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Abstract

Inference on modern Bayesian Neural Networks
(BNNs) often relies on a variational inference treat-
ment, imposing violated assumptions of indepen-
dence and the form of the posterior. Traditional
MCMC approaches avoid these assumptions at the
cost of increased computation due to its incom-
patibility to subsampling of the likelihood. New
Piecewise Deterministic Markov Process (PDMP)
samplers permit subsampling, though introduce
a model-specific inhomogenous Poisson Process
(IPPs) which is difficult to sample from. This work
introduces a new generic and adaptive thinning
scheme for sampling from these IPPs, and demon-
strates how this approach can accelerate the ap-
plication of PDMPs for inference in BNNs. Ex-
perimentation illustrates how inference with these
methods is computationally feasible, can improve
predictive accuracy, MCMC mixing performance,
and provide informative uncertainty measurements
when compared against other approximate infer-
ence schemes.

1 INTRODUCTION

Since Hamiltonian Monte Carlo (HMC) was first developed
for Bayesian inference Neal [2012], sampling methods have
seen relatively little application to Bayesian Neural Net-
works (BNNs). Flexibility, inference diagnostics and asymp-
totic guarantees of HMC comes at the cost of computational
complexity as each data point needs to be used to compute
the entire likelihood, and to perform Metropolis Hastings
corrections. As models and data sets have grown, this ex-
pense has not been offset by the considerable performance
increase in computational hardware. A recent study found
that the fitting of a HMC model for ResNet20 required a
computational cost equivalent to 60 million SGD epochs to
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Figure 1: Example of correlations between the parameters
in the first layer of a BNN for a simple regression task. Plot
(a) samples of predictive posterior from proposed method,
(b) correlation between all parameters on the first layer, (c)
kernel density estimate for a single parameter.

obtain only 240 samples from three chains Izmailov et al.
[2021].

To circumnavigate the computational expense, much re-
search has explored the application of approximate inference
through the lens of Variational Inference (VI) Jordan et al.
[1999], Wainwright and Jordan [2008], Blei et al. [2017] or
through exploiting properties of SGD Mandt et al. [2017].
VI replaces the true target distribution with an approximate
distribution that can be easily manipulated, typically us-
ing a mean-field approach where independence between
parameters is assumed. These methods are attractive due to
their reduced computational complexity and their amenabil-
ity to stochastic optimisation. However, the suitability of
these methods relies heavily on the expressiveness of the
approximate posterior to accurately model the true distri-
bution. Given the known correlations and frequent multi-
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modal structure amongst parameters within BNNs Barber
and Bishop [1998], MacKay [1995], a mean-field approx-
imation can be unsuitable for accurate inference. Figure
1 illustrates these properties for a simple BNN. Stochas-
tic gradient MCMC methods such as Stochastic Gradient
Langevin Dynamics (SGLD) aim to address this issue but
requires prohibitively small and decreasing learning rates to
target the posterior that limits their applicability Nagapetyan
et al. [2017].

This work explores a new set of “exact” inference meth-
ods based on Piecewise Deterministic Markov Processs
(PDMPs) Davis [1984] to perform Bayesian inference.
PDMP methods can maintain the true posterior as its in-
variant distribution during inference whilst permitting sub-
sampling of the likelihood at each update. This property is
attractive for BNNs which typically are of large dimension
in terms of parameters and data sets. Furthermore, previ-
ous research has highlighted PDMP methods for favourable
performance in terms of mixing and sampling efficiency
Bouchard-Côté et al. [2018], Bierkens et al. [2019], Wu and
Robert [2017], Bierkens et al. [2020]. The dynamics of these
samplers are simple to simulate, though simulating the times
to update these dynamics is controlled by an Inhongeneous
Poisson Process (IPP) which can be difficult to sample. This
work explores an adaptive procedure to approximate sam-
pling of these event times to allow for approximate inference
within the context of BNNs. The contributions of this paper
are the following,

• Propose a novel adaptive thinning method for approxi-
mate sampling from IPPs events

• Develop a GPU-accelerated package for applying these
methods to general models

• Evaluate the performance of these methods applied to
computer vision tasks using BNNs;

• Evaluate the suitability of PDMP samplers for BNNs
and investigate how they can improve predictive accu-
racy, calibration and posterior exploration when com-
pared against SGLD.

