITIONAL EXPERIMENTS

H.1 DETERMINATION OF 3 IN EQ.

We conduct a grid search on the AIME2024 dev set on both base models. We search the /3 in the
following range: [0.0, 0.1, 0.2, 0.3, 0.5] and the results in Table@]indicate that the value 0.2 achieves
a great trade-off of efficiency gains and performance maintenance, where 0.0 represents that we only
takes the decoupled-reward and follows |Yu et al.[(2025) to filter out extremely easy or hard prompts.
Meanwhile, the optimal value of 5 obtained in the 1.5B scale model transfers to the 7B model,
which demonstrates that the value 0.2 is robust. We deem that as the policy’s initial ratio of NRP
Ry is approximately 0.5, a value of 0.2 guarantees that there will be at most (100 — 50) - 0.2 = 10
percent of easy prompts among a batch. This quantity ensures that the condition in Theorem [1]is

“https://huggingface.co/datasets/open-r1/OpenR 1-Math-220k
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Given a math problem and a segment of a long reasoning
process to solve the problem, your task is to identify
whether this segment has presented a correct final answer.
If the segment contains information that can serve as the
final answer to the problem and the answer is semantically
correct when referring to the ground truth, simply explain
the reason and output \boxed{yes}. Otherwise, directly
output \boxed{no}.

**Problemxx:

{problem}

**Reasoning segmentxx:

{segment}

**Ground Truthxx:

{answer}

Figure 5: Prompt for the training and inference with the NRP detector

Table 9: Grid search result on AIME2024 for different 3 values.

Model B8 0.00 010 020 0.30 0.50  Base

Pass@1 3298 31.77 3125 2923 2542 27.99
1.5B #Tokens 7960 6876 5550 5497 5019 12202

Pass@1 57.29 54.16 5133 50.00 43.96 50.65
B #Tokens 8277 7525 5277 5114 4905 10508

hardly satisfied during the training progress. Although a more fine-grained search value like 0.25
may bring a better trade-off, we leave it for future research.

H.2 TRAINING LOGS

In this section, we demonstrate the training curves of DECS on the 1.5B model and 7B model on
Fig. [6] and Fig. [7] respectively. We select AIME2024 as a representative evaluation set, and plot
the average reward and response length every 5 steps. Moreover, we also plot the average response
length and the proportion of NRP (PNRP) during training to show that DECS achieves superior
efficiency gains by reducing a large amount of non-NRP tokens in the thinking process.

H.3 ABLATION WITH OTHER RL ALGORITHMS

Apart from GRPO, REINFORCE++ (Hu et al} [2025a) is also another strong algorithm for RLVR.
Therefore, we also experiment DECS by taking REINFORCE++ (R++) to estimate the advantage
value and use the same update formula as Eq. [3} Specifically, we use the same reward design as
Eq.[9|but change the advantage estimator as below:

Ay =rij —mean(ry;, - ,7a,;)
in _ A}, — mean(A)
“J std(A)

B G |of]

mean(A) = S S Z Z Z Al

B G
D=1 Zi:l lo}'| =1 i=1j=1

SF 2GS (Ar, — mean(4))?
(S S Jor) =1

std(A) =
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Figure 6: (a) AIME2024 reward and response length during evaluation for training DeepSeek-R1-
Distill-1.5B base model with DECS and (b) Proportion of NRP (PNRP) and response length during
training for training DeepSeek-R1-Distill-1.5B base model with DECS. (c) The training log and

accuracy on the dev set of the trained NRP detector.
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Figure 7: (a) AIME2024 reward and response length during evaluation for training DeepSeek-R1-
Distill-7B base model with DECS; (b) Proportion of NRP (PNRP) and response length during train-
ing for training DeepSeek-R1-Distill-7B base model with DECS; (c) DECS improves pass@1 of
base models while reducing ~ 50% tokens compared to the 7B base model across 7 benchmarks.

where A” is the advantage for the j-th token of ¢-th rollout generated based on n-th prompt among
a batch size of B. Results in Table[T0illustrate that there is no significant difference between GRPO
and R++, which verifies the robustness of DECS.

