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ABSTRACT

Diffusion models have shown remarkable abilities in generating realistic and high-
quality images from text prompts. However, a trained model remains black-box;
little do we know about the role of its components in exhibiting a concept such
as object or style. Recent works employ causal tracing to localize layers storing
knowledge in generative models. In this work, we approach from a more gen-
eral perspective and pose a question: “How do model components work jointly to
demonstrate knowledge?”. We adapt component attribution to decompose diffu-
sion models, unveiling how a component contributes to a concept. Our framework
allows effective model editing, in particular, we can erase a concept from diffusion
models by removing positive components while remaining knowledge of other
concepts. Surprisingly, we also show that there exist components that contribute
negatively to a concept that has not been discovered in the knowledge localization
approach. Experimental results confirm the role of positive and negative com-
ponents pinpointed by our framework, depicting a complete view of interpreting
generative models.

1 INTRODUCTION

Recent developments in diffusion models Ho et al. (2020); Luo (2022); Sohl-Dickstein et al. (2015);
Song et al. (2021) have improved significantly the synthesizing capabilities, including image quality
and generating a wide range of knowledge. However, these models lack interpretability; we do
not know how they can achieve such extraordinary performance and why they can generate images
from only text prompts. To understand how generative models recall concepts, a recent line of
works studies which components in the model store knowledge. In language models, Meng et al.
(2022) propose causal tracing to locate layers storing facts and reveal that knowledge is localized
in middle-layer MLP modules. This method is later transferred to diffusion models in Basu et al.
(2023), which shows that in contrast to language models, knowledge is distributed amongst a set
of components in UNet and the first self-attention layer in the text-encoder. These approaches shed
light on interpreting generative models and allow model editing more effectively Basu et al. (2023;
2024). However, they only focus on knowledge storage – modules that are responsible for generating
the concept – and ignore the role of other modules.

In this work, we pose a more general question: How do components in diffusion models contribute
to the generated image? Similar to the work in Shah et al. (2024), we utilize a simple linear coun-
terfactual estimator and propose a framework that predicts the model behavior given the presence of
each component. We study how model components spark off a concept, i.e. objects, styles, explicit
contents, etc. In contrast to prior works focusing on layers in the model, we examine more fine-
grained components, which are parameters in diffusion models. Our framework called Component
Attribution of Diffusion Model (CAD), helps discover positive components inducing the concept,
which is similar to knowledge storage. Furthermore, we reveal that there are also components that
contribute negatively to the target concept, which is missing in previous studies. Given such under-
standing, we can edit the model to remove or recall a concept by ablating corresponding components.

Our contributions can be listed as follows:

• We propose a comprehensive framework, called CAD, that can compute the attribution
scores of model components efficiently.
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• We propose two algorithms to edit diffusion models to erase or amplify knowledge by
removing positive or negative components, respectively.

• We provide extensive empirical analysis to confirm the effectiveness of CAD. The analysis
proves the localization hypothesis: knowledge is stored in a small number of components
in diffusion models. The proposed erasing algorithm succeeds in removing different types
of knowledge, including objects, explicit content, and styles.

• Finally, we reveal the existence of negative components that suppress knowledge; remov-
ing these components will lead to a higher probability of generating the corresponding
knowledge.

Our paper is organized as follows. We review the background of interpreting and editing generative
models in Section 2. We introduce the model attribution problem and our framework in Section 4.
We propose two editing algorithms utilizing CAD in Section 5. Section 6 provides experimental
results of our method in erasing and amplifying multiple types of knowledge. Finally, we discuss
the limitation in Section 7 and conclude the paper in Section 8.

2 RELATED WORKS

Knowledge Localization. Previous works Basu et al. (2023; 2024); Hase et al. (2024); Meng et al.
(2022); Shah et al. (2024) utilize causal analysis to identify critical layers within models where
knowledge is predominantly stored. Meng et al. (2022) show that language models tend to store
factual information in certain causal layers, where modifying these layers improves generalization
and specificity. Similarly, Basu et al. (2023; 2024) apply this technique to T2I Latent Diffusion
variants, targeting specific text-encoder and U-Net layers to remove unwanted elements such as
nudity or copyrighted styles. Extending the work on generative models, Shah et al. (2024) evaluates
the impact of individual components on the model’s behavior in image classification and language
prediction tasks. While these methods have shown impressive results in knowledge localization
in the model, Hase et al. (2024) discovered that editing non-causal layers can also modify stored
facts in the language models. This unexpected finding indicates that causal-layer edits might not
consistently yield the expected model’s behavior changes.

