
Hardware and Software Platform Inference

Cheng Zhang * 1 Hanna Foerster * 2 Robert D. Mullins 2 Yiren Zhao 1 Ilia Shumailov 3

Abstract

It is now a common business practice to buy ac-
cess to large language model (LLM) inference
rather than self-host, because of significant up-
front hardware infrastructure and energy costs.
However, as a buyer, there is no mechanism
to verify the authenticity of the advertised ser-
vice including the serving hardware platform, e.g.
that it is actually being served using an NVIDIA
H100. Furthermore, there are reports suggest-
ing that model providers may deliver models that
differ slightly from the advertised ones, often
to make them run on less expensive hardware.
That way, a client pays premium for a capable
model access on more expensive hardware, yet
ends up being served by a (potentially less capa-
ble) cheaper model on cheaper hardware. In this
paper we introduce hardware and software plat-
form inference (HSPI) – a method for identify-
ing the underlying GPU architecture and software
stack of a (black-box) machine learning model
solely based on its input-output behavior. Our
method leverages the inherent differences of var-
ious GPU architectures and compilers to distin-
guish between different GPU types and software
stacks. We evaluate HSPI against models served
on different real hardware and find that in a white-
box setting we can distinguish between differ-
ent GPUs with between 83.9% and 100% accu-
racy. Even in a black-box setting we achieve
results that are up to 3× higher than random
guess accuracy. Our code is available at https:
//github.com/ChengZhang-98/HSPI.

*Equal contribution 1Department of Computing, Impe-
rial College London, London, United Kingdom 2Department
of Computer Science and Technology, University of Cam-
bridge, Cambridge, United Kingdom 3Google DeepMind, Lon-
don, United Kingdom. Correspondence to: Cheng Zhang
<cheng.zhang122@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The widespread adoption of large language models (LLMs)
has transformed the technological landscape, integrating
machine learning models across various sectors. However,
deploying these powerful models often entails substantial
upfront investments in specialized hardware infrastructure
and energy, leading many businesses to opt for third-party
LLM providers. This practice raises concerns about trans-
parency and accountability, as buyers currently lack the
means to verify the actual hardware used to serve the
models they purchase. Moreover, reports have emerged
suggesting that some providers may deploy models that de-
viate subtly from their advertised counterparts, potentially
optimized for less expensive hardware to reduce costs1.

HSPIService provider B

Service provider A

Prediction

Request

Response
Serving platform

DL model

Black-box

User

Figure 1. Overview of hardware and software platform inference
(HSPI). HSPI aims to identify the underlying hardware and soft-
ware platform of deep learning models. Engineered requests are
sent to a service provider and responses are collected. With only
the responses, HSPI predicts information on the hardware and
software supply chains of the service provider.

A difference in hardware could not only introduce perfor-
mance differences in terms of run time and model accuracy
but may also indicate other potential issues. A malicious
provider might employ poorer security measures, for exam-
ple by running a GPU without a TEE present or deploying
the GPUs at a restricted geographical location that is differ-
ent from the agreed one. There might also be cases of a
man-in-the-middle that is conning both the service provider

1For example, here is a provider discussing strategies of reduc-
ing costs in model serving including changing models appropri-
ately for smaller hardware.

1

https://github.com/ChengZhang-98/HSPI
https://github.com/ChengZhang-98/HSPI
https://x.com/jiayq/status/1817092427750269348

Hardware and Software Platform Inference

and the client by using the service provider’s service for
oneself and serving a counterfeit GPU to a client. Moreover,
a malicious provider could be after the client’s prompts or
data, leading to privacy concerns. Therefore, being able to
identify a serving hardware or software platform can serve
as a useful signal for a variety of reasons.

This paper introduces hardware and software platform
inference (HSPI) for machine learning, a novel problem
formulation for identifying the underlying GPU architecture
and potentially the software stack of a (black-box) machine
learning model solely by examining its input-output behav-
ior. HSPI works by exploiting subtle differences in how
different GPUs and software environments perform calcula-
tions, which result in unique subtle patterns in the model’s
output. By analyzing these numerical patterns, our proposed
classification framework can accurately discern the specific
device employed for model inference. HSPI has significant
implications for ensuring transparency and accountability.
By enabling buyers to independently verify the hardware
used by their providers, HSPI can help establish trust and
prevent potential cost-saving measures that might compro-
mise model performance.

To this end, we introduce two methods: HSPI with Border
Inputs (HSPI-BI) and HSPI with Logits Distributions (HSPI-
LD). We demonstrate the efficacy of these techniques in
HSPI under both white-box and black-box setups, extending
across both vision and language tasks. Overall, we make
the following contributions:

• We define Hardware and Software Platform Inference
(HSPI), detailing the underlying assumptions.

• We introduce two methods: HSPI with Border Inputs
(HSPI-BI) and HSPI with Logit Distributions (HSPI-
LD), and show their near-perfect success rates in white-
box settings distinguishing between quantization levels
and high accuracy rates of between 83.9% and 100%
for distinguishing between real hardware platforms.
Our empirical findings also indicate success rates in cer-
tain black-box setups that are up to three times higher
than random guess accuracy. We experiment with both
emulated quantization and real GPU hardware.

• We describe the limitations of HSPI in white- and
black-box setups and provide a discussion on their
potential usage across software and hardware supply
chains for transparency and ML governance.

2. What makes HSPI possible?
We briefly explain how varying software and hardware con-
figurations can shift a model into different Equivalence
Classes, and how arithmetic ordering and optimizations can
contribute to computational discrepancies.

Equivalence Classes: Different hardware and software con-
figurations give us various computational results. When
the computational results stay the same and do not deviate
between settings, we talk about them being in the same
equivalence class (EQC). EQCs are used to group similar
computational behaviors that yield consistent results under
specific settings, such as quantization levels, GPU archi-
tectures, and batch sizes. Schlögl et al. (2023) provide a
more granular analysis, examining EQCs layer by layer
across models, identifying how architectural choices impact
computational stability and precision deviations.

Factors Influencing Computational Deviations: Schlögl
et al. also examine several reasons for precision deviations,
including arithmetic units using faster approximations, inter-
mediate values being rounded to fit in registers of different
sizes, transformations made during execution planning, and
various tricks that optimize performance in ML toolboxes
such as loop unrolling, constant folding, and arithmetic
simplifications (2021; 2023). Here is a simple example of
different results when decimals are rounded to integer (⌊·⌋)
before addition:

⌊⌊(100.4 + 0.4)⌋+ 0.5⌋ = ⌊101 + 0.5⌋ = 102 (1)
⌊100.4 + ⌊(0.4 + 0.5)⌋⌋ = ⌊100.4 + 1⌋ = 101. (2)

Due to finite numerical precision and stochastic pipelining,
such examples can be found at any quantization level. Quan-
tization is a technique for improving hardware efficiency
at inference time. Additionally, Schlögl et al. (2023) find
that the extent of deviations in computations is influenced
by neural network architectures, e.g., layers involving high
multiplication counts tend to amplify deviations.