H.4 COMPARED TO MORE EFFICIENT REASONING BASELINES

Apart from the four baselines presented in Table[T] in this section, we compare more baselines that
adopt the other approaches, different from length rewards, to improve the reasoning efficiency. We
select S-GRPO (Dai et al., 2025), VSPO (Yue et al.| [2025), MinD (Zeng et al.,2025b), LASER (Liu
et al.l 2025) and LAPO (Wu et al., [2025). We also include the over-sampling baseline that filters
prompts whose rollouts are all correct or incorrect. Table [TT] demonstrates that DECS outperforms
other baselines on the seven benchmarks at both efficiency and efficacy, which further validates the
effectiveness of DECS.

Table 10: Ablation on the other strong algorithm: REINFORCE++ with DECS on the DeepSeek-
R1-Distill-1.5B base model. The REINFORCE++ variant achieves similar performance and effi-
ciency improvements compared to using GRPO, validating the generality of DECS.

Model AIME2024 AIME2025 AMC23 MATHS500 OlympiadB GPQA-D LCB

ode Acc  #Tok. Acc  #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc  #Tok.
Base 27.99 12202 2294 12138 69.84 7875 84.55 4847 5378 9217 3286 8540 24.53 10560
DECS w/GRPO  31.25 5550 23.78 4965 7537 2988 8440 1817 56.10 3396 3592 3255 27.66 6026
DECS w/ R++ 3075 5595 2440 4978 75.68 2912 8450 1770 56.23 3381 3595 3333 27.85 6043
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Figure 8: The Pass@1 score and average token counts on (a) AIME2025 and (b) AMC23 datasets
under diverse token limits with the DeepSeek-R1-Dsitill-1.5B base policy; (c) Models applying
DECS are on par with the base policy (DS-7B) in terms of Pass@XK scores on three challenging

benchmarks.

Table 11: Comparison with more methods targeted at efficient reasoning. DECS outperforms other
baselines consistently across seven benchmarks.

AIME2024 AIME2025 AMC23 MATH500 OlympiadB GPQA-D LCB
Model Acc  #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok. Acc #Tok.
DS-1.5B
Base 27.99 12202 2294 12138 69.84 7875 84.55 4847 5378 9217 3286 8540 24.53 10560
MinD 27.14 6172 2146 6094 69.70 2883 82.80 1719 52.86 3573 31.30 4690 2595 7217
VSRM-R++ 29.38 6954 2258 6671 7241 3633 84.10 2241 5477 4388 3344 4413 2658 7377
LAPO 29.00 6936 2220 6554 73.13 3770 84.30 2354 55.13 4530 3434 4579 26.10 7033
LASER-D 28.83 5966 2220 5584 7355 3058 84.20 1872 5528 3676 3429 3863 2642 6493
DECS 3125 5550 23.78 4965 7537 2988 8440 1817 56.10 3396 3592 3255 27.66 6026
DS-7B
Base 50.65 10508 36.67 11096 88.77 5764 93.25 3654 69.22 7507 4646 7502 4595 8966
MinD 49.57 9441 3516 9997 87.22 4833 91.60 2859 68.17 6457 46.18 6528 45.63 8293
VSRM-R++ 47.68 6773 3256 6953 84.66 3704 89.80 2044 66.13 5470 45.16 5764 4489 7525
S-GRPO 5093 7371 36.01 7908 88.20 3605 92.40 2252 69.74 4746 47.87 4938 4734 7316
LASER-D 50.89 6423  35.61 6935 87.87 2949 9220 1836 69.74 3914 48.18 4205 47.71 6789
DECS 51.33 5277 36.43 5516 89.04 2772 9296 1728 70.28 3283 49.27 3276 48.05 5921

I CASE STUDY

We here present the comparison between DECS and three baselines, LC-R1, ThinkPrune and Adapt-
Think, on MATH500, GPQA-Diamond, and LiveCodeBench, respectively. To conduct a compre-
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Figure 9: (a) The comparison between PNRP score and token consts in AIME2024 dataset for
methods applied to the DS-7B model. (b) The PNRP scores for the six levels of difficulty on math
problems for the DeepSeek-R1-Distill-7B base policy. (c) The Pass@K comparison between Base,
Ours (DECS) and GRPO in DS-1.5B backbone.
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Figure 10: The Pass@1 score and average token counts on (a) AIME2024, (b) AIME2025 and (c)
AMC?23 datasets under diverse token limits with the DeepSeek-R1-Disitill-7B base policy;

