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Abstract

Repeated Sampling (RS) is a simple yet ef-
fective inference-time strategy that has been
shown to enhance performance on complex
tasks. Although its integration into post-
training has achieved pass@k improvements,
RS often struggles with generating diverse so-
lution candidates (i.e., lack of exploration of
solution space). Due to the lack of diversity,
multiple samples are often redundant in their
generation since they use the same underlying
approach to solve a given problem. To address
these limitations, we propose a new inference
strategy, GUIDEDSAMPLING, which decouples
the exploration and generation phases at infer-
ence time, increasing diversity during sampling.
The exploration phase explores multiple con-
cepts that can be utilized to solve the problem,
while the generation phase uses a particular
concept to give a final solution. Experimental
results show that GUIDEDSAMPLING improves
the rate of finding correct solutions by up to
~ 34.6% over a strong baseline. Furthermore,
models trained with trajectories generated via
GUIDEDSAMPLING exhibit substantial perfor-
mance improvements in pass@10, including
17% 1 on the MATH, 11.12% 1 on GPQA-
Diamond, and 5.49% 1 on HumanEval, com-
pared to models trained with traditional RS.!

1 Introduction

Recent advances in large language models (LLMs)
have shown that scaling model size and train-
ing data can lead to increasingly capable systems
across diverse domains including mathematical rea-
soning, scientific analysis, and code generation
(Kaplan et al., 2020). However, scaling models in-
definitely is becoming increasingly infeasible due
to the requirement of more data for training ever-
larger models (Villalobos et al., 2024). As a result,
a growing body of work has shifted focus to al-
ternative ways of boosting performance—not by

The code and data is available at https://anonymous.
4open.science/r/sampling_inference-B44E
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Figure 1: GUIDEDSAMPLING enhances exploration dur-
ing inference by first generating a set of diverse ideas or
theorems to guide subsequent generations of solutions.
Unlike repeated sampling (RS), where the model gen-
erates the final solution, GUIDEDSAMPLING separates
these phases.
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making models larger, but by making better use of
available compute during inference (Hosseini et al.,
2024; Kumar et al., 2024; Lightman et al., 2023;
Brown et al., 2024). Several studies now suggest
that allocating additional compute at inference time
can lead to larger performance gains than spending
that compute to train bigger models (Snell et al.,
2024; Wu et al., 2024).

To this end, various inference-time algorithms
have been proposed (Wang et al., 2022; Yao et al.,
2023; Zhang et al., 2024). Among them, repeated
sampling (RS) (Cobbe et al., 2021) is one of the
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Figure 2: GUIDEDS AMPLING forces exploration during inference-time, which results in 13.51% average pass @k
accuracy compared to traditional repeated sampling. We observe an average improvement of 20% on MATH, 8.34%
on GPQA-Diamond, and 12.19% on HumanEval. First row: Results for Llama-3.2-3B-Instruct, Second row:

Results for Qwen2.5-3B-Instruct.

most widely used inference-time algorithms, where
multiple outputs are sampled for the same input
prompt. Traditional RS implicitly combines two
phases: exploration, which we define as the di-
verse theorems or concepts used in solving the
given question, and generation, where the LLMs
use a particular concept and try to generate many
solutions for a given problem. However, despite
its simplicity, traditional RS suffers from a lack
of exploration, leading to the repeated generation
of solutions with the same underlying concepts
rather than a thorough exploration of the solution
space (Brown et al., 2024). To address these limita-
tions, we first propose a novel sampling technique,
GUIDEDS AMPLING, designed to decouple the ex-
ploration of diverse concepts from the generation
of final solutions. We then demonstrate how train-
ing LLMs on trajectories of GUIDEDSAMPLING
shows significant performance gains.

GUIDEDSAMPLING first explicitly samples di-
verse concepts or theorems that can be used to
solve a given question. Then, in the second phase,
these concepts guide the generation of complete
candidate solutions. This decoupling is the key
reason that GUIDEDSAMPLING enhances the di-
versity of solution candidates generated during in-
ference. For instance, consider a problem from

MATH (Hendrycks et al., 2021): “Find the maxi-

mum value of [ over all real numbers =

and y.”. For this problem, we sample 1000 solu-
tions using traditional RS and GUIDEDSAMPLING.
Our detailed analysis of these candidates shows that
892/1000 uses only “AM-GM inequality” concept
to solve the problem, consistently leading to the
incorrect solution due to over-utilizing the same
theorem. In contrast, only 77/1000 candidates
from GUIDEDSAMPLING use this theorem, ded-
icating the remaining compute to exploring other
theorems such as “Cauchy-Schwarz Inequality”,
“Trivial Inequality”, and “Chebyshev’s Inequality”.
This improved exploration significantly expands
the search space of the model, leading to better
accuracy, as is illustrated in Figure 2. More details
about GUIDEDSAMPLING are provided in §3.

