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Abstract
Repeated Sampling (RS) is a simple yet ef-001
fective inference-time strategy that has been002
shown to enhance performance on complex003
tasks. Although its integration into post-004
training has achieved pass@k improvements,005
RS often struggles with generating diverse so-006
lution candidates (i.e., lack of exploration of007
solution space). Due to the lack of diversity,008
multiple samples are often redundant in their009
generation since they use the same underlying010
approach to solve a given problem. To address011
these limitations, we propose a new inference012
strategy, GUIDEDSAMPLING, which decouples013
the exploration and generation phases at infer-014
ence time, increasing diversity during sampling.015
The exploration phase explores multiple con-016
cepts that can be utilized to solve the problem,017
while the generation phase uses a particular018
concept to give a final solution. Experimental019
results show that GUIDEDSAMPLING improves020
the rate of finding correct solutions by up to021
∼ 34.6% over a strong baseline. Furthermore,022
models trained with trajectories generated via023
GUIDEDSAMPLING exhibit substantial perfor-024
mance improvements in pass@10, including025
17% ↑ on the MATH, 11.12% ↑ on GPQA-026
Diamond, and 5.49% ↑ on HumanEval, com-027
pared to models trained with traditional RS.1028

1 Introduction029

Recent advances in large language models (LLMs)030

have shown that scaling model size and train-031

ing data can lead to increasingly capable systems032

across diverse domains including mathematical rea-033

soning, scientific analysis, and code generation034

(Kaplan et al., 2020). However, scaling models in-035

definitely is becoming increasingly infeasible due036

to the requirement of more data for training ever-037

larger models (Villalobos et al., 2024). As a result,038

a growing body of work has shifted focus to al-039

ternative ways of boosting performance—not by040

1The code and data is available at https://anonymous.
4open.science/r/sampling_inference-B44E
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Figure 1: GUIDEDSAMPLING enhances exploration dur-
ing inference by first generating a set of diverse ideas or
theorems to guide subsequent generations of solutions.
Unlike repeated sampling (RS), where the model gen-
erates the final solution, GUIDEDSAMPLING separates
these phases.

making models larger, but by making better use of 041

available compute during inference (Hosseini et al., 042

2024; Kumar et al., 2024; Lightman et al., 2023; 043

Brown et al., 2024). Several studies now suggest 044

that allocating additional compute at inference time 045

can lead to larger performance gains than spending 046

that compute to train bigger models (Snell et al., 047

2024; Wu et al., 2024). 048

To this end, various inference-time algorithms 049

have been proposed (Wang et al., 2022; Yao et al., 050

2023; Zhang et al., 2024). Among them, repeated 051

sampling (RS) (Cobbe et al., 2021) is one of the 052
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Figure 2: GUIDEDSAMPLING forces exploration during inference-time, which results in 13.51% average pass@k
accuracy compared to traditional repeated sampling. We observe an average improvement of 20% on MATH, 8.34%
on GPQA-Diamond, and 12.19% on HumanEval. First row: Results for Llama-3.2-3B-Instruct, Second row:
Results for Qwen2.5-3B-Instruct.