Prompt

Figure 11: Illustrative example for advantage assignment under vanilla length penalty (left), GRPO
(middle) and DECS (right) given a simple question “What is 2+37”. When applying vanilla length
penalty, the algorithm would penalize the whole sequence for longer sequences (the second se-
quence), while rewarding redundant tokens for short sequences (the first response). However, DECS
always penalizes unnecessary reasoning parts following the necessary reasoning prefix, no matter
how short the whole sequence is (the first and last response). Additionally, the vanilla length penalty
would penalize high entropy tokens in longer sequences, e.g., 2nd and 4th response, which deterio-
rates the model’s exploration potentials throughout the training process.

hensive evaluation, we compare the outputs with LC-R1 taking DeepSeek-R1-Distill-1.5B as the
base policy on MATH500, compare the outputs with ThinkPrune taking DeepSeek-R1-Distill-7B as
the base policy on GPQA-Diamond, and comare the outputs with AdaptThink taking DeepSeek-R1-

Distill-7B as the base policy on LiveCodeBench. The comparisons are illustrated in Fig.[T3] Fig.[T4]
and Fig. 5] respectively.

26



Published as a conference paper at ICLR 2026

Token Entropy
Temperature: 0.6 Cache Samples: 6 Analyzed tokens: 494

Mean H (bits): 0.805 Min: 0.000 Max: 5.031

Prompt

What is 2+3? Please reason step by step and put your final answer within \boxed{}.

Highlighted By Entropy (full text)

Okay, so | need to figure out what 2 plus 3 is. Hmm, let me think about this. | remember learning about
addition in school, but | want to make sure | understand it properly. Addition is when you combine two
numbers to find the total. So, if | have 2 apples and someone gives me 3 more apples, how many apples
do | have altogether?

Let me visualize this. Imagine | have a set of objects, like blocks or maybe my toys. If | take 2 blocks and
then add 3 more blocks to them, how many blocks will | have? Let me count them out loud. Starting
with 2, if | add 1, that makes 3, then 4, and then 5. Wait, that seems right because 2 plus 3 should be 5.
But just to make sure, maybe | can use my fingers or something.

Alternatively, | can think of it in terms of number lines. Starting at 2, if | move 3 steps to the right, | land
on 5. Yeah, that makes sense.

So, yeah, 2 plus 3 is 5. | feel confident about that now.

**Final Answer**
The result of 2 plus 3 is \boxed{5}.
</think>

To determine what 2 plus 3 is, we can use multiple methods to verify the result:

1. **Counting**: Starting with 2 and adding 3, we count up to 5.

2. **Number Line**: Starting at 2 and moving 3 steps to the right lands on 5.

3. **Real Objects**: Having 2 objects and adding 3 more results in a total of 5 objects.

4. **Basic Addition Facts**: 2 + 3 equals 5.

5. **Visual Methods**: Using fingers, tally marks, or money all confirm the result is 5.

6. **Algebraic Representation**: Letting x be 2 and y be 3, we have x + y = 5.

7. **Number System Consistency**:/In binary, 2 is 10 and 3 is 11. Adding them gives 101, which is 5 in
decimal.

All methods confirm that 2 plus 3 equals 5.

### Final Answer
The result of 2 plus 3 is \boxed{5}.

Figure 12: Illustrative example showing high-entropy forking tokens. The distribution is similar to
Wang et al.| (2025b)), where uncertainty-based tokens including “Wait”, “but”, and “maybe” have
much larger entropy values than deterministic tokens like “5” which is the final answer.
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Define p = Z,‘f:lklz and q = Y;4 k—13 Find a way to write };;2, Z,"fﬂﬁ
Ours Longest: 1724 Tokens Ground Truth Answer: p-q
<