Concept Erasure. Latent diffusion models (LDMs) are susceptible to generating undesirable con-
tent due to their reliance on uncontrollable large-scale datasets. These issues may include nudity,
outdated information, or copyrighted artistic styles. Previous works Gandikota et al. (2023); Kim
et al. (2023); Kumari et al. (2023); Zhang et al. (2024b); Orgad et al. (2023) fine-tune only Cross-
Attention layers to minimize the appropriate unlearn losses, meanwhile, studies by Arad et al.
(2024); Basu et al. (2023) focus solely on editing text-encoder in a closed-form. Moreover, it is
feasible to address the simultaneous removal of multiple concepts in real-world scenarios, as pro-
posed by Gandikota et al. (2024); Lu et al. (2024); Xiong et al. (2024). Specifically, Gandikota
et al. (2024) and Lu et al. (2024) extend the cross-attention layer fine-tuning to accommodate many
multiple at once through a closed-form solution, while Xiong et al. (2024) focus on editing MLP
layers in diffusion text-encoder, also via closed-form update. These erasure methods enable fast,
simultaneous edits of multiple concepts, while minimizing interference with unedited ones.

Red-Teaming Attacks and Defenses. Although model fine-tuning has successfully eliminated un-
desirable concepts in text-to-image models, recent studies Yang et al. (2024c); Chin et al. (2024);
Zhang et al. (2024c); Yang et al. (2024b); Zhang et al. (2024a); Tsai et al. (2024); Pham et al.
(2024) demonstrate that this approach remains unreliable against various adversarial prompt at-
tacks. Black-box attacks such as SneakyPrompt Yang et al. (2024c), Ring-A-bell Tsai et al. (2024),
MMA-Diffusion Yang et al. (2024b) can bypass many existing safety mechanisms without accessing
to model’s parameters, by creating unsafe prompts with similar embeddings. Concurrently, several
white-box attacks such as P4D Chin et al. (2024), UnlearnDiffAtk Zhang et al. (2024c), CCE Pham
et al. (2024) can also make fine-tuned models regenerate sensitive outputs, by using different tech-
niques to craft adversarial prompts. These attacks highlight the need for robust methods against
red-teaming attacks, which can remove undesirable concepts and preserve the quality of generated
images. Several studies have introduced defense mechanisms, including Concept-Prune Chavhan
et al. (2024), RECE Gong et al. (2024), RACE Kim et al. (2024), and pruning methods applied to
existing removal works Yang et al. (2024a). These studies mark significant progress in diffusion
image generation security, opening the way for more reliable applications.
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3 PRELIMINARIES

Diffusion Models. Diffusion models Ho et al. (2020); Luo (2022); Sohl-Dickstein et al. (2015);
Song et al. (2021) are generative models that perform a denoising process, starting from random
Gaussian noise over several time steps T . Particularly, the forward Markov process is first executed
to transform a real image x0 into a noisy image xt =

√
atx0+

√
1− atϵ at time step t, where at is a

decaying parameter and ϵ ∼ N (0, I). Then in the reverse process, the denoiser is trained to predict
the noise ϵt at each time step t, thereby generating a noisy image xt. After a series of discrete time
steps, diffusion models generate the final reconstructed image x0.

Latent Diffusion Models Latent Diffusion Models (LDMs) Rombach et al. (2022) help to accel-
erate the denoising process by employing a pre-trained variational autoencoder with encoder E and
decoder D, where it transforms the input space x into latent space z = E(x). At each time step t,
LDMs predict the noise Φθ(·|c), which is conditioned by a text prompt c and parameterized by θ.
The objective function is L = Ezt∼E(x),t,c,ϵ∼N (0,I)∥ϵ − Φθ(zt, c, t)∥22, where ϵ is Gaussian noise,
and Φθ(zt, c, t) is the estimated noise added to latent zt at time step t by LDMs.