most widely used inference-time algorithms, where053

multiple outputs are sampled for the same input054

prompt. Traditional RS implicitly combines two055

phases: exploration, which we define as the di-056

verse theorems or concepts used in solving the057

given question, and generation, where the LLMs058

use a particular concept and try to generate many059

solutions for a given problem. However, despite060

its simplicity, traditional RS suffers from a lack061

of exploration, leading to the repeated generation062

of solutions with the same underlying concepts063

rather than a thorough exploration of the solution064

space (Brown et al., 2024). To address these limita-065

tions, we first propose a novel sampling technique,066

GUIDEDSAMPLING, designed to decouple the ex-067

ploration of diverse concepts from the generation068

of final solutions. We then demonstrate how train-069

ing LLMs on trajectories of GUIDEDSAMPLING070

shows significant performance gains.071

GUIDEDSAMPLING first explicitly samples di-072

verse concepts or theorems that can be used to073

solve a given question. Then, in the second phase,074

these concepts guide the generation of complete075

candidate solutions. This decoupling is the key076

reason that GUIDEDSAMPLING enhances the di-077

versity of solution candidates generated during in-078

ference. For instance, consider a problem from079

MATH (Hendrycks et al., 2021): “Find the maxi- 080

mum value of
[

x−y
x4+y4+6

]
over all real numbers x 081

and y.”. For this problem, we sample 1000 solu- 082

tions using traditional RS and GUIDEDSAMPLING. 083

Our detailed analysis of these candidates shows that 084

892/1000 uses only “AM-GM inequality” concept 085

to solve the problem, consistently leading to the 086

incorrect solution due to over-utilizing the same 087

theorem. In contrast, only 77/1000 candidates 088

from GUIDEDSAMPLING use this theorem, ded- 089

icating the remaining compute to exploring other 090

theorems such as “Cauchy-Schwarz Inequality”, 091

“Trivial Inequality”, and “Chebyshev’s Inequality”. 092

This improved exploration significantly expands 093

the search space of the model, leading to better 094

accuracy, as is illustrated in Figure 2. More details 095

about GUIDEDSAMPLING are provided in §3. 096

Our other core contribution is to use GUIDED- 097

SAMPLING to improve LLM training. We demon- 098

strate that fine-tuning LLMs on trajectories gener- 099

ated by GUIDEDSAMPLING outperforms models 100

trained on trajectories from traditional RS. We gen- 101

erate diverse solution trajectories using GUIDED- 102

SAMPLING on a random subset of 10k instances 103

from OpenMathInstruct-2 (Toshniwal et al., 2024). 104

LLMs fine-tuned on this data exhibited a 17% ↑ 105

in pass@10 accuracy on the MATH benchmark. 106
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These fine-tuned models also demonstrate im-107