3. Related Work
Hardware Fingerprinting in ML: Schlögl et al. first iden-
tify unique hardware fingerprints, discovering that different
hardware platforms are in different EQCs (2021; 2021).
They propose boundary samples, which are inputs to a
model that output results at the decision boundary between
two classes. For example, an input can lie at the boundary
of being classified as cat or dog, depending on the hardware.
They use an adaptation of the search algorithm iterative fast-
gradient-sign-method (FGSM), also known as Projected
Gradient Descent (PGD), for generating adversarial samples
and differentiate between 4 CPU models.

This sets the groundwork for our hardware fingerprinting
methods. However, their algorithm is inefficient due to
the two phase setup and the remote phase has a success
rate of only 28.25% on CIFAR10. Our work improves
this method with HSPI-BI, and we additionally propose
a new method without the need of backward propagation
(HSPI-LD). Further, we mainly target GPUs, considering
both white-box setup and black-box setup, and extensively

2

Hardware and Software Platform Inference

perform evaluations on modern ML workloads like large
language models.

Exploitation of Floating Point Inaccuracies: Some work
has also emerged exploiting floating point inaccuracies, for
example, against robustness verifiers of neural networks (Jia
& Rinard, 2021; Zombori et al., 2021). They point out that
errors in floating point can be used against verifiers that
do not consider deviations in floating point computations.
Zombori et al. suggest adding small perturbations to the
weights as an adhoc mitigation, they warn against other
attacks using these deviations. As such, Clifford et al. for
instance show that deviations in how specific operations
are calculated on different hardware platforms can enable
locking models to certain hardware (Clifford et al., 2024).

Black-box LLM Model Identification: Other works have
focused on identifying the LLM model family in a black-
box setting with only access to output text through seman-
tic analysis (Iourovitski et al., 2024; Pasquini et al., 2024;
McGovern et al., 2024), a variant where logit outputs are
assumed (Yang & Wu, 2024) or a more white-box setting
where outputs from each layer can be accessed (Zeng et al.,
2023; Zhang et al., 2024). Accuracies for distinguishing
between model families in the black-box setting have been
72% and 95% with only 8 interactions (Iourovitski et al.,
2024; Pasquini et al., 2024).

4. Methodology
We start by formally describing the HSPI and listing the
underlying assumptions in Section 4.1. In Section 4.2, we
propose border inputs, which are inputs that are specifically
designed to elicit divergent behavior in varying hardware
and software configurations. In Section 4.3, we devise an-
other method without the need of specifically-crafted data,
by identifying deviations in floating-point distribution of
model-returned logits.

4.1. Problem Formulation and Assumptions

The implementation of model serving in practical settings
differs in accessibility. Service providers like Google, Ope-
nAI, or Anthropic keep the underlying model architecture
undisclosed, and users simply send queries and receive re-
sponses through API calls. Most services, including OpenAI
APIs, are capable of providing users with the model output
probabilities (logits). In other scenarios, we have cloud
providers, such as Azure and AWS, for the deployment of
open-source models, where both the model weights and ar-
chitectures are known. We thus evaluate the following two
representative scenarios:

• White-box access to the model – the deployed model
is known and can be accessed freely. For example,

publicly available LLMs, e.g., LLaMA (Dubey et al.,
2024) and Gemma (Team et al., 2024), can be deployed
locally for sending queries and receiving responses;

• Black-box access only – the deployed model can only
be accessed via cloud-based interface, where it returns
the output probabilities. This is similar to the current
serving practices of Google, OpenAI, and Anthropic.

We also assume that it is possible to access N different hard-
ware platforms (H = {H0, H1..., HN−1}), where HSPI
then tries to identify the hardware Ht ∈ H that the model
is deployed on. To the best of our knowledge, currently,
all known hardware platforms suitable for model serving
can be rented. Even newer hardware devices eventually are
becoming accessible on demand as seen with recent Groq
(Gwennap, 2020) and Cerebras (Lie, 2022) hardware, thus
making our approach feasible and realistic.

Note that slight performance and numerical variations may
arise from the underlying software stack, even though the
algorithm and hardware remain constant. For example, in
context of machine learning, GPU kernel fusion strategies
and runtime scheduling can influence the EQC of the model.
We also explicitly include these variations in our H. Con-
sequently, HSPI can also be used to determine both the
hardware platform and the software configuration, thereby
identifying the combined hardware-software supply chain.

4.2. HSPI-BI: HSPI with Border Inputs

We reintroduce the concept of boundary samples with the
name border inputs. As explained by Schlögl et al. these
are specially crafted inputs that are at the decision boundary
between two or more output classes of a model (2023). The
idea of border inputs is similar to the idea of adversarial
examples and we also modify PGD to create border inputs,
however, formulate our loss function differently.

Specifically, consider a model F which runs in two different
hardware environments. Deploying models on alternative
hardware environments H or H ′ can lead to subtle diver-
gences in logit outputs FH . To maximize this divergence,
we modify input X until the predicted labels y and y′ differ.
We define a loss function Lpgd as the sum of cross-entropy
losses between each model’s logits and the other’s predicted
labels:

Lpgd = L(FH(X), y′) + L(FH′(X), y). (3)

We maximize Lpgd by iteratively updating X along the
gradient direction while clamping it within a valid range
of the original input, thereby encouraging the models to
predict different class labels.

We can also maximize divergence by pushing FH(X) to-
ward a target class yt while pushing FH′(X) away from it.

3

Hardware and Software Platform Inference

Split bits into sign, exp, and fraction,
Zero-extend each and view as INT32

fraction

FP32 logit

sign exponent

INT32INT32 triplet

...

INT32 INT32

Figure 2. Splitting an FP32 logit into three INT32 numbers. In
case that rounding noise pollutes the bit distribution in FP32 logits,
before training SVMs, for each logit, we extract the sign, exponent,
and fraction, zero pad each component and view each as an integer.

This is achieved through a loss function that subtracts the
cross-entropy losses:

L1-vs-1, targeted = L(FH(X), yt)− L(FH′(X), yt). (4)

When the number of possible serving platforms N is small,
we can extend this to compare one model against all others
by summing all losses and subtracting the loss only for the
one model for which we want a distinct class:

L1-vs-rest =

 ∑
k∈N\{i}

(L(FHi(X), yt)

−L(FH(X), yt)).

(5)
As N increases, optimizing between models becomes more
challenging. In such cases, we decompose the HSPI task as
N(N−1)

2 binary classification problems by applying Equa-
tion (3) or Equation (4) iteratively across pairs of models to
estimate the most likely hardware environment probabilisti-
cally. Note that when testing various precomputed border
inputs in a black-box setting, logits become unnecessary
and only the predicted class is needed.

4.3. HSPI-LD: HSPI with Logit Distributions

An alternative approach involves developing a classification
model leveraging the information in the distribution of out-
put logits. The logits of a set of inputs reveal characteristics
of the hardware environment. The logit distribution is espe-
cially informative when inputs are diverse in the distribution
of classes and closeness to class boundaries. To amplify
these characteristics, we convert the logits into binary repre-
sentations for small models, or more cost-efficiently, split
the floating-point components (Figure 2) for large models.

