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Abstract

As global demand for multilingual large lan-001
guage models (LLMs) grows, most LLMs still002
remain overly focused on English, leading to003
the limited access to advanced AI for non-004
English speakers. Current methods to enhance005
multilingual capabilities largely rely on data-006
driven post-training techniques, such as mul-007
tilingual instruction tuning or continual pre-008
training. However, these approaches exhibit009
significant limitations, including high resource010
cost, exacerbation of off-target issue and catas-011
trophic forgetting of central language abili-012
ties. To this end, we propose LENS, a novel013
approach that enhances multilingual capabil-014
ities by leveraging LLMs’ internal language015
representation spaces. LENS operates on two016
subspaces: the language-agnostic subspace,017
where it aligns target languages with the cen-018
tral language to inherit strong semantic rep-019
resentations, and the language-specific sub-020
space, where it separates target and central lan-021
guages to preserve linguistic specificity. Ex-022
periments on three English-centric LLMs show023
that LENS significantly improves multilingual024
performance while maintaining the model’s En-025
glish proficiency, achieving better results with026
less computational cost compared to existing027
post-training approaches.1028

1 Introduction029

In an increasingly interconnected world, large lan-030

guage models (LLMs) are expected to cater to a di-031

verse range of users across various linguistic back-032

grounds (Ouyang et al., 2023; Zhao et al., 2024a;033

Zheng et al., 2024; Qin et al., 2024). However,034

most state-of-the-art LLMs remain heavily English-035

centric (Brown et al., 2020; Touvron et al., 2023a,b;036

Jiang et al., 2023; AI@Meta, 2024), performing far037

better in English than other languages, thereby po-038

tentially marginalizing large portions of the global039

1Our code and data can be found in supplementary files.

population from accessing advanced AI services 040

(Wang et al., 2024a; Zhu et al., 2024b). 041

This disparity has directly spurred research ef- 042

forts to enhance multilingual capabilities of LLMs. 043

Current approaches are predominantly based on 044

data-driven post-training paradigm, such as multi- 045

lingual instruction tuning (Zhang et al., 2023; Zhu 046

et al., 2023; Üstün et al., 2024) or continual pre- 047

training (Cui et al., 2023; Kuulmets et al., 2024; 048

Jaavid et al., 2024), which primarily seeks to elicit 049

cross-lingual alignment (Schuster et al., 2019) or 050

inject multilingual knowledge with the supervision 051

signals from external datasets. 052

While this paradigm is widely embraced and 053

demonstrates certain successes, it faces several sig- 054

nificant limitations. (1) The efficacy often depends 055

on training with large-scale multilingual datasets 056

(Cui et al., 2023; Zhu et al., 2023), which incur 057

large computational overhead. (2) It overly em- 058

phasizes alignment across languages, neglecting 059

the modeling of language-specific features, which 060

exacerbates the off-target issue (Zhang et al., 2020). 061

As a result, the model often struggles to gener- 062

ate accurate responses in the intended language 063

when prompted (Lai et al., 2024; Sennrich et al., 064

2024). (3) The model’s performance in languages 065

it previously handled well is risking at catastrophic 066

forgetting (McCloskey and Cohen, 1989). 067

In this work, we seek to provide a new perspec- 068

tive on addressing the aforementioned limitations 069

by exploring and manipulating the internal repre- 070

sentation within the language-related latent spaces 071

of LLMs (Zou et al., 2023; Park et al., 2024). Tak- 072

ing the enhancement of multilingual capabilities 073

for English-centric LLMs as an example. This is 074

based on the intuitive idea that the well-established 075

English representations in existing English-centric 076

LLMs can act as a pivot to improve the perfor- 077

mance of other languages. More specifically, for 078

the target language to be enhanced, its language- 079

agnostic semantic representations should be pulled 080
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close to those of English, facilitating cross-lingual081

alignment. Meanwhile, the language-specific lin-082

guistic representations should be pushed away from083

English to preserve the unique representation of084

each language. Also, during this process, it is085

crucial to ensure that the English pivot represen-086

tation remains unchanged to effectively prevent087

catastrophic forgetting.088

To achieve this, we propose LENS, a novel089

multiLingual Enhancement method based on the090

hidden represeNtations within language Space of091

LLMs. To be more specific, LENS comprises two092

stages: Language Subspace Probing (LSP) and093

Language Subspace Manipulation (LSM). During094

LSP, the multilingual hidden space within a sin-095

gle layer of the backbone are decoupled into two096

orthogonal components, a language-agnostic sub-097

space and a language-specific subspace, via singu-098

lar value decomposition. Then in LSM, we align099

the parallel multilingual input representations of100

the target language and the central language in101

the language-agnostic subspace. Simultaneously,102

the projection components of the target language103

within the language-specific space are pushed away104

from those of the central language, guiding the105

target language toward its distinct linguistic expres-106

sion and ensuring the target language is properly107

expressed thereby mitigating the off-target issue.108

Finally, we align the central language’s current rep-109

resentations with its original ones to preserve its110

proficiency during multilingual enhancement. It is111

crucial to note that, building on recent findings that112

language-related parameters are primarily concen-113

trated in the top layers of LLMs (Wendler et al.,114

2024), LENS only updates the higher layers of the115

backbone with just a few hundred data points, ex-116

hibiting high resource efficiency.117

We conduct extensive experiments on bilingual118

and multilingual enhancement setups, targeting lan-119

guages from diverse linguistic families and varying120

resource levels. Results on three English-centric121

LLMs (LLaMA-3-8B-Instruct, LLaMA-3.1-8B-122

Instruct and Phi-3.5-mini-Instruct) show that LENS123

outperform baselines and open-source multilingual-124

enhanced LLMs on both multilingual comprehen-125

sion and generation tasks. Notably, LENS achieves126

these improvements without compromising the cen-127

tral language’s strong capabilities, while requiring128

significantly less computational overhead, high-129

lighting its effectiveness, efficiency, and scalability.130

The main contributions of this work are summa-131

rized as follows: (1) We provide a novel perspec-132

tive for the multilingual enhancement of LLMs 133

with their internal language representation space 134

leveraged. (2) We propose LENS, an efficient and 135

effective multilingual enhancement method that op- 136

erates within the language representation space of 137

large language models. (3) Extensive experiments 138

demonstrate the effectiveness, efficiency, scalabil- 139

ity of our method to obtain multilingual enhanced 140

chat-style backbones without sacrificing original 141

central language performance. 142

2 Methodology 143

2.1 Overview of LENS 144

We propose LENS, a novel method for effective and 145

efficient multilingual enhancement of LLMs based 146

on their internal language representation spaces. 147

The overall diagram of LENS is displayed in Figure 148

1, consisting of two key stages: (1) Language Sub- 149

space Probing (LSP) and (2) Language Subspace 150

Manipulation (LSM). The subsequent section of- 151

fers a detailed introduction to them. 152

2.2 Language Subspace Probing 153

In this section, we first introduce our method to 154

decouple and probe the language-agnostic and 155

language-specific subspace within a single model 156

layer in an unsupervised manner. 157

Assuming we aim to enhance the multilingual 158

capabilities of a backbone model for L languages, 159

which include one central language and L−1 target 160

languages to be enhanced. In each layer of the 161

backbone, we can obtain a mean representation for 162

each language l: 163

ml =
1

n

n∑
i=1

eil (1) 164

where eil ∈ Rd is the embedding of the last to- 165

ken for the i-th sample in language l, and n is the 166

total number of samples for each language. Con- 167

catenating ml of L languages column-by-column 168

results in the mean embedding matrix M ∈ Rd×L 169

specifying the multilingual latent space. 170

Follow previous works (Pires et al., 2019; Li- 171

bovickỳ et al., 2020; Yang et al., 2021), we hypoth- 172

esize that such multilingual latent space M could 173

be decomposed into two orthogonal components 174

(1) a language-agnostic subspace Ma representing 175

what is commonly shared across languages and (2) 176

a language-specific one M s specifying on which 177

different languages express different linguistic sig- 178

nals. Following Piratla et al. (2020); Xie et al. 179
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Figure 1: The overall architecture of our proposed LENS for multilingual enhancement. (1) In the LSP, we begin by
decomposing the multilingual latent space, which is formed by the representations of probing samples from both the
target and central languages. Using singular value decomposition (SVD), we separate this space into two orthogonal
components: a language-agnostic subspace, Ma, and a language-specific subspace, M s. (2) Then in LSM, the
parallel multilingual representations of the target languages are pushed toward their respective linguistic expression
directions within M s, while being pulled closer to the central language in Ma. Additionally, the representations of
the central language are carefully constrained to remain largely intact.