Our other core contribution is to use GUIDED-
SAMPLING to improve LLM training. We demon-
strate that fine-tuning LLMs on trajectories gener-
ated by GUIDEDSAMPLING outperforms models
trained on trajectories from traditional RS. We gen-
erate diverse solution trajectories using GUIDED-
SAMPLING on a random subset of 10k instances
from OpenMathlnstruct-2 (Toshniwal et al., 2024).
LLM:s fine-tuned on this data exhibited a 17% 7
in pass@10 accuracy on the MATH benchmark.



These fine-tuned models also demonstrate im-
proved generalization, with pass@10 gains on out-
of-domain benchmarks, GPQA-Diamond (Rein
et al., 2024) for scientific reasoning (11.12% 1)
and HumanEval (Chen et al., 2021) for Python
code generation (5.49% 7). Results show that train-
ing with an explicit decoupling of exploration and
generation leads to better generalizable reasoning
capabilities than simply training on correct solu-
tions. Further details are presented in §3.3. In
summary, our contributions are as follows:

1. We propose GUIDEDS AMPLING, an inference-
time sampling technique that improves the di-
versity of generated solutions.

2. We show how performance varies when shifting
compute between exploration and generation.

3. We demonstrate that fine-tuning LLMs on
GUIDEDSAMPLING trajectories significantly
improves performance on mathematical reason-
ing and generalizes the model to other domains.

4. Our proposed approaches show significant im-
provements over baselines trained with tradi-
tional RS on benchmarks including MATH,
GPQA-Diamond, and HumanEval.

2 Related Works

Inference Strategies Chain-of-thought (CoT)
and its variants (Wei et al., 2022; Kojima et al.,
2022) showed that guiding LLMs to produce in-
termediate reasoning steps during inference boosts
the performance on complex tasks such as math-
ematical and commonsense reasoning. However,
as reasoning chains become longer, CoT suffers
from error propagation due to complex calculations
(Chen et al., 2022). To mitigate this, new methods
have been proposed like Self-Consistency (SC),
which samples multiple CoT from LLM and then
selects the most consistent final answer through
majority voting (Wang et al., 2022). Building upon
these ideas, better search algorithms such as tree-
of-thought (Yao et al., 2023), MCTS (Zhang et al.,
2024), and REBASE (Wu et al., 2024) have been
proposed, which enable LLMs to perform more
deliberate problem solving by exploring multiple
reasoning paths in a tree structure. Finally, several
agentic systems (Parmar et al., 2025; Estornell and
Liu, 2024) have shown that spending more time
debating between agents at inference before gen-
erating a final solution improves performance. In
contrast to prior methods, GUIDEDSAMPLING gen-
erates a diverse set of samples with lower inference-

time cost than tree search, while achieving greater
diversity than both standard prompting and recent
agentic approaches. Parallel to our work, Wang
et al. (2025) proposed Randldealnjection, which
first generates a list of distinct ideas and then in-
jects the generated list into the generation process
to produce the final response. GUIDEDSAMPLING,
on the other hand, works in an iterative loop of
generating concepts, adding them individually to
generate the final output.

Training LLMs using Synthetic Data Recent
works have explored leveraging advanced inference
strategies both for generating high-quality synthetic
training data and for fine-tuning models to improve
their performance. For instance, Self-Taught Rea-
soner (STaR) (Zelikman et al., 2022) is an iterative
method where an LLM is prompted to generate
CoT rationales; those rationales that lead to cor-
rect answers are then used as high-quality synthetic
data to fine-tune the model, while those which lead
to incorrect answers are passed back to model for
refinement along with the correct final answer, ef-
fectively bootstrapping its reasoning abilities from
a small initial set. Similarly, ReSTEM (Singh et al.,
2023), building on principles of reinforced self-
training (ReST), employs an iterative Expectation-
Maximization-like framework. It uses Best-of-N
(BoN) sampling to generate multiple candidate so-
lutions for problems and then refines the model
by training on this synthetically generated data.
Chow et al. (2024) and Tang et al. (2025) devel-
oped reinforcement learning (RL) methods that
directly optimize for pass @k metrics and majority
voting performance, leading to significant gains
in reasoning and code generation. Other meth-
ods, such as multi-agent fine-tuning (Subramaniam
et al., 2025), train diverse agent models through de-
bate and voting, while Gui et al. (2024) introduced
BoNBoN Alignment, distilling the BoN sampling
distribution into a single model. While these strate-
gies improve pass @Kk, they often do not explicitly
manage the trade-off between exploration and gen-
eration. In contrast, our proposed GUIDEDSAM-
PLING method introduces a structured exploration
phase during training, explicitly balancing diver-
sity and quality. We show that models fine-tuned
with GUIDEDSAMPLING outperform those trained
using data generated by methods like BoN, STaR,
or tree-of-thoughts, and achieve stronger pass@k
performance than prior training techniques.