proved generalization, with pass@10 gains on out-108

of-domain benchmarks, GPQA-Diamond (Rein109

et al., 2024) for scientific reasoning (11.12% ↑)110

and HumanEval (Chen et al., 2021) for Python111

code generation (5.49% ↑). Results show that train-112

ing with an explicit decoupling of exploration and113

generation leads to better generalizable reasoning114

capabilities than simply training on correct solu-115

tions. Further details are presented in §3.3. In116

summary, our contributions are as follows:117

1. We propose GUIDEDSAMPLING, an inference-118

time sampling technique that improves the di-119

versity of generated solutions.120

2. We show how performance varies when shifting121

compute between exploration and generation.122

3. We demonstrate that fine-tuning LLMs on123

GUIDEDSAMPLING trajectories significantly124

improves performance on mathematical reason-125

ing and generalizes the model to other domains.126

4. Our proposed approaches show significant im-127

provements over baselines trained with tradi-128

tional RS on benchmarks including MATH,129

GPQA-Diamond, and HumanEval.130

2 Related Works131

Inference Strategies Chain-of-thought (CoT)132

and its variants (Wei et al., 2022; Kojima et al.,133

2022) showed that guiding LLMs to produce in-134

termediate reasoning steps during inference boosts135

the performance on complex tasks such as math-136

ematical and commonsense reasoning. However,137

as reasoning chains become longer, CoT suffers138

from error propagation due to complex calculations139

(Chen et al., 2022). To mitigate this, new methods140

have been proposed like Self-Consistency (SC),141

which samples multiple CoT from LLM and then142

selects the most consistent final answer through143

majority voting (Wang et al., 2022). Building upon144

these ideas, better search algorithms such as tree-145

of-thought (Yao et al., 2023), MCTS (Zhang et al.,146

2024), and REBASE (Wu et al., 2024) have been147

proposed, which enable LLMs to perform more148

deliberate problem solving by exploring multiple149

reasoning paths in a tree structure. Finally, several150

agentic systems (Parmar et al., 2025; Estornell and151

Liu, 2024) have shown that spending more time152

debating between agents at inference before gen-153

erating a final solution improves performance. In154

contrast to prior methods, GUIDEDSAMPLING gen-155

erates a diverse set of samples with lower inference-156

time cost than tree search, while achieving greater 157

diversity than both standard prompting and recent 158

agentic approaches. Parallel to our work, Wang 159

et al. (2025) proposed RandIdeaInjection, which 160

first generates a list of distinct ideas and then in- 161

jects the generated list into the generation process 162

to produce the final response. GUIDEDSAMPLING, 163

on the other hand, works in an iterative loop of 164

generating concepts, adding them individually to 165

generate the final output. 166

Training LLMs using Synthetic Data Recent 167

works have explored leveraging advanced inference 168

strategies both for generating high-quality synthetic 169

training data and for fine-tuning models to improve 170

their performance. For instance, Self-Taught Rea- 171

soner (STaR) (Zelikman et al., 2022) is an iterative 172

method where an LLM is prompted to generate 173

CoT rationales; those rationales that lead to cor- 174

rect answers are then used as high-quality synthetic 175

data to fine-tune the model, while those which lead 176

to incorrect answers are passed back to model for 177

refinement along with the correct final answer, ef- 178

fectively bootstrapping its reasoning abilities from 179

a small initial set. Similarly, ReSTEM (Singh et al., 180

2023), building on principles of reinforced self- 181

training (ReST), employs an iterative Expectation- 182

Maximization-like framework. It uses Best-of-N 183

(BoN) sampling to generate multiple candidate so- 184

lutions for problems and then refines the model 185

by training on this synthetically generated data. 186

Chow et al. (2024) and Tang et al. (2025) devel- 187

oped reinforcement learning (RL) methods that 188

directly optimize for pass@k metrics and majority 189

voting performance, leading to significant gains 190

in reasoning and code generation. Other meth- 191

ods, such as multi-agent fine-tuning (Subramaniam 192

et al., 2025), train diverse agent models through de- 193

bate and voting, while Gui et al. (2024) introduced 194

BoNBoN Alignment, distilling the BoN sampling 195

distribution into a single model. While these strate- 196

gies improve pass@k, they often do not explicitly 197

manage the trade-off between exploration and gen- 198

eration. In contrast, our proposed GUIDEDSAM- 199

PLING method introduces a structured exploration 200

phase during training, explicitly balancing diver- 201

sity and quality. We show that models fine-tuned 202

with GUIDEDSAMPLING outperform those trained 203

using data generated by methods like BoN, STaR, 204

or tree-of-thoughts, and achieve stronger pass@k 205

performance than prior training techniques. 206
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3 GUIDEDSAMPLING207

3.1 Background208

Traditional RS Repeated Sampling (RS) is a
simple strategy to increase the inference-time per-
formance of a model by generating multiple sam-
ples from the model’s output distribution. Let
X = {x1, x2, . . . , xN} be a set of input queries.
For each input x ∈ X , we draw k independent
samples from the model-defined conditional distri-
bution pθ(y | x), i.e.,

y
(x)
i ∼ pθ(y | x), for i = 1, . . . , k

This process effectively scales the model’s
inference-time compute linearly with k. The theo-
retical appeal of RS lies in its potential to achieve
complete coverage of the output space as k →∞.
For any target output y∗ such that pθ(y∗ | x) > 0,
the probability that it is sampled at least once after
k draws is:

Pk = 1− (1− pθ(y
∗ | x))k

This quantity monotonically increases with k209

and asymptotically approaches 1. Thus, under the210

assumption that all valid outputs are assigned non-211

zero probability by the model, unlimited sampling212

ensures that the target output will be generated at213

least once. This has led to several works adopt-214

ing RS to generate solutions (Wang et al., 2022;215

Rozière et al., 2023; Li et al., 2022).216

Of course, unlimited sampling is impractical.217

The value of RS lies in whether increased sampling218

leads to improved output quality within a feasible219

compute budget. Several works have pointed out220

this issue, stating that the lack of diversity in these221

generated responses is the key limitation of scaling222

up RS (Brown et al., 2024; Wang et al., 2025).223

Diversity Analysis To quantify the lack of diver-224

sity in RS, we use Qwen2.5-32B-Instruct (Yang225

et al., 2024) to extract the core concept or theorem226

from each solution. We present in prompt for con-227

cept extraction in Appendix A.2. We then find the228

number of distinct concepts which are used to solve229

a given problem. We find that solutions sampled us-230

ing RS tend to rely heavily on a few underlying con-231

cepts to solve the problem even with an increasing232

number of compute. For example, while solving233

problems presented in the HumanEval benchmark,234

even with 100 responses, Llama-3.2-3B-Instruct235

gave an average of only 2.75 different concepts236
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Figure 3: Distribution of the average number of con-
cepts used by Llama-3.2-3B-Instruct for 100 repeated
samplings. 37% of the questions are attempted with just
1 concept, while less than 36% of the questions have
more than 2 concepts.

that can be used to generate the final answer. Fig- 237

ure 3 represents the distribution of the number of 238

questions for each concept for a compute of 100 239

responses. We find that in 64% of the questions, 240

less than three concepts were used to solve the 241

questions, with 36.6% just using one concept. 242

Tree-of-Thoughts (ToT) ToT represents a more 243

sophisticated strategy for enhancing model perfor- 244

mance in complex problem-solving tasks by explic- 245

itly exploring multiple reasoning paths (Yao et al., 246

2023). Let P be an initial problem. ToT guides a 247

language model to generate a tree of "thoughts", 248

where each thought ti is a coherent sequence of 249

text representing an intermediate step towards a 250

solution. The model generates multiple candidate 251

thoughts Tj = {t(j)1 , t
(j)
2 , . . . , t

(j)
m } from a parent 252

thought tp. Each of these candidate thoughts is then 253

evaluated, often by the LLM itself or a separate ver- 254

ifier, V (t
(j)
i | P, tp) to assess its promise. Search al- 255

gorithms like Breadth-First Search (BFS) or Depth- 256

First Search (DFS) are employed to navigate this 257

tree, allowing the model to look ahead, backtrack 258

if a path seems unpromising, and explore different 259

lines of reasoning (Long, 2023). The theoretical 260

strength of ToT lies in its potential to systematically 261

explore a vast solution space, thereby increasing 262

the likelihood of finding a correct or high-quality 263

solution, especially for tasks where simpler meth- 264

ods like Chain of Thought (CoT) might falter due 265

to their linear, single-path reasoning. This struc- 266

tured exploration aims to address issues like lack 267
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of diversity in generated paths by deliberately gen-268

