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Abstract

In this work we focus our attention on distributed
optimization problems in the context where the
communication time between the server and the
workers is non-negligible. We obtain novel meth-
ods supporting bidirectional compression (both
from the server to the workers and vice versa)
that enjoy new state-of-the-art theoretical commu-
nication complexity for convex and nonconvex
problems. Our bounds are the first that manage
to decouple the variance/error coming from the
workers-to-server and server-to-workers compres-
sion, transforming a multiplicative dependence to
an additive one. Moreover, in the convex regime,
we obtain the first bounds that match the theo-
retical communication complexity of gradient de-
scent. Even in this convex regime, our algorithms
work with biased gradient estimators, which is
non-standard and requires new proof techniques
that may be of independent interest. Finally, our
theoretical results are corroborated through suit-
able experiments.

1. Distributed Optimization and Bidirectional
Compression

In this paper, we consider distributed optimization prob-
lems in strongly convex, convex and nonconvex settings.
Such problems arise in federated learning (Konec¢ny et al.,
2016; McMabhan et al., 2017) and in deep learning (Ramesh
et al., 2021). In federated learning, a large number of work-
ers/devices/nodes contain local data and communicate with
a parameter-server that performs optimization of a function
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Figure 1: Distributed optimization with bidirectionally com-
pressed communication.

in a distributed fashion (Ramaswamy et al., 2019). Due
to privacy concerns and the potentially large number of
workers, the communication between the workers and the
server is a bottleneck and requires specialized algorithms
capable of reducing the communication overhead. Popular
algorithms dealing with these kinds of problems are based
on communication compression (Mishchenko et al., 2019;
Richtérik et al., 2021; Tang et al., 2019).

We consider the distributed optimization problem

i, {f(x) - ;Zm)}, (1)

where n is the number of workers, and f; : R? — R are
smooth (possibly nonconvex) functions for all i € [n] :=
{1,...,n}. We assume that the functions f; are stored on n
workers. Each of them is directly connected to a server that
orchestrates the work of the devices (Kairouz et al., 2021),
i.e., the workers perform some calculations and send the
results to the server, after which the server does calculations
and sends the results back to the workers and the whole
process repeats.

1.1. Assumptions

Throughput the work we will refer to a subset of these
assumptions:

Assumption 1.1. The function f is L—smooth, i.e.,

IVF(z) = Vil <Llz-yl, VYoyeR?
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Assumption 1.2. The functions f; are L;—smooth for all
i€[nie

IV fi(e) =V ily)ll < Li|lz —y]|, Va,y € R
Let Liax = max;e[,) Li. Further, let L? be a constant
such that

= VAW < L |l - ylI* Yo,y € R

S i)
=1

Note that if the functions f; are L;—smooth for all ¢ € [n],
then there exists L such that < Liax-

Assumption 1.3. The functions f; are convex for all i € [n].
Further, the function f is u-strongly convex with p > 0,
and attains a minimum at some point z* € R?.

To avoid ambiguity, the constants L, E, and L; are the
smallest such numbers.

I:emma 14. If Assumptiogs 1.1, 1.2 and 1.3 hold, then
L <Lpax <nLand L <L < +/LyaxL.

1.2. Communication complexity of vanilla gradient
descent

Solving the aforementioned optimization problem involves
two key steps: i) the workers send results to the server
(server-to-workers communication), ii) the server sends re-
sults to the workers (workers-to-server communication). Let
us first consider how this procedure works in the case of
GD:

o =gt — 4V f(z

—wt—fZsz

It is well known that if the function f is L-smooth and
p-strongly convex (see Assumptions 1.1 and 1.3), then
GD with stepsize ¥ = 1/L returns an e-solution after
O (L/nlog 1/e) steps. In distributed setting, GD would re-
quire 1) the workers to send V f;(z!) to the server ii) the
server to send xtt! to the workers or, alternatively, ii) the
server to send 1 3" | 'V f;(2) to the workers, depending
on whether the iterates ' are updated on the server or on
the workers. Assuming that the communication complexity
is proportional to the number of coordinates, the server-to-
workers and workers-to-server communication complexities
are equal O (4L/ulog 1/e) .

1.3. Workers-to-server (=uplink) compression

We now move on to more advanced algorithms that aim to
improve the workers-to-server communication complexity.
These algorithms assume that the server-to-workers com-
munication complexity is negligible and focus exclusively
on sending the message from devices to the server. Such an

approach can be justified by the fact that broadcast operation
may in some systems be much faster than gather operation
(Mishchenko et al., 2019; Kairouz et al., 2021). Moreover,
the server can be considered to be just an abstraction rep-
resenting “all other nodes”, in which case server-to-worker
communication does not exist at all.

The primary tools that help reduce communication cost
are compression operators, such as vector sparsification
and quantization (Alistarh et al., 2017; Beznosikov et al.,
2020). The literature distinguishes two main classes of such
operators: biased and unbiased compressors. In particular,
we say that:

Definition 1.5. A (possibly) stochastic mapping C : RY —
R is a biased compressor if there exists a € (0, 1] such
that

Ele() - l’] < (1= ) z]*, ¥z € RL. ()

Definition 1.6. A stochastic mapping C : R? — R% is an
unbiased compressor if there exists w > 0 such that

BlC(@)] ==, B IC(x) - 2’| <w ||, vz € R
(3)

We denote the collections of mappings satisfying Defini-
tion 1.5 and 1.6 by B(«) and U(w) respectively. One
can easily show that if C € U(w), then (w + 1)71C €
B ((w+ 1)7!), meaning that the family of biased compres-
sors is wider. Two canonical examples of compressors be-
longing to these two classes are the TopK € B(X/d) and
RandK € U(d/k — 1) sparsifiers. The former retains the
K largest values of the input vector, while the latter takes
K random values of this vector scaled by 4/k (Beznosikov
et al., 2020). Further examples of compressors belonging to
B(«) and U(w) can be found in (Beznosikov et al., 2020).

The theory of methods supporting workers-to-server com-
pression is reasonably well developed. In the convex and
strongly convex setting, the current state-of-the-art meth-
ods are DIANA (Mishchenko et al., 2019), ADIANA (Li
et al., 2020), and CANITA (Li & Richtérik, 2021). In the
nonconvex setting, the current state-of-the-art methods are
DCGD (Khaled & Richtarik, 2020) (in the low accuracy
regime) and MARINA, DASHA, FRECON, and EF21 (Gor-
bunov et al., 2021; Tyurin & Richtarik, 2022b;a; Zhao et al.,
2021; Richtarik et al., 2021) (in the high accuracy regime).

To see that these types of algorithms can achieve workers-to-
server communication complexity that is no worse than that
of GD, let us consider the DIANA method. In the strongly
convex case, DIANA (Khaled et al., 2020) has the conver-

gence rate
1
w> log ) .
€

O(((L+:)LW“+
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Using the Rand K compression operator with K = d/n, the
workers-to-server complexity is not greater than

1
O(d X (<1+w> ana>(+w> log)
n n I €
=0 (<dLmaX +d) log 1> ,
ni €

meaning that DIANA’s complexity is better than GD’s com-
plexity O (4Z/ulog 1/e) (recall that L.y < nL). The same
reasoning applies to other algorithms in the convex and
nonconvex worlds.

1.4. Bidirectional compression

In the previous section, we showed that it is possible to
improve workers-to-server communication complexity of
GD. But what about the server-to-workers compression?
Does there exist a method that would also compress the
information sent from the server to the workers and obtain
the workers-to-server and server-to-workers communication
complexities at least as good as with the vanilla GD method?
As far as we know, the current answer to the question is NO!

Bidirectional compression has been considered in many pa-
pers, including (Horvéth et al., 2022a; Tang et al., 2019;
Liu et al., 2020; Philippenko & Dieuleveut, 2020; 2021;
Fatkhullin et al., 2021). In Table 1, we provide a compar-
ison of methods applying this type of compression in the
strongly convex setting. Let us now take a closer look at
the MCM method of Philippenko & Dieuleveut (2021). For
simplicity, we assume that the server and the workers use
Rand K compressors with parameters K and K, respec-
tively. The server-to-workers communication complexity of
MCM is not less than

3/2 w5w1/2 ww \ L 1
Q| K 1 : = 4+ 2% log —
e vn o W 98¢

d3/2 Lmax 1
=0Q < 73 log > .
K Iz €

Thus, for any K € [1,d], the server-to-workers commu-
nication complexity is worse than the GD’s complexity

o (% log 1/5) by a factor of */*/k1/2. The same reason-

ing applies to Dore (Liu et al., 2020) and Artemis (Philip-
penko & Dieuleveut, 2020):

Q (K (“’S‘”W) Lmax 1o 1) —0 < @ Loy 1) .
n I € Kyn u €

It turns out that one can find an example of problem (1)

with L.« = nL. Therefore, in the worst case scenario,

the server-to-workers communication complexity can be

up to ¢/k, times worse than the GD’s complexity for any
Ky € [1,d].

2. EF21-P: A Useful Reparameterization of
the Classical EF Mechanism

Before we continue discussing bidirectional methods and
our contributions, let us remark on the key moment which
ultimately enabled the main results of this paper. Consider
solving the optimization problem

min f(z), @
where f : R? — R is a smooth but not necessarily convex
function. We now introduce a technique which we call EF21-
P that performs error-feedback updates in the primal space
of the iterates/models '. Given a contractive compression
operator C € B(a) from Definition 1.5, EF21-P method
aims to solve (4) via the iterative process

2 =gt~V (),

wt+1 — wt +Ct(zt+1 _ wt),

&)

where v > 0 is a stepsize, 20 € RY is the initial iterate,
w® = 20 € R? is the initial iterate shiff, and C? is an instan-
tiation of a randomized contractive compressor C sampled
at time ¢. If f is L-smooth and pu-strongly convex, we prove
that both 2! and w? converge to x* = argmin f at a lin-
ear rate, in O (L/aulogl/c) iterations in expectation (see
Section D).

Surprisingly, it turns out that EF21-P is equivalent to the
classical EF mechanism of Seide et al. (2014) under an
appropriate reparameterization of the iterates z¢ and w®. In
particular, by taking e := 2t — w! in (5), we have

w™h = w' +C'(e" =V f(w")),

et = O e AV () -1V S ). O

The procedure (6) is the classical EF mechanism (up to +
signs) studied in many papers (Seide et al., 2014; Koloskova
et al., 2019; Gorbunov et al., 2020c).

Looking ahead, EF21-P (5) turns out to be an extremely
useful “form” of EF (6). Indeed, as we shall see, when com-
bined with suitable methods performing worker-to-server
compression, EF21-P leads to new state-of-the-art theoreti-
cal communication complexities! This reparameterization
is an essential component of our proofs since they explicitly
use the iterates ¢ from (5) which are not defined in (6).

