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Abstract

The rapid advancement of Large Language001
Models (LLMs) has significantly enhanced per-002
formance across various natural language pro-003
cessing (NLP) tasks, yet the high computational004
costs and latency associated with deploying005
such models continue to pose critical bottle-006
necks, limiting their broader applicability. To007
mitigate these challenges, we propose a dy-008
namic hybrid inference framework, Firewall009
Routing, which efficiently selects between a010
strong and a weak LLMs based on the complex-011
ity of the query. A lightweight routing model is012
trained to optimize resource allocation by learn-013
ing from response quality and preventing long-014
tail queries, which are often unsolvable for015
both LLMs, from being routed to the stronger016
model. Moreover, our method incorporates017
multiple sampling to enhance query evaluation018
reliability while leveraging Hard Blocking and019
Soft Blocking to handle long-tail queries along020
with refining labels for model selection. Exten-021
sive experiments show our method outperforms022
existing routing strategies by up to 5.29% in023
APGR, demonstrating state-of-the-art perfor-024
mance across multiple benchmarks.025

1 Introduction026

In recent years, we have witnessed the rapid ad-027

vancement of artificial intelligence technologies,028

particularly the rise of large language models029

(LLMs) such as ChatGPT, which are reshaping030

the paradigms of our daily work. These mod-031

els, often containing billions or even trillions of032

parameters, generate fluent and contextually ap-033

propriate responses, enabling natural interactions034

without requiring specialized user knowledge (Ope-035

nAI et al., 2024; Touvron et al., 2023; Grattafiori036

et al., 2024). However, such remarkable capabil-037

ities come at a significant cost: deploying LLMs038

demands expensive infrastructure, such as multi-039

GPU systems with high memory capacity, or incurs040

higher per-token charges in cloud-based LLM ser- 041

vices for more capable models (Yu et al., 2022). 042

Moreover, larger models often introduce higher 043

latency, making them less suitable for real-time 044

or resource-constrained applications. Striking a 045

balance among strong model performance, high 046

efficiency, and economical costs remains an "im- 047

possible triangle," yet it is precisely this challenge 048

that drives ongoing research efforts in the field. 049

Making the "impossible triangle" possible re- 050

quires a paradigm shift in how we allocate com- 051

putational resources for language model inference. 052

Extensive experiments have demonstrated that not 053

all tasks require the full power of the largest models 054

(Grattafiori et al., 2024). Simpler queries can often 055

be handled effectively by smaller, lower-cost mod- 056

els without compromising quality, whereas more 057

complex queries leverage the advanced capabilities 058

of larger models. This principle forms the founda- 059

tion of Hybrid Inference. 060

Given the promising potential, Hybrid Infer- 061

ence has garnered significant attention from both 062

academia and industry. Existing strategies can be 063

broadly categorized into two main types: Cascade 064

methods (Chen et al., 2023; Gupta et al., 2024; 065

Ramírez et al., 2024), and Route methods (Shnitzer 066

et al., 2023; Šakota et al., 2024; Lu et al., 2023; Ong 067

et al., 2024; Ding et al., 2024). 068

Cascade methods first process all queries using 069

a weaker model. If the weaker model’s confidence 070

in its response is low, typically determined through 071

an internal evaluation mechanism, the query is es- 072

calated to a stronger model for reprocessing. Al- 073

though this approach is conceptually straightfor- 074

ward, it has several inherent limitations. On the 075

one hand, evaluating response quality before com- 076

pletion in generative tasks is inherently difficult, 077

leading to unreliable decision-making(Gupta et al., 078

2024). On the other hand, evaluating response 079

quality after completion brings greatly increased 080

latency. These factors make Cascade methods less 081
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Figure 1: Firewall Routing framework for dual-model hybrid inference, comprising a strong model, a weak model,
and a router model to balance performance and cost for LLM inference. By blocking unsolvable long-tail queries
from being routed to the strong model, the framework achieves state-of-the-art performance.