erating and considering varied intermediate steps.269

However, this explicit generation and evaluation of270

numerous thought branches make tree-of-thought271

computationally intensive, with costs scaling with272

the number of candidates explored at each step (m)273

and the depth of the tree.274

While ToT solves the lack of diversity observed275

in RS, it is significantly more computational as276

explicit evaluation of each intermediate thought277

generated at every step of the tree’s expansion is278

required. To mitigate both the lack of diversity279

in the solutions and less computational cost, we280

propose GUIDEDSAMPLING, which we elaborate281

on in the following sections.282

3.2 Our Proposed Approach283

Our proposed inference strategy, GUIDEDSAM-284

PLING, improves the diversity by separating explo-285

ration and generation into two distinct phases. This286

separation allows for finer control over the diversity287

of concepts that can be used to solve a problem,288

an aspect previous approaches like traditional RS289

fall short of. Moreover, our method explores the290

concepts just once in the beginning, which leads291

to better efficiency than the tree-of-thought strat-292

egy. Figure 1 highlights the differences between293

our strategy and RS. We describe these two phases294

of our strategy in detail below:295

Exploration Phase The goal of the Exploration296

Phase is to discover a diverse set of high-level ideas,297

concepts, or theorems that could guide the solution298

of a given question. We start with a dataset or a set299

of questions denoted by X , from which we sample300

a specific question x ∈ X to work on. Given this301

question x and an LLM parameterized by θ, we302

aim to identify a set of relevant concepts that could303

support downstream reasoning or problem-solving,304

denoted as C = {c1, c2, ..., cK}. The process of305

constructing C is iterative: the k-th concept is gen-306

erated by conditioning on the original question x307

and all previously generated concepts c1, . . . , ck−1.308

Formally, this sampling process is expressed as:309

ck ∼ pθ(i | x, i1:(k−1))310

This iterative conditioning mechanism promotes di-311

versity among the concepts, encouraging the model312

to explore different areas of the solution space313

rather than repeating similar ideas. The algorithm314

continues until either K concepts have been gener-315

ated or the model determines that no more useful316

ideas can be produced—allowing for early stop- 317

ping. The prompts used for exploration are pre- 318

sented in Appendix A.1. 319

Algorithm 1 GUIDEDSAMPLING

1: Input: Question prompt x, LLM pθ, maxi-
mum number of ideas K, completions per idea
M

2: Output: Set of candidate solutions S
3:

4: // Exploration Phase
5: C ← ∅ ▷ Initialize set of concepts
6: k ← 1
7: while k ≤ K do
8: ck ∼ pθ(· | x, c1, . . . , ck−1) ▷ Sample

concept
9: if ck = None then ▷ Model indicates no

more useful concepts
10: break
11: end if
12: C ← C ∪ {ck}
13: k ← k + 1
14: end while
15:

16: // Generation Phase
17: S ← ∅ ▷ Initialize set of solutions
18: for each concept ck ∈ C do
19: Sk ← ∅ ▷ Initialize solutions for current

concept
20: for m = 1 to M do
21: Sample solution s

(m)
k ∼ pθ(· | x, ck) ▷

Generate solution based on concept
22: Sk ← Sk ∪ {s

(m)
k }

23: end for
24: S ← S ∪ Sk
25: end for
26: return S

Generation Phase Once the set of candidate con- 320

cepts C = c1, c2, . . . , cK has been established dur- 321

ing the Exploration Phase, the Generation Phase 322

uses these concepts to produce concrete solutions. 323

For each concept ck ∈ C, we generate M potential 324

solutions. These solutions are sampled from the 325

LLM, conditioned on both the original question x 326

and the specific concept ck: 327

Sk =
{
s
(m)
k ∼ pθ(s | x, ck)

}M

m=1
328

Each completion s
(m)
k represents a full solution that 329

uses the guidance provided by ck. The full set of 330

candidate solutions is thus S =
⋃K

k=1 Sk. 331
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GᴜɪᴅᴇᴅSᴀᴍᴘʟɪɴɢ Example

Question from HumanEval

Input to this function is a string representing musical
notes in a special ASCII format. Your task is to parse
this string and return list of integers corresponding to
how many beats does each not last. Here is a legend:
    'o' - whole note, lasts four beats
    'o|' - half note, lasts two beats
    '.|' - quater note, lasts one beat

Example: parse_music('o o| .| o| o| .| .| .| .| o o')
[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]

Concept 1: Trie Data
Structure

Concept 2: Regular
Expressions (regex)

Concept 9: Backtracking
Approach

Concept
Generation

LLM

Solution
Generation

LLM

trie =
defaultdict(dict) ...

class TrieNode: ...