(2022), the objective can be formulated as:180

min
Ma,Ms,Γ

∥∥∥M −Ma1
⊤ −M sΓ

⊤
∥∥∥2
F

s.t. Span (Ma) ⊥ Span (M s) ,

(2)181

where Ma ∈ Rd×1, M s ∈ Rd×r and Γ ∈ RL×r is182

the coordinates of language-specific signals along183

the subspace’s r components. And a lower dimen-184

sionality for Ma is reasonable because the seman-185

tic consistency across different languages can be186

captured in a simpler form. Meanwhile, M s re-187

quires a higher dimensionality to account for the188

distinct features of each language.189

The optimal solution of Equation 2 can be com-190

puted efficiently via Singular Value Decomposition191

(SVD), where Algorithm 1 in Appendix A presents192

the detailed procedure.193

After obtaining the language-specific subspace194

M s, we aim to identify a direction of language195

expression within this subspace, which points from196

the projection of mean representation from target197

language ml to that from central language mc. For-198

mally, the linguistic language expression direction199

δl ∈ Rd for each target language l is calculated as:200

δl = MT
s M s(ml −mc) (3)201

2.3 Language Subspace Manipulation202

To eliminate the heavy reliance on hard-to-access203

high-quality multilingual datasets, we leverage the204

well-trained hidden representations of the central205

language in LLMs as a pivot to derive supervision206

signals for multilingual enhancement within the 207

model’s internal language space. 208

First, we propose to pull parallel multilingual 209

representations closer within the shared language- 210

agnostic subspace Ma. This allows us to directly 211

inherit the well-established general capabilities of 212

the central language. Formally, this goal is accom- 213

plished by projecting multilingual representations 214

(at the position of the last token) onto the subspace 215

Ma, with the optimization objective defined as: 216

L1 =
∥∥MT

aMa(xl − xc)
∥∥2 (4) 217

where xl and xc are parallel multilingual represen- 218

tations from target language l and central one. 219

Second, to ensure that each target language can 220

be accurately expressed and to alleviate the off- 221

target issue, we need to push the multilingual rep- 222

resentations in the language-specific subspace M s 223

towards their respective language-specific expres- 224

sion directions. This can be achieved through the 225

projection onto the subspace M s and optimizing 226

the following objective: 227

L2 =
∥∥MT

s M s(xl − xref
l )− λlδl

∥∥2 (5) 228

where xref
l is the representation of target language 229

l obtained from original reference model and λl 230

is a scalar of push strength for the corresponding 231

language. The above process can be interpreted 232

as directing the language-specific representations 233

of each target language to shift a specific distance 234

from their original positions toward a direction that 235

enables accurate expression. 236
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Finally, to ensure that the capabilities of the cen-237

tral language are not compromised and maintain a238

stable alignment objective for the target language,239

we constrain the representations of central language240

to remain predominantly intact:241

L3 =
∥∥xc − xref

c

∥∥2 (6)242

where xref
c is the representation of central language243

c obtained from original reference model.244

The final optimization objective of LENS is:245

L = λ1L1 + L2 + λ3L3 (7)246

where λ1 and λ3 are hyper-parameters to balance247

the impact of these two losses.248

3 Experiments249

3.1 Experimental Setup250

Models We select three English-centric LLMs:251

LLaMA-3-8B-Instruct (AI@Meta, 2024), LLaMA-252

3.1-8B-Instruct (Dubey et al., 2024) and Phi-3.5-253

mini-instruct (Abdin et al., 2024), to fully validate254

the efficacy and scaleability of our LENS. Notably,255

although the latter two models undergo more ex-256

tensive multilingual alignment training, English257

continues to exhibit the strongest performance.258

Languages to be Enhanced We conduct experi-259

ments in both bilingual and multilingual settings to260

address various multilingual enhancement needs.261

In the bilingual setting, English (En) serves as262

the central language, while Chinese (Zh) is the263

target language for expansion. Chinese is selected264

due to its growing prominence in the academic265

focus on multilingual enhancement for LLMs.266

In the multilingual setting, we select six tar-267

get languages, reflecting diverse linguistic families268

and resource levels. The high-resource languages269

are Chinese (Zh) and Japanese (Jp); the medium-270

resource languages are Korean (Ko) and Arabic271

(Ar); and the low-resource languages are Bengali272

(Bn) and Swahili (Sw), with English (En) continu-273

ing to serve as the central language.274

It is important to note that these target languages275

are classified as out-of-scope in the official model276

card of the above LLMs, which further underscores277

their relevance for enhancement.278

Training Data We sample 300 data points from279

Aya Dataset (Üstün et al., 2024) for each language280

to probe the language space and 200 data points281

from the Bactrian-X dataset (Li et al., 2023a) per282

language to manipulate the language space. Please283

see Appendix B for more details of these datasets.284

Benchmarks To comprehensively measure the 285

efficacy of our LENS on various multilingual tasks, 286

we employ 5 mainstream benchmarks for evalua- 287

tion, which can be categorized into multilingual 288

understanding and multilingual generation: 289

Multilingual Understanding: (1) XCOPA 290

(Ponti et al., 2020), (2) XWinograd (Muennighoff 291

et al., 2023), (3) XStoryCloze (Lin et al., 2022) 292

and (4) M-MMLU (Hendrycks et al., 2021; Lai 293

et al., 2023). Accuracy is the evaluation metric 294

and we randomly sample up to 1,000 data points 295

from each benchmark for evaluation. 296

Multilingual Generation: (5) MT-Bench 297

(Zheng et al., 2023): A benchmark for open-ended 298

generation to evaluate a model’s ability to follow 299

multi-turn instructions. The evaluation follows 300

the LLM-as-a-judge approach, where GPT-4o is 301

prompted to assign a score directly to a single re- 302

sponse on a scale of 1 to 10. It is essential to high- 303

light that the languages targeted for enhancement, 304

as mentioned above, are all within the capability 305

range of GPT-4o, especially given that its official 306

model card (OpenAI, 2024) emphasizes support for 307

low-resource languages such as Swahili (Sw) and 308

Bengali (Bn). This underscores the validity and 309

reliability of the evaluation approach. We employ 310

Language Fidelity (Holtermann et al., 2024) as a 311

metric to assess the consistency between input and 312

output languages, offering a clear measure of how 313

effectively off-target issues are mitigated. 314

Please refer to Appendix C for the detailed de- 315

scription of the benchmarks. 316

3.2 Baseline Methods 317

For comparison, we consider the following base- 318

line methods that enhance LLMs’ multilingual ca- 319

pabilities using multilingual instruction fine-tuning 320

technique: (1) xSFT & xSFT-Full (Ouyang et al., 321

2022), (2) QAlign (Zhu et al., 2024a), (3) SDRRL 322

(Zhang et al., 2024c) and (4) CLA (Li et al., 2024). 323

Please refer to Appendix D.1 for the detailed 324

description of the baseline methods. 325

3.3 Implementation Details 326

Our experiments are implemented with PyTorch 327

(Paszke et al., 2019) and Transformer library (Wolf 328

et al., 2020) on a single NVIDIA A800-SXM4- 329

80GB GPU. The training duration is set to one 330

epoch with the learning rate of 1e-5 and batch size 331

of 8 across all backbones. For more detailed set- 332

tings, please refer to the Appendix E. 333
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Multilingual Understanding Multilingual Generation
XCOPA XWinograd XStoryCloze M-MMLU AVG. MT-Bench