efficient in real-world applications.082

Motivated by these considerations, we focus083

on Route methods, which leverage a lightweight084

router model to dynamically allocate queries to the085

most appropriate LLM under a given configuration.086

However, existing Route methods predominantly087

rely on collected preference data, which are of-088

ten limited by strict domain-specific constraints089

(Shnitzer et al., 2023; Šakota et al., 2024; Lu090

et al., 2023), or heavily depend on model-generated091

scores (Ong et al., 2024; Ding et al., 2024). More-092

over, these methods often depend on preference093

data or artificially generated labels based on model094

scoring. In the context of dual-model hybrid in-095

ference, where the strong model generally outper-096

forms the weak model, they fail to address long-tail097

queries that challenge both models, highlighting098

opportunities for further optimization.099

To address these challenges, we propose Fire-100

wall Routing, a dual-model hybrid inference sys-101

tem that builds on reliable benchmark results and102

manages to block long-tail queries, enhancing both103

performance and efficiency.104

Specifically, we propose a novel paradigm for105

training the router model. Unlike existing meth-106

ods, our approach utilizes multiple sampling during107

benchmark evaluations to obtain more accurate es-108

timations of the capabilities of both the strong and109

weak models. These estimations are then used to110

construct soft labels for router training. Through111

mathematical derivations, this paradigm highlights112

the generality of soft label training in the domain 113

of router optimization and demonstrates that the 114

hard label approach is a specific instance of this 115

broader framework. 116

To further address the challenge of long-tail 117

queries, we propose two novel approaches—Hard 118

Blocking and Soft Blocking—designed to effec- 119

tively manage unsolvable cases. Hard Blocking 120

utilizes statistical information to identify unsolv- 121

able long-tail queries and assigns them the label 122

“route to the weak model,” minimizing unnecessary 123

computational overhead. In contrast, Soft Block- 124

ing leverages the Pass Rate (pass@1) to generate 125

refined soft labels with more precise routing con- 126

ditions, further reducing computational inefficien- 127

cies. 128

To summarize, we make the following contribu- 129

tions: 130

1. We propose a novel router training paradigm 131

leveraging multiple sampling to generate soft 132

labels, which generalizes router optimization 133

and demonstrates hard label training as a spe- 134

cific case within this framework. 135

2. We propose Hard Blocking and Soft Block- 136

ing as automated mechanisms to enable our 137

approach to overcome the challenges associ- 138

ated with long-tail queries. 139

3. We validate our approach through extensive 140

experiments across diverse configurations. 141
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2 Related Works142