4 ATTRIBUTING MODELS WITH CAD

4.1 DECOMPOSING KNOWLEDGE IN DIFFUSION

In this work, we consider the diffusion model as a combination of building blocks wi. We define an
objective function J(c, w) that measures how good the model f generates the concept c with a set of
components w. We can inspect the model at different levels of granularity, for example, a component
can be a parameter, a layer, or a module. We focus our study on the most fine-grained components,
which are model parameters; however, we can also extend to other types of components, such as
layers and modules.

Our goal is to interpret how each component wi contributes to a concept, quantified by J(c, w).
More particularly, we estimate how J(c, w) changes if we remove a component wi, i.e. set its value
to 0. We want to find a function g(0w̃, c) ≈ J(c, w̃) where 0w̃ ∈ Rd, d is the number of components,
and

(0w̃)i =

{
0 if w̃i = 0

1 if w̃i = wi.
(1)

Diffusion models are constructed from deep neural networks with non-linear activation between
layers, and iterative processes to generate images. Therefore, the function g might be complex. Shah
et al. (2024) show that a simple linear function can well approximate J(c, w) in image classification
models and language models. Here, we similarly utilize a linear model g to approximate J :

J(c, w̃) ≈ g(0w̃) = αT0w̃ + b, α ∈ Rd. (2)

4.2 CAD: COMPONENT ATTRIBUTION OF DIFFUSION MODEL

One way to find α is by treating Equation 2 as a machine learning model Shah et al. (2024). We
can create a dataset D = {0wi

},0wi
∈ {0, 1}d by randomly masking out some components in the

diffusion model. For each data point, we compute the objective of the corresponding model and
consider it as the label of that data point. Then, we train a linear regression model and obtain α
as the coefficient in the regression model. Considering the number of components, this approach
requires a significantly high number of data points and thus function evaluations. For instance, Shah
et al. (2024) create 100, 000 data points for image classification and 200, 000 for language modeling
to examine a single prediction. Therefore, finding α for only a single concept is extremely expensive
and time-consuming, making the interpretability study challenging.

Instead, we propose to approach Equation 2 from a different perspective. Assuming we focus on a
small subset of components wi, i ∈ S and want to examine how J(c, w) changes if wi = 0. In this
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case, we can apply first-order Taylor expansion as follows

∑
i∈S

αi = J(c, w)− J(c, w̃) (3)

≈ (w − w̃)∇wJ(c, w) (4)

=
∑
i∈S

wi
∂J(c, w)

∂wi
. (5)

From Equation 2 and 5, we see that the coefficient αi of wi can be approximated by wi
∂J(c,w)

∂wi
. For

the rest of the study, we will use this formulation to attribute a component in the model. In particular,
we measure the contribution of a component wi to the objective J by wi

∂J(c,w)
∂wi

.

5 EDITING MODEL WITH CAD

In this section, we investigate the application of our framework and propose two algorithms to
remove or amplify a concept in diffusion models.

Given the attribution value of model components computed in Section 4.2, we can increase or de-
crease J by ablating components with positive or negative attributions. Since J(c, w) expresses how
well the model generates a concept c, this process can help us edit diffusion models.

5.1 LOCALIZING AND ERASING KNOWLEDGE

Previous works Meng et al. (2022); Basu et al. (2023; 2024) apply causal tracing to study in gener-
ative models knowledge is stored in which layers. While this approach gives some insights into the
model, it does not show a fine-grained understanding of parametric knowledge (weak argument). In
contrast, our framework allows us to focus on each parameter and examine its influence on a con-
cept. Formally, we define positive components for a concept c as components that when we ablate,
the model has a lower probability of generating c.

We consider positive components as knowledge storage, and by finding positive components we can
locate knowledge in generative models. We hypothesize that knowledge is localized, in particular,
there is a small subset of components that make the model not generate the concept if being ablated.
On the other hand, recall that our framework applies first-order expansion, thus the approximation
is close if the number of ablated components is small.

Hypothesis 1. Knowledge is localized in a small number of components. If we remove those com-
ponents of a concept c, the model will not generate c but other concepts are not affected.