3 GUIDEDSAMPLING

3.1 Background

Traditional RS Repeated Sampling (RS) is a
simple strategy to increase the inference-time per-
formance of a model by generating multiple sam-
ples from the model’s output distribution. Let
X = {z1,x9,...,zN} be a set of input queries.
For each input x € X, we draw £ independent
samples from the model-defined conditional distri-
bution py(y | z), i.e.,

(z)

y’L Np@(y’$), fOr'l:].,,k

This process effectively scales the model’s
inference-time compute linearly with k. The theo-
retical appeal of RS lies in its potential to achieve
complete coverage of the output space as k — oo.
For any target output y* such that py(y* | =) > 0,
the probability that it is sampled at least once after
k draws is:

Py=1—(1—pyly* | )"

This quantity monotonically increases with k
and asymptotically approaches 1. Thus, under the
assumption that all valid outputs are assigned non-
zero probability by the model, unlimited sampling
ensures that the target output will be generated at
least once. This has led to several works adopt-
ing RS to generate solutions (Wang et al., 2022;
Roziere et al., 2023; Li et al., 2022).

Of course, unlimited sampling is impractical.
The value of RS lies in whether increased sampling
leads to improved output quality within a feasible
compute budget. Several works have pointed out
this issue, stating that the lack of diversity in these
generated responses is the key limitation of scaling
up RS (Brown et al., 2024; Wang et al., 2025).

Diversity Analysis To quantify the lack of diver-
sity in RS, we use Qwen2.5-32B-Instruct (Yang
et al., 2024) to extract the core concept or theorem
from each solution. We present in prompt for con-
cept extraction in Appendix A.2. We then find the
number of distinct concepts which are used to solve
a given problem. We find that solutions sampled us-
ing RS tend to rely heavily on a few underlying con-
cepts to solve the problem even with an increasing
number of compute. For example, while solving
problems presented in the HumanEval benchmark,
even with 100 responses, Llama-3.2-3B-Instruct
gave an average of only 2.75 different concepts
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Figure 3: Distribution of the average number of con-
cepts used by Llama-3.2-3B-Instruct for 100 repeated
samplings. 37% of the questions are attempted with just
1 concept, while less than 36% of the questions have
more than 2 concepts.

that can be used to generate the final answer. Fig-
ure 3 represents the distribution of the number of
questions for each concept for a compute of 100
responses. We find that in 64% of the questions,
less than three concepts were used to solve the
questions, with 36.6% just using one concept.

Tree-of-Thoughts (ToT) ToT represents a more
sophisticated strategy for enhancing model perfor-
mance in complex problem-solving tasks by explic-
itly exploring multiple reasoning paths (Yao et al.,
2023). Let P be an initial problem. ToT guides a
language model to generate a tree of "thoughts",
where each thought ¢; is a coherent sequence of
text representing an intermediate step towards a
solution. The model generates multiple candidate
thoughts T; = {tgj),tg]), ... ,t,(fl)} from a parent
thought ¢,,. Each of these candidate thoughts is then
evaluated, often by the LLM itself or a separate ver-
ifier, V(tgj ) | P, t,) to assess its promise. Search al-
gorithms like Breadth-First Search (BFS) or Depth-
First Search (DFS) are employed to navigate this
tree, allowing the model to look ahead, backtrack
if a path seems unpromising, and explore different
lines of reasoning (Long, 2023). The theoretical
strength of ToT lies in its potential to systematically
explore a vast solution space, thereby increasing
the likelihood of finding a correct or high-quality
solution, especially for tasks where simpler meth-
ods like Chain of Thought (CoT) might falter due
to their linear, single-path reasoning. This struc-
tured exploration aims to address issues like lack



of diversity in generated paths by deliberately gen-
erating and considering varied intermediate steps.
However, this explicit generation and evaluation of
numerous thought branches make tree-of-thought
computationally intensive, with costs scaling with
the number of candidates explored at each step (m)
and the depth of the tree.