In its vanilla form, EF21-P is not the main focus of this
paper. Instead, we use it as an important ingredient in the

'EF21-P is initially inspired by the recently proposed error-
feedback mechanism, EF21, of Richtarik et al. (2021), which com-
presses the dual vectors, i.e., the gradients. EF21 is currently the
state-of-the-art error feedback mechanism in terms of its theoreti-
cal properties and practical performance (Fatkhullin et al., 2021).
If we wish to explicitly highlight its dual nature, we could instead
meaningfully call their method EF21-D.
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Table 1: Strongly Convex Case. The number of communication rounds to get an e-solution (E[||Z —

“I’) <) upto

logarithmic factors. To make comparison easier, if a method works with a biased compressor, we assume that the biased
compressor is formed from the unbiased compressors and the following relations hold: wy + 1 = 1/, and ws + 1 = 1/a,,
where w,, and wy are parameters of workers-to-server and server-to-workers compressors, accordingly.

Method

# Communication Rounds

Limitations

EF
(Seide et al., 2014)
(Gorbunov et al., 2020b)

Q((1+ wy) Lanx )

No server-to-worker compression.

DIANA
(Mishchenko et al., 2019)

(14 52) Zo 4o

No server-to-worker compression.

Dore, Artemis, MURANA
(Liu et al., 2020)
(Philippenko & Dieuleveut, 2020)
(Condat & Richtarik, 2022)

n

QO [ @sww Lmax _
i

MCM
(Philippenko & Dieuleveut, 2021)

wewl/
(e

b)

n

Lmax
w

EF21-P + DIANA (new)
(Theorem 5.1)

L Ww Limax
(L4 wg) + S 2max + wy,

EF21-P + DCGD (new)
(Theorem G.3)

(1+ ws) & + o Lomax

Interpolation regime:
- Vfi(z*) =0

design of more elaborate algorithms. Namely, we exploit
EF21-P as the mechanism for compressing and subsequently
error-correcting the model broadcast by the server to the
workers (=downlink compression).

3. Contributions

By combining EF21-P with suitable methods (“friends” in
the title of the paper) performing worker-to-server com-
pression, in particular, DIANA (Mishchenko et al., 2019;
Horvath et al., 2022b) or DCGD (Alistarh et al., 2017; Khiri-
rat et al., 2018), we obtain methods, suggestively named
EF21-P + DIANA (Algorithm 1) and EF21-P + DCGD (Al-
gorithm 2), both supporting bidirectional compression, and
both enjoying new state-of-the-art theoretical communica-
tion complexity for convex and nonconvex problems.

o Convex setting. EF21-P + DIANA provides new state-of-
the-art convergence rate for distributed optimization in the
strongly convex (see Table 1) and general convex regimes.
This is the first method supporting bidirectional compression
whose server-to-workers and workers-to-server communica-
tion complexity is no worse than that of vanilla GD. When
the workers calculate stochastic gradients (see Section 5.1),
we prove that EF21-P + DIANA improves the rates of prior
methods. Further, we prove that EF21-P + DCGD has an
even better convergence rate than EF21-P + DIANA in the
interpolation regime (see Section 5.2).

<o Nonconvex setting. In the nonconvex setting (see Sec-
tion 6), EF21-P + DCGD is the first method supporting bidi-
rectional compression whose convergence rate decouples
the noise coming from the workers-to-server and server-to-
workers compression, respectively, from a multiplicative
to an additive dependence (see Table 2). Moreover, EF21-
P + DCGD provides the new state-of-the-art convergence
rate in the low accuracy regimes (¢ is small or the # of
workers n is large). Further, we provide examples of op-
timization problems where EF21-P + DCGD outperforms
previous state-of-the-art methods even in the high accuracy
regime.

¢ Unified SGD analysis framework with the EF21-P
mechanism. Khaled & Richtarik (2020) provide a uni-
fied framework for the analysis of SGD-type methods for
smooth nonconvex problems. Their framework allows to an-
alyze SGD and DCGD under various assumptions, including
strong and weak growth, and various sampling strategies,
including uniform and importance sampling. Unfortunately,
the theory relies heavily on the unbiasedness of the stochas-
tic gradients and, as a result, it is not applicable to our meth-
ods (in EF21-P + DCGD, E[¢'] = Vf(w') # Vf(z")).
Therefore, we decided to rebuild the theory from scratch.
Our results inherit all previous achievements of (Khaled &
Richtarik, 2020), and further generalize the unified frame-
work to make it suitable for optimization methods where
the iterates are perturbed using the EF21-P mechanism. We
believe that this is a contribution with potential applications
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Algorithm 1 EF21-P + DIANA

1: Parameters: learning rates v > 0 (for learning the model) and 8 > 0 (for learning the gradient shifts); initial model z° € R (stored

on the server and the workers); initial gradient shifts h?, . .

., hS € R? (stored on the workers); average of the initial gradient shifts

i % Z?:l h? (stored on the server); initial model shift w® = 2% € R? (stored on the server and the workers)
2: fort=0,1,..., T —1do
3 fori =1,...,n in parallel do
4 mf = CZD (sz (wt) — hi) Worker ¢ compresses the shifted gradient via the dual compressor C,U € U(w)
S: Send compressed message m! to the server
6 h§+1 = hi + ﬁmﬁ Worker 7 updates its local gradient shift with stepsize /3
7 end for
8: mt — % Z:’ilzl m;f Server averages the n messages received from the workers
9: ht+1 = ht + ,Bmt Server updates the average gradient shift so that h! = ,—l’ P /lf

10: g¢'=ht4+m!

11: 2zt =gt —~gt

12: pt+1 — CP ($t+1 _ wt)

13: w'tt = w4 pttt

14:  Broadcast compressed message p
15:  fori=1,...,nin parallel do

t+1 to all n workers

Server computes the gradient estimator
Server takes a gradient-type step with stepsize ~y
Server compresses the shifted model via the primal compressor cP en ()

Server updates the model shift

16: ’U}tJrl = wt + pt+1 Worker 7 updates its local copy of the model shift
17:  end for

18: end for

beyond the focus of this work (distributed optimization with where VO .= %E {H 20 — p* 2} + ( f(a0) — f(x*)) +

bidirectional compression). This development is presented
in Section E. Our main results from Section 6.1-6.3 which
cater to the nonconvex setting are simple corollaries of our
general theory.

4, EF21-P + DIANA and EF21-P + DCGD
Methods

We are now ready to present our main method EF21-P +
DIANA (see Algorithm 1), which is a combination of EF21-P
mechanism described in Section 2 and the DIANA method of
Mishchenko et al. (2019); Horvith et al. (2022b); Gorbunov
et al. (2020a). The pseudocode of Algorithm 1 should be
self-explanatory. If the gradient shifts {h!} employed by
DIANA are initialized to zeros, and we choose 3 = 0, then
DIANA reduces to DCGD, and EF21-P + DIANA thus reduces
to EF21-P + DCGD (see Algorithm 2). If we further choose
the dual/gradient compressors C?” to be identity mappings,
then EF21-P + DCGD further reduces to EF21-P.

S. Analysis in the Convex Setting

Let us state our first convergence theorem.

Theorem 5.1. Suppose that Assumptions 1.1, 1.2 and
1.3 hold, 8 = set 2% = w° and let v <

: n a 1 .
min {m, T00L? m} . Then Algorithm I returns

1
w—+1?

2T such that

%E [”wT —z* 2} +E[f(z") = f(z*)]

T
<(0-2)

et s |[RY — V£

The above result says that EF21-P + DIANA guarantees to
find an e-solution after

L Lpyax 1
TNEW =0 (< + 87 +w> IOg )
(e77} n o u S

steps. Comparing this rate with rates achieved by prior algo-
rithms (see Table 1), our method is the first one to guarantee
the decoupling of noises a and w coming from the server-to-
workers and the workers-to-server compressors. Moreover,
it is more general, as the server-to-workers compression
can use biased compressors, including TopK and Rank K’
(Safaryan et al., 2021). These can in practice perform better
than their unbiassed counterparts (Beznosikov et al., 2020;
Vogels et al., 2019).

As promised, let us now show that the communication com-
plexity of EF21-P + DIANA is no worse than that of GD.
For simplicity, we assume that the server and the workers
use the TopK and Rand K compressors, respectively. Since
under this assumption, w = 4/k — 1 and « = K/d, the
server-to-workers and the workers-to-server communication
complexities equal

L Limax 1
(’)(Kx (—l—wd—&—w) log)
ap  nop €

1
=0 ((dL+dlm‘> 10g>.
nwoon o p €

Note that L,ax < nL, so this complexity is no worse than
GD’s complexity for any K € [1,d]. In Section 5.3, we
discuss regimes in which the new complexity can be strictly

better. The general convex case is discussed in Section F.1.
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5.1. Stochastic gradients

In this section, we assume that the workers in EF21-P +
DIANA calculate stochastic gradients instead of exact gradi-
ents.

Assumption 5.2 (Stochastic gradients). For all xz € R4,
stochastic gradients V f;(z) are unbiased and have bounded
variance, i.e., B[V fi(z)] = V/f;(z), and E[|Vfi(z) —
Vfi(x)|%] < o? forall i € [n], where 0% > 0.

We now provide a generalization of Theorem 5.1:

Theorem 5.3. Let us consider Algorithm 1 using stochastic
gradients V f; instead of exact gradients V f; for all i € [n].

Let Assumptions 1.1, 1.2, 1.3 and 5.2 hold, = %4-17
0

0 in{ - — o 1
z’ = w”, and v < min { 160w Ly T00L (w+1)/4,} . Then

Algorithm 1 returns 7 such that

5B [ls” — "] + B [£™) - fa")]

T 2
§(1—M) VO+24(w+1)a
2 un

)

where V0 = %E [Hmo —x*Hz] + (f(2%) = f(a")) +
S e et [ JHC o

n?

For general convex case, we refer to Theorem F.4. Note that
Theorem 5.3 has the same convergence rate as Theorem 5.1,
except for the statistical term O ((«w+1)o”/um) that is the
same as in DIANA (Gorbunov et al., 2020a; Khaled et al.,
2020) and does not depend on ! In addition to the condi-
tions on +y stated in Theorem 5.3, achieving an e-solution re-
quires setting v < O (¢4#7/(w+1)0?). Under this assumption,
the convergence rate equals Tngw + O (% log é) and
hence is no longer linear. However, this /e dependence
is natural for stochastic methods given our assumptions
(Gower et al., 2019).

5.2. EF21-P + DCGD and interpolation regime

We also analyze a second method, EF21-P + DCGD, which
is based on DCGD (Khaled & Richtarik, 2020; Alistarh
et al., 2017). One can think of DCGD as DIANA with pa-
rameter S = 0. On one hand, the convergence of EF21-P +
DCGD is faster (see Theorem G.3) comparing to EF21-P +
DIANA (see Theorem 5.1). On the other hand, we can guar-
antee the convergence only to a O(1/n Y1 | ||V fi(z*) %)
“neighborhood” of the solution. However, this “neighbor-
hood” disappears in the interpolation regime, i.e., when
Vfi(z*) = 0 for all i € [n]. The interpolation regime is
very common in modern deep learning tasks (Brown et al.,
2020; Bubeck & Sellke, 2021).