Another question is which objective function J should be used. A naive solution is to use the training
loss in diffusion models directly. However, previous works in concept erasing Kumari et al. (2023)
show that optimizing this objective to ablate concepts leads to sub-optimal performance. Instead,
we apply the following objective function, which is also used in Kumari et al. (2023)

J(c, cb, x) = Ex,t,ϵ[∥Φ(xt, cb, t).sg()− Φ(xt, c, t)∥22] (6)

where c is the target concept, e.g. the object “parachute”, cb is the base condition, e.g. the empty
string “”, sg() is the gradient stopping operator. Intuitively, we want the predicted noise conditioned
on the target concept close to the unconditioned noise, thus preventing the reverse process from
approaching the distribution of the concept.

We propose an algorithm to erase a concept from generative models in Algorithm . In general, we
compute the attribution value of components by Equation 5 and remove top-k positive components.
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Algorithm 1 Erasing knowledge in generative models
Input: Diffusion model Φ, target concept c, base condition cb, the number of components k.
Output: Diffusion model Φ′ with higher chance to generate c.

Generate a set of x conditioned on c.
Compute attribution scores wi

∂J
∂wi

with the set of generated x and J in Equation 6.
Locate top-k components wi ∈ S with the highest positive attribution
wi ← 0, wi ∈ S

5.2 AMPLIFYING KNOWLEDGE IN DIFFUSION MODELS

Our attribution framework offers a complete view of interpreting the model: besides positive com-
ponents that are responsible for generating a concept, there also exist components with negative
coefficients. We hypothesize that these components suppress knowledge, decreasing the probability
of inducing a concept. If we ablate negative components, the ability to generate images with the
concept will be improved.
Hypothesis 2. Negative components exist and can amplify knowledge when it is ablated.

Previous works in knowledge localization Meng et al. (2022); Basu et al. (2023) edit the model at
modules storing knowledge. If Hypothesis 2 is true, we can also edit the model at those negative
components. For instance, the attacker can remove negative components of harmful concepts to
make diffusion models generate those concepts more.

We propose an algorithm to amplify knowledge by ablating negative components in Algorithm 2.
In this case, we assume that we have some images of the target concept and use the training loss of
diffusion models as the objective J

J(c, x) = −Ex,t,ϵ[∥ϵ− Φ(xt, c, t)∥22]. (7)

Algorithm 2 Amplifying knowledge in generative models
Input: Diffusion model Φ, target concept c, the number of components k, the set of images x of

concept c.
Output: Diffusion model Φ′ with higher chance to generate c.

Compute attribution scores wi
∂J
∂wi

with the set of generated x and J in Equation 7.
Locate top-k components wi ∈ S with the lowest negative attribution
wi ← 0, wi ∈ S

6 EXPERIMENTS

In this section, we provide empirical evaluations of our framework. We verify the knowledge local-
ization hypothesis in Section 6.2 and the existence of negative components in Section 6.3.

6.1 CAD APPROXIMATES WELL THE CHANGE IN THE OBJECTIVE

First, we evaluate how well the first-order approximation is and whether CAD actually reflects com-
ponent attributions. We randomly ablate a small portion of parameters wi, i ∈ S in Stable Diffusion-
1.4 and obtain the corresponding change in the objective. We also use CAD to compute the predicted
change by

∑
i∈S wi

∂J
∂wi

. We repeat this process 1000 times and evaluate CAD. Figure 1 illustrates
that our predicted values estimate well the actual changes in the objective with a high Pearson cor-
relation. Therefore, we can rely on the proposed approximation, and consequently CAD, to analyze
the contribution of each component to a concept.

6.2 CAD CAN LOCATE POSITIVE COMPONENTS AND ERASE KNOWLEDGE

The analysis in the previous section shows that CAD can successfully identifies positive and nega-
tive components. Therefore, we utilize CAD to verify Hypothesis 1: whether knowledge is localized

5
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Figure 1: The attribution scores predicted by CAD and the actual values of the objective function.

in diffusion models. We perform experiments on Stable Diffusion-1.4 with different types of knowl-
edge, in particular objects, nudity content, and art styles.

We focus on the UNet of diffusion models, which is responsible for processing visual information.
For each linear layer, we remove no more than the top p% positive components in each row.