While ToT solves the lack of diversity observed
in RS, it is significantly more computational as
explicit evaluation of each intermediate thought
generated at every step of the tree’s expansion is
required. To mitigate both the lack of diversity
in the solutions and less computational cost, we
propose GUIDEDSAMPLING, which we elaborate
on in the following sections.

3.2 Our Proposed Approach

Our proposed inference strategy, GUIDEDSAM-
PLING, improves the diversity by separating explo-
ration and generation into two distinct phases. This
separation allows for finer control over the diversity
of concepts that can be used to solve a problem,
an aspect previous approaches like traditional RS
fall short of. Moreover, our method explores the
concepts just once in the beginning, which leads
to better efficiency than the tree-of-thought strat-
egy. Figure 1 highlights the differences between
our strategy and RS. We describe these two phases
of our strategy in detail below:

Exploration Phase The goal of the Exploration
Phase is to discover a diverse set of high-level ideas,
concepts, or theorems that could guide the solution
of a given question. We start with a dataset or a set
of questions denoted by X, from which we sample
a specific question z € X to work on. Given this
question z and an LLM parameterized by 0, we
aim to identify a set of relevant concepts that could
support downstream reasoning or problem-solving,
denoted as C = {¢1, 2, ...,cx }. The process of
constructing C is iterative: the k-th concept is gen-
erated by conditioning on the original question x
and all previously generated concepts ¢y, ..., Cx_1.
Formally, this sampling process is expressed as:

C, ~ PG(Z ‘ xail:(k’—l))

This iterative conditioning mechanism promotes di-
versity among the concepts, encouraging the model
to explore different areas of the solution space
rather than repeating similar ideas. The algorithm
continues until either K concepts have been gener-
ated or the model determines that no more useful

ideas can be produced—allowing for early stop-
ping. The prompts used for exploration are pre-
sented in Appendix A.1.

Algorithm 1 GUIDEDSAMPLING

1: Input: Question prompt z, LLM py, maxi-
mum number of ideas K, completions per idea
M

: Output: Set of candidate solutions &

// Exploration Phase
C«+ 0 > Initialize set of concepts
k+1
: while £ < K do
ek ~po(- |z, ca,..
concept
9: if ¢, = None then
more useful concepts
10: break
11: end if
12: C + CU{ck}
13: k+—k+1
14: end while

e A A o

.y Ck—1) > Sample

> Model indicates no

16: // Generation Phase

17: S+ 0 > Initialize set of solutions

18: for each concept ¢, € C do

19: S, + 0 > Initialize solutions for current
concept

20: for m =1to M do

21: Sample solution s,(fm) ~po(- |z, cp) >
Generate solution based on concept

22: Sp +— Sp U {Slgm)}

23: end for

24: S+ SUS;

25: end for

26: return S

Generation Phase Once the set of candidate con-
cepts C = ¢q, ¢, . . ., Cx has been established dur-
ing the Exploration Phase, the Generation Phase
uses these concepts to produce concrete solutions.
For each concept c;, € C, we generate M potential
solutions. These solutions are sampled from the
LLM, conditioned on both the original question x
and the specific concept cg:

Sk = {1 ~ po(s | 2, 1)}

Each completion s;m) represents a full solution that

uses the guidance provided by ci. The full set of
candidate solutions is thus S = |Ji_, ;.

M

m=1



GuIDEDSAMPLING Example

Question from HumanEval

Input to this function is a string representing musical
notes in a special ASCII format. Your task is to parse

trie = ‘
Concept 1: Trie Data Solution CELETIEEE o
Structure Generation
LLM

class TrieNode: ... ‘

this string and return list of integers corresponding to Concept Concep? 28 Ry h} Solution g attern = r'ofo\|\.]\" )
how many beats does each not last. Here is a Iegend:*Generation Expressions (regex) | Generation —»{ P ’

‘o' - whole note, lasts four beats LLM . LLM - e
‘o' - half note, lasts two beats . . tack )
"|' - quater note, lasts one beat s R Solution parsing_stack.pop() ‘
Concept 9: Backtracking . J

. , Generation -

Example: parse_music('o o| .| o] o] .| .| .| .| 0 0') Approach LLM )
[4,2,1,2,2,1,1,1,1,4,4] pos -= Ien(token)...‘
L J L J

e RS

Phase1: Exploration of Concepts

Phase2: Generation of Solutions

Figure 4: An example illustrating the flow of data in GUIDEDSAMPLING. Phasel generates up to K different
concepts, while Phase2 generates M solutions per concept.