Hybrid Inference balances response quality and143

inference cost by dynamically selecting models144

based on task complexity. For image classifica-145

tion, Kag et al. (2023) explored joint training of146

a small model, a large model, and a router, while147

in NLP tasks, the Tryage architecture (Hari and148

Thomson, 2023) employed a joint-trained router to149

optimize performance across domains. However,150

for LLMs, joint training is computationally expen-151

sive and deviates from the pre-training paradigm,152

leading to two main approaches: Cascade Meth-153

ods and Route Methods.154

Cascade Methods first query a weaker model155

and escalate the request to a stronger model only156

when necessary. FrugalGPT (Chen et al., 2023) es-157

timates response confidence using an LLM-based158

heuristic to decide whether a query should be for-159

warded to a larger model. Similarly, Gupta et al.160

(2024) proposed a confidence estimation method161

based on the conditional probability of the gener-162

ated response, serving as a reliability metric. By163

assessing the correctness of the weaker model’s re-164

sponses, these methods effectively reduce the num-165

ber of strong model invocations while maintaining166

high response quality. However, this approach in-167

troduces significant response time overhead, as the168

weaker model must first generate an output before169

determining whether escalation is required.170

Margin Sampling (Ramírez et al., 2024) is a dif-171

ferent cascade approach without introducing extra172

response time. Only when the probability differ-173

ence between the top two predicted tokens is small174

at the beginning of generation, indicating uncer-175

tainty, is the query escalated to the strong model.176

While both cascade hybrid inference and specu-177

lative decoding involve a weak and strong model178

processing the same query, their goals differ. Spec-179

ulative decoding (Kim et al., 2024; Leviathan et al.,180

2023) speeds up text generation by having a smaller181

model propose tokens, which are then verified by a182

larger model, but this frequent validation incurs183

high computational costs. In contrast, cascade184

methods prioritize reducing reliance on the strong185

model, balancing performance and efficiency by186

minimizing its usage.187

Route Methods introduce a router model to de-188

termine which model should handle a given query.189

For example, Shnitzer et al. (2023) frame this as190

an out-of-distribution (OOD) detection problem,191

where they predict a model’s response correctness 192

and confidence using k-nearest embedded queries. 193

Similarly, Šakota et al. (2024) train a model to pre- 194

dict whether a query can be correctly answered, in- 195

corporating a special token to indicate which LLM 196

should be used. Lu et al. (2023) distilled a reward 197

model to predict which LLM serves as the optimal 198

expert for a given query. 199

Many recent works focus on dual-model hybrid 200

inference systems. For instance, RouteLLM (Ong 201

et al., 2024) uses preference pairs from multiple 202

LLMs in Chatbot Arena to train a Bradley-Terry 203

model (Bradley and Terry, 1952) as the router. Hy- 204

brid LLM (Ding et al., 2024) derives Win Rates for 205

queries through a biased comparison of response 206

BARTScores, creating a desired label distribution 207

to train the router. These approaches highlight the 208

potential for training routers with more reliable 209

evidence, such as pass@k (Chen et al., 2021), to 210

improve model selection. 211

3 Method 212

3.1 Router Training Criterions 213

3.1.1 Train with Hard Label 214

Early works on building up hybrid inference sys- 215

tems usually train a system with the router model 216

as a whole, where the router model learns how to 217

route under a fixed configuration(Kag et al., 2023). 218

Due to the high training costs associated with large- 219

scale models, most works in LLM hybrid inference 220

only train the router model. 221

In existing evaluation frameworks for large lan- 222

guage models, generative tasks typically follow a 223

greedy decoding paradigm, where the model out- 224

puts the token with the highest probability while 225

disregarding alternative token possibilities. Based 226

on this setting, existing methods (Ding et al., 2024) 227

adopt a “Hard Label” approach for router training. 228

Specifically, for a single query xi ∈ Q, let S(xi) 229

and W (xi) represent the responses generated by 230

the strong model S and the weak model W , re- 231

spectively, using greedy decoding. The correct- 232

ness of these responses is denoted as δ(S(xi)) and 233

δ(W (xi)), where δ(·) ∈ {0, 1}, with 1 indicating a 234

correct response and 0 indicating an incorrect one. 235

The decision on whether to route the query to the 236

weak model is determined by the label yi, defined 237

as yi := I[δ(S(xi)) ≤ δ(W (xi)]. Here, yi = 1 238

implies the weak model is capable of performing at 239

least as well as the strong model for query xi, and 240

thus the query should be routed to the weak model. 241
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The hard-label router is trained by minimizing242