Solution
Generation

LLM

Solution
Generation

LLM

pattern = r'o|o\|\.|\|'
...

parsing_stack.pop()
...

pos -= len(token) ...

Phase1: Exploration of Concepts Phase2: Generation of Solutions

Figure 4: An example illustrating the flow of data in GUIDEDSAMPLING. Phase1 generates up to K different
concepts, while Phase2 generates M solutions per concept.

This structured sampling strategy leverages the332

earlier exploration to guide the solutions more333

effectively. Instead of relying on unguided or334

purely random repeated sampling, the model sys-335

tematically explores multiple reasoning trajectories336

guided by diverse high-level concepts or theorems.337

This enhances the diversity of candidate solutions,338

increasing the likelihood that at least one solution339

will be correct. We formally define the GUIDED-340

SAMPLING algorithm in Algorithm 1 and provide341

an example in Figure 4.342

3.3 Training using GUIDEDSAMPLING343

Synthetic data has become an increasingly effec-344

tive tool for enhancing the reasoning capabilities345

of LLMs (Gupta et al., 2023; Mitra et al., 2024;346

Chaudhary et al., 2023). In particular, inference-347

time algorithms are valuable for generating such348

data when the correctness of the final solution349

can be programmatically verified (Zelikman et al.,350

2022; Singh et al., 2023; Shao et al., 2024). We351

demonstrate that GUIDEDSAMPLING can serve not352

only as an inference strategy but also as a powerful353

synthetic data generation mechanism.354

Let x denote an input question, and C =355

{c1, . . . , cK} be the diverse set of concepts gen-356

erated for x using exploration phase of GUIDED-357

SAMPLING. For each concept ck ∈ C, we sample a358

solution s ∼ S . We define two distinct settings for359

constructing synthetic training pairs (x, y):360

1. Final-Answer Only (FA): In this setting, we361

discard the generated concept and only use362

the final verified response s as the target out-363

put. This encourages the model to learn map-364

pings from problem statements directly to cor-365

rect answers, i.e. (x, y) = (x, s). The cor-366

responding training objective is the standard 367

fine-tuning loss: 368

LFA = −E(x,s)∼DFA [logPθ(s | x)] 369

whereDFA is the dataset constructed under the 370

FA regime and Pθ is the model’s conditional 371

distribution parameterized by θ. 372

2. Idea-Augmented Answer (IAA): In the IAA 373

setting, we construct an enriched target se- 374

quence that includes both the conceptual di- 375

versity and the final answer. Specifically, we 376

concatenate the concepts C with one selected 377

solution s to form the training target: 378

(x, y) = (x, concat(C, s)) 379

This setting encourages the model to internal- 380

ize multiple reasoning strategies before com- 381

mitting to one concrete solution path. The 382

training objective becomes: 383

LIAA = −E(x,C,s)∼DIAA [logPθ(y | x)] 384

where DIAA is the dataset constructed under 385

the IAA regime. The prompt for IAA is pro- 386

vided in Appendix A.3. 387

To evaluate the effectiveness of data gener- 388

ated from GUIDEDSAMPLING, we first randomly 389

sample 10,000 samples from the training set of 390

OpenMathInstruct-2 (Toshniwal et al., 2024), a 391

mathematical reasoning dataset. We then cre- 392

ate reasoning chains using STaR, RS, ToT, and 393

GUIDEDSAMPLING, and select the verified reason- 394

ing chains to create corresponding training sets. 395
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We finetune the Llama-3.2-3B-Instruct model us-396