“A photo of of a chain saw” 
generated by SD-1.4

“A photo of of a chain saw” 
generated by our ablated model

“A photo of of a church” 
generated by our ablated model

Figure 2: The qualitative results of CAD. The first row contains images generated by the original
model. We ablate components of concept “chain saw” and generate images conditioned on “chain
saw”. The third row contains images conditioned on other knowledge.

Erasing objects. We study how CAD can identify object classes in diffusion models and
whether CAD can erase them. We select 10 classes from ImageNette, “cassette player”, “chain
saw”, “church”, “English springer”, “french horn”, “garbage truck”, “gas pump”, “golf ball”,
“parachute”, and “tench”. For each class, we compute component attributions and ablate 0.1%
components using Algorithm 1. We generate 500 images per class and employ the pre-trained
ResNet50 model to classify the generated images. We compare CAD with other state-of-the-art
erasing methods, in particular ConceptPrune Chavhan et al. (2024), ESD Gandikota et al. (2023),
UCE Gandikota et al. (2024), and RECE Gong et al. (2024). Table 1 reports the accuracy on the
erased class and other classes of CAD and the other baselines.

First, we evaluate the capability of the base diffusion model to generate images conditioned on text
prompts. The results show that diffusion models can create high-fidelity images that are correctly
classified by ResNet50, except for some hard classes such as “cassette player”. However, by ablat-
ing a small portion of parameters, CAD can successfully erase objects, illustrated by low accuracies
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Table 1: The accuracy of generated images on target classes and other classes, predicted by
ResNet50.
Classes Accuracy on target classes↓ Accuracy on other classes↑

SD-1.4 Concept-Prune ESD RECE UCE CAD (Ours) SD-1.4 ConceptPrune ESD RECE UCE CAD (Ours)

Cassette player 7.20 2.60 0.00 0.00 0.00 0.40 86.07 76.73 57.53 89.13 89.13 81.33
Chain saw 69.00 1.00 0.40 0.00 0.00 0.20 79.20 63.97 29.24 75.69 75.69 71.87
Church 76.20 21.00 3.60 1.20 15.20 3.00 78.40 65.00 65.24 80.50 80.20 74.24
English Springer 93.80 1.00 0.20 0.00 0.10 0.60 76.44 62.00 47.48 77.80 78.00 69.36
French horn 98.60 7.40 0.20 0.00 0.00 0.60 75.91 63.17 45.11 74.33 74.33 68.09
Garbage truck 85.60 1.40 0.00 0.00 15.60 2.20 77.36 65.62 47.36 65.40 77.51 64.73
Gas pump 79.00 36.80 0.00 0.00 0.00 1.60 78.09 68.28 48.58 79.02 79.02 66.04
Golf ball 95.80 28.60 0.20 0.00 0.60 5.40 76.22 65.55 48.90 79.00 78.78 73.20
Parachute 96.20 30.00 0.80 0.00 1.00 1.60 76.18 62.17 61.28 78.20 77.87 67.44
Tench 80.40 2.80 1.40 0.00 0.00 0.20 77.93 67.57 60.80 78.56 78.56 67.93

for the target class. On the other hand, the accuracies for the other classes are still high, imply-
ing that removing positive components located by CAD do not have a significant impact on other
knowledge. We also provide qualitative results in Figure 2, demonstrating that CAD erases the target
concept without affecting the other concepts. This observation verifies the knowledge localization
hypothesis 1.

Table 2: The number of nudity content classified by Nudenet on images generated from I2P prompts.
Model Armpits Belly Buttocks Feet Female Male Anus Total↓ CLIPScore↑
SD-1.4 169 197 26 28 300 78 0 798 31.32
ConceptPrune 21 5 3 13 12 12 0 62 31.16
ESD 17 15 6 4 34 12 0 88 30.27
RECE 19 27 4 5 21 22 0 98 30.94
UCE 60 65 7 5 67 25 0 229 31.25
CAD (Ours) 13 6 6 8 16 5 0 54 31.31

Table 1 also implies that CAD can serve as a strong erasing method. Compared to other approaches,
CAD performs better in erasing objects than ConceptPrune, another method that removes parameters
in the model. ESD yields similar accuracy on target classes as CAD; however, this method sacrifices
knowledge of the other concepts, leading to low accuracies on the other classes. Our performance is
on par with UCE and RECE, two state-of-the-art concept erasing methods that update the linear layer
in cross-attention to map the target concept in the prompt to other concepts. In some cases, such as
“church” and “garbage truck”, UCE still fails to completely erase the concept while CAD reduces
the accuracy on those classes to no more than 3%.