the binary cross-entropy loss:243

L(θ) = − 1

|Q|

|Q|∑
i=1

((1− yi)log(1− pθ(xi))244

+ yilog(pθ(xi))), (1)245

where pθ(x) is output of router θ toward query x,246

where larger pθ(x) indicates that the queries should247

more likely to be routed to the weak model.248

The hard label approach is limited by its inabil-249

ity to account for the inherent variability in the250

responses of large models, thereby restricting the251

router’s ability to make fine-grained decisions. This252

limitation becomes particularly apparent in scenar-253

ios where the smaller model’s performance is of-254

ten comparable to that of the larger model. An255

ideal hybrid inference system should incorporate256

the inherent variability of model responses into the257

training labels for the router, enabling it to make258

more reliable and cost-effective routing decisions,259

thereby enhancing overall system efficiency.260

3.1.2 Train with Soft Label261

To more objectively reflect the performance of large262

models, existing evaluations often involve multiple263

sampling of model outputs. Inspired by this ap-264

proach, we extend our approach by incorporating265

multiple sampling, which allows us to evaluate the266

models more thoroughly and account for response267

variability. This enhancement aims to improve the268

robustness and efficiency of the routing decisions269

in our hybrid inference framework.270

Specifically, for a single query xi , let271

S1(xi), . . . , S
n(xi) and W 1(xi), . . . ,W

n(xi) de-272

note the responses generated by the strong model S273

and the weak model W over n sampling iterations.274

The correctness of these responses is represented275

by δ(Sj(xi)) and δ(W j(xi)), where δ(·) ∈ {0, 1},276

with 1 indicating a correct response and 0 indi-277

cating an incorrect one. Each sampling iteration278

produces a noisy observation of yi, denoted as279

yji = I[δ(Sj(xi)) ≤ δ(W j(xi))]. In this setting,280

xi is associated with n data pairs in the training set,281

denoted as (xi, y1i ), (xi, y
2
i ), . . . , (xi, y

n
i ).282

Using this data, the router can still be trained283

with a hard label-based objective. However, this284

approach presents two significant challenges: first,285

the training cost scales proportionally with the num-286

ber of sampling attempts n; second, a single input287

can correspond to varying labels, potentially mis- 288

leading the router’s behavior. 289

Thus, we introduce the concept of the weak-to- 290

strong Win Rate, defined as ri := 1
n

∑n
j=1 y

j
i , 291

which represents the probability that the weak 292

model matches or exceeds the performance of the 293

strong model. Furthermore, we demonstrate that 294

optimization objectives based on Win Rate exhibit 295

greater generality for router training. Notably, hard 296

label training inherently captures the concept of 297

Win Rate, which can be expressed in the following 298

form: 299

L(θ) = − 1

n|Q|

|Q|∑
i=1

n∑
j=1

((1− yji )log(1− pθ(xi)) 300

+ yji log(pθ(xi))) 301

= − 1

n|Q|

|Q|∑
i=1

((n−
n∑

j=1

yji )log(1− pθ(xi)) 302

+ (
n∑

j=1

yji )log(pθ(xi))) 303

= − 1

|Q|

|Q|∑
i=1

((1− ri)log(1− pθ(xi)) 304

+ rilog(pθ(xi))). (2) 305

Here, pθ(x) represents the output of the router θ for 306

the query x, where a larger pθ(x) indicates a higher 307

likelihood that the query should be routed to the 308

weak model. This formula motivates us to explore 309

more refined soft labels that better characterize the 310

behavior of large models through their win rates. 311

3.2 Blocking Long-tail Queries 312

Even for large models, there are instances where, 313

despite multiple sampling attempts n, the model 314

is still unable to resolve certain long-tail queries. 315

This limitation arises from the inherent complexity 316

and ambiguity in some queries, which even pow- 317

erful models may struggle to address consistently, 318

regardless of the number of samples taken. Conse- 319

quently, such cases highlight the need for more so- 320

phisticated handling of unsolvable long-tail queries 321

in hybrid inference systems. 322

3.2.1 Hard Blocking 323

To automatically identify long-tail queries, we in- 324

troduce multiple sample Pass Rate (pass@k when 325

k=1) from Chen et al. (2021)’s work to substitute 326

single sample correctness. For a single query xi ∈ 327

Q with n sampled responses R1(xi), ..., R
n(xi) 328
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Figure 2: Hard Blocking and Soft Blocking facilitate the automatic handling of unsolvable long-tail queries by
generating reliable soft labels for router training. Queries assigned larger soft label values are more likely to be
routed to the weak model.

from model R, Pass Rate is defined as the average329

correctness of these responses:330

pr(xi) :=
1

n

n∑
j=1

δ(Rj(xi)). (3)331

We are able to split queries into two sets, Qu332

and Qs = Q − Qu, representing unsolvable and333

solvable queries, satisfying:334

∀xu ∈ Qu, prs(x
u) ≤ prw(x

u),335

∀xs ∈ Qs, prs(x
s) > prw(x

s). (4)336

By addressing unsolvable long-tail queries337

through routing them to the weak model, the deci-338

sion to route other queries similarly hinges entirely339

on the weak model’s capability to handle these340

queries effectively:341

labeli =

{
prw(xi), xi ∈ Qs,

1, xi ∈ Qu,
(5)342

where labeli is the soft label used in router training343

to substitute ri in Eq.2.344

To further reduce the cost associated with la-345

bel collection in this method, it is also possible346

to split Qu and Qs using only the strong model’s347

greedy-decoding responses, subject to the follow-348

ing restrictions:349

∀xu ∈ Qu, δ(S(x
u)) = 0,350

∀xs ∈ Qs, δ(S(x
s)) = 1. (6)351

3.2.2 Soft Blocking 352

A closer examination of Eq.2 and the concept of the 353

Pass Rate reveals that ri functions as a noisy indica- 354

tor, capturing the behaviors of the two models when 355

processing the same query. A key insight is that the 356

performance of the strong model is independent 357

of whether the weak model answers correctly. In- 358

stead of treating the two models’ performances as a 359

joint distribution, we can more effectively leverage 360

the distributional information obtained from mul- 361

tiple samplings. By treating the two independent 362

events separately, we can more accurately estimate 363

ri through Pass Rate. To maximize the use of this 364

information, we define the joint event for routing 365

the query to the weak model by combining two 366

conditions: the weak model is correct and even if 367

the weak model is incorrect, the strong model also 368

fails. This method allows us to offer a more refined 369

and informative estimate of overall performance: 370

labeli = prw(xi) + (1− prw(xi))(1− prs(xi)) 371

= 1− (1− prw(xi))prs(xi), (7) 372

where labeli is the soft label used in router training 373

to substitute ri in Eq.2, and labeli is the observed 374

frequency that the strong model fail to overperform 375

the weak model. 376

4 Experiments 377

4.1 Settings 378

Datasets In this study, we conduct experiments 379

on generative tasks commonly used to assess the ca- 380

pabilities of large language models (LLMs). These 381
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Datasets TriviaQA GSM8K HumanEval

Metrics APGR↑ Pass Rate↑
APGR↑ Pass Rate↑

APGR↑ Pass Rate↑
20% 50% 80% 20% 50% 80% 20% 50% 80%

Linear Interpolation 50.00 19.95 34.97 49.99 50.00 11.69 17.16 22.62 50.00 8.12 10.10 12.08
Hybrid LLM 49.17 18.98 34.38 49.99 62.08 14.38 20.75 24.79 51.94 8.10 10.50 12.35
RouteLLM (MF) 51.58 20.69 36.27 51.09 49.39 11.37 17.13 22.27 47.08 7.81 9.95 12.23
Margin Sampling 50.02 19.78 35.01 50.15 46.01 10.85 16.02 21.70 44.88 7.74 9.81 11.53
Ours (Hard Block) 53.16 22.09 37.85 50.96 67.37 16.34 22.46 24.67 54.36 8.17 10.77 12.27
Ours (Soft Block) 55.00 22.48 38.99 52.88 66.65 15.53 22.15 25.32 53.13 8.23 10.69 12.27