En Zh En Zh En Zh En Zh En Zh En Zh

LLaMA-3 - 83.40 63.50 54.37 95.40 88.90 64.90 49.40 74.60 69.02 6.99 (100%) 2.72 (43.75%)

xSFT - 87.20 64.30 63.49 95.10 90.60 62.80 46.10 74.07 71.85 4.79 (100%) 2.94 (88.75%)
xSFT-Full - 84.60 58.80 60.11 93.50 90.30 60.60 43.20 70.97 69.55 5.80 (100%) 4.44 (92.50%)
QAlign - 52.20 55.10 47.02 89.20 71.90 56.40 34.00 66.90 51.28 3.59 (100%) 1.23 (37.50%)
SDRRL - 85.20 64.80 55.95 92.60 84.30 63.80 47.80 73.73 68.31 6.60 (100%) 3.84 (73.75%)
CLA - 85.60 61.70 56.70 95.00 89.80 64.70 48.90 73.80 70.26 6.47 (100%) 4.41 (81.25%)

LENS (Ours) - 87.60 63.80 66.67 94.70 91.80 64.40 48.60 74.30 73.67 7.21 (100%) 5.77 (97.50%)

LLaMA-3.1 - 90.40 64.10 68.65 95.80 91.40 69.30 52.50 76.40 75.74 7.31 (100%) 5.38 (93.75%)

xSFT - 88.00 63.70 67.46 96.20 92.70 68.10 53.10 76.00 75.32 5.33 (100%) 3.32 (90.00%)
xSFT-Full - 86.80 60.40 62.50 90.60 83.80 66.10 49.90 72.37 70.75 6.02 (100%) 4.18 (92.50%)
QAlign - 55.00 56.00 48.02 94.10 52.30 64.10 33.50 71.40 47.20 4.13 (100%) 2.65 (83.75%)
SDRRL - 87.20 63.20 58.83 95.30 89.80 63.50 45.30 74.00 70.31 6.49 (100%) 3.14 (58.75%)
CLA - 89.00 63.30 65.90 94.20 90.50 67.40 52.50 77.20 75.36 6.49 (100%) 4.49 (88.75 %)

LENS (Ours) - 90.20 64.60 69.44 95.90 91.80 69.10 52.60 76.53 76.01 7.41 (100%) 5.96 (93.75%)

Table 1: Detailed results on the multilingual understanding and multilingual generation benchmarks under the
bilingual setting (English and Chinese). The values in parentheses represent language fidelity. Results highlighted
in green indicate an improvement or performance of central language comparable (within a gap of 0.5) to the
original backbone, while those highlighted in red signal a decline in performance relative to the original backbone.
The best and second-best results in our method and baselines are in bold and underlined, respectively.

3.4 Overall Results334

Table 1 present the performance comparison be-335

tween LENS and recent multilingual enhancement336

baseline methods under bilingual settings. For ad-337

ditional results under multilingual configuration338

across all three backbones, please see Appendix339

F.1. From the results across all backbones, we have340

drawn the following key insights:341

LENS achieves comprehensive improvements342

across diverse languages with different resource343

levels. It outperforms baselines on both multilin-344

gual understanding and generation benchmarks, ef-345

fectively mitigating the off-target issue. In contrast,346

baselines primarily favor multilingual understand-347

ing, offering minimal or no improvement in gen-348

eration tasks. In some cases, they compromise349

language fidelity, exacerbating the off-target prob-350

lem. Finally, LENS safeguards the central language351

from catastrophic forgetting. We also compare352

LENS with LoRA-based SFT, as recent work sug-353

gests that it can effectively prevent catastrophic354

forgetting (Huang et al., 2024). Detailed results355

and discussions are provided in Appendix F.2.356

Using the central language representations357

within the backbone as a supervision signal358

proves more effective, efficient and scalable. The359

key distinction between LENS and baseline meth-360

ods lies in how multilingual performance is en-361

hanced: LENS relies on the model’s internal rep-362

resentation of the central language, while baseline363

methods depend on external data. This difference 364

make baselines not only fail to improve the target 365

languages but also lead to performance degradation. 366

However, the Aya Dataset and Bactrain-X datasets 367

we used are already considered high-quality multi- 368

lingual resources, widely employed and proven ef- 369

fective in boosting multilingual capabilities in pre- 370

vious models such as mT5 and LLaMA-2 (Li et al., 371

2023a; Üstün et al., 2024). This highlights that for 372

current extensively trained LLMs such as LLaMA- 373

3 (which has been trained on over 15T data), an 374

over-reliance on external supervision signals may 375

fall short of scalability needs (Cao et al., 2024). 376

In addition, the results in Table 6 of Appendix F 377

demonstrate that LENS achieves the best perfor- 378

mance with minimal computational overhead. 379

4 Analysis 380

4.1 Ablation Study 381

We conduct ablation studies to validate the effec- 382

tiveness of the three optimization objectives in 383

LSM. The results under the bilingual enhancement 384

setting with LLaMA-3-8B-Instruct are shown in 385

Figure 2, leading to the following key findings: 386

Aligning multiple languages in language- 387

agnostic subspaces primarily enhances multi- 388

lingual comprehension rather than generation. 389

As the coefficient λ1 of the alignment loss L1 in- 390

creases, Chinese comprehension improves, while 391

its generation ability remains slightly unaffected. 392
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Figure 2: The ablation results to verify the effectiveness and impact of different optimization objectives in LSM.
MU Performance stands for the average performance on all multilingual understanding benchmarks, while MG
Performance is the results on MT-Bench. LF represents language fidelity.

Zh Jp Ar Ko Bn Sw

COMET scores on X-to-English Tasks
LLaMA-3 85.40 86.15 84.77 86.07 85.51 78.15

xSFT 70.41 72.40 67.09 72.43 59.52 73.56
QAlign 85.52 85.26 83.11 84.96 83.13 73.66
SDRRL 44.78 45.73 40.87 45.29 45.05 41.51

CLA 85.28 85.35 85.11 85.15 84.36 77.84

LENS 85.64 86.23 85.15 86.07 85.67 80.05

COMET scores on English-to-X Tasks
LLaMA-3 85.28 88.32 76.51 84.53 80.14 71.44

xSFT 83.78 82.22 74.30 81.08 73.40 58.48
QAlign 61.65 58.66 49.41 57.16 41.10 50.96
SDRRL 62.52 57.65 43.83 64.11 68.74 60.00

CLA 80.19 85.75 72.50 82.45 56.73 55.36

LENS 85.59 88.47 79.52 85.77 80.20 71.88

Table 2: Results of baseline methods and our LENS on
FLORES-101 benchmark.