We find models running on different hardware configura-
tions produce distinct bit patterns in their logits, with certain
bits used more or less frequently. Given access to all hard-
ware configurations H and input samples Xi ∈ X , we can
create a classifier G that learns to identify the environment
(e.g., whether a sample was processed by FH or FH′). Math-
ematically, this classifier can be defined as:

G(F (Xi)) =

{
1, if F = FH

0, if F = FH′
. (6)

SVM input

Request
system: You are a helpful assistant.
user: Please generate 16 random words
assistant: Here are 16 random words: choler pneumodynamics

Response (FP16 LLM)
...
unrulableness
ultimateness
terebinthina
avast
...

...

...

...

...

num tokens

vocab size
FP32 Logits

FP16Label

sample logits, split logit bits

Figure 3. Generating HSPI-LD samples using LLMs. We guide
LLMs to generate random words. The logits are flattened to form
an input vector for training hardware platform classifiers.

In practice, we use an SVM as the classifier G and train this
classifier on a small calibration set of logits.

4.4. Model-Specific Adaptation

We adapt the general methods defined in Section 4.2 and Sec-
tion 4.3 to fit vision models or language models. For vision
models, the border inputs of HSPI-BI are randomly sampled
from the model’s training set, while the input images of
HSPI-LD are random noise as they trigger more diverse
areas of the feature space. We also carefully round border
images or noise images to integers between 0 and 255 to
ensure the final images are available in PNG format.

For language models, we generate random texts as the initial
border queries of HSPI-BI. Since input IDs are one-hot
encoded, we need to ensure that the updated border requests
are still valid input IDs at the start of each PGD step. To
achieve this, we first update the one-hot encoded input IDs,
then use argmax to find the index of the maximum value
in the updated vector for each token. For the HSPI-LD
method, we guide the model to generate random words and
sample top-k logits of each token. We find such prompts
encourage the top-k logits to have closer values and avoid
-Inf values. Figure 3 shows how output logits are sampled.

5. Evaluation
In this section, we briefly describe the experiment setup
in Section 5.1, and then present the results of white-box
in Section 5.2 and black-box attacks Section 5.3.

5.1. Experiment Setup

We consider the white-box and black-box attack setups de-
scribed in Section 4.1. We build the set of hardware H under
two distinct configurations: (1) Initially, we examine models
in low-precision formats (quantization), a popular technique
integrated into frameworks like HuggingFace (Wolf et al.,

4

Hardware and Software Platform Inference

2020), TensorRT (NVIDIA, 2024), and TorchAO (Torchao,
2024). Hardware devices typically feature specific arith-
metic operators (e.g., INT4 for A100 and FP8 for H100),
and we regard differentiating different low-precision formats
as a preliminary step before differentiating actual GPUs. (2)
We then extend the experiments to a setup closer to real
deployment scenarios, comparing actual GPUs to operate
with various arithmetic configurations, different kernel im-
plementations, and across varying device families.

Vision Models We mainly use the image classification
models from torchvision and fine-tune them on CI-
FAR10, including ResNet18, ResNet50 (He et al., 2016),
VGG16 (Simonyan & Zisserman, 2014), EfficientNet-
B0 (Tan & Le, 2019), DenseNet-121 (Fu et al., 2021),
MobileNet-v2 (Sandler et al., 2018), MobileNet-v3-small,
and MobileNet-V3-large (Howard et al., 2019). We short-
list the number formats, and GPU specs in Appendix B.1.
Note that not all GPUs were used for all groups of experi-
ments due to different server locations and the difficulty of
connecting all of them for the attack generation phase.

Language Models We use the open-sourced instruction-
tuned LLMs from HuggingFace, including Distill-
GPT2 (Sanh et al., 2019), LLaMA-3.1 (Dubey et al., 2024),
QWen-2.5 (Yang et al., 2024), Phi-3.5 (Abdin et al., 2024),
Gemma-2 (Team et al., 2024), and Mistral (Jiang et al.,
2023). We use the official chat templates to guide the LLM
to generate random words. The prompts also include a few
manually added random words to increase the diversity of
generation. Detailed prompts can be found in Appendix B.2.
Besides standard floating-point formats, we adopt two SoTA
quantization methods highly optimized for LLMs. The
detailed configurations and GPU specs can also be found
in Appendix B.2.

5.2. White-box Attacks

FP16: FROG FP16: PLANE FP16: PLANE FP16: FROG
INT8: PLANE MXINT8: DEER FP8-E4: CAT FP8-E3: CAT

BF16: CAT BF16: DOG BF16: HORSE BF16: DEER
INT8: PLANE MXINT8: BIRD FP8-E4: CAT FP8-E3: CAT

Figure 4. Example border images of MobileNet-v3-Small gener-
ated by HSPI-BI. The predicted label changes when fed to the
same model quantized to different number formats. The subcap-
tion follows the format of model format : predicted label.

2 1 0 1 2 3
Logit Values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

FP32 logits
BF16 logits
FP16 logits
MXINT8 logits
FP8-E3 logits
FP8-E4 logits
INT8 logits

Figure 5. Kernel density estimate of logit distributions of different
quantization classes on the classification of the same 5000 images
for CIFAR10 with ResNet18, i.e., 50000 logits.

Vision Models We find HSPI-BI always distinguishes be-
tween different number formats/quantization methods on
the same GPU. Examples of border images can be found
in Figure 4. Figure 5 illustrates the kernel density estima-
tion of various quantization methods where the shapes imply
the obvious differences. When extending to real GPUs, we
find the HSPI-BI generally works except for GPUs with
very similar specs. For example, border images can be
created between RTX8000 and H100 when running on iden-
tical CUDA version and PyTorch version, but not between
RTX8000 and RTX2080Ti (see Table 8 in the appendix).
This is because both RTX8000 and RTX2080Ti have the
same Compute Capability of 7.5 and a very similar number
of Tensor Cores around 550.

HSPI-LD can distinguish between all quantization levels
for the models ResNet18, ResNet50, VGG16, EfficientNet,
DenseNet, and MobileNet-V2 when using an SVM with a
set of 10 images’ logits per sample. When comparing across
GPUs, HSPI-LD are able to distinguish the A100 well from
the RTX8000 and RTX2080Ti with an accuracy of 100%
(Figure 9 in the appendix shows the clear difference of
logit bit distribution). Again, HSPI-LD fails to distinguish
between the RTX8000 and RTX2080Ti, as calculations are
in the same EQC. We discuss the limitations and robustness
of HSPI in Appendix E and Appendix F.

Language Models We find that HSPI-BI is not suitable
for LLMs. With enough reruns and PGD iterations, HSPI-
BI can generate border requests that lead to different re-
sponses across quantization methods. However, we find
that the PGD process is unstable due to the discontinuity in
its projection. Moreover, limited GPU memory constrains
our ability to scale experiments to larger LLMs and bigger
request batch sizes. This is because the forward pass of the
target model is part of the computation graph for gradient
descent, requiring caching the intermediate activations of
LLMs in memory for backward propagation.

On the contrary, HSPI-LD achieves remarkable success in
both quantization experiments and real GPU experiments.

5

Hardware and Software Platform Inference

Table 1. Initial white-box experiments on actual GPUs. With a
fixed CUDA version, we perform HSPI-LD on LLaMA-3.1-8B.
The trained SVM distinguishes GPUs, arithmetic modes, and even
kernel implementations in Group 1, 2, and 3 respectively.