This structured sampling strategy leverages the
earlier exploration to guide the solutions more
effectively. Instead of relying on unguided or
purely random repeated sampling, the model sys-
tematically explores multiple reasoning trajectories
guided by diverse high-level concepts or theorems.
This enhances the diversity of candidate solutions,
increasing the likelihood that at least one solution
will be correct. We formally define the GUIDED-
SAMPLING algorithm in Algorithm 1 and provide
an example in Figure 4.

3.3 Training using GUIDEDSAMPLING

Synthetic data has become an increasingly effec-
tive tool for enhancing the reasoning capabilities
of LLMs (Gupta et al., 2023; Mitra et al., 2024;
Chaudhary et al., 2023). In particular, inference-
time algorithms are valuable for generating such
data when the correctness of the final solution
can be programmatically verified (Zelikman et al.,
2022; Singh et al., 2023; Shao et al., 2024). We
demonstrate that GUIDEDSAMPLING can serve not
only as an inference strategy but also as a powerful
synthetic data generation mechanism.

Let = denote an input question, and C =
{e1,...,ck} be the diverse set of concepts gen-
erated for x using exploration phase of GUIDED-
SAMPLING. For each concept ¢;. € C, we sample a
solution s ~ §. We define two distinct settings for
constructing synthetic training pairs (z, y):

1. Final-Answer Only (FA): In this setting, we
discard the generated concept and only use
the final verified response s as the target out-
put. This encourages the model to learn map-
pings from problem statements directly to cor-
rect answers, i.e. (x,y) = (x,s). The cor-

responding training objective is the standard
fine-tuning loss:

Lra = —E 3 )~Dpy [l0g Py(s | )]

where Dgy is the dataset constructed under the
FA regime and P is the model’s conditional
distribution parameterized by 6.

2. Idea-Augmented Answer (IAA): In the [AA
setting, we construct an enriched target se-
quence that includes both the conceptual di-
versity and the final answer. Specifically, we
concatenate the concepts C with one selected
solution s to form the training target:

(x,y) = (x,concat(C, s))

This setting encourages the model to internal-
ize multiple reasoning strategies before com-
mitting to one concrete solution path. The
training objective becomes:

EIAA = _}E(;U,C,S)N'DIAA [log Pe(y | CL')]

where Diaa is the dataset constructed under
the IAA regime. The prompt for IAA is pro-
vided in Appendix A.3.

To evaluate the effectiveness of data gener-
ated from GUIDEDSAMPLING, we first randomly
sample 10,000 samples from the training set of
OpenMathlnstruct-2 (Toshniwal et al., 2024), a
mathematical reasoning dataset. We then cre-
ate reasoning chains using STaR, RS, ToT, and
GUIDEDSAMPLING, and select the verified reason-
ing chains to create corresponding training sets.



We finetune the Llama-3.2-3B-Instruct model us-
ing these training sets and evaluate the perfor-
mance across three benchmarks: MATH, GPQA-
Diamond, and HumanEval. We detail the fine-
tuning setup in Appendix B.

4 Results and Discussion

We first evaluate the effectiveness of GUIDEDS AM-
PLING across three different benchmarks, MATH
(mathematical reasoning) (Hendrycks et al., 2021),
GPQA-Diamond (scientific reasoning) (Rein et al.,
2024), and HumanEval (Python code generation)
(Chen et al., 2021). Experiments are conducted
under a fixed inference budget of 100 calls using
Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and
Qwen2.5-3B-Instruct (Yang et al., 2024).

RQ1: Does GUIDEDSAMPLING improve solu-
tion accuracy compared to Repeated Sampling
under a fixed compute budget? As shown in
Figure 2, GUIDEDSAMPLING significantly out-
performs RS across all benchmarks. For Llama-
3.2-3B-Instruct, we observe improvements in
pass@100 of 5.4% on MATH, 7.58% on GPQA.-
Diamond, and 27.44% on HumanEval. These re-
sults highlight that structured exploration enables
more effective use of limited compute. Notably,
Qwen2.5-3B-Instruct, which has mathematical pre-
training, achieves the largest gains on MATH, sug-
gesting that domain-aligned pretraining can further
amplify the benefits of guided exploration.