Erasing nudity. Next, we investigate other abstract concepts, in particular explicit content. We
locate and ablate the top 0.05% positive components with the prompt “naked”. To assess the per-
formance of the new model, we generate images from 4702 prompts in the I2P benchmark and
detect nudity content by Nudenet. We validate the performance on unrelated knowledge by gener-
ating images with prompts in the COCO-30k dataset. Table 2 shows the results of CAD and the
other baselines. As can be observed, CAD achieves the highest performance in erasing nudity con-
tent compared to other state-of-the-art methods, illustrated by the lowest number of nudity classes
predicted by Nudenet. Meanwhile, CAD still well preserves unrelated knowledge, resulting in a
high CLIPScore (31.31), similar to that of the base model (31.32) and higher than all other erasing
methods. Figure 3 illustrates images generated by the original model and the ablated model from
our method. These results prove the knowledge localization for nudity content.

Erasing with adversarial prompts. Recent worksYang et al. (2024c); Tsai et al. (2024); Yang
et al. (2024b) show that current erasing methods do not completely remove knowledge from the
model, and propose attack methods that create adversarial prompts from which the erased model
still generates harmful content. We evaluate our method on two unsafe prompt sets, MMA and
Ring-A-Bell, in Table 3. MMA successfully elicits explicit content from RECE and UCE models,
resulting in 676 and 1340 predicted nudity classes, respectively. In contrast, ConceptPrune and
CAD still generate a small number of nudity classes, implying these methods erase substantially
explicit content in diffusion models. On the other hand, ConceptPrune and UCE are prone to Ring-
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“A photo of of a naked woman” 
generated by SD-1.4

“A photo of of a naked woman” 
generated by our ablated model

“a few boats that are 
out on a river” 

generated by our ablated model

Figure 3: The first row contains images generated by the original model. We ablate components of
concept “naked” and generate images conditioned on nudity content. The third row contains images
conditioned on other knowledge.

A-Bell prompts, while RECE and CAD only generate around 10 predicted nudity classes. These
results strengthen the localization hypothesis, showing that knowledge is stored in a small number
of components that are correctly identified by CAD.

Table 3: The number of nudity content classified by Nudenet on images generated from adversarial
prompts.
Attack Model Armpits Belly Buttocks Feet Female Male Anus Total↓

MMA

SD-1.4 410 397 327 78 582 662 1 2457
ConceptPrune 37 4 55 11 18 38 0 163
RECE 134 127 83 9 90 233 0 676
UCE 242 221 223 41 217 394 2 1340
CAD (Ours) 19 24 24 9 40 119 0 235

Ring-A-Bell

SD-1.4 71 106 9 34 194 58 0 472
ConceptPrune 23 17 12 12 32 8 0 104
RECE 1 4 0 0 1 4 0 10
UCE 5 29 5 10 24 24 0 97
CAD (Ours) 2 4 0 0 6 1 0 13

Erasing art styles. We also study whether the localization hypothesis applies to image styles. We
conduct experiments on the styles of 5 famous artists: “Picasso”, “Van Gogh”, “Rembrandt”,
“Andy Warhol”, and “Caravaggio”. For each artist, we generate images with their style from 20
description prompts. We report the LPIPS score of images generated by SD-1.4 and the model
created by CAD in Table 4. Figure 4 illustrates qualitative results of CAD on the target artist and
other artists. Our method distorts the style in the image while maintaining other artists’ styles.
However, for artists with similar styles, such as “Rembrandt” and “Caravaggio”, removing one
style can affect the other style. We hypothesize that some knowledge are not entirely disentangled,
some components can be responsible for many concepts, leading

6.3 ABLATING NEGATIVE COMPONENTS STRENGTHENS KNOWLEDGE

In this section, we investigate the ability of CAD to amplify knowledge by removing negative
components.