Separating language representations in393

language-specific subspaces is crucial for394

multilingual performance. As shown in the395

middle of Figure 2, increasing λl significantly396

boosts both comprehension and generation in397

Chinese, yielding greater benefits than mere398

language alignment. This suggests that the399

conventional approach of aligning languages (Cao400

et al., 2020; Zhu et al., 2023; Li et al., 2024;401

Hua et al., 2024) may be insufficient for fully402

optimizing multilingual LLMs. Further discussion403

in Appendix F.3 elaborates on this insight.404

To further illustrate the benefit of the distinc-405

tion between representations of different languages406

within the language-specific subspace, we con-407

duct additional experiments on the multilingual408

machine translation task and results are shown in409

Table 2. The consistent performance improvements410

achieved by LENS confirm that it captures the sub-411

tle linguistic nuances required for precise and flu-412

ent translations. Detailed experimental setups and 413

analysis are provided in Appendix F.4. 414

Maintaining stable representations of the cen- 415

tral language provides reliable alignment super- 416

vision. As shown in the rightmost part of Fig- 417

ure 2, removing the retention objective for English 418

leads to a significant drop in Chinese performance, 419

likely due to misalignment caused by changes in 420

English representations. However, since our modi- 421

fications only affect the upper layers (layers 31 and 422

32) of LLaMA-3-8B-Instruct, most parameters re- 423

main frozen, preventing catastrophic forgetting of 424

English capabilities. Further analysis in §4.2 con- 425

firms that increasing the number of updated layers 426

does not negatively impact English performance, 427

highlighting the efficacy of the retention objective. 428

4.2 Impact of Varying the Number of 429

Manipulated Layers and Training Data 430

Building on recent studies on LLM interpretability 431

(Zhao et al., 2024c; Zhong et al., 2024), we focus 432

on updating only the upper layers of the backbone. 433

Figure 3(a) examines the impact of modifying dif- 434

ferent layers under the bilingual enhancement set- 435

ting with LLaMA-3-8B-Instruct. The horizontal 436

axis denotes the starting layer for updates, with the 437

final layer as the default endpoint. 438

Intermediate-layer processing in English ben- 439

efits multilingual understanding. If the target 440

language is partitioned into the language-specific 441

subspace too early, it weakens multilingual compre- 442

hension. However, modifying only the final layer 443

is insufficient for enhancing either understanding 444

or generation, as language-specific information re- 445

mains underdeveloped, leading to off-target errors. 446

LENS further validates the conclusions of ex- 447

isting works on LLM interpretability and applies 448

these findings to multilingual enhancement. Please 449
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Figure 3: (a) The impact of varying the number of manipulated layers. (b) The impact of training data volume.
(c) Comparison with open-source multilingual-enhanced LLMs.
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Figure 4: The PCA visualization of multilingual repre-
sentations projected in the obtained language-agnostic
subspace (right) and the language-specific (left) sub-
space. The backbone model is LLaMA-3-8B-Instruct
after multilingual enhanced with LENS.

refer to Appendix F.5 for more analysis.450

Results in Figure 3(b) indicate that increasing the451

amount of training data leads to diminishing returns452

for LENS. This finding reinforces our claim that for453

extensively pre-trained LLMs such as LLaMA-3454

(trained on over 15T tokens), over-reliance on more455

training data falls short of meeting scalability needs.456

Instead of focusing on larger training datasets, it is457

more critical to identify supervision signals that are458

both reliable and scalable. This directly motivates459

us to seek internal supervision from the central460

language with the backbone itself.461

4.3 Comparison with Open-Source462

Multilingual-Enhanced LLMs463

In §3.4, we compare with reproducible base-464

lines. Additionally, we extend our comparisons465

to open-source LLMs that leverage private datasets466

and large-scale post-training to improve multilin-467

gual performance. In particular, we focus on468

the Chinese-LLaMA-3 series, which builds on469

LLaMA-3 series to enhance Chinese capabilities470

and includes three versions. For a detailed descrip-471

tion of these models, please refer to Appendix D.2. 472

Results and the resource consumption of differ- 473

ent methods are presented in Figure 3(c) and Table 474

6 in Appendix F, respectively. The resulting model 475

applied with LENS is identical to the one utilized 476

for bilingual enhancement in Table 1. LENS demon- 477

strates more comprehensive enhancement of the 478

Chinese capabilities with extremely low resource 479

overhead compared to these three models. Also, all 480

the data leveraged by LENS is publicly accessible, 481

which eliminates the need for laboriously gather- 482

ing extensive high-quality multilingual datasets and 483

makes it easily shareable with the community. 484

4.4 Visualization Analysis 485

To further confirm whether LENS manipulates lan- 486

guage representations within different language 487

subspaces as anticipated, as shown in Figure 4, 488

we perform Principal Component Analysis (PCA) 489

to visualize the projection of multilingual repre- 490

sentations in the language-agnostic and -specific 491

subspace. Parallel inputs in seven languages are 492

sourced from the MultiQ datasets (Holtermann 493

et al., 2024). Results indicate that representations 494

of different languages converge within a narrow 495

range in the language-agnostic subspace, while 496

forming distinct clusters in the language-specific 497

subspace, supporting our claim. This also high- 498

lights the advantages of LENS in delivering trans- 499

parent, controllable, and interpretable solutions for 500

the multilingual enhancements of LLMs. 501

4.5 Impact of Language Proximity 502

In §3.4, we focus on languages that are out-of- 503

scope and under-represented in the backbone, se- 504

lected based on their typological and script dif- 505

ferences from the central language, English. To 506
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further highlight the generalizability of LENS, we507