ing these training sets and evaluate the perfor-397

mance across three benchmarks: MATH, GPQA-398

Diamond, and HumanEval. We detail the fine-399

tuning setup in Appendix B.400

4 Results and Discussion401

We first evaluate the effectiveness of GUIDEDSAM-402

PLING across three different benchmarks, MATH403

(mathematical reasoning) (Hendrycks et al., 2021),404

GPQA-Diamond (scientific reasoning) (Rein et al.,405

2024), and HumanEval (Python code generation)406

(Chen et al., 2021). Experiments are conducted407

under a fixed inference budget of 100 calls using408

Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and409

Qwen2.5-3B-Instruct (Yang et al., 2024).410

RQ1: Does GUIDEDSAMPLING improve solu-411

tion accuracy compared to Repeated Sampling412

under a fixed compute budget? As shown in413

Figure 2, GUIDEDSAMPLING significantly out-414

performs RS across all benchmarks. For Llama-415

3.2-3B-Instruct, we observe improvements in416

pass@100 of 5.4% on MATH, 7.58% on GPQA-417

Diamond, and 27.44% on HumanEval. These re-418

sults highlight that structured exploration enables419

more effective use of limited compute. Notably,420

Qwen2.5-3B-Instruct, which has mathematical pre-421

training, achieves the largest gains on MATH, sug-422

gesting that domain-aligned pretraining can further423

amplify the benefits of guided exploration.424

However, the gains from GUIDEDSAMPLING425

are not uniform across all tasks and models. While426

Qwen2.5-3B-Instruct achieves strong improve-427

ments on MATH, its performance on HumanEval428

worsens compared to traditional RS. Upon closer429

analysis, this drop stems from Qwen’s limited abil-430

ity to generate diverse concepts for coding during431

the exploration phase. On average, Qwen produces432

only 1.13 distinct concepts per HumanEval prob-433

lem, indicating that nearly all sampled solutions434

are guided by the same idea. This lack of diver-435

sity not only fails to leverage the core strengths of436

GUIDEDSAMPLING but can also dilute the model’s437

effectiveness by forcing the model to follow a par-438

ticular concept. In contrast, Llama-3.2-3B-Instruct439

generates 7.58 unique concepts on average on Hu-440

manEval, enabling richer exploration and stronger441

performance. These results underscore that suc-442

cessful application of GUIDEDSAMPLING depends443

critically on the model’s ability to generate varied444

and relevant high-level ideas.445

RQ2: To what extent does GUIDEDSAMPLING 446

enhance the diversity of generated solutions? 447

To measure diversity, we use Qwen2.5-32B- 448

Instruct (Yang et al., 2024) to extract the core con- 449

cept or theorem used in each solution. We then 450

compute the number of distinct concepts gener- 451

ated. On average, RS produces 3.54, 6.72, and 452

2.66 distinct concepts on MATH, GPQA-Diamond, 453

and HumanEval, respectively. GUIDEDSAMPLING 454

improves this diversity by an average of 17.63%. 455

We also found the diversity gains from GUID- 456

EDSAMPLING to be model-specific. We find that 457

Llama generates 3.7× more unique ideas on av- 458

erage compared to Qwen, with this gap ranging 459

from 2.82× on GPQA-Diamond to 5.12× on Hu- 460

manEval. This suggests model architecture and 461

pretraining heavily influence the capacity for gen- 462

erating novel reasoning strategies. 463

RQ3: How does the trade-off between explo- 464

ration and generation affect overall perfor- 465

mance in GUIDEDSAMPLING? A key design 466

choice in GUIDEDSAMPLING is the allocation of 467

the limited inference compute budget IC between 468

the exploration phase (number of concepts K) and 469

the generation phase (number of samples M per 470

concept, where M = IC/K). The number of dis- 471

tinct concepts K directly controls this trade-off: 472

a larger K encourages broader exploration of dif- 473

ferent approaches, but consequently reduces the 474

compute available for generating solutions using 475

each approach (i.e., smaller M ). Conversely, a 476

smaller K allows for more generations using fewer 477

concepts. As demonstrated in Fig. 5, increasing 478

exploration by increasing K initially boosts per- 479

formance by uncovering more diverse, potentially 480

successful strategies. However, beyond an optimal 481

point, performance may decline as the generation 482

budget M for each concept becomes insufficient to 483

thoroughly develop any single approach. 484

RQ4: Does training language models on GUID- 485

EDSAMPLING-generated data improve down- 486

stream task performance compared to train- 487

ing on data from standard sampling meth- 488

ods? Models fine-tuned on data synthesized via 489

GUIDEDSAMPLING significantly outperform those 490

trained using data from other inference-time algo- 491

rithms as illustrated in Table 1. Notably, when 492

the models are asked to produce more responses 493

(pass@10), a bigger improvement in performance 494

is observed. On average, the IAA setting yields 495

9.18% pass@10 improvements compared to the RS, 496

7



Method MATH GPQA-Diamond HumanEval

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

Base Model 24.00% 38.40% 11.62% 33.84% 27.44% 45.73%
STaR 37.40% 49.40% 14.14% 48.48% 52.44% 58.54%

Tree-of-Thought (ToT) 39.40% 62.40% 15.15% 58.08% 36.59% 53.66%
Repeated Sampling (RS) 37.60% 46.80% 19.70% 49.49% 51.83% 56.71%

GUIDEDSAMPLING (FA) 29.60% 54.60% 20.20% 60.61% 48.17% 61.59%
GUIDEDSAMPLING (IAA) 38.00% 63.80% 15.66% 54.55% 53.05% 62.20%