5.3. Why do bidirectional methods work much better
than GD?

Our analysis of EF21-P + DIANA covers the worst case
scenario for the values of L, and a. Although L, .x
can be equal to nL, in practice it tends to be much smaller.
Similarly, the assumed bound on the parameter o equal to
k/q for the TopK compressor is also very conservative and
the “effective” «v is much larger (Beznosikov et al., 2020;
Vogels et al., 2019; Xu et al., 2021). Our claims are also
supported by experiments from Section 7.

6. Analysis in the Nonconvex Setting

In the nonconvex case, existing bidirectional methods suffer
from the same problem as those used in the convex case (see
Section 1.4): they either do not provide server-to-workers
compression at all, or the compressor errors/noises are cou-
pled in a multiplicative fashion (see wy, and ws in Table 2).

Instead of the convexity (see Assumption 1.3), we will need
the following assumption:

Assumption 6.1 (Lower boundedness). There exist f* € R
and fy,..., fr € Rsuch that f(z) > f* and f;(z) > f*
for all z € R? and for all i € [n].

As in the convex setting, the theory of methods that only
use workers-to-server compression is well examined. In the
high accuracy regimes, the current state-of-the-art methods
are MARINA and DASHA (Gorbunov et al., 2021; Tyurin &
Richtarik, 2022b); both return an e-stationary point after

AgL  AgwL
€ Vne
iterations, where A¢ := f(2°) — f*. In the low accu-

racy regimes, the current state-of-the-art method is DCGD
(Khaled & Richtarik, 2020), with iteration complexity

Aol Ao(Ag + A1 + w)LLyax
0( oL | Bo(Ao+ )(2+w) )
13 ne

where A* .= f* — % >, fF. Note that DCGD has worse
dependence on ¢, but it scales much better with the number
of workers n.

We now investigate how EF21-P can help us in the general
nonconvex case. Let us recall that in the convex case, decou-
pling of the noises coming from two compression schemes
can be achieved by combining EF21-P with DIANA. In the
nonconvex setting, we successfully combine EF21-P and
DCGD. Moreover, we provide analysis of some particular
cases where EF21-P + DCGD can be the method of choice
in the high accuracy regimes.

Whether or not it is possible to achieve the decoupling by
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Table 2: General nonconvex Case. The # of communication rounds to get an e-stationary point (E[||V f(Z)||*] < ). For
simplicity, we assume that f;* = f* for all ¢ € [n] and only the terms with respect to wy, and ws are shown. The parameters

wy, and wg have the same meaning as in Table 1.

Method # Communication Rounds Limitations
pcaGD (Khaled & Richtarik, 2020) % No server-to-worker compression.
MARINA, DASHA R
(Gorbunov et al., 2021) % No server-to-worker compression.
(Tyurin & Richtarik, 2022b)
) Homogeneous regime only,
distEF-5GD (Zheng et al., 2019) 0 (%) ie. f; = fforalli € [n].

Bounded gradient assumption.

mcum (Philippenko & Dieuleveut, 2021)

/2

W32
S =W
Ao ( s T e +ns) Lmax

Ww

Homogeneous regime only.

NEOLITHIC (Huang et al., 2022) Q (Bolmax

€

) Sends €2(d) coordinates in each round®

Bounded gradient similarity assumption.

CD-Adam (Wang et al., 2022)

Q ( Vd maxs{zws,ww}4 )

Bounded gradient assumption.

EF21-8C (Fatkhullin et al., 2021) D). —
N -
EF21-P + DCGD (new) Ownaz + AO;’»L o
EF: A() DUJWL A()U.)SL . .
21-P + DCGD (new) S ) & Strong-growth assumption with parameter D.
@ In each communication round (outer loop for k = 0, . .., K — 1 of Algorithm 2 in (Huang et al., 2022)), NEOLITHIC sends a number of compressed vectors (R in (Huang

et al., 2022)) that is proportional to €2 (1/«) (this quantity is even worse since we ignore the logarithmic factors), where « is the parameter of a contractive compressor. For
TopK or Rand K, it means that NEOLITHIC sends Q(4/ k) sparsified vectors with K nonzero elements. This means that, in total, (d) values are sent in each communication
round. The total number of communication rounds K is at least © (A0 Lmax/<) . Note that the vanilla GD method requires 2 (20 ZL/<) rounds and sends O(d) coordinates in

each round.

combining our method with MARINA or DASHA is not yet
known and we leave it to future work>.

6.1. EF21-P + DCGD in the general nonconvex case
Without any restrictive assumptions, we can prove the fol-
lowing convergence result:

Theorem 6.2. Consider Algorithm 2 and let Assump-
tions 1.1, 1.2 and 6.1 hold, z° = wo, and v =

min {E%L’ \/ME/LHMXT, 32A*52Lmax } . If the number of it-
erations
48AgL 8 96Aqwlmax 32A%wLiax
T > ——max < —, ) )
€ o ne ne

th in E [ t 2] < e (Th Il
e\ min | IVf(x*)||”| < e (The proof follows from
Theorem E.3 and Proposition E.4 (Part 1)).

We get the rate of DCGD (Khaled & Richtarik, 2020) plus an
additional O (AOL) factor, thus obtaining the first method

ag

2We did not try to get the convergence rate of EF21-P + DI-
ANA in the nonconvex regime because it is well known that DIANA
is a suboptimal method in the nonconvex case (Gorbunov et al.,
2021).

with bidirectional compression where the noises from the
compressors are decoupled. Moreover, as noted before, this
method provides the state-of-the-art rates when ¢ is small
or the number of workers n is large.

6.2. Strong growth condition

Here we analyze EF21-P + DCGD under the strong-growth
condition (Schmidt & Roux, 2013).

Assumption 6.3.2 There exists 2D > 0 such that
w i V@) < DIVf(2)|” forallz € R

While this assumption is restrictive and does not even hold
for quadratic optimization problems, there exist numerous
practical applications when it is reasonable. These include,
for example, deep learning, where the number of parameters
d is so huge that the model can interpolate the training
dataset (Schmidt & Roux, 2013; Vaswani et al., 2019; Meng
et al., 2020). To train such models, engineers use distributed
environments, in which case communication becomes the
main a bottleneck (Ramesh et al., 2021). For these problems,
our method is suitable and can be successfully applied.

Theorem 6.4. Consider Algorithm 2, let Assumptions 1.1,
1.2, 6.1 and 6.3 hold, and choose z° = w° and v =
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min {8%, ﬁ} . If the number of iterations

T>

)
3

487 L {8 4Dw}
max§ —,—— ¢,
(6% n

. 2] <
then oin E [HVf(x i } < e. (The proof follows from
Theorem E.3 and Proposition E.4 (Part 2)).

Comparing to Section 6.1, the above result shows an im-
proved dependence on ¢ under the strong growth assump-
tion.

6.3. Homogeneous regime

Another important problem where our method can be useful
is distributed optimization in the data homogeneous regime.
In particular, we consider the case when f; = f for all
i € [n] and when instead of exact gradients, stochastic
gradients are used. This assumption holds, for instance, for
distributed machine learning problems where every worker
samples mini-batches from a large shared dataset (Recht
et al., 2011; Goyal et al., 2017).

Theorem 6.5. Let us consider Algorithm 2 with the stochas-
tic gradients V f instead of the exact gradients V f. Sup-
pose that Assumptions 1.1, 1.2, 5.2 and 6.1 hold and
fi = fforali € [n]. Set 2° = w° and let v =

min § g7, 4(£1+1)L, 16(w1§)02L} . If the number of iter-
ations
48AgL 1 1)o?
T > 840 Inax{8,4(w+1),6(c‘)+)a},
€ @ n ne

. (12 <
then on E {HVf(:r i } < e. (The proof follows from
Theorem E.3 and Proposition E.4 (Part 4)).

Under the same assumptions, MCM method by (Philippenko
& Dieuleveut, 2020) with bidirectional compression guaran-
tees the convergence rate (up to constant factors)

1/2 2
7AOL max { (ﬂ + 1) ’W?/za b ’ (ww a 1)0 } .
€ n ‘ vn ne

Comparing this with our result, the last statistical term
(w+1)o®/ne is the same in both cases, but we significantly
improve the other communication terms (take w = wy, and
a = (ws + 1)t in Theorem 6.5).

7. Experimental Highlights

We first provide a few highlights from our experiments. For
more details and experiments, we refer to Section A, where
we compare our algorithms with the previous state-of-the-art
method MCM and solve a nonconvex task.

10°

U —¥— DIANA: Step size: 4.0
—<— EF21-P + DCGD: Step size: 16.0
>~ EF21-P + DIANA: Step size: 4.0

fix?t)

107t

0.0 0.5 15 2.0 25 3.0

10 .
#bits / n (workers-to-server) le7

~ T

—¥— DIANA: Step size: 4.0

—<&— EF21-P + DCGD: Step size: 16.0
>~ EF21-P + DIANA: Step size: 4.0

10°

0° 10 10% 10° 1070

#bits / n (server-to-workers)
Figure 2: Logistic Regression with real-sim dataset. Num-
ber of workers: n = 100. Sparsification level was set to
K =100 for all compressors.

In particular, we consider the logistic regression task with
real-sim (# of features = 20,958, # of samples equals
72,309) from LIBSVM dataset (Chang & Lin, 2011). Each
plot represents the relations between function values and
the total number of coordinates transmitted from and to the
server. In all algorithms, the Rand K compressor is used
to compress information from the workers to the server.
In the case of EF21-P + DIANA and EF21-P + DCGD, we
take Top K compressor to compress from the server to the
workers.

The results are presented in Figure 2. The main conclusion
from these experiments is that EF21-P + DIANA and EF21-
P + DCGD converge to a solution not slower than DIANA,
even though DIANA does not compress vectors sent from the
server to the workers! This means that EF21-P + DIANA and
EF21-P + DCGD can send %400 less values from the server
to the workers for free! Moreover, we see that EF21-P +
DCGD converges faster than its competitors. Similar experi-
mental results were observed in (Philippenko & Dieuleveut,
2021).

8. Future Work and Possible Extensions

In this paper, many important features of distributed and
federated learning were not investigated in detail. These
include variance reduction of stochastic gradients (Horvath
et al., 2022b; Tyurin & Richtarik, 2022b), acceleration (Li
& Richtérik, 2021; Li et al., 2020), local steps (Murata &
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Suzuki, 2021), partial participation (McMahan et al., 2017;
Tyurin & Richtérik, 2022a) and asynchronous communi-
cation (Koloskova et al., 2022). While some are simple
exercises and can be easily added to our methods, many of
them deserve further investigation and separate work.