NRP: 1191 Tokens

Okay, so I have this problem where I need to find an expression for the double sum \(\sum_{j = 1}MNinfty \sum {k =
1}3Minfty \frac{1}{( + k)*3}\) in terms of \(p\) and \(q\), where \(p = \sum_{k = 1}Minfty \frac{1}{k"*2}\) and \(q =
\sum_{k = 1}MNinfty \frac{1} {k"3}\). Hmm, okay, let's break this down step by step.\n\nFirst, I know that \(p\) is the well-
known Basel problem, which sums to \(\frac{\pi"2} {6}), but I don't know if that's relevant here. Maybe not directly, but it's
good to remember. The other sum, \(q\), is the Riemann zeta function at 3, so it's \(\zeta(3)\), but again, not sure if that's
useful yet.\n\nThe main goal is to express the double sum \(\sum_{j=1}"Minfty \sum {k=1}"infty \frac{1}{(j + k)"3}) in
terms of \(p\) and \(q\). I need to find a clever way to relate this double sum to the single sums \(p\) and \(q\).\n\nI remember
that sometimes, for sums like this, changing variables or using symmetry can help. Let me try to visualize the double sum.
It's over all positive integers \(j\) and \(k\), and the term is \(\frac {1} {(j + k)"3}\). So, for each pair \((j, k)\), we're adding up
the reciprocal of the cube of their sum.\n\nI wonder if I can express this double sum as a single sum by changing the order of
summation or by some substitution. Maybe if I let \(n = j + k\), then for each \(n\), I can sum over all pairs \((j, k)\) such that
\(j + k =n\). That seems promising.\n\nSo, let me try that. Let me fix \(n\) and consider all pairs \((j, k)\) where \(j + k = n\).
For each \(n\), \(j)) can range from 1 to \(n - 1\), with \(k = n - j\). Therefore, the double sum can be rewritten
as:\\n\n\[\n\sum_ {n=2}Minfty \sum_{j=1}"{n-1} \frac{1}{n"3}\n\]\n\nBecause \(j + k = n\) implies \(k = n - j\), and since
both \(j\) and \(k\) are at least 1, \(n\) starts from 2 (since the smallest \(j\) and \(k\) can be is 1, so \(1 + 1 = 2\)).\n\nSo,
simplifying the inner sum, it's just \(\sum_{j=1}"{n-1} \frac{1} {n"3}\). Since \(\frac{1} {n"3}\) is constant with respect to
\(j\), the inner sum is just \(Mfrac{n - 1} {n"3}\).\n\nTherefore, the entire double sum becomes:\n\n\[\n\sum_ {n=2}\infty
\frac{n - 1} {n"3}\n\]\n\nI can split this fraction:\n\n\[\n\sum_ {n=2}MNinfty \left( \frac{n} {n"3} - \frac{1}{n"3} \right) =
\sum_{n=2}Minfty \left( \frac{l}{n"2} - \frac{l}{n"3} \right)\n\]\'n\nNow, I can split this into two separate
sums:\n\n\[\n\sum_{n=2}MNinfty \frac{1}{n"2} - \sum {n=2}Minfty \frac{1}{n"3}\n\]\n\nl know that the original
definitions of \(p\) and \(q\) start from \(n = 1), so I can write these sums in terms of \(p\) and \(q\) by subtracting the \(n=1\)
terms.\n\nSo, \(\sum_{n=2}Minfty \frac{l1}{n"2} = p - \frac{1}{172} = p - 1)), and similarly, \(\sum_{n=2}"infty
\frac{1}{n"3} = q - \frac{1} {173} = q - 1\).\n\nTherefore, substituting back into our expression:\n\n\[\n(p - 1) - (q- 1) =p -
1-q+1=p-qn\]\n\nSo, the double sum simplifies to \(p - q\).\n\nlI think that makes sense. So, the key steps were
changing variables to \(n = j + k\), then rewriting the double sum as a single sum over \(n\), evaluating the inner sum, and
then expressing the result in terms of \(p\) and \(q\). The important part was recognizing that the inner sum simplifies nicely
and then using the definitions of \(p\) and \(q\) to relate it back.\n\nl don't see any mistakes in the steps, so I'm pretty
confident the answer is \(p - q\).\n\n**Final Answer**\nThe double sum can be written as \(\boxed{p - q}\).\