Table 1: Zero-shot performance of different methods across selected datasets. The weak model is Llama3.2-1B, and
the strong model is Llama3.1-70B. Linear Interpolation represents the combined performance of the two LLMs to
simulate random routing. Bolded values indicate the best-evaluated results.

tasks include TriviaQA (Joshi et al., 2017) for382

common sense question answering (QA), GSM8K383

(Cobbe et al., 2021) for mathematical reasoning,384

and HumanEval (Chen et al., 2021) for code synthe-385

sis. Our training set is derived from the TriviaQA386

and GSM8K training datasets, while HumanEval387

is utilized exclusively for evaluation, serving as an388

Out-Of-Domain task benchmark.389

Prompts For all datasets, we employ a straight-390

forward zero-shot prompt format without using any391

system prompts. Specifically, each query is format-392

ted as: "Question: {question}\nAnswer: ".393

Models In this study, we utilize two large lan-394

guage models (LLMs) from the Llama family395

(Grattafiori et al., 2024) for our experiments:396

Llama3.2-1B serves as the weak model, while397

Llama3.1-70B is employed as the strong model398

for training the router. Furthermore, to assess the399

generalizability of the trained router, we test it on400

an alternative model pair, substituting Llama3.2-3B401

as the weak model, to evaluate its adaptability to402

varying model configurations.403

Routers Aligned with prior studies, we adopt404

DeBERTa-v3-large (He et al., 2023) as the router405

model, enhanced with an additional linear layer to406

predict the probability of routing queries to either407

the weak or strong model. The router is trained for408

10 epochs using the specified loss function, with409

the best-performing checkpoints selected based on410

validation set performance for the final evaluation.411

All experiments are conducted on 8 NVIDIA A100412

GPUs, each with 80GB of memory, to facilitate413

data parallelization; however, the same experiments414

can be reproduced on a single NVIDIA A100 GPU.415

The training code will be made publicly available.416

Baselines We compare our approach with several417

state-of-the-art methods, including Hybrid LLM418

(Ding et al., 2024), RouteLLM (Ong et al., 2024), 419

and Margin Sampling (Ramírez et al., 2024). For 420

Hybrid LLM, we reproduce the methodology and 421

hyperparameter selection as outlined in the orig- 422

inal paper. For RouteLLM, we employ the best 423

practices and downloadable pre-trained weights, 424

utilizing Matrix Factorization (MF) with OpenAI’s 425

text-embedding-3-small to embed the queries. For 426

Margin Sampling, we treat it as a train-free base- 427

line, where the routing decision is based on detect- 428

ing the probability difference between the first and 429

second most likely tokens. 430

Metrics We evaluate the performance of the hy- 431

brid inference system using the Pass Rate, defined 432

as pass@1 (Chen et al., 2021), based on n = 32 433

sampling iterations. The system’s performance is 434

assessed at different proportions (20%, 50%, 80%) 435

of queries routed to the strong model. Further- 436

more, we incorporate the Average Performance 437

Gap Recovered (APGR) metric from RouteLLM 438

(Ong et al., 2024), which measures the system’s 439

ability to recover performance gaps between two 440

LLMs. The APGR is computed across various pro- 441

portions (0%, 10%, . . . , 100%) of queries routed to 442

the strong model, with values ranging from 0% to 443

100%, reflecting the extent to which performance 444

discrepancies are mitigated through dynamic rout- 445

ing. 446

4.2 Main Results 447

4.2.1 Overall Performance 448

Table 1 summarizes the overall performance of 449

various routing methods within a hybrid inference 450

system utilizing Llama3.2-1B and Llama3.1-70B. 451

Methods achieving higher APGR also exhibit im- 452

proved performance across different proportions of 453

queries routed to the strong model. Our proposed 454

methods outperform existing approaches, with a no- 455

table improvement of 3.72% on TriviaQA, 5.29% 456
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Datasets TriviaQA GSM8K HumanEval