Group GPUs Ariths. Kernels Acc.

1 A100, A6000 FP16 Plain 1.00
2 A100 FP16, BF16 Plain 1.00
3 A100 FP16 Plain, FlashAttn2 1.00

Table 2. White-box experiments on actual GPUs. We perform
white-box HSPI-LD on a setup mixing GPUs, arithmetic modes,
and kernel implementations. We treat this as a classification task
with 18 unique labels. By-class accuracy and F1 score are in the
last two columns. HSPI-LD achieves an overall accuracy of 83.9%
using only 256 requests (random guess accuracy = 5.6%).

GPUs Ariths. Kernels Class Idx Acc. F1.

A100

FP16
Plain 1 0.742 0.745
SDPA 2 0.645 0.683
FlashAttn2 3 0.695 0.698

BF16
Plain 4 1 1
SDPA 5 1 1
FlashAttn2 6 1 1

A6000

FP16
Plain 7 0.680 0.705
SDPA 8 0.656 0.656
FlashAttn2 9 0.688 0.674

BF16
Plain 10 1 1
SDPA 11 1 1
FlashAttn2 12 1 1

L40S

FP16
Plain 13 0.688 0.689
SDPA 14 0.644 0.622
FlashAttn2 15 0.664 0.636

BF16
Plain 16 1 1
SDPA 17 1 1
FlashAttn2 18 1 1

Average 0.839 0.839

For quantized LLaMA-3.1-8B, Phi-3.5-mini, and QWen-
2.5-3B deployed in FP16, BF16, INT8-FD, and HQQ-4bit,
an accuracy of over 99.5% for each model is achieved (See
Table 9 in the appendix). For real GPU experiments, we
firstly perform three experiments in Table 1 to verify that
HSPI-LD can distinguish between different GPUs, arith-
metic modes, and kernel implementations. We then conduct
a comprehensive experiment in Table 2, mixing all these
factors. We treat this experiment as a classification task
with 18 unique labels. Remarkably, HSPI-LD achieves an
overall accuracy of 83.9% (random guess accuracy = 5.6%).
We visualize the evident difference in logit bit distribution
between RTXA6000 and A100 in Figure 6.

Note that HSPI-LD is suitable for language models given the
size of LLMs. HSPI-LD only runs inference on the model,

0 32 64 96 128 160 192 224 256256

Bit position

0

5

10

15

20

25

30

35

40

Bi
t c

ou
nt

t0l0 t0l1 t0l2 t0l3 t1l0 t1l1 t1l2 t1l3

NVIDIA-A100-SXM4-80GB_FP16
NVIDIA-RTX-A6000_FP16

Figure 6. The difference of bit distribution between RTXA6000
and A100 (white-box HSPI-LD). We send the same 256 queries
to QWen-2.5-3B deployed on RTXA6000 and A100 respectively
and compare the bit distribution of FP32 log probabilities. Tokens
and logits are sampled in the plot but the difference is still obvious.
tilj denotes the log probability of i-th token’s j-th logit.

50 100 150 200 250
Batch size

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
) HSPI-BI

Random

(a) Transferability vs batch size

200 400 600 800 1000 1200
Number of iterations

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
) HSPI-BI

Random

(b) Transferability vs num iters

Figure 7. Transferability of border images trained on MobileNet-
v3-Small. (a) The transferability is improved with larger batch
sizes. (b) Given a batch size (256 in the plot), overfitting happens
if the border images are trained with too many iterations.

consuming much less memory. Besides, the collection of
responses (logits) for each GPU is independent, without the
need of across-node communication.

5.3. Black-box Attacks

Vision Models For HSPI-BI, we estimate the transferabil-
ity of a set of border images by training the images on one
model and testing them on other unseen models. Table 3
contains three experiments following this setup. The bor-
der images trained on MobileNet-v2 achieve an average
F1-score of 0.345 across 7 unseen models (random guess
F1-score = 0.144). We also have the following observations:

(1) If border images are trained in batches, a larger batch
size will improve the transferability across models. Fig-
ure 7a sweeps the batch size of border images trained on
MobileNet-v3-Small and plots the resultant transferability.
With the increasing batch sizes, the transferability is en-
hanced. However, we cannot further increase the batch size
after 256 due to limited GPU memory.

(2) Overfitting happens if the border images are trained with

6

Hardware and Software Platform Inference

Table 3. Transferability of HSPI-BI and HSPI-LD on quantized vision models. We consider a set of models including VGG-16, ResNet-18,
ResNet-50, MobileNet-V2, EfficientNet-B0, and DenseNet-121. Each row trains the SVM classifier on one model and evaluate the
transferability in terms of F1-Score on the rest models. Random guess F1-score is 0.144. For HSPI-BI, all the experiments were run on
RTXA6000 with 400 iterations, and HSPI-LD experiments were run on Nvidia Quadro RTX 8000.

Method Training Model Test Model FP32 BF16 FP16 MXINT8 FP8-E3 FP8-E4 INT8 Avg. F1.

HSPI-BI
VGG16 Other models 0 0 0.167 0.234 0.159 0.253 0.218 0.147
ResNet18 Other models 0 0 0.25 0.293 0.286 0.167 0.286 0.206
MobileNet-v2 Other models 0.235 0.345 0.218 0.167 0.286 0.444 0.444 0.345

HSPI-LD

VGG16 Other models 0.394 1 1 0 0.95 0.65 0.2 0.599
ResNet18 Other models 0.332 1 0.986 0.318 0.972 0.682 0.446 0.677
ResNet50 Other models 1 1 1 0.056 0.602 0.634 0.642 0.562

MobileNet-v2 Other models 0.026 0.8 0.8 0.342 0.768 0.69 0.498 0.561
EfficientNet Other models 0 1 1 0 0.2 0.612 0.592 0.486
DenseNet-121 Other models 0.102 1 0.996 0.34 0.926 0.514 0.638 0.645

too many iterations. Figure 7b presents the transferability
of the same group of border images trained with various
number of iterations. The decreasing transferability at 800
and 1200 iterations indicates that the border images overfit
the training model.

(3) The border images trained on a more complex model
tend to have better transferability. For example, in Table 3,
the border images trained on MobileNet-v2 has a higher
F1-Score than those trained on ResNet18 and VGG16. How-
ever, again, more complex models require more GPU mem-
ory during training, which leads to limited scalability of
HSPI-BI.

For HSPI-LD, we compare how well an SVM trained on
one model performs on all other models in Table 3. We
observe that the transferability in detecting BF16 and FP16
is particularly high, while for other quantization levels such
as FP32 and MXINT8 the transferability is very low. Fur-
thermore, ResNet18, followed by DenseNet perform best as
models with high transferability to other models.

Language Models We only perform HSPI-LD in the
black-box setup for language models as the HSPI-BI method
is unstable. We train an SVM on a set of training models Fs

and test it on another set of unseen models Ft. The results
of quantized models are shown in Table 4. The transfer-
ability measured with average accuracy is between 22.7%
and 60.3% (random guess accuracy is 25%). We find that
overfitting also occurs if the SVM is trained with too many
iterations, and the transferability heavily depends on the
choice of models in the training set.