Remaining: None
] NRP Ratio: 100%

NRP: 3283 Tokens

Okay, so I need to find a way to express the double sum \(\sum_{j = 1}Minfty \sum_{k = 1}Minfty \frac{1} {( + k)"3})) in
terms of \(p\) and \(q\), where \(p = \sum_{k = 1}Minfty \frac{1}{k"2}\) and \(q = \sum_{k = 1}Minfty \frac{1} {k"3}\).
Hmm, let me think about how to approach this.\n\nFirst, I know that \(p\) is the well-known Basel problem, which sums to
\(\frac {\pi*2} {6}\), but I don't think I need the exact value here. Similarly, \(q\) is the sum of reciprocals of cubes, which
converges to Apéry's constant, approximately 1.202..., but again, exact value isn't necessary here.\n\nThe double sum given
is over all positive integers \(j\) and \(k\), and the term inside is \(\frac {1} {(j + k)"3}\). So, it's a double series where each
term depends on the sum of two variables. This seems a bit tricky because it's a two-dimensional sum, unlike single sums
which are straightforward.\n\nMaybe I can change variables or find a way to express this double sum in terms of \(p\) and
\(q\). Let me consider switching the order of summation or using some symmetry.\n\nAnother idea: perhaps express \(1/(j +
k)*3\) as an integral. Since \(1/n"3\) can be written as an integral, maybe I can use that to interchange the sum and the
integral.\n\nRecall that for positive integers \(n\), we have:\n\n\[\n\frac {1} {n"3} =\frac{1} {2} \int_0"1 \int_0"1 (xy)“{n - 1}
dx dy\n\]\n\nWait, is that correct? Let me check. Actually, [omitted...] So, that gives us \(p - q\).

Remaining: 492 Tokens

Hmm, that seems too straightforward.\n\nWait, but is that correct? [omitted...] \nWhich is equal
to:\n\n\[\n\left( \sum_ {m=1}Minfty \frac{1} {m"2} - 1 \right ) - \left( \sum_{m=1}"infty \frac{1} {m"3} - 1 \right ) =(p- 1) -
(q-1)=p - q\n\]\n\nSo, is that correct? Hmm. Let me verify.[omitted...] which is indeed \(p - q\).\n\nTherefore, the double
sum is equal to \(p - q\).\n\nSo, the answer is \(\boxed {p - q}\).\n\n**Final Answer**\n\boxed {p - q}\n

NRP Ratio: 87% )

Figure 13: Case study of the comparison of DECS and LC-R1 in MATHS500.
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ST \

A spin-half particle is in a linear superposition 0. 5|T) + v/3/2| l)of its spin-up and
spin-down states. If | T)and | l)are the eigenstates of g, then what is the expectation
value up to one decimal place, of the operator 100, + 50,? Here, symbols have their
usual meanings\n\nA) -1.4\nB) -0.7\nC) 1.65\nD) 0.85