Table 1: Performance of Llama-3.2-3B-Instruct trained using different synthetic data creation strategies. FA: Just
using the final answer for training the model. IAA: Using both the ideas and the corresponding final solution to
create the final data.
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Figure 5: Pass@k performance variation with different exploration (number of ideas K) and exploitation (samples
per idea M ) compute allocations, given a fixed total compute of 100 calls (M = 100/K). Increasing exploration
initially helps, but performance declines when the exploitation budget per idea becomes too small. At K = 0,
GUIDEDSAMPLING becomes traditional RS. The first row shows results for Llama-3.1-3B-Instruct, and the second
for Qwen2.5-3B-Instruct.

while FA shows 7.93% pass@10 improvements497

against RS. Models trained using trajectories from498

ToT performed better than RS but still lacked be-499

hind FA (0.89%) and IAA (2.14%).500

RQ5: Do models fine-tuned on GUIDEDSAM-501

PLING-generated data learn to produce more502

diverse reasoning strategies during inference?503

To calculate the diversity of the generated samples,504

we use the same concept extraction method as in505

Section 4. We observe that diversity increases from506

1.67 (RS) to 2.58 (FA) and 3.03 (IAA). Surpris-507

ingly, the largest diversity gain occurs on GPQA-508

Diamond rather than MATH, indicating that di-509

versity learned through mathematical reasoning510

data can transfer to scientific reasoning tasks. This511

highlights the generalizability of the GUIDEDSAM- 512

PLING framework across domains. 513

5 Conclusion 514

We propose a new inference-time strategy, GUID- 515

EDSAMPLING, that improves the diversity of gen- 516

erated solutions. The paper demonstrates how per- 517

formance varies with shifting compute between the 518

exploration of diverse concepts and the generation 519

of final solutions and shows improvements of up to 520

34.6%. Furthermore, fine-tuning LLMs on trajecto- 521

ries generated by GUIDEDSAMPLING significantly 522

boosts performance on mathematical reasoning and 523

shows generalizability to other domains like scien- 524

tific reasoning and code generation. 525
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Limitations & Future Work526

While our method is successful in improving the527

diversity of solutions generated by LLMs, it repre-528

sents an early step in this area and has some limita-529

tions, including but not limited to the following:530

Limited model coverage While our evaluation531

spans two open-source models, applying GUIDED-532

SAMPLING to proprietary models (e.g., GPT-4o,533

Gemini-2.5-Pro) remains unexplored due to high534

inference costs and lack of training access. Ex-535

tending the method to these models is an important536

direction for future work.537

Exploration cost vs. effectiveness trade-off Al-538

though our method improves diversity, the optimal539

balance between the number of concepts (K) and540

samples per concept (M) under a fixed compute541

budget remains task-specific. Developing adaptive542

strategies for this trade-off is a promising area.543

Generality across domains Our work demon-544

strates promising results in mathematical, scientific,545

and code generation domains. However, further546

evaluation is needed to understand how well GUID-547

EDSAMPLING generalizes to more diverse domains548

such as legal reasoning, medical, or discovery.549

Concept generation quality The success of550

GUIDEDSAMPLING depends on the quality and551

diversity of the generated concepts. Investigating552

techniques to improve/verify the relevance of these553

concepts (e.g., through external tools or feedback554

mechanisms) can enhance overall effectiveness.555

Ethics Statement556

We use AI assistants, specifically Grammarly and557

ChatGPT, to correct grammatical errors and restruc-558

ture sentences.559
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Appendix741

A Prompts742

A.1 Exploration Prompts743

A.1.1 MATH744

The following prompts were used for GUIDED-745

SAMPLING for the MATH (Hendrycks et al., 2021)746

benchmark.747

MATH Initial Concept Generation

You are an expert mathematician. You will
be presented with a mathematical question
and your task is to identify and state one
single, specific theorem or fundamental
concept that is most relevant and useful for
solving the problem.

QUESTION:
{ele[‘question’]}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to solv-
ing this problem. Do not attempt to solve
the original problem. Only provide the the-
orem or concept.

748

MATH Subsequent Concept Generation

You are an expert mathematician. You will
be presented with a mathematical question
and a list of theorems and concepts that
have already been proposed as potentially
useful for solving the problem. Your task is
to provide a *new* and *different* theorem
or concept that is most relevant and useful
for solving the problem.

QUESTION:
{ele[‘question’]}

EXISTING CONCEPTS:
{ideas_text}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to solv-
ing this problem. Do not attempt to solve
the original problem. Only provide the the-
orem or concept. If no new, distinct, and

749

useful theorem or concept can be identi-
fied, respond with “No additional concepts
found."