expand our analysis to include three additional lan-508

guages: Spanish, French, and German. These lan-509

guages, being typologically closer to English, are510

already better represented in the backbone model.511

As illustrated in Table 7 of Appendix F.6, LENS still512

exhibit notable improvements. For a more compre-513

hensive discussion, please refer to Appendix F.6.514

5 Related Works515

Multilingual Large Language Model Pretrain-516

ing on multilingual data is a common approach to517

gain multilingual capabilities (Conneau and Lam-518

ple, 2019; Xue et al., 2020; Lin et al., 2022; Shli-519

azhko et al., 2022; Wei et al., 2023; Xue et al.,520

2022; Le Scao et al., 2023; Blevins et al., 2024).521

However, due to the uneven distribution of data522

in pretraining corpora, current LLMs or MLLMs523

exhibit uneven language capabilities, with most524

models heavily biased towards English (Jiang et al.,525

2023; AI@Meta, 2024; Abdin et al., 2024). More-526

over, pretraining from scratch is computationally527

intensive. These limitations have directly sparked528

research into expanding or enhancing the language529

capabilities of current LLMs or MLLMs.530

Multilingual Enhancement for LLMs Current531

methods for multilingual enhancement of LLMs532

can be categorized into two types: 1) prompt-based533

methods and 2) post-training-based methods.534

The former focuses on leveraging the LLMs’535

own translation capabilities to translate low-536

resource language inputs into the central language,537

and then generating a response (Shi et al., 2023;538

Huang et al., 2023; Qin et al., 2023; Etxaniz et al.,539

2024; Zhang et al., 2024b). However, Liu et al.540

(2024a) reveal the limitations of these methods,541

showing they are not optimal for real-world scenar-542

ios and highlighting the necessity of more compre-543

hensive multilingual enhancement.544

The latter aims to conduct further multilin-545

gual post-training to inject language knowledge546

or achieve cross-lingual alignment, including ways547

of continual pre-training (Zhang et al., 2021b; Cui548

et al., 2023; Chen et al., 2023b; Lin et al., 2024b;549

Kuulmets et al., 2024; Jaavid et al., 2024) and in-550

struction tuning (Muennighoff et al., 2023; Chen551

et al., 2023c; Indurthi et al., 2024; Ahuja et al.,552

2024; Lai and Nissim, 2024; Zhang et al., 2024c;553

Zhu et al., 2024a; Li et al., 2024; Zhao et al.,554

2024d). For example, Cui et al. (2023) attempt555

to inject Chinese knowledge into LLaMA by con-556

ducting continual pre-training on a large-scale Chi- 557

nese corpus, while Zhu et al. (2023) focus more on 558

building language alignment through cross-lingual 559

instruction tuning and translation training. 560

Our proposed LENS stands out from existing 561

methods in that we seek multilingual supervision 562

signals from the internal language representation 563

space of the LLMs, rather than relying heavily on 564

external multilingual datasets as in the above meth- 565

ods, which offers fresh insights and new opportuni- 566

ties for enhancing the multilingual capabilities of 567

LLMs both efficiently and effectively. For more dis- 568

cussions on the theoretical foundation of language- 569

agnostic and language-specific subspaces within 570

LLMs, please refer to Appendix G. 571

Representation Engineering Editing or manip- 572

ulating representation within LLMs has garnered 573

increasing attention due to its transparency and 574

lightweight properties (Zou et al., 2023). This is 575

theoritically rooted from Linear Representation Hy- 576

pothesis (Mikolov et al., 2013; Nanda et al., 2023; 577

Park et al., 2024). Building upon this, exist works 578

attempt to edit representations at inference time 579

to develop models that are more truthful (Li et al., 580

2023b; Campbell et al., 2023; Zhang et al., 2024a), 581

and harmless (Lee et al., 2024; Uppaal et al., 2024). 582

We expand and implement this paradigm for the 583

multilingual enhancement of LLMs by focusing 584

on representations during the training phase, ensur- 585

ing that the efficiency of LLMs remains unaffected 586

during the inference phase. 587

6 Conclusion 588

In this paper, we introduce LENS, a novel method 589

designed for the effective, efficient and comprehen- 590

sive multilingual enhancement of large language 591

models (LLMs). LENS first decouple the multi- 592

lingual hidden spaces of the backbone into two 593

orthogonal components: a language-agnostic sub- 594

space and a language-specific subspace. Then 595

taking well-established representations of the cen- 596

tral language as a pivot, representations of tar- 597

get languages are pulled closer and pushed away 598

from them in language-agnostic subspace and 599

language-specific subspace, respectively. Exper- 600

imental results on 3 representative cutting-edge 601

LLMs demonstrate that LENS outperforms base- 602

line methods with much lower training costs, un- 603

derscoring its efficacy, efficiency and scalability. 604
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7 Limitation and Future Work605

Despite our LENS achieving comprehensive and606

efficient multilingual enhancement, there are still607

limitations and future directions worth exploring.608

First, due to limited computational resources,609

our experiments are not conducted on larger-scale610

models (larger than 8B). This remains a valuable611

direction to apply LENS on larger LLMs.612

Second, our current operations on language rep-613

resentation are still relatively coarse-grained. Fu-614

ture work could delve into more specific parameter615

areas for finer operations.616

Finally, as we find that relying too much on ex-617

ternal datasets to enhance multilingual capabili-618

ties may be limited, we instead seek higher qual-619

ity supervision signals from within the model it-620

self. Future work could consider combining these621

two paradigms by incorporating data selection622

strategies (Albalak et al., 2024; Liu et al., 2024b),623

thereby providing higher quality multilingual su-624

pervision signals to the model from both internal625

and external sources.626

8 Ethical Considerations627

This work is conducted solely for academic re-628

search purposes, aiming to enhance the multilin-629

gual capabilities of large language models in a re-630

sponsible and interpretable manner. Our methods631

focus on improving cross-lingual alignment and632

representation learning without introducing biases633

or harmful content. We do not intend for this re-634

search to be used in applications that could lead to635

misinformation, discrimination, or unethical ma-636

nipulation of language models. Additionally, we637

adhere to ethical AI principles, ensuring that our638

approach respects linguistic diversity and maintains639

fairness across different languages.640
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Algorithm 1: Language Subspace Probing
In: languages’ mean embeddings M , rank

of subspace r
Out: language-agnostic subspace Ma,

language-specific subspace M s,
coordinates Γ

/* 1) Approximate M in low rank */
1 M ′

a ← 1
dM1;

2 M ′
s, _,Γ′ ← Top-r SVD

(
M −M ′

a1
⊤);

3 M ′ ←M ′
a1

⊤ +M ′
sΓ

′⊤;
/* 2) Force orthogonality */

4 Ma ← 1
∥M ′+

1∥2
M ′+

1;

5 M s, _,Γ← Top-r SVD
(
M ′ −Ma1

⊤)

A Probing for Language Subspace1262

The optimal solution of Equation 2 can be com-1263

puted efficiently via Singular Value Decomposition1264

(SVD). Algorithm 1 presents the detailed proce-1265

dure. Readers interested in more details can con-1266

sult the proof provided in Xie et al. (2022). The1267

only hyperparameter r < L controls the amount of1268

language-specific information captured by the iden-1269

tified subspace. The larger r is, the more language-1270

specific signals we can identify.1271

B Training Data1272

The multilingual data used for the language sub-1273

space probing stage is sourced from the Aya1274

Dataset (Üstün et al., 2024), a human-annotated,1275

non-parallel multilingual instruction fine-tuning1276

dataset with 204,000 instances in 65 languages.1277

For the language subspace manipulation stage, we1278

rely on parallel multilingual data from the Bactrian-1279

X dataset (Li et al., 2023a), which contains 3.41280

million instruction-response pairs in 52 languages.1281

These pairs are generated by translating 67,000 En-1282

glish instructions (derived from alpaca-52k (Taori1283

et al., 2023) and dolly-15k) into 51 languages us-1284

ing the Google Translate API, and then obtaining1285

natural responses from ChatGPT.1286

C Multilingual Benchmarks1287

We comprehensively measure the efficacy of our1288

LENS on various multilingual tasks, including 51289

mainstream benchmarks for evaluation. They can1290

be categorized into the evaluation of multilingual1291

understanding and multilingual generation.1292

For multilingual understanding:1293

• XCOPA (Ponti et al., 2020):2 A benchmark to 1294

evaluate the ability of machine learning mod- 1295

els to transfer commonsense reasoning across 1296

languages. The dataset is the translation and 1297

re-annotation of the English COPA (Roem- 1298

mele et al., 2011) and covers 11 languages 1299

from 11 families and several areas around the 1300

globe. The dataset is challenging as it requires 1301

both the command of world knowledge and 1302

the ability to generalise to new languages. In 1303

our experimental setup, this benchmark covers 1304

both Chinese (Zh) and Swahili (Sw). 1305

• XWinograd (Muennighoff et al., 2023):3 A 1306

well-established tool for evaluating corefer- 1307

ence resolution (CoR) and commonsense rea- 1308

soning (CSR) capabilities of computational 1309

models. The dataset is the translation of the 1310

English Winograd Schema datasets and it adds 1311

488 Chinese schemas from CLUEWSC2020 1312

(Xu et al., 2020), totaling 6 languages. For- 1313

mulated as a fill-in-a-blank task with binary 1314

options, the goal is to choose the right option 1315

for a given sentence which requires common- 1316

sense reasoning. In our experimental setup, 1317

this benchmark covers English (En), Chinese 1318

(Zh) and Japanese (Jp). 1319

• XStoryCloze (Lin et al., 2022):4 A com- 1320

monsense reasoning framework for evaluat- 1321

ing story understanding, story generation, and 1322

script learning. The dataset consists of the pro- 1323

fessionally translated version of the English 1324

StoryCloze dataset (Spring 2016 version) to 1325

10 non-English languages. The dataset is chal- 1326

lenging and is designed to evaluate story un- 1327

derstanding, story generation, and script learn- 1328

ing. In our experimental setup, this bench- 1329

mark covers English (En), Chinese (Zh), Ara- 1330

bic (Ar) and Swahili (Sw). 1331

• M-MMLU (Hendrycks et al., 2021; Lai et al., 1332

2023):5 A benchmark designed to measure 1333

knowledge acquired during pretraining by 1334

evaluating models exclusively in zero-shot 1335

and few-shot settings. The datasets is a ma- 1336

2https://huggingface.co/datasets/cambridgeltl/
xcopa

3https://huggingface.co/datasets/Muennighoff/
xwinograd

4https://huggingface.co/datasets/juletxara/
xstory_cloze

5https://huggingface.co/datasets/
alexandrainst/m_mmlu
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chine translated version of the MMLU dataset1337