.
Ground Truth Answer: B)
Ours Longest: 2766 Tokens
\

NRP: 2294 Tokens

Okay, so I have this quantum mechanics problem here, and I need to find the expectation value of the operator 106z + 5ox
for a given spin-%; particle state. Hmm, let me try to break this down step by step.\n\nFirst, the state of the particle is given
as a linear combination of the spin-up and spin-down states: 0.5|1) + (\/3)/2|l)A I remember that |1) and ||) are eigenstates of
the Pauli matrix oz. So, oz acting on [f) gives +1 times [1), and oz acting on [|) gives -1 times ||), right?\n\nNow, the
operator we're dealing with is 100z + 5ox. I need to find the expectation value of this operator, which is (y| (106z + 56%) [y).
Since expectation value is linear, I can separate this into 10{y|oz|y) + 5(y|ox|y). That should make things easier.\n\nLet me
handle each term separately. Starting with the first term, 10{y|oz|y). [ know that oz is diagonal in the oz basis, which is the
same as the [1) and |]) basis. So, the expectation value of 6z is just the weighted average of the eigenvalues, with the weights
given by the square of the amplitudes in the state |y).\n\nThe state |y) is 0.5|1) + (‘/3)/2U)- So, the coefficient for |1) is 0.5,
and for ||) is V3/2. The square of these gives the probabilities. Therefore, the expectation value of oz is (0.5)2%(+1) +
(\3/2)"2%(-1). Calculating that:\n\n(0.25)(1) + (3/4)(-1) = 0.25 - 0.75 = -0.5.\n\nSo, 10 times that would be 10%(-0.5) = -
5.\n\nOkay, that's the first part. Now, the second term is 5(y|ox|y). Hmm, ox is the Pauli X matrix, which is not diagonal in
the oz basis. I remember that ox has eigenstates [+x) and |-x), which are superpositions of |t) and ||). Maybe I need to
express |y) in the ox basis to compute this expectation value, or perhaps there's another way.\n\nAlternatively, I recall that
ox can be written in matrix form as [[0,1],[1,0]]. So, if I can write [y) as a column vector, then ox acting on |y) can be
computed, and then the inner product (y|ox|y) can be found.\n\nLet's represent |y) as a vector. Since |1) is [1; 0] and ||} is [0;
1], then [y) is 0.5%[1; 0] + (N3)/2*[0; 1] = [0.5; \3/2]. So, the vector is [0.5, V3/2]*T.\n\nNow, ox is [[0,1],[1,0]]. So, ox|y)
is [0.5%1 + (V3/2)*0, 0.5%0 + (V3/2)¥1]~T, which is [0.5, V3/2]*T. Wait, that's the same as [y)? Hmm, so ox|y) = |y)?
[omitted] Since a and b are real in this case (the coefficients are real), this becomes 2ab.\n\nSo, for our state, a = 0.5, b =
\3/2. Therefore, (ox) = 2*(0.5)*(V3/2) = (\3)/2 = 0.866.\n\nTherefore, 5*(ox) = 5*(\3/2) = 5%0.866 ~ 4.33.\n\nSo, adding
the two terms together: -5 + 4.33 = -0.67. So, approximately -0.7 when rounded to one decimal place.\n\nAh, okay, so that
makes sense now. My initial mistake was probably in the way I computed ox|y) and then the inner product. But using the
formula for expectation value in terms of coefficients, it's much simpler. So, the expectation value of ox is 2ab, which is
2%(0.5)*(V3/2) = V3/2 = 0.866. Therefore, 5 times that is approximately 4.33, and 10 times the expectation value of 6z is -5.
So, adding them gives approximately -0.67, which rounds to -0.7. So, the answer should be option B) -0.7.

Remaining: None

NRP Ratio: 100%

g \

NRP: 1535 Tokens

Okay, so I have this quantum mechanics problem here about a spin-half particle. Hmm, let's see. The particle is in a linear
superposition given by 0.5/1) + (V3)/2|1). And I need to find the expectation value of the operator 106_z+ 5c_x. The answer
choices are A) -1.4, B) -0.7, C) 1.65, D) 0.85.\n\nAlright, first, let me recall what the expectation value of an operator is. For
a quantum state |y), the expectation value (O) is given by (y| O |y). So, I need to compute (y| (106_z + Sc_x) |[y).\n\nSince
expectation value is linear, I can separate this into 10(y|c_z|y) + 5(y|c_x|y). So, I need to find the expectation values of 6_z
and o_x separately and then combine them.\n\nLet me write down the given state [y). It is 0.51) + (¥3)/2||). Let me note
that 1) and ||} are the eigenstates of 6_z, which is the Pauli z-matrix. So, 6_z|1) = +|1) and 6_z||) = -||).\n\nFirst, compute
(c_z). That is, (y|c_z|y).\n\nSince ¢_z is diagonal in the ¢_z basis, which is the same as the basis in which |1) and []) are
defined, this should be straightforward. [omitted...]Looking at the options, B is -0.7, which would be the answer.\n\nBut
wait, let me verify the calculations again because sometimes I might have made a mistake.\n\nFirst, (c_z): probabilities 0.25
and 0.75, so 0.25 - 0.75 = -0.5. That seems right.\n\nThen, for (c_x): the expectation value.\n\nAnother way to compute
(o_x) is to note that 6_x = | >)(—| - [«)(«|, but maybe that's more complicated.\n\nAlternatively, for a general state |y) =
alt) + b|l), (c_x) is [a|*2 - |b|*2? Wait, no, that can't be.\n\nWait, c_x is [[0,1],[1,0]], so when you compute (y|c_x|y), it's
[a]"2*(L|o_x|1) + [b|*2*(}]o_x||) + cross terms.\n\nWait, let's compute it again step by step.\n\njy) = [0.5; (¥3)/2]. So, in
matrix form, it's a column vector [0.5; (V3)/2].\n\no_x |y) = [ (N3)/2 ; 0.5 ]\n\nThen, (y| 6_x |y} is [0.5, (V3)/2] multiplied by
[ (V3)/2 ; 0.5 J\n\nSo, 0.5%(\3)/2 + (V3)/2 *0.5 = (V3)/4 + (N3)/4 = \3 / 2 = 0.866\n\nSo, that seems correct.\n\nTherefore,
5(c_x) = 5%(\3)/2 = 43301, and 10(c_z) = -5, so total expectation value is -5 + 4.3301 = -0.6699, which is approximately -
0.67, so -0.7 when rounded to one decimal.\n\nTherefore, the answer should be B) -0.7.