Metrics APGR↑ Pass Rate↑
APGR↑ Pass Rate↑

APGR↑ Pass Rate↑
20% 50% 80% 20% 50% 80% 20% 50% 80%

Linear Interpolation 50.00 25.75 38.59 51.44 50.00 12.60 17.72 22.85 50.00 10.27 11.44 12.61
Hybrid LLM 49.15 24.86 38.04 51.50 61.09 14.38 20.75 24.79 51.94 10.42 11.47 12.63
RouteLLM (MF) 51.22 26.14 39.45 52.28 49.11 15.11 20.72 24.66 50.33 10.10 11.26 12.65
Margin Sampling 51.21 26.07 39.15 52.49 43.82 11.71 16.11 21.42 44.88 9.97 11.41 12.42
Ours (Hard Block) 53.29 27.61 41.15 52.28 65.97 16.68 22.30 24.54 50.86 10.04 11.62 12.63
Ours (Soft Block) 55.38 27.91 42.28 54.28 65.48 16.01 22.04 25.24 52.37 10.33 11.72 12.80

Table 2: Zero-shot performance of various methods across selected datasets, generalizing to different model pairs.
Trained on the hybrid inference system of Llama3.2-1B and Llama3.1-70B, and evaluated on the hybrid inference
system of Llama3.2-3B and Llama3.1-70B. Linear Interpolation simulates random routing by combining the
performance of the two LLMs. Bolded values indicate the best-evaluated results.

on GSM8K, and 2.42% on HumanEval, demon-457

strating robustness across diverse query scenarios.458

Additional visualizations of these results are pro-459

vided in Appendix B.460

On TriviaQA, the Soft Blocking method deliv-461

ers the best performance, while the Hard Blocking462

method also outperforms all existing approaches.463

The poor performance of Hybrid LLM in this con-464

text is not surprising, as it relies on win-rate based465

on BartScore, which has proven unreliable across466

datasets in Appendix A. Specifically, responses467

with higher BartScore do not consistently outper-468

form those with lower scores. In contrast, the other469

methods exceed random routing, demonstrating470

their effectiveness.471

Across both GSM8K and HumanEval, routing472

methods exhibit consistent patterns, typically ei-473

ther performing well on both datasets or underper-474

forming on both. In contrast, our methods achieve475

state-of-the-art performance. Although based on476

the same training data, the difference in training ob-477

jectives sets our approach apart from Hybrid LLM,478

underscoring the effectiveness of our method. On479

the other hand, RouteLLM and Margin Sampling480

show weaker performance on these datasets, in-481

dicating potential generalization challenges. For482

RouteLLM, these limitations may stem from do-483

main shifts in evaluation tasks and Out-of-Domain484

challenges associated with LLM selection. As for485

Margin Sampling, the results indicate that reason-486

ing tasks—such as math, where multiple valid solu-487

tions exist—pose difficulties, as they conflict with488

the fundamental assumption of Margin Sampling,489

particularly when smaller LLMs are used. Besides,490

uncertainty in the responses is not the only factor491

that needs to be considered when deciding whether492

to cascade to the strong model. This oversight con-493

tributes to the failure of Margin Sampling on Hu-494

manEval, where multiple valid paths may lead to495

the correct answer, making the assumption under- 496

lying Margin Sampling less reliable in this context. 497

4.2.2 Generalizing to Different Model Pairs 498

In Table 2, we evaluate the performance of the 499

hybrid inference system configured with Llama3.2- 500

3B and Llama3.1-70B, utilizing routers trained in 501

prior experiments without any additional retraining. 502

Our methods, particularly Soft Blocking, consis- 503

tently demonstrate superior performance in this 504

configuration, achieving an APGR improvement 505

of 4.16% on TriviaQA, 4.88% on GSM8K, and 506

0.43% on HumanEval, which highlights the gen- 507

eralization capability of our method, where routers 508

trained on one model pair exhibit consistent per- 509

formance when applied to another, confirming its 510

adaptability. Additional visualizations of these re- 511

sults are provided in Appendix B. 512

On TriviaQA, both of our methods continue 513

to outperform the other approaches, with Hy- 514

brid LLM performing worse than random routing. 515

RouteLLM and Margin Sampling show improved 516

performance in this setting. For Margin Sampling, 517

as the weak model scales up, the probability differ- 518

ence becomes a more reliable indicator of response 519

uncertainty in common-sense QA tasks. 520

On GSM8K and HumanEval, most methods 521

maintain their performance as observed in Table 522

1. For RouteLLM, since the weakest model in its 523

training setting is Llama-13B, replacing the weak 524

model with Llama3.2-3B likely reduces the gap 525

between the training and evaluation conditions. 526

4.3 Ablation Study 527

4.3.1 Router Models 528

An alternative choice for the router model back- 529

bone is causal LLMs (Ong et al., 2024). How- 530

ever, we argue that using a router model larger 531

than the weak model incurs unnecessary computa- 532
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Datasets TriviaQA GSM8K HumanEval