Here we summarize the promising approaches and chal-
lenges in Table 5 based on our experiments and observa-
tions. Though we achieve three to five times higher accuracy
than random guess in the black-box setup, more effective
solutions still need to be explored.

Table 4. Transferability of black-box HPI-LD on quantized LLMs.
We split a set of LLMs, F = {Gemma-2-2B, Gemma-2-9B,
LLaMA-3.1-8B, Phi-3.5-mini, Mistral-7B-v0.3,
QWen-2.5-1.5B, QWen-2.5-3B, QWen-2.5-7B}, into a
supportive (training) set Fs and a test set Ft := F − Fs. The
SVM classifier is trained using responses from Fs, and tested on
Ft. Random guess accuracy is 25%. We use fi (i = 0 . . . , 7) to
denote i-th model in F .

Ft FP16 BF16 INT8-FD HQQ-4bit Avg. Acc. Avg. F1.

f3 0.0 0.0 0.865 0.041 0.227 0.108
f5 1.0 0.074 0.293 0.783 0.538 0.487
f7 0.369 0.969 0.980 0.093 0.603 0.545
f5, f7 0.853 0.274 0.450 0.797 0.594 0.582

Table 5. Promising approaches (✓) and challenges (!) of HSPI.

Vision Models Language Models

Setup White-box Black-box White-box Black-box

HSPI-BI ✓ ! ! !
HSPI-LD ✓ ✓ ✓ !

6. Discussion
6.1. Tests on LLM Serving Frameworks

LLM serving frameworks like vLLM (Kwon et al., 2023)
and SGLang (Zheng et al., 2024) facilitate the deployment
of LLMs in production environments. In Section 5, we run
the experiments with a naive setup. To verify HSPI-LD
in production environments, we launch SGLang on cloud
GPUs, send queries and collect responses through OpenAI
API, and perform HSPI-LD. Though SGLang enables a
series of optimizations, such as RadixAttention and cache-
aware scheduling policy, HSPI-LD successfully recognizes
different GPUs combined with various data types, partition-
ing strategies, and kernel implementations. Table 6 presents
the results where the over 99% accuracy highlights the ef-

7

Hardware and Software Platform Inference

Table 6. White-box experiments of SGLang using cloud GPU ser-
vice. We perform white-box HSPI-LD on a setup close to pro-
duction environments where LLM serving framework, SGL, is
deployed on a multi-GPU cloud server. We send queries and
collect responses through OpenAI API.

GPUs Ariths. Kernels Sharding ClassIdx Acc. F1.

L40

FP16
FlashInfer DP2, TP2 1 0.961 0.972

DP4, TP1 2 1 0.992

Triton DP2, TP2 3 0.992 0.9988
DP4, TP1 4 1 0.992

BF16
FlashInfer DP2, TP2 5 1 1

DP4, TP1 6 1 1

Triton DP2, TP2 7 1 1

DP4, TP1 8 1 1

A40

FP16
FlashInfer DP2, TP2 9 1 0.973

DP4, TP1 10 0.992 0.988

Triton DP2, TP2 11 0.961 0.953

DP4, TP1 12 0.953 0.976

BF16
FlashInfer DP2, TP2 13 1 1

DP4, TP1 14 1 1

Triton DP2, TP2 15 1 1

DP4, TP1 16 1 1

Average 0.991 0.991

fectiveness in a production environment. In Appendix D,
we include two more result tables on large models served on
devices & software stack from various vendors like AMD,
NVIDIA, and Amazon, highlighting that HSPI-LD is appli-
cable to a more complex setup.

6.2. Scalability and Cost Implications of HSPI

One may question the potentially high cost of HSPI due
to the large number of possible combinations of hardware
and software. As shown in previous experiments, the num-
ber of classes is the product of possible hardware plat-
forms and software dependencies, e.g., |{L40, A40}x{FP16,
BF16}x{FlashInfer, Triton}x{DP2TP2, DP4TP1}| = 16
classes in Table 6. If we decompose this classification
task into binary classification problems, N(N−1)

2 = 120
classifiers need to be trained. However, we emphasize
that one can reduce the number of classes by “merging
labels”. By “merging labels” we mean merging some unim-
portant labels (don’t cares) into a new label. Take Table 6
as an example, if we label the eight classes {L40}x{FP16,
BF16}x{FlashInfer, Triton}x{DP2TP2, DP4TP1} into a
new label “L40” and the rest into “A40”, we can train a
two-class classifier with a high F1 score of 98.5% (See Ta-
ble 12 in the appendix). Another factor determining the
cost of HSPI is the expense of LLM API access for col-
lecting training samples. As detailed in Appendix B, we

need around 60k tokens for each class, which is acceptable
considering LLM API usually costs less than $0.05 per 1k
tokens (Cortenix & Bruner, 2024).

6.3. Limitations and Robustness

HSPI faces several practical limitations. Some configura-
tions remain indistinguishable due to leaving computations
in the same EQC - for instance, different CUDA versions
on identical hardware, or similar GPUs (RTX8000 and
RTX2080Ti) with matching compute capabilities. More-
over, batch size variations significantly affect logit outputs,
requiring separate analysis for each common batch size.
We discuss these limitations and possible strategies against
the use of HSPI such as random bit flips in logits or noise
injection in input data in Appendices E and F.

6.4. Software and Hardware Supply Chains

Software supply chain variations across runtimes, compilers,
and high-level frameworks, such as PyTorch or Tensorflow,
can affect result reproducibility even with identical models
and hardware. This highlights the need for careful version
control and standardized compilation practices to mitigate
potential discrepancies on the software side. Meanwhile,
hardware options have proliferated through cloud providers,
ranging from various GPU vendors to specialized AI accel-
erators (Google TPUs, AWS Inferentia, Groq and Cerebras).
The rise of model API marketplaces like OpenRouter2 has
introduced additional complexity, as these services often
obscure their underlying hardware configurations. This lack
of transparency in hardware platforms makes it difficult to
verify security compliance and performance consistency.
HSPI methods offer a potential solution for validating these
hardware supply chains.

6.5. ML Governance

HSPI could significantly advance ML governance by en-
abling precise identification of hardware and software com-
ponents in ML supply chains. This capability would
strengthen three key areas: (1) traceability and account-
ability through detailed configuration tracking, (2) establish-
ment of industry-wide standards for hardware and software
documentation, and (3) improved reliability in model shar-
ing and deployment. We will elaborate on these governance
and broader impacts in our impact statement.

7. Conclusion
In this paper, we introduce Hardware and Software Plat-
form Inference (HSPI) – a method for identifying the un-
derlying hardware and software stack solely based on the

2https://openrouter.ai/

8

Hardware and Software Platform Inference

input-output behavior of machine learning models. Our ap-
proach leverages inherent quantization limitations and the
arithmetic operation orders of different GPU architectures to
distinguish between various GPU types and software stacks.
Our findings demonstrate the feasibility of inferring this
information from black-box models, underscoring its im-
plications for ensuring transparency and accountability in
the LLM market. We will open-source our logit dataset and
codes once the paper is accepted.