However, the gains from GUIDEDSAMPLING
are not uniform across all tasks and models. While
Qwen2.5-3B-Instruct achieves strong improve-
ments on MATH, its performance on HumanEval
worsens compared to traditional RS. Upon closer
analysis, this drop stems from Qwen’s limited abil-
ity to generate diverse concepts for coding during
the exploration phase. On average, Qwen produces
only 1.13 distinct concepts per HumanEval prob-
lem, indicating that nearly all sampled solutions
are guided by the same idea. This lack of diver-
sity not only fails to leverage the core strengths of
GUIDEDSAMPLING but can also dilute the model’s
effectiveness by forcing the model to follow a par-
ticular concept. In contrast, Llama-3.2-3B-Instruct
generates 7.58 unique concepts on average on Hu-
manEval, enabling richer exploration and stronger
performance. These results underscore that suc-
cessful application of GUIDEDSAMPLING depends
critically on the model’s ability to generate varied
and relevant high-level ideas.

RQ2: To what extent does GUIDEDSAMPLING
enhance the diversity of generated solutions?
To measure diversity, we use Qwen2.5-32B-
Instruct (Yang et al., 2024) to extract the core con-
cept or theorem used in each solution. We then
compute the number of distinct concepts gener-
ated. On average, RS produces 3.54, 6.72, and
2.66 distinct concepts on MATH, GPQA-Diamond,
and HumanEval, respectively. GUIDEDSAMPLING
improves this diversity by an average of 17.63%.

We also found the diversity gains from GUID-
EDSAMPLING to be model-specific. We find that
Llama generates 3.7x more unique ideas on av-
erage compared to Qwen, with this gap ranging
from 2.82x on GPQA-Diamond to 5.12x on Hu-
manEval. This suggests model architecture and
pretraining heavily influence the capacity for gen-
erating novel reasoning strategies.

RQ3: How does the trade-off between explo-
ration and generation affect overall perfor-
mance in GUIDEDSAMPLING? A key design
choice in GUIDEDSAMPLING is the allocation of
the limited inference compute budget /C' between
the exploration phase (number of concepts K') and
the generation phase (number of samples M per
concept, where M = IC/K). The number of dis-
tinct concepts K directly controls this trade-off:
a larger K encourages broader exploration of dif-
ferent approaches, but consequently reduces the
compute available for generating solutions using
each approach (i.e., smaller M). Conversely, a
smaller K allows for more generations using fewer
concepts. As demonstrated in Fig. 5, increasing
exploration by increasing K initially boosts per-
formance by uncovering more diverse, potentially
successful strategies. However, beyond an optimal
point, performance may decline as the generation
budget M for each concept becomes insufficient to
thoroughly develop any single approach.

RQ4: Does training language models on GUID-
EDSAMPLING-generated data improve down-
stream task performance compared to train-
ing on data from standard sampling meth-
ods? Models fine-tuned on data synthesized via
GUIDEDSAMPLING significantly outperform those
trained using data from other inference-time algo-
rithms as illustrated in Table 1. Notably, when
the models are asked to produce more responses
(pass@10), a bigger improvement in performance
is observed. On average, the IAA setting yields
9.18% pass @10 improvements compared to the RS,



Method MATH GPQA-Diamond HumanEval
| pass@1 | pass@10 | pass@1 | pass@10 | pass@1 | pass@10
Base Model 24.00% 38.40% 11.62% 33.84% 27.44% 45.73%
STaR 37.40% | 49.40% | 14.14% | 48.48% | 52.44% | 58.54%
Tree-of-Thought (ToT) 39.40% 62.40% 15.15% 58.08% 36.59% 53.66%
Repeated Sampling (RS) 37.60% | 46.80% | 19.70% | 49.49% | 51.83% | 56.71%
GUIDEDSAMPLING (FA) | 29.60% | 54.60% | 20.20% | 60.61% | 48.17% | 61.59%
GUIDEDSAMPLING (IAA) | 38.00% | 63.80% 15.66% 54.55% | 53.05% | 62.20%

Table 1: Performance of Llama-3.2-3B-Instruct trained using different synthetic data creation strategies. FA: Just
using the final answer for training the model. IAA: Using both the ideas and the corresponding final solution to

create the final data.
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Figure 5: Pass@k performance variation with different exploration (number of ideas K) and exploitation (samples
per idea M) compute allocations, given a fixed total compute of 100 calls (M = 100/ K). Increasing exploration
initially helps, but performance declines when the exploitation budget per idea becomes too small. At K = 0,
GUIDEDSAMPLING becomes traditional RS. The first row shows results for Llama-3.1-3B-Instruct, and the second

for Qwen2.5-3B-Instruct.

while FA shows 7.93% pass@10 improvements
against RS. Models trained using trajectories from
ToT performed better than RS but still lacked be-
hind FA (0.89%) and IAA (2.14%).