Further, note that several authors, including Szlendak et al.
(2021); Richtarik et al. (2022); Condat et al. (2022), consid-
ered somewhat different families of compressors than those
we consider here. We believe that the results and discussion
from our paper can be adapted to these families.
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A. Further Experiments

We now provide the results of our experiments on practical machine learning tasks with LIBSVM datasets (Chang & Lin,
2011) (under the 3-clause BSD license). Each plot represents the relations between function values and the total number of
coordinates transmitted from and to the server. The parameters of the algorithms are as suggested by the theory, except for
the stepsizes +y that we fine-tune from a set {2°|i € [—10, 10]}.

We solve the logistic regression problem:

where x1, ..

filzy, ... xe) = 7% Zlog (Z
j=1

C
y=1 exp

exp (aiTj Lyi )
(ajay) )

., € R%, ¢ is the number of unique labels, a;; € R? is a feature of a sample on the i™ worker, y;; is a

corresponding label and m is the number of samples located on the i worker. In all algorithms, the Rand /K compressor is
used to compress information from the workers to the server. In the case of EF21-P + DIANA and EF21-P + DCGD, we take
TopK compressor to compress from the server to the workers. The performance of algorithms is compared on w8a (# of
features = 300, # of samples equals 49,749), CIFAR10 (Krizhevsky et al., 2009) (# of features = 3072, # of samples equals
50,000), and real-sim (# of features = 20958, # of samples equals 72,309) datasets.

The results are presented in Figures 2, 3 and 4. The conclusions are the same as in Section 7. One can see that EF21-P +
DIANA and EF21-P + DCGD converge to a solution not slower than DIANA, even though DIANA does not compress vectors
sent from the server to the workers! EF21-P + DIANA and EF21-P + DCGD send x100 — x 1000 less values from the server
to the workers!

T
—¥— DIANA: Step size: 4.0
—aA— EF21-P + DCGD: Step size: 16.0
EF21-P + DIANA: Step size: 4.0

4 <t
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Figure 3: Logistic Regression with w8a dataset. # of workers n = 10. K = 10 in all compressors.
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Figure 4: Logistic Regression with CIFARI0 dataset. # of workers n = 10. K = 1000 in all compressors.

We also compare our algorithm to MCM. Since MCM does not support contractive compressors defined in (2), we use Rand K
instead of the TopK compressor in the server-to-workers compression. Figure 5 shows that our new algorithms converge

faster.

Finally, we provide experiments for the nonconvex setting and compare EF21-P + DCGD against EF21-BC (Fatkhullin et al.,

14
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Figure 5: Logistic Regression with real-sim dataset. # of workers n = 100. The parameters of workers-to-server and
server-to-workers compressors are K,, = 100 and K = 2000.

2021) and DASHA (Tyurin & Richtérik, 2022b). We consider the logistic regression with a nonconvex regularizer

c d 2
r(x1,..., %) ::Azzl[—l—[y:]nky],%’

y=1k=1

where [-], is an indexing operation of a vector and A = 0.001. We use RandK and TopK compressors for the workers-to-
server and server-to-workers compressions, respectively. Note that in these experiments, the server-to-workers compression
is only supported by EF21-P + DCGD and EF21-BC. In Figure 6, one can see that EF21-P + DCGD converges faster than
other algorithms and outperforms DASHA, which does not compress vectors when transmitting them from the server to the
workers.

10° 10,
1 v— DASHA: Step size: 1.0 v— DASHA: Step size: 1.0
—a— EF21-BC: Step size: 0.5 —a— EF21-BC: Step size: 0.5
—<— EF21-P + DCGD: Step size: 2.0 —< EF21-P + DCGD: Step size: 2.0
—~6x107* ~6x107 Vg .
= a
= =
4x107? 4x107! v
-1 -1
3x107 55 05 0 5 20 25 30 3x107ge 07 10 10° o™
#bits / n (workers-to-server) le7 #bits / n (server-to-workers)

Figure 6: Logistic Regression with the nonconvex regularizer and real-sim dataset. # of workers n = 100. K = 100 in all
COMPressors.
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B. Useful Identities and Inequalities

Forall z,y,z1,...,2, € R s > 0and a € (0, 1], we have:
lz + yll* < (14 8) llz” + (L + 7Y 1y, (7)
lz +ylI* < 21lz)* + 21lyll* (3)
2 2
T 25 2 7’
@ @
_ <1 =
(1-a)(1+5)<1-3, (10)
2 2
(1—m(1+)<, an
e o
1 2 2 2
(a,8) = 5 (Ilall® + 161 = fla = bl - (12)
Tower property: For any random variables X and Y, we have
E[E[X]|Y] =E[X]. (13)
Variance decomposition: For any random vector X € R? and any non-random ¢ € R?, we have
2 2 2
B[IX - el*] = E[IX - BIX]I?] + B 1X] - . (14)

Lemma B.1 (Nesterov, 2018)). Let f : R¢ — R be a function for which Assumptions 1.1 and 1.3 are satisfied. Then for all
x,y € R% we have:

IVf(x) = VE)I* <2L(f(2) — fy) — (V). — y)). (15)

Lemma B.2 ((Khaled & Richtarik, 2020)). Let f be a function for which Assumptions 1.1 and 6.1 are satisfied. Then for all
x,y € R? we have:

IVf(@)||* < 2L(f(z) — ). (16)
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C. Proof of Lemma 1.4
Lemma 1.4. If Assumptions 1.1, 1.2 and 1.3 hold, then L < Lpax <nLand L < L < v/ Lpax L.

Proof. One can show (see (Nesterov, 2003)) that a convex function f is L-smooth if and only if either of the two conditions
below holds:

0<(Vf(x) - Vf(z),z—y) < Llz—y|*, Va,yeR?,
IVf(z) = V@) < L(Vf(x) - Vf(z),x—y), V,yecR™

For any fixed ¢ € [n], we have

3

(Vfi(z) = Vfi(y),z —y) < : <Vfi($) = Vfiy),z —y)

< nIIVf(fE) (y)ll [l =yl

Thus L; < nL and L, < nL.Next,

IN

ES V@) - VAW < 1> LiVi@) - Vhilg)e — o)

n

Lmax% Z <vfz('r) - vfz(y)a T — y>
=1

Lo (V1 () — V()2 — )
L IV F(@) = V)| — 9]
L

IN

IN

(1.1)

< LpaxL |z — y||2 )

and hence I < V/Lmax L. Using Jensen’s inequality, we have
s 1 2 _ = 2
IVF(@) = VW™ < ~ S IVSilx) = VEWI® < L [lz -yl
i=1
Thus L < L. Finally, L < L. follows from

1 n
- ; i L |z —y|* < L2 —y)*.
n;uw( - Viily Z 2 = yll* < Liax 2 = ]

17
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D. Convergence of EF21-P in the Strongly Convex Regime

We now provide the convergence rate of EF21-P in the strongly convex case.

Theorem D.1. Let Assumptions 1.1 and 1.3 hold, set w® = 2° and choose ~ < 16T -

LBl -]+ B L6 - o) <

Moreover, E [||wt — x*||2} —0ast— .

Then EF21-P returns xT such that

[l =] + () = ) )

T /1
) (e
2 2y

Theorem D.1 states that EF21-P will return an e-solution after O (Q—Lﬂ log 1/ 5) steps. Comparing to GD’s rate O (% log 1/5) ,

one can see that EF21-P converges 1/a times slower.

Proof. First, let us note that

th gt 2 th+1 gt 2 th+1 —JJtH2
_ <mt t+1 2t Q:v* + xt+1> _ <xt+1 . xtvxtJrl _ xt>
:2<x — gt —x >
=2v(V f(w ), t+l —m*>. (17)

Using L-smoothness of f (Assumption 1.1), we obtain

f(xtJrl) < f(wt) + <Vf(wt wt> + g thJrl _ wt||2
con\éxny f(w*) + <Vf(wt),l‘t+1 _.T*> _ g Hwt _ m* 2 + g th—‘rl _th2
an . 1 .12 1 N2 1 2
&)+ o ot = - et - o et =
K t_*2£t+l_t2
fut |+ £t — |
Using (8), we have
Lottt — | < Lot — ot Lt = ot
and
Fooe s Bt o2 Bt t2 o Bt )2 t b2
Bt —a < 2 fut =+ 2 ot = ot < 2 ! ="+ Lt — o]

where we used the fact that © < L. Hence

. 1 . 1 . 1
L (Rl it e~ [t il Et
_H Hwt ot 2 + g th+1 _th2
< @)+ o ot = ot = o ot | - o et - )
- 2y 2y 2y
+wa—fW—%mtwf2 a1t = | 4 Lt ot
=16+ g (1= ) et =l - e

(L
2y

L) o o)+ 22t~

18



EF21-P and Friends

2_1 2

* 1 TH t * t41 %2 t t
gf(a:)—|—5<l—?>Hx —x EHJ; —x +2LHw —ac| ,
where the last inequality follows from the fact that v < ﬁ Let us denote by E; ;1 [-] the expectation conditioned on

previous iterations {0, ..., ¢}. Then

Boo [f)] < £+ 5 (1= ) o' = 7|

1 L2
gy [l = [[°] + 2L ' = |- (18)
It remains to bound E; 4 [Hwt+1 _ xt+1H2:|:
Et+1 {Hwt-i-l _ xt-&-lHQ} — Et+1 [Hwt _,'_Cp(xt-&-l . wt) . xt_HHZ}

< (1 _ Q)Et-i-l |:th+1 _ th2]
(1-a) 2" = AV f(w') —wt|?

22
(1= )t ==+ 2 9 s
2
(1= 5) It =+ 9 s~ w5 |
42
22 94t - v

1),(B. 2L2 2L
(1 I)S(Bl) (1 B % I 4’Ya) ||wt 7xtH2 + 8’77 (f(xt) o f(z*))
2L

(1= %) ot =1 + 22E () - 7))

where in the last step we assume that v < -%. Adding a 2% multiple of the above inequality to (18), we obtain
16L 9 X 1 o
Bria [ )] + S B [Jo'* o] < f@) + 5= (1= 5) o' - 7|
(0% 2,}/ 9
1 t+1 w112 16L 6 t 112 128,y2L2 . §
_ %Eﬂrl [HLL‘ —x } + T (1 — g) ||u) — T H + — (f(CE ) . f(:C )) .

Thus, taking full expectation over both sides of the inequality and considering v < 157 < ﬁ gives

B[+ = )] + 5B [ — 2] + 2 [t - at41)]

< (1-%) (Bl ~ 5] + g [l =] + 2278 [t =] ).