by GPT-3.5-turbo and covers 34 languages.1338

This is a massive multitask test consisting1339

of multiple-choice questions from various1340

branches of knowledge. To attain high ac-1341

curacy on this test, models must possess ex-1342

tensive world knowledge and problem solv-1343

ing ability. In our experimental setup, this1344

benchmark covers English (En), Chinese (Zh),1345

Arabic (Ar), Korean (Ko), and Swahili (Sw).1346

For multilingual generation:1347

• MT-Bench (Zheng et al., 2023): The dataset1348

is designed for open-ended generation to1349

evaluate a model’s ability to follow multi-1350

turn instructions. In our experimental setup,1351

this benchmark covers English (En), Chinese1352

(Zh), Arabic (Ar), Japanese (Jp), Korean (Ko),1353

Swahili (Sw) and Bengali (Bn). We collect1354

data in English6, Japanese7, Korean8, and Ara-1355

bic9 from huggingface, and Chinese10 from1356

github. In addition, we use GPT-4o to trans-1357

late the English data into Swahili and Bengali,1358

and performed manual proofreading to ensure1359

correctness.1360

D Baseline Methods1361

D.1 Multilingual Enhancement Baselines1362

For comparison, we consider the following base-1363

line methods that enhance LLMs’ multilingual ca-1364

pabilities using multilingual instruction fine-tuning1365

technique: (1) xSFT & xSFT-Full (Ouyang et al.,1366

2022): xSFT performs multilingual instruction fine-1367

tuning using the same data volume as our LENS.1368

In contrast, xSFT-Full utilizes the full dataset for1369

each target language from the Aya Collection and1370

Bactrian-X. (2) QAlign (Zhu et al., 2024a): It ex-1371

plores the benefits of question alignment, where1372

the model is trained to translate inputs into English1373

by finetuning on X-English parallel question data.1374

(3) SDRRL (Zhang et al., 2024c): It is based on1375

self-distillation from resource-rich languages that1376

effectively improve multilingual performance by1377

6https://huggingface.co/datasets/
HuggingFaceH4/mt_bench_prompts

7https://huggingface.co/datasets/shi3z/
MTbenchJapanese

8https://huggingface.co/datasets/StudentLLM/
Korean_MT-Bench_questions

9https://huggingface.co/spaces/QCRI/
mt-bench-ar/tree/main/data/mt_bench_ar

10https://github.com/HIT-SCIR/huozi

Manipulated Layer λZh

LLaMA-3-8B-Instruct 31 1
LLaMA-3.1-8B-Instruct 30 0.05
Phi-3.5-mini-Instruct 27 0.25

Table 3: Detailed hyper-parameter settings for bilingual
enhancement. The number under the column of Manip-
ulated Layer represents the starting point of the layers
where manipulation is applied, with the default endpoint
being the final layer.

leveraging self-distillated data. (4) CLA (Li et al., 1378

2024): It aligns the internal sentence representa- 1379

tions across different languages via multilingual 1380

contrastive learning and aligns outputs by follow- 1381

ing cross-lingual instructions in the target language. 1382

D.2 Open-Source Multilingual-Enhanced 1383

LLMs 1384

The Chinese-LLaMA-3 series, which builds on 1385

LLaMA-3 series to enhance Chinese capabilities 1386

and includes three different versions: 1387

• Chinese-LLaMA-3-Instruct-V1:11 This 1388

model is continually pre-trained on 120GB 1389

of Chinese text and fine-tuned with 500 mil- 1390

lion carefully curated instruction data points, 1391

based on the LLaMA-3-8B. These training 1392

datasets is not available to the public. 1393

• Chinese-LLaMA-3-Instruct-V2:12 This ver- 1394

sion is directly fine-tuned on the same 500 mil- 1395

lion instruction data points using the LLaMA- 1396

3-8B-Instruct model. 1397

• Chinese-LLaMA-3-Instruct-V3:13 This 1398

model is created by merging V1, V2, and the 1399

original LLaMA-3-8B-Instruct, followed by 1400

fine-tuning on 5,000 instruction data points. 1401

E Implementation Details 1402

Our experiments are implemented with PyTorch 1403

(Paszke et al., 2019) and Transformer library (Wolf 1404

et al., 2020) on a single NVIDIA A800-SXM4- 1405

80GB GPU. The training duration is set to one 1406

epoch with the learning rate of 1e-5, cosine learn- 1407

ing rate scheduler with warm up ratio of 0.05 and 1408

11https://huggingface.co/hfl/
llama-3-chinese-8b-instruct

12https://huggingface.co/hfl/
llama-3-chinese-8b-instruct-v2

13https://huggingface.co/hfl/
llama-3-chinese-8b-instruct-v3
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Manipulated Layer λZh λJp λKo λAr λBn λSw

LLaMA-3-8B-Instruct 29 1 0.6 1 0.5 0.2 0.2
LLaMA-3.1-8B-Instruct 30 0.01 0.01 0.03 0.01 0.01 0.01
Phi-3.5-mini-Instruct 29 0.2 0.2 0.2 0.2 0.15 0.15

Table 4: Detailed hyper-parameter settings for multilingual enhancement. The number under the column of
Manipulated Layer represents the starting point of the layers where manipulation is applied, with the default
endpoint being the final layer.