Impact Statement
HSPI’s potential applications extend beyond hardware iden-
tification to several aspects of ML system governance and
deployment. Building on our earlier discussion of trace-
ability, standardization, and reliability benefits, this section
examines the broader technical and practical implications of
HSPI. We consider its effects on security auditing practices,
deployment verification protocols, and potential impacts on
hardware provisioning strategies.

In the perfect HSPI scenario, our methods can help identify
the exact components in a model’s software and hardware
supply chains as mentioned in Section 6.4. This would allow
users to produce and validate the software and hardware bill
of materials, as suggested by recent research (Arora et al.,
2022). By doing so, HSPI could become a key tool in
enabling ML governance – a framework of standards and
principles to ensure that an ML system operates responsibly
upon deployment. The proposed HSPI problem formulation,
including Schlögl et al.’s insights on EQCs, will help in
shaping standards in different stages of an ML model’s life
cycle from testing to deployment (Chandrasekaran et al.,
2021).

Traceability and Accountability In complex ML work-
flows, traceability of the exact software and hardware con-
figurations used in model training and inference is essential
for building trust and accountability. This would help in
identifying the origin of specific model behavior differences,
making reproduction of behavior easier. This traceability is
not only crucial for debugging but also for audits, security,
and mitigating risks from potential tampering or errors.

Establishing Industry Standards HSPI can drive the
adoption of industry-wide standards for documenting and
verifying hardware and software configurations in ML devel-
opment. Standardized reporting of hardware architectures,
library versions, and compilers would enable researchers
and practitioners to replicate results reliably. This would
also help in establishing ML quality control norms.

Model Sharing and Deployment Reliability Replicabil-
ity through HSPI and newly established industry standards

can further model sharing practices. Detailed information
about the training and inference environment can reduce
deployment issues related to hardware and software mis-
matches and can help users understand potential limitations
or dependencies on specific hardware or software compo-
nents. This will ultimately create an environment fostering
confidence in using models developed by other people.

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

Arora, A., Wright, V., and Garman, C. Strengthening the se-
curity of operational technology: Understanding contem-
porary bill of materials. Journal of Critical Infrastructure
Policy, 3(1):111–135, 2022.

Badri, H. and Shaji, A. Half-quadratic quantization of
large machine learning models, November 2023. URL
https://mobiusml.github.io/hqq_blog/.

Chandrasekaran, V., Jia, H., Thudi, A., Travers, A., Yaghini,
M., and Papernot, N. Sok: Machine learning governance.
arXiv preprint arXiv:2109.10870, 2021.

Clifford, E., Saravanan, A., Langford, H., Zhang, C., Zhao,
Y., Mullins, R., Shumailov, I., and Hayes, J. Locking
machine learning models into hardware. arXiv preprint
arXiv:2405.20990, 2024.

Cortenix and Bruner, A. Llm api pricing, Dec
2024. URL https://www.botgenuity.com/
tools/llm-pricing.

Darvish Rouhani, B., Lo, D., Zhao, R., Liu, M., Fowers, J.,
Ovtcharov, K., Vinogradsky, A., Massengill, S., Yang, L.,
Bittner, R., et al. Pushing the limits of narrow precision
inferencing at cloud scale with microsoft floating point.
Advances in neural information processing systems, 33:
10271–10281, 2020.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fu, Y., Wu, J., Hu, Y., Xing, M., and Xie, L. Desnet: A
multi-channel network for simultaneous speech derever-
beration, enhancement and separation. In 2021 IEEE
Spoken Language Technology Workshop (SLT), pp. 857–
864. IEEE, 2021.

9

https://mobiusml.github.io/hqq_blog/
https://www.botgenuity.com/tools/llm-pricing
https://www.botgenuity.com/tools/llm-pricing

Hardware and Software Platform Inference

Gongye, C., Luo, Y., Xu, X., and Fei, Y. Side-channel-
assisted reverse-engineering of encrypted dnn hardware
accelerator ip and attack surface exploration. In 2024
IEEE Symposium on Security and Privacy (SP), pp. 4678–
4695. IEEE, 2024.

Gwennap, L. Groq rocks neural networks. Microprocessor
Report, Tech. Rep., jan, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 1314–1324, 2019.

Hua, W., Zhang, Z., and Suh, G. E. Reverse engineering
convolutional neural networks through side-channel infor-
mation leaks. In Proceedings of the 55th Annual Design
Automation Conference, pp. 1–6, 2018.

Iourovitski, D., Sharma, S., and Talwar, R. Hide and seek:
Fingerprinting large language models with evolutionary
learning. arXiv preprint arXiv:2408.02871, 2024.

Jia, K. and Rinard, M. Exploiting verified neural networks
via floating point numerical error. In Static Analysis:
28th International Symposium, SAS 2021, Chicago, IL,
USA, October 17–19, 2021, Proceedings 28, pp. 191–205.
Springer, 2021.

Jiang, A., Sablayrolles, A., Mensch, A., Bamford, C., Chap-
lot, D., de las Casas, D., Bressand, F., Lengyel, G., Lam-
ple, G., Saulnier, L., et al. Mistral 7b (2023). arXiv
preprint arXiv:2310.06825, 2023.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W., and
Keutzer, K. I-bert: Integer-only bert quantization. In
International conference on machine learning, pp. 5506–
5518. PMLR, 2021.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lie, S. Cerebras architecture deep dive: First look inside
the hw/sw co-design for deep learning: Cerebras systems.
In 2022 IEEE Hot Chips 34 Symposium (HCS), pp. 1–34.
IEEE Computer Society, 2022.

McGovern, H., Stureborg, R., Suhara, Y., and Alikaniotis,
D. Your large language models are leaving fingerprints.
arXiv preprint arXiv:2405.14057, 2024.

NVIDIA. TensorRT Open Source Software, January
2024. URL https://github.com/NVIDIA/
TensorRT.

Pasquini, D., Kornaropoulos, E. M., and Ateniese, G.
Llmmap: Fingerprinting for large language models. arXiv
preprint arXiv:2407.15847, 2024.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. In NeurIPS EMC2 Workshop, 2019.

Schlögl, A., Kupek, T., and Böhme, R. Forensicability
of deep neural network inference pipelines. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2515–2519,
2021. doi: 10.1109/ICASSP39728.2021.9414301.

Schlögl, A., Kupek, T., and Böhme, R. iNNformant: Bound-
ary samples as tell-tale watermarks. In Workshop on In-
formation Hiding and Multimedia Security (IH&MMSec),
pp. 81–86. ACM, 2021.

Schlögl, A., Hofer, N., and Böhme, R. Causes and effects
of unanticipated numerical deviations in neural network
inference frameworks. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 36, pp. 56095–56107. Curran Associates, Inc., 2023.

Shen, H., Mellempudi, N., He, X., Gao, Q., Wang, C., and
Wang, M. Efficient post-training quantization with fp8
formats. Proceedings of Machine Learning and Systems,
6:483–498, 2024.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

10

https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT

Hardware and Software Platform Inference

Torchao. torchao: PyTorch native quantization and sparsity
for training and inference, October 2024. URL https/
/github.com/pytorch/torchao.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., De-
langue, C., Moi, A., Cistac, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers:
State-of-the-Art Natural Language Processing. pp.
38–45. Association for Computational Linguistics, Oc-
tober 2020. URL https://www.aclweb.org/
anthology/2020.emnlp-demos.6.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., et al. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024.