0

Applying this inequality iteratively and using the assumption w® = z proves the result. O

19



EF21-P and Friends

E. Convergence of EF21-P in the Smooth Nonconvex Regime
E.1. General convergence theory

We now move on to study how the EF21-P method can be used in the nonconvex regime. The analysis relies on the expected
smoothness assumption introduced by (Khaled & Richtarik, 2020). In their work, they study SGD methods, performing
iterations of the form

t+1 t t
et =at — g,

where ¢’ is an unbiased estimator of the true gradient V f(z'). Following Khaled & Richtarik (2020), we shall assume
that E [g(z)] = V f(z). However, in our case, gradients will be evaluated at perturbed points, thus resulting in biased
stochastic gradient estimators. In particular, we consider the following general update rule, where the stochastic gradients
are calculated at points evolving according to the EF21-P mechanism, rather than at the current iterate:

" =2f —yg(w'),

wtt = wt + P (2 — wh). (19)

Our result covers a wide range of sources of stochasticity that may be present in g. For a detailed discussion of the topic, we
refer the reader to the original paper (Khaled & Richtarik, 2020).

Throughout this section, we will rely on the following assumptions:

Assumption E.1. The stochastic gradient g(x) is an unbiased estimator of the true gradient V f (), i.e.,

Elg(z)] = Vf(z)

for all z € R%.
Assumption E.2 (From (Khaled & Richtarik, 2020)). There exist constants A, B, C' > 0 such that:

B llg@)I?] < 24(f(@) - f*) + BIVf(@)|* +C

for all z € R?.

We are ready to state the main theorem:

Theorem E.3. Let Assumptions 1.1, 6.1, E.1 and E.2 hold and set w9 = 29. Fix € > 0 and choose the stepsize

1 1 €
= mm{8L ABL’ \J3ALT 1GCL}
Then

T> min E[|[V/@)]*] <= (20)

e e 0<t<T—1

48ApL max {8, 4B, 96A0A 160}
€

Note that by taking A = C = 0 and B = 1, one gets the O(L) rate for EF21-P in the nonconvex setting. Namely,

under Assumptions 1.1 and 6.1, for 2° = w® and 0 < v < &, we have ming<;<7_1 E [HVf( )Hﬂ < ¢ as soon as
T > 384A0L
- ag

‘We now apply the above result to the combination of EF21-P perturbation of the model and DCGD (Khaled & Richtarik,
2020) (EF21-P + DCGD). Suppose that the iterates follow the update (19) (see also Algorithm 2), where

o) = -3 Ci (i) @

i=1

and each stochastic gradient g;(z) is an unbiased estimator of the true gradient V f;(x) (i.e., E [g;(z)] = V fi(z)).
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Proposition E.4. Suppose that the gradient estimator g(x) is constructed via (21) and that Assumption 1.2 holds. Let
A* = L5 (f* = f7). Then:
1. For g;(z) = V fi(x), Assumption E.2 is satisfied with A = %wLmam, B=1and C =2AA*.
2. In the same setting as in part 1, assuming additionally that Assumption 6.3 holds, Assumption E.2 is satisfied with
AzCanndB:%—&—l.

3. Assume that each stochastic gradient g; has bounded variance, (i.e., E ||| g;(x) — V f; (x)||2] < 02). Then Assumption
E.2 is satisfied with A = %wLmaw, B=1and C = 2AA* + ”THUQ.

4. Suppose that E [||gl (z) = Vfi(@)|?| < o2 and f; = f foralli € [n). Then Assumption E.2 is satisfied with A = 0,
B=%2+1andC = "JTHUQ.

In Section 6, we apply Proposition E.4 and state the corresponding theorems.

E.2. Proof of the convergence result
We will need the following two lemmas:
Lemma E.5. Consider sequences (8%), (r'); and (st); such that §¢,rt, s > 0 for allt > 0 and s° = 0. Suppose that
S pasttt < bt + ast — ert + d, (22)
where a, b, c, d are non-negative constants and b > 1. Then forany T > 1
d

bT
min < —§° + =,
0<t<T—1 cT c

Proof. The proof follows similar steps as the proof of Lemma 2 of (Khaled & Richtarik, 2020) and we provide it for

Wir—1

completeness. Let us fix w_; > 0 and define w; = ——. Multiplying (22) by w; gives

t_ cwprt + dwy

w0 + aw st < bwdt + awys
< w18t + aws_18t — cwrt + dwy.

Summing both sides of the inequality fort = 0,...,7 — 1, we obtain

T-1 T-1
wr_16" +awr_18T < w_16° + aw_15° — ¢ E wert + d E Wi.
t=0 t=0

Rearranging and using the assumption that s = 0 and non-negativity of s’ gives

T-1 T-1
c Z wert + wp_167 < w_16° + aw_15° — awp_1sT +d Z Wi
t=0 t=0
T-1
<w_18°+d Z Wy.
t=0

Next, using the non-negativity of 6! and w;, we have

T-1 T—1 T-1
c E wert < e g wert + wp_167 <w_16° +d E Wi.
t=0 t=0 t=0

Letting Wy := 31 w; and dividing both sides of the inequality by W, we obtain

c = w
wert < —=6%+d.

T

=

¢ min rf< —
0<t<T—-1 W P
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Using the fact that

ﬂ
L
ﬂ
L

Tw_1
Wr = wy > min @ w; =Twr_1 = ——
T
0T -1 b

)

“
i
=
Il
<

we can finish the proof. O

Lemma E.6. Let Assumptions 1.1, 6.1, E.1 and E.2 hold, set wd = :170, and choose

< 1 1 o
VS ming o IBLU S
Then

8 (1424Ly2)"

Ay + 8C L. (23)
~T

min E [HVf || }

0<t<T -1

Proof. First, L-smoothness of f implies that

2

f(wt) < ) + <Vf( ot —at)+ 3t~ a
< e HVf | + Ll =2 24)

and

Pt < F@t) + (V7,2 —at) 4 et - ot P

2

= f(@") = (V") g(w")) + L%Ilg(wt)llz-

[l

Using the fact that g(«) is an unbiased estimator of the true gradient, subtracting f* from both sides of the latter inequality
and taking expectation given iterations {0, ..., ¢}, we obtain

Bt 1) =] < f) = 1 =A@ ) + E B [t ]

T pa) - £ = 2095 - DI F@OI? + 21V et - ieh)?

22 Gatswt) - 1)+ B9 5w +€)

LA 2 ) L R
AL ) — ) + P2 s+ CET

= f(z%—f*fgnww)n%gu BIN 9 h| + £ et — w2
ALY () - ) + T

¢ f(rct)ff*—%IIVf(xt)H?fl(lfBLv)HVf N+ 5kt — e
vz (£ 4 g VO + Lt =2 - ) + 58

= (1+ALY) (f(a') - f*) =2 (1= AN ||VF|* = 5 (1= BLy) [V ()
v (4 a0 Jut =o'+ S5
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Hence, taking full expectation, for v < ﬁ, we have

E[f@") = '] < A+ ALPE [f") - £] - 7B [[V/6")]’] 25)
2 t t CL
— 2 (1= BLY) B[ VF")|*] + LE |[u’ - '] + ’Y.

Next, variance decomposition and Assumption E.2 gives

E {lgtw’) = V£@")|*] 2 B[ llg@")]*] - 5"

(E.2) 9
< 2A(f(w t)*f*) +(B-1)||Vfw)| +C

£ 24 (76 + 5 9T + £t~ - )
+(B-1) HVf )| +c
= 24(f) ~ 1) + 2 |VIE) | +24L fut 2!
+HB 1) ||Vt +C. (26)

Therefore, using the unbiasedness of g(), we can bound the expected distance between w*! and ' as

Bllott -] = B[+ Glet - ) - 2]
< -aB[let - w|f]

= (1-a)B|[a" 9"~ w!|’]
@ (1 a) B[l ~ V@] + 0 a) B ot~V Fwt) - ]
(1= ) 7E [lg - Vi) + (1= 5) B ot - w'[]

V2295w
20— () - )+ A o P

F2AL (1 — a) 42wt — o[> + (B — 1) (1 — )22 |V f(w") |

o -a)7+ (1= 5) B et — '] + B [eswh|].

Hence, taking expectation, for v < | /m

E |:Hwt+l _ 1’t+1||2:| < 24 (1 o a) ’}/QE [f(l't) o f*] +

(1,(10),(11)
<

Al —a)~?
L

+ 2 <z +(B-1)(1- a)> E [Hw(wt)H |
+ (1 - % +2AL(1 —a)72> E [th —wt||2: +C(1—a)y?
AL D7 (75|
+ 2 <z +(B-1)(1- a)> E [Hw(wt)H |

+ (1= ) E[lla - '] + - a)?, @7)

B|[vs@))’]

<24(1—a)V’E[f(a') — f*] +
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Adding a % multiple of (27) to (25), we obtain

412~

E [f(xt-i-l) g ] R M +1 xt+1H2}

SAL%(1 — a)73> E [f(a!) - 7]

-2 (1- BARE = Y g vy ]

-1 (1 By T (Z +E-D- O‘)» eI snr]

ot C’L'y 4CL2(1 —a)y?
Jut — ] + L—a)y’

< (1 + ALY +

+

4L2%y [
a

Then, provided that

< mi 1 o a a
T=MEABLSL\ 32(B — 1)(a— 1)L2\ 32AL(1 — a)’

= min 1 ol a
N 4BL’ 8L’ \| 32AL(1 —«a)’ |’

(where we used min{a, b} < v/ab for all a,b € R"), this gives
t+1 * 4Ly t+1 t+1|2 2 t *
E[f@") = /'] + =B [ — 2] < (1+24Ly) E[f(a") - f]
412
- B[|Vsa)|*] + =B [flut - '] + CLy®
Denoting a := %, b:=1+ 2AL'y2, c:= % and d := C'L~?, this is equivalent to
Sl pasttt < bt + ast — ert +d, (28)

where 8 := E[f(z!) — f*], 7' :=E {HVf(xt)HQ} and s' := E {Hwt — act||2] Hence, using Lemma E.5, for any T > 1

b" d
min ' < —6" + —,
0<t<T—1 cT c

which proves (23). In the proof, we have the following constraints on ~:

< mi 1 1 o «
min —_— e, — R e— .
= 4A°ABL’ 8L\ 32AL(1 — a)

Using the inequality min{a, b} < v/ab for all a,b € R, this can be simplified to

< 1 1 a
min —_— T, — .
= 4A’4BL’ 8L

O
Theorem E.3. Let Assumptions 1.1, 6.1, E.1 and E.2 hold and set w® = 20, Fix ¢ > 0 and choose the stepsize
1 1 €
min
T 8L 4BL’ \BALT 16CL
Then
48A\oL NoA 1
T> 880 max{8,4B, 9620 ,GC} min E [va )| } (20)
€ € € 0<t<T-1
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Proof. By Lemma E.6, we have

8 (1424L42)"

T Ao+ 8CLy

min E[|[v/@)]°] <

0<t<T-1

. . 1 1 « . . 1 .
provided that v < min {H’ 15T @} . Now, using the fact that 1 + = < e* and the assumption vy < ot e obtain

(1+ 2AL72)T < exp (2ALT~*) < exp(1) < 3.