batch size of 8 across all backbones. And all back-1409

bones are trained with their official chat template1410

with λ1 = 1 and λ3 = 1. The hyper-parameter r1411

specifying the dimension of language-specific sub-1412

space in language subspace probing stage is set to1413

L − 1, where L is the total number of languages1414

participated in this process. We use GlotLID (Kar-1415

garan et al., 2023) to identify the response lan-1416

guage to obtain the language fidelity. GlotLID1417

is an open-source language identification model1418

that supports more than 1,600 languages. GlotLID1419

returns iso_636_9 language codes, which we man-1420

ually map to the language codes in this work.1421

More detailed hyper-parameter settings for bilin-1422

gual and multilingual enhancement across different1423

backbones are listed in Table 3 and Table 4.1424

Further, we carefully evaluate the official imple-1425

mentations of all baselines, in order to make the1426

comparison as fair as possible. All baselines are1427

trained using the same language pairs as those in1428

LENS. For SDRRL and CLA, we adhere to their1429

respective configurations to reconstruct the training1430

data from these language pairs. We strictly fol-1431

low the hyper-parameter settings in their original1432

code. If this could not reach the expected perfor-1433

mance, we carry out the hyper-parameter search of1434

the learning rate and batch size.1435

F Additional Experimental Results1436

F.1 Results under Multilingual Settings1437

Results of the comparison between LENS and base-1438

line methods on Phi-3.5-mini-Instruct under bilin-1439

gual and multilingual setups are shown in Table 51440

and Figure 7, respectively. We report the results1441

of multilingual enhancement settings on LLaMA-1442

3-8B-Instruct and LLaMA-3.1-8B-Instruct are dis-1443

played in Figure 5 and 6, respectively.1444

The results demonstrate that our LENS is still1445

capable of achieving the comprehensive multilin-1446

gual enhancement. Similarly, LENS continues to1447

improve the model’s multilingual generation ca-1448

pability, enhancing the quality of the model’s re-1449

sponses in specific languages. However, the im- 1450

provement in language fidelity is more pronounced 1451

in the LLaMA-3-8B-Instruct backbone than in the 1452

multilingual backbones (LLaMA-3.1-8B-Instruct 1453

and Phi-3.5-mini-Instruct), which the latter ones un- 1454

dergo more extensive multilingual alignment train- 1455

ing. Notably, while the baseline method consider- 1456

ably decreases the language fidelity of the multilin- 1457

gual backbones, LENS has minimal impact on it. 1458

These extensive experimental results demonstrate 1459

that LENS can serve as an effective, efficient, and 1460

scalable multilingual enhancement solution. We 1461

hope that our method can provide inspiration for 1462

future work to seek multilingual supervision more 1463

from the LLM itself rather than heavily relying on 1464

external dataset. 1465

We also note that xSFT-Full exhibits uneven per- 1466

formance gains, especially in Swahili (Sw). We 1467

believe this may be attributed to the uneven qual- 1468

ity of the training data. Specifically, the Bactrian- 1469

X dataset used for training derives its input from 1470

Google Translate and its output from GPT-3.5- 1471

turbo, meaning the dataset quality depends heav- 1472

ily on these two sources. As a result, inconsis- 1473

tencies in translation and generation quality can 1474

introduce noise, leading to uneven performance 1475

gains from data-driven post-training approaches 1476

like xSFT-Full. This highlights one of the key limi- 1477

tations of the current data-driven paradigms. 1478

In contrast, LENS seeks supervision signals in- 1479

ternally from the backbone itself, bypassing the 1480

need for extensive reliance on potentially noisy 1481

external datasets. This intrinsic approach allows 1482

LENS to achieve consistent improvements over the 1483

backbone model across a wide range of languages, 1484

demonstrating better scalability and robustness. We 1485

have also demonstrated this phenomenon in our ex- 1486

periments, showcasing LENS’s broader applicabil- 1487

ity. In our future work, we propose combining the 1488

LENS training paradigm with advancements in data 1489

selection and filtering methods. We believe this 1490

hybrid approach holds great potential for further 1491

enhancing multilingual performance. 1492
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Figure 5: Results on the multilingual understanding and generation benchmarks with LLaMA-3-8B-Instruct
backbone under the multilingual setting.
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Figure 6: Results on the multilingual understanding and generation benchmarks with LLaMA-3.1-8B-Instruct
backbone under the multilingual setting.
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Figure 7: Results on the multilingual understanding and generation benchmarks with Phi-3.5-mini-Instruct backbone
under the multilingual setting.
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Multilingual Understanding Multilingual Generation
XCOPA XWinograd XStoryCloze M-MMLU AVG. MT-Bench

En Zh En Zh En Zh En Zh En Zh En Zh

Phi-3.5 - 81.40 75.80 67.70 95.40 89.40 71.70 47.30 81.00 71.40 6.18 (100%) 4.92 (90.50%)

xSFT - 80.80 77.20 69.64 95.40 89.40 71.70 46.80 81.43 71.66 5.29 (100%) 3.31 (88.75%)
xSFT-Full - 80.40 73.10 65.67 95.20 88.20 71.90 44.70 80.07 69.74 5.25 (100%) 3.84 (87.50%)
QAlign - 78.00 69.60 58.73 95.10 84.70 70.80 46.60 78.50 67.01 5.28 (100%) 3.15 (88.75%)
SDRRL - 81.80 76.30 66.87 95.60 90.20 71.60 46.90 81.17 71.44 6.15 (100%) 4.03 (90.00%)
CLA - 80.40 76.50 66.50 95.70 89.40 71.70 47.10 81.30 70.85 6.08 (100%) 4.26 (90.00%)

LENS (Ours) - 82.60 75.80 68.73 95.60 90.60 71.80 47.40 81.07 72.33 6.44 (100%) 5.16 (92.50%)

Table 5: Detailed results on the multilingual understanding and multilingual generation benchmarks with Phi-3.5-
mini-Instruct backbone under the bilingual setting (English and Chinese). Accuracy serves as the evaluation metric
for multilingual understanding, while GPT-4o ratings (on a scale of 1 to 10) are provided for MT-Bench. The values
in parentheses represent language fidelity. Results highlighted in green indicate an improvement or performance
comparable to the original backbone, while those highlighted in red signal a decline in performance relative to the
original backbone. The best and second-best results in our method and baselines are in bold and underlined.

Lens xSFT xSFT-Full SDRRL QAlign CLA V1 V2 V3

Training time 2m08s 5m33s 192m35s 11m30s 12m03s 12m33s - - -
Trainable parameters rate 5.43% 100.00% 100.00% 100.00% 100.00% 100.00% 13.08% 13.08% -
Instruction data 1K 1K 111.5K 4K 1K 1K 5M 5M 5K
Pre-training data - - - - - - 120G - -

Table 6: Resource consumption of different multilingual enhancement methods under the bilingual enhancement
setup. The backbone model is LLaMA-3-8B-Instruct.

F.2 Comparison with LoRA-Based SFT1493

In Figures 5, 6 and 7, We also perform compar-1494

ison with LoRA-based (Hu et al., 2022) SFT as1495

recent work suggests that LoRA-based SFT can1496

effectively prevent catastrophic forgetting (Huang1497

et al., 2024). Based on our experimental results,1498

we derived the following key conclusions:1499

For preserving the central language’s capabil-1500

ities, incorporating LoRA-based SFT is indeed1501

more effective at preventing catastrophic forgetting1502

than its full-parameter counterpart. However, it pri-1503

marily protects multilingual understanding (MU)1504

tasks while multilingual generation (MG) capabili-1505

ties are also significantly affected.1506

For target language enhancement, LoRA-based1507

SFT methods also show a trend for improving MU1508

tasks more over MG tasks.1509

By contrast, our proposed LENS achieves a more1510

comprehensive performance, simultaneously en-1511

hancing understanding and generation for target1512

languages while maintaining both the understand-1513

ing and generation capabilities of the central lan-1514

guage across different base models.1515

F.3 Broader Insights and Connection to1516

Superficial Alignment Hypothesis1517

Our experimental findings suggest that eliciting1518

language-specific representations benefits multi-1519

lingual capability more than aligning language- 1520

agnostic representations, which may also lend sup- 1521

port to the superficial alignment hypothesis (Zhou 1522

et al., 2023; Lin et al., 2024a; Yan et al., 2024). It 1523

posits that LLMs acquire their core knowledge and 1524

abilities during pretraining, while post-alignment 1525

training primarily guides the model towards a de- 1526

sirable subdistribution of formats to use when 1527

prompted. In the multilingual settings, this is 1528

specifically manifested in: 1529

(1) Despite the imbalance distribution of train- 1530

ing data in pretraining resources for different lan- 1531

guages, the majority of language-agnostic knowl- 1532

edge is already well-comprehended and aligned 1533

during pretraining, especially for current LLMs ex- 1534

posed to super-large-scale pretraining corpora (e.g., 1535

over 15T tokens for LLaMA-3). 1536

(2) Current post-alignment training, which dis- 1537

proportionately focuses on English data, limits 1538

other languages to a subdistribution aligned with 1539

English-specific formats. 1540

Thus, further aligning multilingual representa- 1541

tions may have less impact compared to stimulating 1542

language-specific expressiveness in the target lan- 1543

guages, but both mechanisms contribute to perfor- 1544

mance improvement in our method, with separation 1545

playing a more significant role. 1546
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F.4 Results on Multilingual Machine1547