Amplify objects. Table 1 shows that Stable Diffusion still struggles to generate some classes, such
as “cassette player”, “chain saw”, “church”, “gas pump”. To compute the objective in Equation 7,

8
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Figure 4: Qualitative results of CAD on erasing artist styles. The (i, j) image is generated from the
model on which the style i is removed, conditioned on the style j.

Table 4: LPIPS scores of erasing methods on different artist styles. Lower scores indicate more
similarity.

Artist LPIPS on the target artist↑ LPIPS on other artists↓
ESD RECE UCE CAD (Ours) ESD RECE UCE CAD (Ours)

Picasso 0.332 0.143 0.108 0.258 0.279 0.077 0.056 0.127
Van Gogh 0.412 0.253 0.202 0.198 0.303 0.104 0.075 0.089
Rembrandt 0.417 0.275 0.210 0.32 0.331 0.11 0.084 0.152
Andy Warhol 0.449 0.321 0.294 0.208 0.276 0.109 0.085 0.056
Caravaggio 0.394 0.21 0.178 0.243 0.326 0.093 0.073 0.138

we select 50 images from the ImageNette dataset that are correctly classified by ResNet50 for each
class. We get attribution scores and remove top 0.1% negative components by Algorithm 2. As
can be observed, CAD improves the accuracy on target classes significantly. More particularly, the
accuracy on “cassette player” is increased from 7.2% to 25.2%, and those of other classes reach
more than 90%. These results show the existence of negative components, verifying Hypothesis 2.

To show that CAD actually amplifies knowledge, we provide qualitative results in Figure 5. The
figure illustrates 5 pairs of images with the same seeds generated by the original model and the
ablated model. As can be observed, CAD adds details of the concept to the images, unleashing the
target knowledge.

Table 5: Ablating negative components identified by CAD significantly increases the probability of
generating the target class.

Classes SD-1.4 CAD

Cassette player 7.20 25.20
Chain saw 69.00 99.00
Church 76.20 92.20
Gas pump 79.00 93.00
Tench 80.40 92.00

Amplify nudity content. We also investigate how Algorithm 2 increases the chance of generating
images with explicit content. Similar to previous experiments, we remove the top 0.1% negative

9
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Figure 5: The first row contains generated images conditioned on “chain saw” but are incorrectly
classified by ResNet50 to “rule”, “chain”, “chain”, “rule”, “chain”. The second row contains
images generated from the model in which negative components are ablated, with the same seed as
the first row.

components of the concept “naked” and evaluate on I2P prompts with Nudenet. Table 6 illustrates
the performance of CAD, showing that our method increases the chance of eliciting nudity images by
removing a small portion of parameters. We also study to what extent other erasing methods remove
knowledge, and whether we can restore knowledge by ablating negative components. CAD also
improves the chance of generating nudity images from the model that is erased by ESD.

Table 6: The number of nudity content detected by Nudenet, generated by models in which nudity
is amplified by CAD.

Model Armpits Belly Buttocks Feet Female Male Anus Total

SD-1.4 169 197 26 28 300 78 0 798
SD-1.4-Negative 234 245 32 31 374 73 0 989

ESD 17 15 6 4 34 12 0 88
ESD-Negative 26 19 8 3 30 16 0 102

7 LIMITATIONS

In this work, we only focus on fine-grained model components that are parameters and study their
contribution to knowledge. We do not examine other types of components, such as layers or mod-
ules, which can highly influence multiple concepts at once. We leave it to future works.

When removing objects, we observe that CAD sacrifices some other knowledge and decreases the
accuracy on other classes. These results show that although knowledge is localized, some com-
ponents could be responsible for multiple knowledge. Studying the entanglement of parametric
knowledge would be an interesting direction in future study.

8 CONCLUSION

In this work, we study the contribution of each component in diffusion models. We propose a
framework based on first-order approximation that allows computing attribution scores efficiently,
and two editing algorithms that can erase or amplify knowledge in the model. Our experimental
results confirm the localization hypothesis, showing that knowledge is localized in a small number
of components. We also show the existence of negative components that suppress knowledge, and
ablating them increases the probability of generating the target concept. Our study provides a com-
plete view of interpreting diffusion models by analyzing both positive and negative components. It
would be interesting to study the influence of those components and utilize them for model editing
in future works.