750

A.1.2 GPQA-Diamond 751

The following prompts were used for GUIDED- 752

SAMPLING for the GPQA-Diamond (Rein et al., 753

2024) benchmark. 754

GPQA-Diamond Initial Concept Genera-
tion

You are an expert scientist and problem
solver. You will be presented with a
complex, graduate-level science question
and your task is to identify and state one
single, specific theorem or fundamental
concept that is most relevant and useful for
solving the problem.

QUESTION:
{ele[‘question’]}{options}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to solv-
ing this problem. Do not attempt to solve
the original problem. Only provide the the-
orem or concept.

755

GPQA-Diamond Subsequent Concept Gen-
eration

You are an expert scientist and problem
solver. You will be presented with a
complex, graduate-level science question
and a list of theorems and concepts that
have already been proposed as potentially
useful for solving the problem. Your task is
to provide a *new* and *different* theorem
or concept that is most relevant and useful
for solving the problem.

QUESTION:
{ele[‘question’]}{options}

756
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EXISTING CONCEPTS:
{ideas_text}

Provide only the name of the theorem or
concept, or a concise statement of the prin-
ciple, that is most directly applicable to
solving this problem. Do not attempt to
solve the original problem. Only provide
the theorem or concept. If no new, distinct,
and useful theorem or concept can be identi-
fied, respond with “No additional concepts
found."

757

A.1.3 HumanEval758

The following prompts were used for GUIDED-759

SAMPLING for the HumanEval (Chen et al., 2021)760

benchmark.761

HumanEval Initial Concept Generation

You are an expert python programmer. You
will be presented with a programming
question and your task is to identify and
state one single, specific concept that is
most relevant and useful for solving the
problem.

QUESTION:
{ele[‘question’]}

Provide only the name or short description
of the concept, that is most directly applica-
ble to solving this problem. Do not attempt
to solve the original question. Only provide
the concept.

762

HumanEval Subsequent Concept Genera-
tion

You are an expert python programmer. You
will be presented with a programming
question and a list of concepts that have
already been proposed as potentially useful
for solving the question. Your task is to
provide a *new* and *different* concept
that is most relevant and useful for solving
the question.

763

QUESTION:
{ele[‘question’]}

EXISTING CONCEPTS:
{ideas_text}

Provide only the name or the short descrip-
tion of the concept, that is most directly
applicable to solving this problem. Do not
attempt to solve the original question. Only
provide the concept. If no new, distinct, and
useful concept can be identified, respond
with “No additional concepts found."

764

A.2 Concept Extraction Prompt 765

IAA Data

You are ConceptTagger, an expert that maps
a worked-out solution (chain-of-thought
or final answer) to the most specific
mathematical or logical concept that makes
the solution possible.

Task: For every input consisting of a rea-
soning explanation (a step-by-step solution,
scratch-work, or short justification):
1. Read the explanation.
2. Decide which single mathematical
concept, theorem, or canonical formula is
essential for the solution.
3. Output that concept’s standard
name—nothing else.

Choose the narrowest concept that still
covers the whole solution.
• Good: “Pythagorean Theorem” (precise).
• Bad: “Geometry” (too broad).
If two or more concepts appear, pick the
one without which the problem cannot be
solved (typically the first pivotal step).

Here are two examples:

### Example 1
Problem: A right triangle has legs of
lengths 5 cm and 12 cm. What is the length
of the hypotenuse?

766
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Step-by-step solution:
Step 1: Recognize this is a right triangle →
apply the Pythagorean Theorem.
Step 2: hypotenuse =

√
(52 + 122) =√

(25 + 144) =
√
169 = 13cm

Concept Used: Pythagorean Theorem

### Example 2
Problem: What is the area of a rectangle
with a length of 9 meters and width of 4
meters?
Step-by-step solution:
Step 1: Identify the shape as a rectangle.
Step 2: Use the area formula: Area = length
× width = 9 × 4 = 36 m²
Concept Used: Area of Rectangle

Formatting Rules:
Output exactly one line with the concept
name.
Use Title Case and the singular form (e.g.,
“Least Common Multiple”, not “LCMs”).
No extra punctuation, explanation, or line
breaks.

767

A.3 IAA Prompt768

IAA Data

I have a few ideas to solve this problem.
a) {Concept 1}
...
k) {Concept k}

To solve the problem I will use the idea i)
{Concept i}:

{Step by step solution}

**Final Answer**
{Final Answer}

769

B Finetuning Setup770

Here we define the hyperparameters that we used771

for fine-tuning defined in Section 3.3.772

All the models were trained on 4 × A100 GPUs,773

with a learning rate of 5e−5 and 3 epochs. Batch774

size and Gradient accumulation steps were 2, and775

fp16 was used for all experiments. 20% of the data776

was split for evaluation (random seed as 21), and777

the checkpoint with the lowest evaluation loss was778

considered for reporting the results. 779
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