Metrics APGR↑ Pass Rate↑
APGR↑ Pass Rate↑

APGR↑ Pass Rate↑
20% 50% 80% 20% 50% 80% 20% 50% 80%

Weak Model Pass Rate 50.96 20.00 35.88 50.94 51.17 12.18 17.48 22.63 53.42 8.19 10.56 12.31
Strong Model Pass Rate 54.31 21.44 38.53 53.28 65.98 15.24 21.82 25.35 49.16 7.87 9.95 12.27
Hard Label 52.05 20.80 36.51 51.51 63.26 14.68 21.02 24.91 50.63 8.61 10.12 11.97
Hard Blocking w/o SMS 54.48 22.23 38.62 52.61 63.43 14.95 21.09 25.05 54.44 8.86 10.48 12.60
Hard Block 53.16 22.09 37.85 50.96 67.37 16.34 22.46 24.67 54.36 8.17 10.77 12.27
Soft Block 55.00 22.48 38.99 52.88 66.65 15.53 22.15 25.32 53.13 8.23 10.69 12.27

Table 3: Zero-shot performance of various label designs across selected datasets. The models were trained and
evaluated with the weak model being Llama3.2-1B and the strong model being Llama3.1-70B. Bolded values
indicate the best-evaluated results.

Datasets TriviaQA GSM8K HumanEval
Metrics APGR↑
Hard Blocking (Causal) 51.78 57.16 54.44
Hard Blocking (Deberta) 53.16 67.37 54.36
Soft Blocking (Causal) 52.44 58.55 55.31
Soft Blocking (Deberta) 55.00 66.65 53.13

Table 4: Zero-shot performance of different backbone
models (DeBERTa-v3-large, Llama3.2-1B) across se-
lected datasets. Trained and evaluated within the hybrid
inference system of Llama3.2-1B and Llama3.1-70B.
Bolded values indicate the best-evaluated results.

tional costs and impacts response time. As a result,533

we train the weak model as the router for com-534

parison. As shown in Table 4, DeBERTa-v3-large535

(with 300M parameters) outperforms Llama3.2-1B,536

despite its smaller size, demonstrating better perfor-537

mance. Notably, Llama3.2-1B performs better on538

HumanEval, indicating its superior generalization539

ability.540

4.3.2 Label Designs541

We also conduct an ablation study on various label542

designs, as presented in Table 3. More visualized543

results can be found in Appendix B.544

Pass Rates of the Weak Model Training the545

router using only the weak model’s Pass Rates546

as a soft label results in performance that is only547

marginally better than random routing. This out-548

come suggests that effective routing does not pri-549

marily rely on the weak model’s capacity to pro-550

vide correct answers, highlighting the need for ad-551

ditional factors to guide the routing process.552

Pass Rates of the Strong Model When trained553

using only the strong model’s Pass Rates, the router554

achieves solid performance but remains outper-555

formed by the two proposed methods. Interestingly,556

this labeling strategy demonstrates superior results557

when only a small fraction of queries are routed558

to the weak model, as it focuses on the strong559

model’s accuracy and effectively identifies long- 560

tail queries. This suggests that the Pass Rate of the 561

strong model is intrinsically tied to query complex- 562

ity, as queries that are challenging for the strong 563

model are equally difficult for the weak model. 564

However, in broader scenarios, its performance is 565

surpassed by the more robust Hard Blocking and 566

Soft Blocking techniques. 567

Hard Label Using hard labels, as defined in Eq 568

1, derived from greedy sampling leads to improved 569

performance compared to relying solely on the 570

weak model’s Pass Rates. This improvement sug- 571

gests that the router is not simply forwarding unre- 572

solved queries from the weak model to the strong 573

model, but instead is capable of learning more so- 574

phisticated and nuanced routing strategies. 575

Hard Blocking without Strong Model Sampling 576

This variant of Hard Blocking, described in Eq 6, 577

is a more economical alternative. By employing 578

greedy decoding on the strong model while per- 579

forming multiple samplings on the weak model, 580

the router achieves comparable performance. This 581

demonstrates the efficiency of the method, as it re- 582

duces computational overhead while maintaining 583

robust routing performance. 584

5 Conclusions 585

In this work, we propose Firewall Routing, a dual- 586

model hybrid inference framework that leverages 587

multiple sampling and innovative blocking tech- 588

niques to optimize query routing. Through ex- 589

tensive experiments across various benchmarks, 590

our approach demonstrates state-of-the-art perfor- 591

mance, significantly reducing computational costs 592

while maintaining high response quality. These re- 593

sults highlight the effectiveness and robustness of 594

the proposed framework in handling routing tasks. 595
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Limitations596