Translation1548

We carry out evaluations on the FLORES-1011549

dataset (Goyal et al., 2022). Specifically, we assess1550

the bidirectional translation performance between1551

the target language and English, reporting scores1552

using the COMET metric with the WMT22-comet-1553

da model (Rei et al., 2022). The choice of target1554

language and training settings align with the exper-1555

imental setup used for multilingual enhancement1556

on LLaMA-3-8B-Instruct.1557

The experimental results in Table 2 demonstrate1558

that LENS still effectively enhances the multilin-1559

gual machine translation performance, further val-1560

idating its robustness across diverse multilingual1561

tasks. Additionally, methods like QAlign, SDRRL1562

and CLA, which heavily rely on translation-based1563

training for multilingual alignment, fall short in ac-1564

quiring deep linguistic understanding for each lan-1565

guage. Thus, their ignorance of language-specific1566

modeling hinders their efficacy in multilingual ma-1567

chine translation that require fine-grained linguistic1568

nuances necessary for accurate translations.1569

F.5 Impact of Varying the Number of1570

Manipulated Layers1571

Recent studies on the interpretability of LLMs has1572

sought to reveal the mechanisms underlying their1573

multilingual capabilities (Zhao et al., 2024c; Zhong1574

et al., 2024). A growing consensus suggests that1575

language-specific parameters or neurons are pri-1576

marily concentrated in the upper layers of these1577

models, while the middle layers tend to process1578

inputs from various languages using a shared and1579

language-agnostic mechanism (Chen et al., 2023a;1580

Wendler et al., 2024; Tang et al., 2024; Kojima1581

et al., 2024; Zhang et al., 2024d). Drawing inspira-1582

tion from this, our main experiments focus on per-1583

forming updates solely within the upper layers of1584

the backbone, resulting in a notable improvement1585

in multilingual performance. In Figure 3(a), we ex-1586

plore the effect of increasing the number of layers1587

involved on the model’s multilingual enhancement.1588

The horizontal axis represents the starting point of1589

the layers where manipulation is applied, with the1590

default endpoint being the final layer. This experi-1591

ment is performed under the bilingual enhancement1592

with LLaMA-3-8B-Instruct.1593

“Thinking” in English at the intermediate layers1594

is more favorable for improving multilingual under-1595

standing. If we partition representations of target1596

MU MG
Es Fr De Es Fr De

LLaMA-3 53.50 52.50 56.50 5.88 5.27 4.56

xSFT 50.80 49.90 56.00 4.36 4.47 4.00
xSFT-Full 50.90 48.90 51.50 4.60 4.42 4.33
SDRRL 48.90 47.80 50.30 2.74 3.06 2.54
QAlign 48.50 46.60 51.30 2.88 2.91 2.31

LENS 53.70 52.10 57.10 5.90 5.63 4.90

Table 7: Detailed results on the multilingual un-
derstanding and multilingual generation benchmarks
with LLaMA-3-8B-Instruct backbone for Spanish (Es),
French (Fr), and German (De). Accuracy serves as the
evaluation metric for multilingual understanding, while
GPT-4o ratings (on a scale of 1 to 10) are provided for
MT-Bench. The values in parentheses represent lan-
guage fidelity. The best and second-best results in our
method and baselines are in bold and underlined.

language into the language-specific subspace too 1597

early at the middle layers, it may impair its multi- 1598

lingual understanding capability. On the contrary, 1599

inheriting more from the shared representations 1600

at the middle layers, while emphasizing language- 1601

specific representations only at the higher layers 1602

(where most language-specific parameters and neu- 1603

rons are concentrated), is more beneficial for en- 1604

hancing multilingual performance. 1605

It is important to note that modifying only the 1606

final layer does not significantly improve either 1607

multilingual understanding or generation. This is 1608

because language-specific information is not suffi- 1609

ciently enhanced, causing the model to suffer from 1610

off-target issues and struggle to represent specific 1611

languages accurately. The lack of improvement 1612

in multilingual understanding aligns with the find- 1613

ings in §4.1, which highlight the critical role of 1614

supervision provided by the Push loss (L2). 1615

LENS further validates the conclusions of ex- 1616

isting works on LLM interpretability and applies 1617

these findings to multilingual enhancement. 1618

F.6 Impact of Language Proximity 1619

Here are our supplemented experimental results 1620

based on LLaMA-3-8B-Instruct to further high- 1621

light the generalizability of LENS, where these 3 1622

languages, Spanish (Es), French (Fr), and German 1623

(De), are typologically and scripturally closer to 1624

English. For Multilingual Understanding (MU) 1625

evaluation, we adopt M-MMLU dataset which cov- 1626

ers all 4 languages En, Es, Fr and De. And Multi- 1627

lingual Generation (MG) evaluation is performed 1628

on MT-Bench. Results are shown in Table 7. 1629
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The horizontal comparison in Table 7 and Figure1630

5 reveals that it demonstrates effectiveness across1631

languages from different typological families, fur-1632

ther highlighting its generalizability and adaptabil-1633

ity to diverse linguistic characteristics.1634

G Additional Related Works1635

Here we provide additional discussion on the1636

theoretical foundation of language-agnostic and1637

language-specific subspaces, dividing it into two1638

aspects: linguistic theory and LLM interpretability.1639

Linguistic Theory From a linguistic standpoint,1640

the idea of separating representations into language-1641

agnostic and language-specific spaces is grounded1642

in established theories of language universals and1643

typology. Language-agnostic features align with1644

universal linguistic structures, such as shared syn-1645

tactic patterns or semantic primitives (Greenberg,1646

1963; Comrie, 1989), while language-specific fea-1647

tures capture unique aspects like phonology, mor-1648

phology, or syntax (Croft, 2002; Cotterell et al.,1649

2016). These distinctions have also been studied in1650

computational linguistics, such as in multilingual1651

embeddings (Artetxe et al., 2018) and cross-lingual1652

representation learning (Ruder et al., 2019), sup-1653

porting the conceptual basis in LENS.1654

LLM Interpretability Recent interpretability1655

studies have provided compelling evidence that1656

LLMs internally encode language-agnostic and1657

language-specific subspaces. For example, specific1658

neurons or groups of neurons have been identified1659

as responsible for mapping multilingual input rep-1660

resentations into either a shared language-agnostic1661

space (Chen et al., 2023a; Starace et al., 2023;1662

Wang et al., 2024b; Chen et al., 2024; Wendler1663

et al., 2024) that different languages share the1664

common knowledge or distinct language-specific1665

spaces (Tang et al., 2024; Kojima et al., 2024;1666

Zhang et al., 2024d) that are crucial for the ac-1667

curate expression for specific languages. These1668

findings support our assumption that LLMs nat-1669

urally exhibit such separable structures, and our1670

work leverages this inductive bias to improve mul-1671

tilingual performance.1672

Building upon such two theoretical foundations,1673

particularly from linguistic theory, most previous1674

works regarding multilingual enhancement have fo-1675

cused on aligning representations in the language-1676

agnostic space (Hu et al., 2024; Berend, 2020; Cao1677

et al., 2020; Karthikeyan et al., 2020; Alaux et al.,1678

2019; Wang et al., 2019) or aligning gradients dur- 1679

ing optimization (Lee et al., 2022; Wang et al., 1680

2021) to leverage shared features across languages. 1681

However, few works in multilingual machine trans- 1682

lation have considered language-specific character- 1683

istics, primarily to implement routing mechanisms 1684

or modular designs to improve performance (Zhao 1685

et al., 2024b; Zhang et al., 2021a). 1686

In contrast, our proposed LENS goes a step fur- 1687

ther that it leverages both language-agnostic and 1688

language-specific subspaces to comprehensively 1689

enhance multilingual performance both inheriting 1690

the theoretical soundness and demonstrating practi- 1691

cal utility of our approach. 1692
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