Hence

24
0<£Ié1%l 1E {HVf H } < ’YiTAO + 8CLn.

In order to obtain %Ao + 8C' L~y < €, we require that both terms are no larger than %, which is equivalent to

48A
T>-"=2 (29)
’)/6

&
< —.
7= 16CL (30)

We thus require that:

1 1 a 1 e
< min{d — = .
= mm{4A’ ABL’ 8L’ \RALT 16OL}

which, combined with (29) gives:

7> 48€A0 s {4A ABL., g 96A€0AL’ 16§’L}

It remains to notice that the term 4 A can be dropped, thus simplifying the constraints to

1 a 1 €
< mi — .
= mm{leL’ SL’ \oALT’ 160L}

and
48A 8L 96A¢AL 16CL
T>""nm {4BL ot }
« € €
Indeed, if HV f(2%) H2 < g, then (20) holds for any v > 0. Let us now assume that HV flx H2 > ¢. The above constraints
imply that \/QiLT < %AEOAL. Moreover, from Lemma B.2, we know that £ < ||Vf || < 2LAY. Thus \/m < 4§A.
Similarly, we see that % > 48A. O

E.3. Proof of Proposition E.4

Proof. 1. Using independence of Cy, ..., C,, we have
_ _ )
E[lg@I?] = E |5 D¢ (Vi)
i=1
- . 9
(|4)
B Z (V@) = VE@)| | + V@)
1 n

- 72 [lc: (Vfi@) = V@) ] + 195 @)
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< o e VA + V)

< 2 2 2li(a) = )+ IV @)
Lmam *

< 2‘””— S Ute) — £9) + IV F@)

i=1

2A(f(x) — £) + IV f(@)|* + 2447,

where A := 7‘“%’1"“’.

2. Starting as in part 1 of the proof, we obtain

E lg(z ||]<—Zwum 41wl S (224 1) 19se.

3. First let us note that
E |lg:@)I*] @B [lgi () = V@) I*] + IV £@)]° < o> + |V fi@)]]*

Following steps similar to the proof of Proposition 4 of (Khaled & Richtarik, 2020), unbiasedness of the stochastic
gradients gives

n

E[ls@l?] L8 B (|3 c () |gl<x>,...,gn<x>”

=1

W g _E _ ii(a o) 0| |gl<x>,...,gn<w>] v ;ﬁ;w) ]
wg| = ZE[ — gi(2)]” |gl<x>,...,gn<x>}]

B [Hiil(gi(x) T
< :;E lgs(o)l?] + [Hi;m) e Y

<

3‘8
M= 1

> (IVE@I° +0%) + S°E[lgs(o) - VA@I] + 19 @)
i=1

1

o
I

B2 w
S E

(2Li (file) = 1) +0°) + = + | Vf (@)

M:

24(f(z) = f*) + IV @)II* +C,

where A := LwLyap and C 1= 2AA* + <2,

4. Starting as in part 3 and using the assumption f; = f, we have:

E[ls@)I?] < =5 ZE[Hgl )I? +E[H Zgz

26
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<1_4>“;§( B [lou(e) ~ 7@ IF] + 97 @)?)

i [lg:(@) = V(@)1 } + V@I
BN

w—l—l )va

27



EF21-P and Friends

F. Proofs for EF21-P + DIANA in the Convex Case

First, we prove an auxiliary theorem:

Theorem F.1. Let us assume that Assumptions 1.1, 1.2 and 1.3 hold, 5 € [O ,and

_1
? w+1

0 S min - ’ a ) é .
160w Lmae ' 100L° 1

Then Algorithm I guarantees that

B [l -] + B[ - 1e7)

FRe ZE[WH Vfi(a ||}+VE[||wt+1_xt+1y|2}

i=1

|+ 5B [F@) — fa)]

+n(1ff) ZE[W Vii@)|*] +v (17%)E[Hwtfxt||2},

< 192vwL? 4 32L
no a

where k < 87; and v

Proof. From L-smoothness (Assumption 1.1) of the function f, we have

f(xtJrl) < f +<Vf 7wt>+§“xt+1,wt”2
EY Fat) + (V) 2t — 2t ! —a[* + 5 fla " = ']

= f(z")+ <gt7$t+1 _ x*> + <vf(wt) _ gt gt x*>

£ t+1 o t2  Hyt )2
- e

We now reprove a well-known equality from the convex world. Noting that z'*! = 2t — y¢?, we obtain

|2 — || = [l = o*|” = [|l2**! — 2t
_ <$t t+1 2t 21‘* + xt+1> _ <xt+1 . xt’xt+1 . xt>
2<x — gttt —x >

:2’y<g,x x*>

Substituting (33) in the inequality gives

Fl@h) < f@®) + (V') — g 2" —a7)

1 1 2 1 2
oo et = a7|F = o= [l e - o [l -
L t+1 2 Moyt 2
T Ry Ty

Next, by (8), we have

L ettt < Ll = ot 4 Lt - ot

and

Fogoe o os2 o Bt o2 B o212 o Bt )12 t )2
1 e Gy I Py MY Ly M )

28
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where we used L > p. Thus

F@™h) < fl@) + (V') — g 2" —a7)

+ 5 ot = = et o = 5 et =t
+mw“—ﬂW+wa—fW—HMt-*2 2
= fla®) + (T (w' —at) 5 (1= ) et =P
—%ww | ( L|w“ o+ 28 [t — |
< f@) + (VF ! —a) 45 (1= ) et =
—%Wm—xwwﬂw—ﬂﬁ
where we used the fact that v < 5. Then, taking expectation conditioned on previous iterations {0, ..., t}, we obtain

Eit [f(xt+1)] < f(z*) + Bepa va( t) — gt, 2tt! —a:*>]

* 1 %112 2
b (=2 ot = s [J =] 2 -

From the unbiasedness of the compressors C, we have

E 1 [¢"] = Vf(wh)

and
Ei1 [<Vf(wt) - gtaiﬂtﬂ - $*>] = Ein1 [<Vf(wt) - gt,fﬂt - ’Ygt - ﬂf*ﬂ

= =B [(Vf(w') —g", g")]
= B [[l9'1] = 7 IV £t
N [Hg — Vi ]

Therefore

Eerr [£(@')] < (@) + 9B |9 = V()]
1 . X
b (1= ) ot o) = e [t = o 2t = o 0

Now, we separately consider E; 4 [Hgt - Vf(w') \\2} . From the independence of compressors, we have

|

Evi [[[CP(Vfiw') = ) = (Vfilw") = b) ]

Eua o = V5 @h)|’]

=Ei [

1
n2

m+%§ZGNVﬁw%—hD—Vﬂw“

i=1

Zi
EIWﬂ )~ )

w
TL
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2 n
<=3 lIkE = VAE|* + EZHVﬂ ~Vh@E)
i=1
2 n
< a2 lvt = Vit
i=1

where in the last three inequalities, we used (3) and (8). Next, using Assumption 1.2 and Lemma B.1, we obtain

)

’ QZHW VA + ZHVﬁ Vi)

Eis1 [Hg = V)] }
ZMfVﬂ g AL et B (1) pa). 65)
To construct a Lyapunov function, it remains to bound 2 "7 [|hf+! — W f;(2*)||” and [Jwt+! — 2441
*ZmHW#1VL W]
== LS B (|1t + BEP (Vi) = 1) = ¥ fia)]]

=1

+ % Z (ht =V fi(z*), Begr [CP(V fi(w') — hD)])

i=1

= %Z It = Vi)

+ 23 B [JeP Ot = ]

Znht Vii(x ;|+ Z — Vfi(a*), Vfi(w') — ht)

'“J%LZW%W%%W
i=1
2a-p- > [r =V

+WLZHW R

BZWM )|

Zuht V)| +BZ|\WZ — Vi)

where we use that § € [ Thus, using (8), Assumption 1.2 and Lemma B.1, we have

) w+1:|

*Z&HW#1VL 7]
-8)~ ; 1n =V fi

L2 [|w’ — 2 ||” + 4B Lmax (f(2') — f(2%)). (36)

It remains to bound E;, 4 [Hth _ xt+1||2] :
Et+1 U|wt+1 — ;L't+1H2i| _ Et+1 I:Hwt +Cp($t+1 _ ’U)t) _ wt+1H2i|
%) (1 - a)Ei [Hm“‘l — thz}
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= (1 —a)Ew {Hmt — gt — thﬂ

(1= B [[lg = VI@IP] + (0= 0) [|o" =49 F ') - wt?
< 2B ot = V9] + (1 - )H R e s
< B [Hg -V } (1-%) o = s

s vt - i)+ 2 Vs - TP

Using Assumption 1.1 and Lemma B.1, we obtain

e ([l =] < 92Eusa [Jof = V7]
a 4y 2 8y2L N
(1= 5+ B ot P+ T (1) - 1)
J n L Lmax *
< (22 [~ TG+ 2 fut a4 S (gt o >>)
=1

442172 LA L2 . N
_<1_g "L e >|| ZHh Vi
8v2whlmax  8V2L . .
4 (Bt BT )(f(w)—f(fr )

a2, 27 ‘
< (1= ) ot =t 552 2t - )

2w max 2 t *
+<8’Y L +87L)(f<x>f<x>),

n (0%

VvV an
where we assume that y < W 7 and y < N

Let us fix some constants x > 0 and v > 0. We now combine the above inequality with (34), (35) and (36) to obtain

2} + vEs 1 [Hth - J;Hl‘ﬂ

Bo [7@ )] 450 > B (I — v s6a%)

4 L 8 Lmax *
< ( Z!Iht V)| + = ot =P S () e >))
1
+%(1—7) ot =2 Q‘ZEM [l =[] + 2t ot

22t — !>+ 48 Lo (F(2") —m*»)

(P ) )

. ((1 H ISk - v
+u ((1 - %) =

Rearranging the last inequality, one can get

n (67

272w &
B LR ACY
i=1

1
%Et+1 [th-H _ x*‘

|+ B [F) - £a)]
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+he ZEM[WH V1i(@)|] + vBe [l — 2+

1=1

Y
9 2
+ (me b 4B L+ ¥ (87 o L)) (Fa) - £a)

(67

2yw 272w 1 & -

- A
+ <4WL +2L+ﬁ2ﬁL2+u(1—a)> ! — || (37)
n 4

Our final goal is to find x and v such that

27w+ T—l—/ﬁ(l—ﬂ):n(l—g)

n

and R
4ywL?

+2L+f£2ﬁ32+u<1—%) su(1—%).