The generalization of the proposed hybrid inference597

system across different model pairs and datasets598

remains an area for further exploration. While599

our approach demonstrates promising results on600

selected model combinations (e.g., Llama3.2-1B601

and Llama3.1-70B) and datasets (e.g., TriviaQA,602

GSM8K, HumanEval), the system’s performance603

may vary when applied to other model pairs or do-604

mains. Specifically, the router’s ability to general-605

ize across models with varying sizes, architectures,606

and performance characteristics requires further607

investigation. Additionally, the limited range of608

datasets tested raises questions about the system’s609

robustness in more specialized or domain-specific610

tasks. Future work should include a broader evalu-611

ation across diverse models and datasets to assess612

the scalability and applicability of the proposed613

approach in real-world, heterogeneous settings.614
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A Is BartScore a Reliable Metric of Response? 1002

We calculate the BartScore for the responses of different LLMs on TriviaQA and GSM8K. The responses 1003

are sorted based on their BartScore, and the sorted responses are grouped into bins. Average accuracy is 1004

then calculated within each bin to assess the performance of the models at different levels of response 1005

correctness. 1006

As shown in Figure 3, 4, a correlation between BartScore and accuracy is only observed on TriviaQA 1007

with Llama3.1-70B. In other cases, no consistent or discernible pattern is evident. 1008
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Figure 3: BartScore analysis of LLM responses on TriviaQA, GSM8K, and HumanEval. The responses are sorted
by BartScore and grouped into bins, with accuracy calculated within each bin to evaluate performance at varying
levels of response quality.
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Figure 4: BartScore analysis of LLM responses on training set of TriviaQA and GSM8K. The responses are sorted
by BartScore and grouped into bins, with accuracy calculated within each bin to evaluate performance at varying
levels of response quality.
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B Visualization of Route Method Performance1009

Similarly, we rank all queries based on the values predicted by the models, and patch them into distinct1010

bins. For each bin, we compute the average pass rate of the strong model and the weak model. Additionally,1011

we evaluate the improvement in pass rate achieved by routing the queries in each bin to the strong model,1012

rather than to the weak model.1013
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(c) Pass Rates on HumanEval
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(d) Improvements on TriviaQA
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(f) Improvements on HumanEval
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Figure 5: Performance evaluation of reproduced Hybrid LLM on selected datasets. The system utilizes Llama3.2-1B
as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 6: Performance evaluation on generalization of reproduced Hybrid LLM on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(b) Pass Rates on GSM8K
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(c) Pass Rates on HumanEval
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(f) Improvements on HumanEval
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Figure 7: Performance evaluation of Matrix Factorization from RouteLLM on selected datasets. The system utilizes
Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(c) Pass Rates on HumanEval
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(f) Improvements on HumanEval

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.10

0.05

0.00

0.05

0.10

Av
er

ag
e 

Im
pr

ov
em

en
t o

n 
Pa

ss
ed

 R
at

e

Figure 8: Performance evaluation on generalization of Matrix Factorization from RouteLLM on selected datasets.
Evaluated on a system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented
in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 9: Performance evaluation of Margin Sampling on selected datasets. The system utilizes Llama3.2-1B as
weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 10: Performance evaluation on generalization of Margin Sampling on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(c) Pass Rates on HumanEval

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

Pa
ss

ed
 R

at
e

Strong Model
Weak Model

(d) Improvements on TriviaQA

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Im
pr

ov
em

en
t o

n 
Pa

ss
ed

 R
at

e
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(f) Improvements on HumanEval
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Figure 11: Performance evaluation of Hard Blocking on selected datasets. The system utilizes Llama3.2-1B as weak
model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(c) Pass Rates on HumanEval

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

Pa
ss

ed
 R

at
e

Strong Model
Weak Model

(d) Improvements on TriviaQA

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

Im
pr

ov
em

en
t o

n 
Pa

ss
ed

 R
at

e
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(f) Improvements on HumanEval
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Figure 12: Performance evaluation on generalization of the Hard Blocking on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(f) Improvements on HumanEval
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Figure 13: Performance evaluation of Soft Blocking on selected datasets. The system utilizes Llama3.2-1B as weak
model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 14: Performance evaluation on generalization of the Soft Blocking on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(f) Improvements on HumanEval
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Figure 15: Performance evaluation of the router trained on Weak Model’s Pass Rates across selected datasets. The
system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(f) Improvements on HumanEval
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Figure 16: Performance evaluation of the router trained on Strong Model’s Pass Rates across selected datasets.
The system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are presented in a
zero-shot setting.
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(f) Improvements on HumanEval
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Figure 17: Performance evaluation of the router trained on Hard Labels attained with greedy decoding across
selected datasets. The system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are
presented in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 18: Performance evaluation of the router trained using Hard Blocking without conducting sampling on the
strong model across selected datasets The system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong
model. Results are presented in a zero-shot setting.
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