RQ5: Do models fine-tuned on GUIDEDSAM-
PLING-generated data learn to produce more
diverse reasoning strategies during inference?
To calculate the diversity of the generated samples,
we use the same concept extraction method as in
Section 4. We observe that diversity increases from
1.67 (RS) to 2.58 (FA) and 3.03 (IAA). Surpris-
ingly, the largest diversity gain occurs on GPQA-
Diamond rather than MATH, indicating that di-
versity learned through mathematical reasoning
data can transfer to scientific reasoning tasks. This

highlights the generalizability of the GUIDEDS AM-
PLING framework across domains.

5 Conclusion

We propose a new inference-time strategy, GUID-
EDSAMPLING, that improves the diversity of gen-
erated solutions. The paper demonstrates how per-
formance varies with shifting compute between the
exploration of diverse concepts and the generation
of final solutions and shows improvements of up to
34.6%. Furthermore, fine-tuning LLMs on trajecto-
ries generated by GUIDEDSAMPLING significantly
boosts performance on mathematical reasoning and
shows generalizability to other domains like scien-
tific reasoning and code generation.



Limitations & Future Work

While our method is successful in improving the
diversity of solutions generated by LLMs, it repre-
sents an early step in this area and has some limita-
tions, including but not limited to the following:

Limited model coverage While our evaluation
spans two open-source models, applying GUIDED-
SAMPLING to proprietary models (e.g., GPT-4o,
Gemini-2.5-Pro) remains unexplored due to high
inference costs and lack of training access. Ex-
tending the method to these models is an important
direction for future work.

Exploration cost vs. effectiveness trade-off Al-
though our method improves diversity, the optimal
balance between the number of concepts (K) and
samples per concept (M) under a fixed compute
budget remains task-specific. Developing adaptive
strategies for this trade-off is a promising area.

Generality across domains Our work demon-
strates promising results in mathematical, scientific,
and code generation domains. However, further
evaluation is needed to understand how well GUID-
EDSAMPLING generalizes to more diverse domains
such as legal reasoning, medical, or discovery.

Concept generation quality The success of
GUIDEDSAMPLING depends on the quality and
diversity of the generated concepts. Investigating
techniques to improve/verify the relevance of these
concepts (e.g., through external tools or feedback
mechanisms) can enhance overall effectiveness.

Ethics Statement

We use Al assistants, specifically Grammarly and
ChatGPT, to correct grammatical errors and restruc-
ture sentences.
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Appendix
A Prompts

A.1 Exploration Prompts
Al.1 MATH

The following prompts were used for GUIDED-
SAMPLING for the MATH (Hendrycks et al., 2021)
benchmark.

MATH Initial Concept Generation

You are an expert mathematician. You will
be presented with a mathematical question
and your task is to identify and state one
single, specific theorem or fundamental
concept that is most relevant and useful for
solving the problem.

QUESTION:
{ele[‘question’]}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to solv-
ing this problem. Do not attempt to solve
the original problem. Only provide the the-
orem or concept.

MATH Subsequent Concept Generation

You are an expert mathematician. You will
be presented with a mathematical question
and a list of theorems and concepts that
have already been proposed as potentially
useful for solving the problem. Your task is
to provide a *new* and *different* theorem
or concept that is most relevant and useful
for solving the problem.

QUESTION:
{ele[ ‘question’]}

EXISTING CONCEPTS:
{ideas_text}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to solv-
ing this problem. Do not attempt to solve
the original problem. Only provide the the-
orem or concept. If no new, distinct, and

useful theorem or concept can be identi-
fied, respond with “No additional concepts
found."

A.1.2 GPQA-Diamond

The following prompts were used for GUIDED-
SAMPLING for the GPQA-Diamond (Rein et al.,
2024) benchmark.