The last inequality is equivalent to

32ywL? 16L  168L2
— +——+kK
no « «

<. (38)

From the first equality we get kK = 47:’—5’ + u%. Thus

32ywL? RGN 168L%  32ywL? L 160 (4vw N 4’yzw> 16312
scqwk” | I6L _ 1L (4w

no « « no « np v nB «
96ywL? 16L  647y%wLl?® _96ywLl® 16L 1
= +— v < +— tvs,
no «a no no o 2

T2
where we used that v < FVQZZE. It means that we can take v = % + 32L 10 ensure that (38) holds. Thus

R =

nf nf - nf + nZaf3 + nfo

e (1927@2 N 32L> V2w dyw  T68y3w?L?  12842wL
no (0% ’

Let us now substitute these values of « and v in inequality (37):

b [l = ]+ B (107 - 7607

+ H% ZEt+1 [HhEJrl — Vfi(z™) ﬂ B |:Hwt+1 . xt—HHQ}
i=1

<o (=) et o n (1) 2 znht G (R Y P

8vw Lmax 4 768~3 2L2 128 L
+<Wa+<w+ 7w 2 )wLW

¥ (192% " 3”) (872%”" + WL)) (@) = 1)

no « n (0%
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- 35 () I = (1= 5) = VA (1= 5) ot =

24vwhmax  460873w2 L2 Linax  T68v2wLLmax  153673wLL? 256722
+( 7Y a n Y + Y a n Y + Y

n n2a no na? o?

) (Fat) - Fa)

Using the assumptions on vy, we have

24~yw L ax 1

< 1A
n — 10
4608v3w? L2 Linax < 2072w L? < 1
nZo -~ na T 10’
2
768V WL Lax Pty 4vL < i
no - a 10’
1536~v3wLL? 4072wL2 1
< <.
na? - na T 10
272
2564 L < i
o2 — 10

Finally, considering v < <8 and v < 4 glves

1
%Et—kl [th—H -z

2} +Ei [f@"h) = f(2)]
+ K:% Zn:EtH [Hhﬁﬂ _ Vfi(f*)HQ} b vE |:Hwt+1 _ xtHHQ}

=1
S%(l_%) ot = 2”4 5 (1~ )iz:: = V)|

(1 - %) Hwt _ a?t||2 4 % (f(a:t) . f(x*)) .

3 272 2
Note that x — 4775) + 7687w L + 128~v“wL < 8yw

n2ap nBa — nB "
In the proof, we have the requirement that
y<mind L Vo0 OR (39)
160w Lmax  204/wL 100L" p
Let us simplify it. Using Lemma 1.4, we have
20/ wL < 20v/wv/Lax L < 50w Ly ax n 2L < max { 1OOwLmaX,4L}
Vnao Vno n o n o

Using the last inequality, we can simplify (39) to

7 < min - ; a ’ﬁ .
160w Lmax  100L° 1

We now prove a theorem for the general convex case:

Theorem F.2. Let us assume that Assumptions 1.1, 1.2 and 1.3 hold, the strong convexity parameter satisfies i = 0,
ﬁ:ﬁ_l,wo:woand

v < min i , a .
160w Lyax 100L
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Then Algorithm I guarantees a convergence rate

( Zw ) ) € e 1) - Vi) | Lol + 1) S° 10 — v )|

i=1

(40)
Proof. Under our assumptions Theorem F.1 holds. Let us bound (32):

i t+1 o x||?
2ny [Hx x

| +E @) - f@)]

e 3B [ =] o [ =]

<5 (1= B [l -] + 5E [ - £@)]

cn(1-2) L ZE[W Vi) +v (1= 2 B [’ - )]

< o B [t = o] + 3B [ - £ 4 SR |- Vi)
i=1

=2y

2} +vE [Hwt — xtuz] .

We now sum the inequality for ¢ € {0, T — 1} and obtain

3B [la” — "] + SE (1) ~ )] + 5 2B [!) - 1)

+R ZE“hT Vii(a)|] +vE [|lw” - 27|

1

Sglle—x*sz(f(xO) F@)) +m— ZHhO Vfi(a)|? + v || — 0|
1 2 1 8’yw

< gl =743 (6" — S Zuho Vi),

where we used the assumption £° = w° and the bound on x. Using nonnegativity of the terms and convexity, we then have

T
Lo a2, f@) -Vi( 167w 0
H(F5) - stet < ot ot ST 0 S
O
We now prove a theorem for the strongly convex case:
Theorem 5.1. Suppose that Assumptions 1.1, 1.2 and 1.3 hold, § = #_1, set 20 = w° and let v <
min {160#, T00L > m} . Then Algorithm I returns x© such that

—E [HmT — 2|

| +E [T - f@")]
<)

where VO := QLE [on —z*
v

|+ (F@0) — s@) + 2 (8 - V)]
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Proof. Under our assumptions Theorem F.1 holds. Using v < 175+ < -, let us bound (32):

1
m

1

o B et = P+ Bl = sa)]

+Re ZE[W“ i) + vE [l = a4
< (1 —li‘) Bl - o] + 3E[F6) - £)]
br(1-2 0 ZE[W V@[] +v (1= ) E [fuf -2t
<5 (1) e[l = ] + (1= ) BlrG) - 1)
r(1-2 0 ZE[HH V@] +v (1= ) E ot -2t

= (1-21) <217E [ll2" = 2*|”] + B [f") = f(a")] +H%§njE [Inf = Vi)
i=1

| +vE [||ut —th2]> .

Recursively applying the last inequality and using 2 = w?, one can get that

72 [l ] e el - ) *“iizE (167 = 5ita®)

7] v [ o]

< (12" (Bl 1]+ 06 - s 0k S - v

i=1

Using the nonnegativity of the terms and the bound on «, we obtain

o [la” =] + E ) - 1)

(1_%) (;,YE [on_x*H?} +(f(580)— ) SVWZHhO Vfix ) )

F.1. Communication Complexities in the General Convex Case

We now derive the communication complexities for the general convex case. From Theorem F.2, we know that EF21-P +
DIANA has the following convergence rate:

1 & 1 i} 0) _v 16 +1
f<th_;xt)-f<x><ﬂ,||x0—x|>2+f(“Tf(”” et e - VA

Let us take hY = V f;(2°) for all i € [n]. Using Assumptions 1.1 and 1.2, we have

S S R

+ w Z vai(gp) — Vfi(z*) 2

Tn? :
=1

2 L||asof:c*||2 167w (w + 1)L2 ||x079:*H2
* 2T + Tn

2 L~
T er

1 0 *
Sprx -]
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|7 | 1690w+ D)Ll |0 —
2T Tn

2
x*|

1 0 x||2
S’YiTHI 71‘” +

In the last two inequalities, we use the definition of L and Lemma 1.4. Using the bound on ~, we obtain that EF21-P +
DIANA returns an e-solution after

0 (wLmax L L N yw(w + 1)LmaxL)
ne as € ne

Lmax L L ].L
:O<w++€+(w—z)>

steps. For simplicity, we assume that the server and the workers use Top/K and Rand K compressors, respectively. Thus the
server-to-workers and the workers-to-server communication complexities equal

Lome L L 1)L
0<Kx(“n‘;+++(wﬂ))

g 9 9
dLmax  dL KL dL
e e e e
ne 3 9 9
dLmax  dL
—o (e ),
ne 3

Since Lyax < nlL, this complexity is no worse than the GD’s complexity O (?L) forany K € [1,d].

F.2. Proofs for EF21-P + DIANA with Stochastic Gradients

First, we prove the following auxiliary theorem:
Theorem F.3. Let us consider Algorithm I using the stochastic gradients v fi instead of the exact gradients V f; for all
€ [n]. Assume that Assumptions 1.1, 1.2, 1.3 and 5.2 hold, 3 € [ +1] , and

v < min n , @ ,é .
160w Linax = 100L " 1

Then Algorithm 1 guarantees that

LB [la 2] + B[fG") - £)]

2y
+ R ZE [0 = 95 |7] + w8 [t — 2]
1 1
Sail—%ﬁEMf—w*ﬂ+gEUu%—ﬂfﬂ
(1= ) LS R [t = ] v (1= ) B [t ] 22Dy
) 2/ niH ' 2 v n ’
where k < SVB‘” and v < 1922;@2 + %
PVOOf FiI'St, we bound Et+1 [Hgt _ Vf(wt)||2] ’ %Z?:l Et+1 {|‘hf+1 va H ] and Et+1 [Hwt—i-l B xt.HHQ} .

Using independence of the compressors, we have

Eei [lg" = Vs w)]’]
2

= Eip1

1 S A) H) ~ V f
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(Vfilw") = hf) = (Vfi(w") = Rf)

]
(Vfi(w') = b)) = (VHitw) = 1)

i ] e [t - s

] ZEf“ [
013 o
EZEM |:H%fi(wt

ﬂ + Bt [Hﬁfi(wt) — Vfi(w')

)

IN

@%ZHW& —nt|? +“+12Et+1 MVL — Vfi(w) 2]
< 1 v - nil? +%
< —wiuht Vi) + Zva — Vi) (w+1)o?
— 2 — g 7 i n
< %Z!Iht Y fila)|” + QZIIVfZ Vit
+1)o
+ﬁ;||wi(x - V)| +%,

where in the last three inequalities, we used (3) and (8). Using Assumption 1.2 and Lemma B.1, we obtain

mﬂﬂwfo n}

Znht VAN + 22 P BB (1t o))+

n

(w+1)o?
—

Next, we bound % Z?:l ||h§Jrl Vfi(x || to construct a Lyapunov function:
fzaHW#1Vﬂ )]
= Z Ei1 {
i=1

= %ZHhﬁ—Vfi(x
Z — Vfi(z*), Vfi(w') = hf)

”ﬁfmﬂ[
]

Z bl = Vfi(z
a9 1 . 28~ 0y " t
ijt VHE)|*+ = EZGl Vfi(2*), V fi(w') — ht)

P(Vfi(w') = ht) = V fi(a")

I+ 225 (b = ) B [P (T i)~ )] )
=1
(Vfi(w") - )

-]

(3)

+ﬂ wt1) ZEtH [vaz

2(w+1) ZEtH [|sz htH ] “wt1) ZEt+1 {Hsz — Vfi(w")

]
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<—Z||ht V()| +f2<ht Vi), V fi(w") = hi)

S [Hw ]+ o+ 1

+2y Z |V fi(w') =V fi(z")|)?

L -0 3 - Ve

B S IV -k + 5o+ 1)

leht V()| +EZI|Vf1 C VA + Bw + 1)0?

where we use the assumption 3 € { S +1} Using (8), Assumption 1.2 and Lemma B.1, we have

*ZEtH“htH V] < Zth Vfila

+ 2807 ||w' — 2*||* + 4B Lmax (f(xt) — f(@") + B (w + 1)0?