Yang, Z. and Wu, H. A fingerprint for large language models.
arXiv preprint arXiv:2407.01235, 2024.

Zeng, B., Zhou, C., Wang, X., and Lin, Z. Huref: Human-
readable fingerprint for large language models. arXiv
preprint arXiv:2312.04828, 2023.

Zhang, J., Liu, D., Qian, C., Zhang, L., Liu, Y., Qiao, Y., and
Shao, J. Reef: Representation encoding fingerprints for
large language models. arXiv preprint arXiv:2410.14273,
2024.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
Sglang: Efficient execution of structured language model
programs. arXiv preprint arXiv:2312.07104, 2024.

Zombori, D., Bánhelyi, B., Csendes, T., and Jelasity, M.
Fooling a complete neural network verifier. In Interna-
tional Conference on Learning Representations (ICLR),
2021.

A. Additional Related Work
Side-channel have been exploited to infer information about
the model and hardware For example, Hua et al. (2018)
extracts information about CNN models, e.g, whether the
model is AlexNet or SqueezeNet, from an FPGA-based
CNN accelerator, by analyzing memory access patterns. Re-
cent work Gongye et al. (2024) predicts information about
the encrypted IPs on an FPGA-based DNN accelerator. They
also recover characteristics about model architectures and
extract model params. Our work aims to predict informa-
tion about the SW-HW stack used for serving large deep
learning models, including compiler, data types, GPU arch,
parallelism strategy, etc.

Our work is different from these two papers in terms of
goals, threat models (methods), and generalizability. Hua

et al. (2018) and Gongye et al. (2024) assume side channel
information about the HW like off-chip memory access
patterns, electromagnetic traces, schematics is accessible,
while we assume the SW-HW platform serves DNNs in the
cloud and we only have access to the request and responses
via the service provider’s API. These two works test their
methods on a specific FPGA accelerator, while We tried our
best to test the generalizability, across model families, data
types, GPU archs, parallelism strategies, etc.

B. Detailed Experiment Setup
We elaborate the detailed experiment setup in this sections.
For the version information of software, please refer to our
source codes.

B.1. Vision Model

Number formats and GPU Specs We perform the ex-
periments on standard floating-point formats (FP32, FP16,
BF16) and low-precision formats first, then extend to
actual GPUs. The low-precision formats include MX-
INT8 (Darvish Rouhani et al., 2020), FP8-E3M4 (noted
as FP8-E3) (Shen et al., 2024), FP8-E4M3 (noted as FP8-
E4), and dynamic INT8 (noted as INT8) (Kim et al., 2021).
For actual GPUs, we include NVIDIA H100, A100, GeForce
RTX2080 Ti, and Quadro RTX8000. Not all GPUs were
used for all experiments due to different server locations
and the difficulty of connecting all of them for the attack
generation phase.

Border Images For HSPI-BI method, we randomly sam-
ple images from CIFAR10 as initial border images, and
apply the PGD method described in Section 4.2 to update
the border images. The projection step refers to the opera-
tion of scaling and rounding pixel values to integers between
0 and 255. For HSPI-LD method, we use images of size
224x224 that we create through randomly sampling floating
point values between 0 and 1 and then converting them into
the valid pixel range of integers between 0 and 255. These
random images perform better than images from datasets
such as CIFAR10 as they trigger more diverse areas of the
feature space and hence produce a set of more distinct logits.
To distinguish between logits with an SVM, we always use a
set of 10 or 25 images’ logits and since in our access model
we test with exactly the same images, we report training
accuracy for all results.

Fine-tuning Hyper-parameters of Vision Models The
checkpoints of vision models in Section 5 are downloaded
from torchvision 3. Before HSPI experiments, we fine-
tune these models on CIFAR10 to ensure they achieve rea-
sonable accuracy on CIFAR10 test set. Specifically, we use

3https://pytorch.org/vision/stable/models.html#classification

11

https//github.com/pytorch/torchao
https//github.com/pytorch/torchao
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Hardware and Software Platform Inference

SGD optimizer and linear learning rate scheduler with initial
learning rate = 1e-3. The fine-tuning batch size is 128 and
we fine tune all the models for 3 epochs.

Accuracy of Quantized Models We show in Table 7 that
all low-precision formats have negligible accuracy loss com-
pared to the fine-tuned model. This serves as a sanity check
before the HSPI experiments in case the quantization breaks
the models.

Table 7. Accuracy of quantized vision models on CIFAR10.

Model FP32 BF16 FP16 MXINT8 FP8-E3 FP8-E4 INT8

VGG16 0.882 0.882 0.881 0.879 0.876 0.875 0.875
ResNet18 0.937 0.937 0.937 0.936 0.931 0.929 0.934
ResNet50 0.965 0.965 0.965 0.963 0.962 0.959 0.951
MobileNet-v2 0.936 0.936 0.936 0.929 0.928 0.926 0.928
MobileNet-v3-small 0.914 0.914 0.914 0.909 0.907 0.903 0.907
MobileNet-v3-large 0.946 0.946 0.946 0.943 0.937 0.934 0.945
EfficientNet-B0 0.957 0.954 0.956 0.954 0.945 0.953 0.954
DenseNet-121 0.962 0.961 0.962 0.954 0.954 0.949 0.952

B.2. Language Models

Quantization methods and GPUs Similar to vision mod-
els, we first run experiments of differentiating low-precision
formats, then extend to actual GPUs. Since LLM quantiza-
tion is more challenging than vision models, besides FP16
and BF16, we adopt two quantization methods that have
been proven effective and integrated into HuggingFace: fine-
grained dynamic INT8 quantization (Torchao, 2024), noted
as INT8-FD, and half-quadratic quantization (Badri & Shaji,
2023), noted as HQQ-4bit. For actual GPUs, we consider
NVIDIA A100, L40S, RTX A6000, and GeForce RTX3090.

Prompts and logit datasets For HSPI-LD, we guide
language models to generate random tokens with the
adapted official chat template of each model. Figure 8
shows an example of the template of QWen-2.5, where
{num_random_words} and {random_words} are parameters
for generating queries. {random_words} is n leading ran-
dom words sampled from the “popular” corpora of Natural
Language Toolkit4, thus leaving ({num_random_words} -
n) tokens for the LLM to generate. Throughout our exper-
iments, we find {num_random_words} = 16 and n = 3 is
enough for the white-box setup, while for the black-box
setup, we adapt {num_random_words} = 16 and n = 8.

We generate 256 queries for each class, and sample logits
in Tables 1, 4 and 9 because of varying vocabulary sizes of
LLMs. Specifically, we sample the top-256 logits of each
generated token, and we flatten the logits of 4 responses for
a training sample of SVM classifier.

4Natural Language Toolkit: https://www.nltk.org/
index.html

<|im0_start|>system
You are Qwen, created by Alibaba Cloud. You are
a helpful assistant.<|im_end|>
<|im_start|>user
Please generate {num_random_words} random
words.<|im_end|>
<|im_start|>assistant
Here are {num_random_words} random words:
{random_words}

Figure 8. The prompt template of QWen-2.5 used by HSPI-LD
in Section 4.3.