Remaining: 5990 Tokens

\n\nWait, but let me think again. Is there another way to compute this? Maybe using the properties of spin states. [omitted...]
So, in conclusion, (c_x) is approximately 0.866, which is \3 / 2.\n\nTherefore, 5(c_x) is 5*(\/3 / 2) = 5%0.866 =
4.33\n\nThen, 10(c_z) = -5, as computed earlier.\n\nTherefore, the total expectation value is -5 + 4.33 = -0.67, which is
approximately -0.7 when rounded to one decimal place.\n\nTherefore, the answer is B) -0.7.

NRP Ratio: 20%
\. J

Figure 14: Case study of the comparison of DECS and ThinkPrune in GPQA-Diamond.
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( Slavic is preparing a present for a friend's birthday. He has an array a of n digits )

and the present will be the product of all these digits. Because Slavic is a good kid

who wants to make the biggest product possible, he wants to add 1 to exactly one of

his digits. \n\nWhat is the maximum product Slavic can make?\n\nInput\n\nThe first
line contains a single integer t(1 < t < 10*)— the number of test cases.\n\nThe first
line of each test case contains a single integer n(1 < n < 9)— the number of
digits.\n\nThe second line of each test case contains n space-separated integers a;

(0 < a; < 9)— the digits in the array.\n\nOutput\n\nFor each test case, output a

single integer— the maximum product Slavic can make, by adding 1 to exactly one

of his digits.Sample Input 1:\n4\n\n4\n\n2 2 1 2\n\n3\n\n0 1 2\n\n5\n\n4 3 2 3
\_4\n\n%\n\n9 999999 9 9\n\n\n\nSample Output 1:\n\n16\n2\n432\n430467210\n" )