It remains to bound E; | [Hw“rl — gttl Hﬂ :

Eit {Hthrl — xt+1H2} = Ei1 [Hwt +Cp(1,t+1 _ wt) . xtJrng}

< (1= B o+~ w'|?]

= (1 - a)Eiq {th —vg" — thQ]

2 (1= a)y e [la" ~ VA@N] + (1 - ) ot — 4V F (') - '
) 2 2
< 7%Ees [[lg" = VE@O|] + (1= 5) [lof = '[* + == V@)
®)
2 B [ng Vi } (=) I =
o —Iviw! xt)!|2+ s - i)
Using Assumption 1.1 and Lemma B.1, we obtain
Ein [Hwtﬂ — | } < 7’Er1 [Hg — V)| }
g 477 t_ .t 2 ﬂ ty *
+<1—2—|— - )Hw xH—i— o (f(x) f(x))
20 — 112 4wL? 2 8wlmax . (w+1)o?
< (,ﬂznhzvmw 2 =t B () — o >>+n)
8y2L
+(1_+) I R VEO R
2 272 2,72
SIS - aw e (1o 4 A )
i=1
2

87*wlmax | 872L
+(vw el
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o 2’)/2(.0 - *
< (1= ) ot =t 555 2 ot - )

872whmax | 87°L
+(’yw L8
n (&%

) (f(ﬁt) —f(x*)) + 72(0-)4-1)0'2’

n

W
\ﬁ L \/
Theorem F.1, we do not use the structure of g'. Hence we can reuse (34) here and combine it with the above inequalities to
obtain

where we assume that v < and v < . Let us fix some constants x > 0 and v > 0. In the proof of (34) in

Ee [7@ )] + 5 ZEm (I8 = 9 ]+ wBaga [t = a1

2
=1 (2“2\!% VAN + 2 ot a4 SLee <f<xt>—f<m*>>+(“’+l)a>

n n
+i(17M) |* — 2
2y

1 *
2 %EHI [thﬂ —r

] +2L |ut -2t
K <(1_B);2Hht Vfi(z H —i—QBL2 ||w —xt||2—|—45Lmax (f(:ct) —f(m*)) —1—52(0.;—1—1)02)
i=1
@ ¢ 2 8v2whmax  872L ¢ . 7 (w + 1)o?
v (1=9) v’ - +( + )(f(m%f(x)ﬂi -

n (0% n
Rearranging the last inequality, one can get

272w " "
- ;th—vm)

1

g Ben [l = [7] + Bt [ = f ()]

1 n
+ Hﬁ ;Et+l [|‘h§+1 — Vfi(z¥) 2} 4B {Hwt-i-l _ mt'HHz]

LY
<55 (1= 5) I =l

2l
87w Limax 872whmax | 87°L
+(”“’na+m4mm+u( et BTE)) (1) - 1)
2w 2 LS
+< ==tk >n§_:||h V()|
~ R
(4%01; +2L 4 k2BL* + v (1 — Z)) ||wt — xtHQ
2 2 2
+’Y(W+1)U +ﬁ52(w+1)02+y7 (Wzl)a
Using the same reasoning as in the proof of Theorem F.1, we have
1
oyt ([l =] + B (£ = £)]
LD ZEtH [Hht-‘rl Vi(x H } + VB [Hwtﬂ _zt+1||2}
1 TH )2 TH 2
§5(1—7) " — " ||* + & (1_7) Zuht Vfi(a (1_7) [t — 2|
1 1 1)o?
L (1) = pa) + TEEDT g 1o 4, TN (“’; )
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T2
for some x < 3% and p < 1929@L” | 32L Ty
— nfg — no «

1
%EHI [thﬂ -

|+ Bea [F@) - £a)]

1 n
+ k= B [ - Vi)

=1
;@Lﬂm a(1-12) 2 ZMtVﬂ

2] + vEi [Hth — a:t“’ﬂ

4w (1= 2) fut — o

L) — fa) + LD
+8vﬁw(w+l)o 192+3w(w + 1)L202 3272(w+1)L02
n n?a no
! 1 - t t
S%(l—%)th_m 2+,€(1_7)£§ |t = Vi) +v (1= ) fu -2t
1 t * 12y(w + 1)0?
43 () = gy + 2T

where used the bounds on v and 3.

In the proof, we have the requirement that

v < min n na a é
N 160w Limax " 20,/wL’ 100L7 p |

As in the proof of Theorem F.1, using Lemma 1.4, we can simplify it to

7 < min - ; a ,é .
160w Limax* 100L7 p

O

Theorem 5.3. Let us consider Algorithm 1 using stochastic gradients v fi instead of exact gradients V f; for all i € [n]. Let

Assumptions 1.1, 1.2, 1.3 and 5.2 hold, B = %H’ 20 = w®, and v < min { 160wanx s TOOL (wjl)u} . Then Algorithm 1

%E [HmT z* 2} +E[f(=") = f(=")]

T 2
< (1_w) V0+24(w+1)0
2 un

where VO := %E [on - x*HQ} + (f(2%) = f(z*) + Swnfﬂ) S ||nd =V fi(x )|| )

returns T such that

Proof. Using v < 1557 < % we can bound (41) as follows:
1 *|[2 *
%Emﬁ“—w |+ B[ - 1)
bd SB[ - ] + v [t - o]
=1

<5 (-5l -

|+ 3B @) - 7))
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(177> ZEMht Vfi(z || } (17%> [H t|| ] M
<5y (1) Bl
ex(1-5) L 3w - Ve

“(-) (el

129(w + 1)o?
N ( )

I+ (- Bl - 1)
I (1= ] 2R

| +vE [Hwt—xt’ﬂ)

[ 4B [7) - £@) + 5 SB[||p - Vi)

=1

n
Recursively applying the last inequality and using the assumption 2° = w°, one can get that
1 T |2 T T T T2
aE[Hx — P+ E [T - 1)) + m ;E[Hh = VE)|’] +vE [|lo” - 2T|]
T (1 2 . 1« o2
<(1-%) (ME [[l2° = &*|*] + (£°) = £(a")) +HE;||hg — V(") >
T-1 ,
YN 12y (w + 1)o?
2 (1-g) =R
T (1 2 . 1« o2
<(1-%) (ME [[2° = &*|*] + (£°) = £(a*)) +,~;E;|mg — V(") >
+24(w+1)02
ni

<(1-7) (;E (120 = 7] + (F) = $) 8”“’Znh‘) Vi )
24(w + 1)o?

O

Theorem F.4. Let us consider Algorithm 1 using stochastic gradients v fi instead of the exact gradients ¥ f; for all i € [n).

Let us assume that Assumptions 1.1, 1.2, 1.3 and 5.2 hold, the strong convexity parameter satisfies . = 0, 8 =

29 =wP, and

1
w+1’

v < min n , a .
160w Lyax = 100L

Then Algorithm 1 guarantees the following convergence rate:

S O R

16 +1) & . 24y (w + 1)o7
+%Znhg_vﬂ(z>”2+¥.

i=1

2, 160 - Vie)
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Proof. Let us bound (41):

8 [+ =] + B ) - 167

4t ZE {Hhﬁl V iz H } +vE [Hwt+1 _ xt+1||2]
<3 (1- %) B[l -] + 3E 176" - 56)]

e (1= 5) 53 m [I E] o (1= ) B o -]+ 2
]

< 5-B[|ls
2y

+ vE [Hwt

]+ B — S + mn SB[ - Vi)

ol } 12y w+1)

Summing the inequality for ¢ € {0,...,T — 1} gives

3B [le7 — "] + SE[1T) - £a)] + 5 DB [f) - 1]

+ R ZE“hT Vii(a)|] +vE [l - 27|]

5 (1) = 1) + ry S0 = Vi)

n

1 0 e
<o o=+

+V||w0 —

2 1 87w
+5 (fa") = f( Zuho Vfie

2 12T7(w +1)o?

b

< oo ot

n

where we used the fact that x° = w° and the bound on «. Using nonnegativity of the terms and convexity, we have

S B

167yw
Twﬁzwm Vi

2, 1) —Tvm*)

2 247(w +1)0?
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G. Proofs for EF21-P + DCGD in the Convex Case

As mentioned before, EF21-P + DCGD arises a special case of EF21-P + DIANA if we do not attempt to learn any local

gradient shifts 2! and instead set them to 0 throughout. This can be achieved by setting 3 = 0.

Algorithm 2 EF21-P + DCGD

1: Parameters: learning rate y > 0; initial iterate 2° € R? (stored on the server and the workers); initial iterate shift w® = 2° € R?

(stored on the server and the workers)
2: fort=0,1,...,7 —1do

3 for: =1,...,nin parallel do

4 = CP (sz (wt)) Compress gradient via L’,/’) € U(w)
5: Send message g to the server

6: end for

7 gt =1 Zn 1 gl Compute gradient estimator
8 $t+1 = -T - Take gradient-type step
9: pH = CP ( 1 wt) Compress shifted model on the server via C P €B(w)

10:  w'tt =w! + pttt
11:  Broadcast p'*! to all workers

12:  fori=1,...,n in parallel do
13: wit! = w! +pt+1

14:  end for

15: end for

Update model shift

Update model shift

The proofs in this section almost repeat the proofs from Section F.

Theorem G.1. Let us assume that Assumptions 1.1, 1.2 and 1.3 hold and choose

v < min " , @ .
160w Loy 100L

Then Algorithm 2 guarantees that

%E [thﬂ _ a:*||2} I E [f(xtJrl) _ f(x*)] +uE [Hthrl _ xt+1|’2}
1

<o (- 2B [t -] + SB[ — 7))
o (=) B [t ] + 72 (jl > ||Vfi<x*>||2> ,

32vwLl? | 16L
no +

where v < o

(42)

Proof. Note that EF21-P + DCGD is EF21-P + DIANA with 8 = 0 and h} = 0 for all 7 € [n] and ¢ > 0. Up to (37), we can

reuse the proof of Theorem F.1 and obtain

1
%EH—I [th+1 - ﬂ +Eep [f(2'7) — f(a)]
4t ZEt“ “|ht+1 Vfi(x H } + VB [Hwtﬂ 7xt+1”2}
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Taking k =0 and v = , we obtain
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Considering v < £-, we obtain
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Taking the full expectation, we obtain
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It remains to use (36) with $ = 0 to finish the proof of the theorem.

In the proof, we have the requirement that
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As in the proof of Theorem F.1, using Lemma 1.4, we can simplify it to
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Theorem G.2. Let us assume that Assumptions 1.1, 1.2 and 1.3 hold, the strong convexity parameter satisfies p = 0,
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Proof. Let us bound (42):
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Theorem G.3. Let us assume that Assumptions 1.1, 1.2 and 1.3 hold, x” = w", and
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Recursively applying the last inequality and using 2° = w°, one obtains
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