C. Additional Vision Model Results
Table 8 shows that HSPI-BI can differentiate RTX8000 and
A100 but fails to differentiate RTX8000 and RTX2080Ti
because they two GPUs have very similar specs. Figure 9
shows the clear difference in logit bit distribution between
RTX8000 and NVIDIA A100, which explains the success
of HSPI-LD.

Table 8. Table showing success in creating border images for dif-
ferent GPUs in white-box with an inference batch size of 1.

GPUs FP32 BF16 FP16 MXINT8 FP8-E3 FP8-E4 INT8

RTX8000 vs A100 ✓ ✓ ✓ ✓ ✗ ✗ ✓
RTX8000 vs 2080Ti ✗ ✗ ✗ ✗ ✗ ✗ ✗

0 5 10 15 20 25 30
Bit Position (0-31)

100

101

102

103

Di
ffe

re
nc

e
in

 B
its

Difference in FP32
Difference in FP16
Difference in MXINT8
Difference in FP8-E3

Figure 9. A histogram showing the difference in logit bit distribu-
tion for the classification of the same 5000 images for CIFAR10
with ResNet18, i.e., 50000 logits, between Nvidia Quadro RTX
8000 and NVIDIA A100.

D. Additional LLM Results
D.1. White-box HSPI-LD of quantized LLMs

Table 9 shows the results of HSPI-LD on quantization meth-
ods for LLMs with an average accuracy of 0.995.

12

https://www.nltk.org/index.html
https://www.nltk.org/index.html

Hardware and Software Platform Inference

Table 9. By-class accuracy of white-box HSPI-LD on quantization
levels for LLMs. HPI-LD is able to differentiate LLMs deployed
in FP16, BF16, INT8-FD, and HQQ-4bit. The SVM classifier is
trained using responses of 256 random word requests.

Training Model FP16 BF16 INT8-FD HQQ-4bit Avg. Acc.

LLaMA-3.1-8B 0.996 1 1 1 0.999
QWen-2.5-3B 1 1 1 1 1
Phi-3.5-mini 0.996 0.996 1 0.988 0.995

D.2. HSPI-LD on Various GPU Systems

In Table 10, we distributed a large LLM, Llama-3.1-70B,
across a larger multiple high-end GPU systems using
SGLang. HSPI-LD still achieves high accuracy. We also
test HSPI-LD on devices from different vendors, including
NVIDIA, AMD, and Amazon in Table 11. Different devices
are distinguished by their hardware architecture, software
stack, and data types.

Vendor Hardware (arch) N devices DP,TP DType Acc F1.

AMD MI300X (CNDA3) 2 DP1TP2 BF16 1.000 1.000

FP16 0.961 0.957

NVIDIA

H100 (Hooper) 4 DP2TP2 BF16 1.000 1.000

FP16 0.930 0.941

L40 (Ada) 8 DP1TP8 BF16 1.000 1.000

FP16 0.969 0.958

A40 (Ampere) 8 DP1TP8 BF16 1.000 1.000

FP16 0.922 0.925

Avg 0.973 0.973

Table 10. Whitebox HSPI-LD on various real GPUs.

Vendor Hardware Software DType Accuracy F1.

Amazon Inferentia NKI BF16 0.968 0.924

FP16 0.988 0.908

AMD MI300X ROCm BF16 1.000 1.000

FP16 0.906 0.913

NVIDIA H100 CUDA BF16 1.000 1.000
FP16 0.922 0.915

Avg 0.964 0.943

Table 11. White-box HSPI-LD on devices from various vendors.

D.3. Label merging

With the same samples in Table 6, we merge the samples
of the same GPU but different software dependencies into
a new label and train a new classifier. Surprisingly, the
classifier still achieves a high accuracy, implying that label
merging can effectively reduce the number of classes and
improve scalability of HSPI-LD.

Table 12. White-box experiments of Table 6 with merged labels.
We label the samples with the same GPU but various software as
the same class and train a new classifer. The classifier still achieves
high accuracy and F1 score, implying label merging is an effective
way to reduce the number of labels and to improve the scalability
of HSPI-LD.

GPUs Accuracy F1 Score

A40x{FP16, BF16}x{FlashInfer, Triton}x{DP2TP2, DP4TP2} 0.990 0.985
L40x{FP16, BF16}x{FlashInfer, Triton}x{DP2TP2, DP4TP2} 0.979 0.985
Average 0.985 0.985

E. Limitations and Black-box Failure Cases
We notice that not all software configurations have an effect
on the final model performance, leaving computations in
the same EQC. For example, we tested the HSPI-BI method
on different CUDA versions, while keeping the hardware
and the rest of the software stack fixed. A ResNet18 model
trained on the CIFAR10 and run on an RTX8000 GPU, re-
sulted in no measurable differences, thereby HSPI-BI com-
pletely failed to distinguish between the CUDA versions.
Similarly, not all hardware is distinguishable. For exam-
ple, HSPI-BI failed to differentiate the RTX8000 and the
RTX2080Ti (both have NVIDIA Compute Capability = 7.5
and similar number of Tensor Cores around 550).

Furthermore, we see big differences in calculated logits
between different inference time batch sizes. We find that
the same batch size needs to be used to distinguish between
hardware. This makes our methods more complicated. For
example for HSPI-BI, some border images work across a
few batch sizes, but do not work for all. This means that we
would need to compute border inputs for all most popular
batch sizes between a set of hardware platforms or at least
enough to make a probable guess on it. Similarly, we would
need to collect different sets of logits for various batch sizes
for HSPI-LD, considering that Anthropic recently released
new APIs for batched request.

This situation prompts inquiry into the nuances of software-
hardware supply chains. For instance, the extent of floating-
point deviations in logits varies significantly depending on
the targeted supply chain. Identifying different quantization
levels may be straightforward, but discerning subtle distinc-
tions, such as those between FlashAttention V2 and V3, can
present a challenge. Minor differences or distinctions in
the supply chain may pose challenges to both HSPI-BI and
HSPI-LD techniques. Nonetheless, there is another argu-
ment that an empirically-guided design of the loss function
in HSPI-BI, or enhanced feature engineering for HSPI-LD
could improve the distinction of these subtle variations. This
aspect warrants further investigation in future research.

13

Hardware and Software Platform Inference

F. Robustness of HSPI
Several mitigation strategies can be employed to make the
inference of hardware and software platforms significantly
more difficult. These strategies focus on disrupting the
patterns and subtle variations exploited by HSPI. For log-
its, introducing random bit flips into the decision-making
process can help mask the unique quantization patterns asso-
ciated with specific hardware architectures. This technique
adds a layer of noise that obscures the underlying hardware
fingerprints, while incurring minimal overheads associated
with sampling random numbers. Similarly, for border in-
puts, adding random noise to the input data can disrupt the
precise calculations that lead to divergent behavior across
different hardware and software configurations. This noise
injection makes it harder for attackers to identify the specific
conditions that trigger variations in model outputs, yet can
potentially come with utility degradation.

14