10
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A EXPERIMENTAL SETUP

In our study, we compare our method with several concept erasure techniques. We provide details
on the hyperparameters and setups used from these methods as follows:

• ESD. We follow the setting in the original paper and fine-tune the UNet with a learning rate
of 1e−5. To compute the objective, we generate images of the target class with a guidance
scale of 3. The scale of negative guidance in the objective is set to 1.

• UCE. We apply UCE across ten objects within the Imagenette class and for the artistic
styles of Picasso, Van Gogh, Rembrandt, Andy Warhol, and Caravaggio, including the
nudity concept. In artist styles, the method includes a ‘preserve‘ parameter, which retains
styles not targeted for erasure. We follow that setting, by erasing only one artist style at
each checkpoint while keeping the rest.

• RECE. This method continues to fine-tune models using checkpoints previously erased by
UCE. For artistic styles, we apply a regularization parameter (λ) of 1e−3 for all mentioned
styles. In contrast, for nudity content, λ is set at 1e− 1. In object removal scenarios where
UCE has already achieved complete erasure of five objects with an erased class accuracy of
0.00%, RECE is used to address the remaining objects. Specific regularization parameters
include λ = 1e − 3 for ”church” and ”garbage truck”, and λ = 1e − 1 for ”English
Springer”, ”golf ball”, and ”parachute”, consistent with parameters reported in their studies
for each experiment.

• Concept-Prune. We stick to the parameters specified in previous experiments. For the
nudity concept, we apply a mask at the initial denoising step with t̂ = 9 and a sparsity level
of k = 1%. For object removal in the Imagenette classes, we use t̂ = 10 and k = 2%. The
same parameters are applied to the erasure of artist styles. Additionally, the ’select ratio’
parameter m determines the threshold for applying the binary mask to the model weights.
The method prunes only those neurons that exceed m% throughout the initial time steps t̂.
As this parameter is not detailed in their work, we set m = 0.5.

B THE DETAILED RESULTS OF NUDITY ERASING

We provide the detailed number of nudity content generated by CAD. Table 7 and 8 show that our
method erases all properties of nudity content. On the other hand, Table 9 exhibits the ability of
CAD to increase the chance of generating explicit images.

Table 7: The number of nudity content classified by Nudenet on images generated from I2P prompts.
Model Armpits Belly Buttocks Feet Breast (F) Genitalia (F) Breast (M) Genitalia (M) Anus Total CLIPScore

SD-1.4 169 197 26 28 271 29 60 18 0 798 31.32
ConceptPrune 21 5 3 13 11 1 0 8 0 62 31.16
ESD 17 15 6 4 22 12 1 11 0 88 30.27
RECE 19 27 4 5 17 4 13 9 0 98 30.94
UCE 60 65 7 5 60 7 14 11 0 229 31.25
CAD 13 6 6 8 10 6 0 5 0 54 31.31

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: The number of nudity content classified by Nudenet on images generated from adversarial
prompts.
Attack Model Armpits Belly Buttocks Feet Breast (F) Genitalia (F) Breast (M) Genitalia (M) Anus Total

MMA SD-1.4 410 397 327 78 498 84 289 373 1 2457
ConceptPrune 37 4 55 11 14 4 3 35 0 163
RECE 134 127 83 9 73 17 130 103 0 676
UCE 242 221 223 41 179 38 193 201 2 1340
CAD 19 24 24 9 39 1 11 108 0 235

Ring-A-bell SD-1.4 71 106 9 34 151 43 46 12 0 472
ConceptPrune 23 17 12 12 31 1 8 0 0 104
RECE 1 4 0 0 1 0 3 1 0 10
UCE 5 29 5 10 21 3 23 1 0 97
CAD 2 4 0 0 6 0 1 0 0 13

Table 9: The number of nudity content detected by Nudenet, generated by models in which nudity
is amplified by CAD.
Model Armpits Belly Buttocks Feet Breast (F) Genitalia (F) Breast (M) Genitalia (M) Anus Total

SD-1.4 169 197 26 28 271 29 60 18 0 798
SD-1.4-Negative 234 245 32 31 337 37 52 21 0 989

ESD 17 15 6 4 22 12 1 11 0 88
ESD-Negative 26 19 8 3 19 11 2 14 0 102
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