GPQA-Diamond Initial Concept Genera-

tion

You are an expert scientist and problem
solver. You will be presented with a
complex, graduate-level science question
and your task is to identify and state one
single, specific theorem or fundamental
concept that is most relevant and useful for
solving the problem.

QUESTION:
{ele[ ‘question’]}{options}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to solv-
ing this problem. Do not attempt to solve
the original problem. Only provide the the-
orem or concept.

GPQA-Diamond Subsequent Concept Gen-

eration

You are an expert scientist and problem
solver. You will be presented with a
complex, graduate-level science question
and a list of theorems and concepts that
have already been proposed as potentially
useful for solving the problem. Your task is
to provide a *new* and *different* theorem
or concept that is most relevant and useful
for solving the problem.

QUESTION:
{ele[ ‘question’]}{options}




EXISTING CONCEPTS:
{ideas_text}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to
solving this problem. Do not attempt to
solve the original problem. Only provide
the theorem or concept. If no new, distinct,
and useful theorem or concept can be identi-
fied, respond with “No additional concepts
found."

A.1.3 HumanEval

The following prompts were used for GUIDED-
SAMPLING for the HumanEval (Chen et al., 2021)
benchmark.

HumanEval Initial Concept Generation

You are an expert python programmer. You
will be presented with a programming
question and your task is to identify and
state one single, specific concept that is
most relevant and useful for solving the
problem.

QUESTION:
{ele[ “‘question’]}

Provide only the name or short description
of the concept, that is most directly applica-
ble to solving this problem. Do not attempt
to solve the original question. Only provide
the concept.

HumanEval Subsequent Concept Genera-
tion

You are an expert python programmer. You
will be presented with a programming
question and a list of concepts that have
already been proposed as potentially useful
for solving the question. Your task is to
provide a *new* and *different* concept
that is most relevant and useful for solving
the question.

QUESTION:
{ele[ ‘question’]}

EXISTING CONCEPTS:
{ideas_text}

Provide only the name or the short descrip-
tion of the concept, that is most directly
applicable to solving this problem. Do not
attempt to solve the original question. Only
provide the concept. If no new, distinct, and
useful concept can be identified, respond
with “No additional concepts found."

A.2 Concept Extraction Prompt

IAA Data

You are ConceptTagger, an expert that maps
a worked-out solution (chain-of-thought
or final answer) to the most specific
mathematical or logical concept that makes
the solution possible.

Task: For every input consisting of a rea-
soning explanation (a step-by-step solution,
scratch-work, or short justification):

1. Read the explanation.

2. Decide which single mathematical
concept, theorem, or canonical formula is
essential for the solution.

3. Output that concept’s standard
name—nothing else.

Choose the narrowest concept that still
covers the whole solution.

* Good: “Pythagorean Theorem” (precise).
* Bad: “Geometry” (too broad).

If two or more concepts appear, pick the
one without which the problem cannot be
solved (typically the first pivotal step).

Here are two examples:

### Example 1

Problem: A right triangle has legs of
lengths 5 cm and 12 cm. What is the length
of the hypotenuse?
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Step-by-step solution:

Step 1: Recognize this is a right triangle —
apply the Pythagorean Theorem.

Step 2: hypotenuse = /(52 +122) =

V(25 + 144) = /169 = 13cm

Concept Used: Pythagorean Theorem

### Example 2

Problem: What is the area of a rectangle
with a length of 9 meters and width of 4
meters?

Step-by-step solution:

Step 1: Identify the shape as a rectangle.
Step 2: Use the area formula: Area = length
x width = 9 x 4 = 36 m?2

Concept Used: Area of Rectangle

Formatting Rules:

Output exactly one line with the concept
name.

Use Title Case and the singular form (e.g.,
“Least Common Multiple”, not “LCMs”).
No extra punctuation, explanation, or line
breaks.

A.3 TAA Prompt

TAA Data

I have a few ideas to solve this problem.
a) {Concept 1}

k) {Concept k}

To solve the problem I will use the idea 1)
{Concept i}:

{Step by step solution}

**Final Answer**
{Final Answer}

B Finetuning Setup

Here we define the hyperparameters that we used

for fine-tuning defined in Section 3.3.

All the models were trained on 4 x A100 GPUs,
with a learning rate of 5¢ > and 3 epochs. Batch
size and Gradient accumulation steps were 2, and
fp16 was used for all experiments. 20% of the data
was split for evaluation (random seed as 21), and
the checkpoint with the lowest evaluation loss was
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considered for reporting the results.
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