Ours Longest: 2932 Tokens
NRP: 2471 Tokens

Okay, I need to solve this problem where Slavic can add 1 to exactly one digit in an array of digits to maximize the product.
Hmm, let's think about how to approach this.\n\nSo, the problem is: given an array of digits (each between 0 and 9), I can
choose one digit to add 1 to. Then, compute the product of all the digits. I need to find the maximum possible product after
this operation.\n\nFirst, I need to [omitted...]Sample Input 1:\n\n4\n\n4\n\n2 2 1 2\n\nSo, the array is [2,2,1,2]. For each
position, adding 1 and compute product.\n\nLet's see:\n\nOption 1: add to first 2 — [3,2,1,2]. Product is
3#2%1*2=12.\n\nOption 2: add to second 2 — same as option 1, product 12.\n\nOption 3: add to 1 — [2,2,2,2]. Product is
274=16.\n\nOption4: add to last 2 — [2,2,1,3]. Product is 2*2*1*3=12.\n\nSo maximum is 16. Which matches the sample
output.\n\nAnother sample:\n\n3\n\n0 1 2\n\nPossible options:\n\nAdd 1 to 0 — [1,1,2] — product 1*1*2=2.\n\nAdd 1 to 1
— [0,2,2] — 0*2*2=0.\n\nAdd 1 to 2 — [0,1,3] — 0*1*3=0.\n\nSo maximum is 2. Which matches sample.\n\nAnother
sample: 5 digits 4,3,2,3,4.\n\nWhat's the best option?\n\nAdding 1 to the 2: makes it 3, so the array becomes [4,3,3,3.4].
Product is 4*3*3*3%*4 = 4*3/3 *4 = 4*27 *4 = 432 \n\nWhich matches sample.\n\nAnother sample: 9 9s. Adding 1 to one of
them gives 10, others 9. So product is 10 * 9/8.\n\nCompute 978: 9*9=81, 81*%9=729, 729*9=6561, 6561*9=59049,
59049*9=531441, 531441%9=4782969, 4782969*9=43046721. Multiply by 10: 430467210. Which matches the
sample.\n\nSo the code should handle all cases correctly.\n\nNow, in Python, the code can be written as follows.\n\nRead
t:\n\nt = int(input())\n\nfor _ in range(t):\n\n n = int(input())\n\n a = list(map(int, input().split()))\n\n max_prod
=0\n\n for iin range(n):\n\n new_a = a.copy()\n\n new_ali] += 1\n\n product = 1\n\n for num in
new_a:\n\n product *= num\n\n if product > max_prod:\n\n max_prod = product\n\n
print(max_prod)\n\nYes, that's the code.

Remaining: None

[ ]

' \
NRP: 1349 Tokens

Okay, so I've got this problem to solve. Let's read it carefully.\n\nThe problem is about Slavic who wants to maximize the
product of digits in an array after adding 1 to exactly one of the digits. So, for each test case, I need to find which digit to
increment by 1 such that the product becomes as large as possible.\n\nHmm, let's think about the approach. For each digit in
the array, I can consider increasing it by 1 and then calculate the product. Then, I pick the maximum among all these
possibilities.\n\nWait, but the array could have a zero. Oh right, because if a digit is 9, adding 1 makes it 10. But if a digit is 0
adding 1 makes it 1, which might be better in some cases.\n\nLet me outline the steps:\n\nl. For each test case:\n a. Read
the array of digits.\n b. For each digit in the array, create a copy where that digit is increased by 1. But wait, if the digit is 9,
adding 1 would make it 10. But since we're treating each digit as a single digit, maybe I should represent them as integers. So,
for each element a_i, I'll compute a_i + 1, but only if a_i is 9, it becomes 10. [omitted...]\n\nSo the code structure would be
something like:\n\nfor _ in range(t):\n n = int@input())\n a = list(map(int, input().split()))\n max_prod =0\n for i
in range(n):\n new_a = a.copy()\n new_ali] += 1\n current_prod = 1\n for num in new_a:\n
current_prod *= num\n if current_prod > max_prod:\n max_prod = current_prod\n print(max_prod)

5

Remaining: 2026 Tokens

Wait, but wait. What if the original array has a zero, and adding 1 to it? [omitted]\n\nNow, for the code:\n\nRead t.\n\nFor
each test case:\n\n Read n.\n\n Read the list as integers.\n\n Initialize max_prod to zero.\n\n For each i in 0..n-
1:\n\n new_a = a.copy()\n\n new_ali] +=1\n\n compute product of new_a.\n\n if product is larger than
current max_prod, update.\n\n  print max_prod.\n\nBut wait, in the case where all digits are zero except one.

[omitted]\n\nSo the code:\n\nt = int(input())\nfor _ in range(t):\n n = int(input())\n a = list(map(int,
input().split()))\n max_product =0\n for i in range(n):\n new_a = a.copy()\n new_ali] +=1\n product =
1\n for num in new_a:\n product *= num\n if product > max_product:\n max_product =

product\n  print(max_product)\n\nWait, but wait. What if the array is [0, 0, 0], the original product is 0. Adding 1
[omitted]\n\nSo the code should be correct.\n\nThus, the code is as written above.\n

(.
NRP Ratio: 4

\ S

Figure 15: Case study of the comparison of DECS and AdaptThink in LiveCodeBench.
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