MCMC methods have often been seen as computationally
prohibitive for models with many parameters or where mod-
ern large data sets are used. It is hoped that this work will
demonstrate that approximate inference using MCMC ap-
proaches for BNNs can be practically feasible, offer insight-
ful results, and to show how we can leverage exact methods
for approximate inference to more accurately target poste-
rior distributions in BNNs.

2 PRELIMINARIES

Following the description from Fearnhead et al. [2018],
PDMP are defined by three key components: piecewise
deterministic dynamics, an event rate, and the transition

kernel. For inference, the goal is to design these three key
components such that we can use the properties of a PDMP
to sample from the posterior distributions of our parameters
ω. We represent the deterministic dynamics as Ψ(ω,v, t),
where v is an auxiliary velocity variable to guide posterior
exploration with known distribution Φ(v) and t represents
time. At random events, these dynamics are updated in
accordance to a specified transition kernel. Upon an update
event, the piecewise deterministic dynamics of the system
update according to the kernel, and the state ω at the time of
the update event serves as the starting position for the next
segment such that they are all connected.

An IPP with rate function λ(ω(t),v(t)) governs the update
times for the dynamics. All rate functions in this work rely
upon the negative joint log probability of the model,

U(ω) = − log
(
p(ω)p(D|ω)

)
, (1)

where p(ω) is a prior or reference measure and p(D|ω) is
our likelihood, If these three components are suitably de-
fined, these processes can sample from a given posterior
distribution. For derivations on how to design these compo-
nents to target a posterior distribution, the reader can refer to
Fearnhead et al. [2018], Vanetti et al. [2017], Davis [1993].
We now introduce the samplers used within this work.

2.1 BOUNCY PARTICLE SAMPLER

The dynamics of the Bouncy Particle Sampler (BPS)
Bouchard-Côté et al. [2018] are given by Ψ(ω,v, t) =
ωi+vit, where the superscripts indicate a deterministic seg-
ment. The velocity remains constant within these segments
and the parameter space is explored linearly. The velocity
is updated at event times given by τ ∼ IPP(λ(ω(t)),v),
where,

λ(ω(t),v) = max{0,∇U(ω) · vi}. (2)

Once an event time is sampled, the state of our variable
“bounces” according to a lossless inelastic Newtonian colli-
sion,

vi+1 = vi − 2
∇U(ωi+1) · vi

∥∇U(ωi+1)∥2
∇U(ωi+1) (3)

where ωi+1 represents the end of the previous segment at
time τ , and serves as the starting position for the following
segment. The BPS provides linear dynamics that are simple
to simulate, though relies only on local gradient informa-
tion, which can lead to inefficient exploration for BNNs.
Preconditioning can allow us to address this.

2.2 PRECONDITIONED BPS

To accelerate posterior exploration in directions of interest,
we can precondition the gradients to include more infor-



mation about the structure of our posterior space. Intro-
duction of a preconditioning matrix A results in new dy-
namics of Ψ(ω,v, t) = ωi + Avit, and a new event rate,
λ(ω(t),v) = max{0,v ·A∇U(ω+vt)}. Upon events, the
velocity is updated according to,

vi+1 = vi − 2
A∇U(ωi+1) · vi

∥A∇U(ωi+1)∥2
A∇U(ωi+1). (4)

With careful choice of A, exploration along certain axis
can be appropriately scaled. Pakman et al. [2017] propose
a preconditioner similar to Li et al. [2015], though our pre-
liminary experimentation found inconsistent results when
applied to BNNs. Instead, we opt to build on the approach
of Bertazzi and Bierkens [2020], where we use variance in-
formation of our samples to precondition our dynamics. We
choose the preconditioner such that A = diag

(
Σ

1
2

)
, where

Σ is the estimated covariance in our sample found during
a warm-up period. As such, we refer to this sampler as the
σBPS .

2.3 BOOMERANG SAMPLER

The Boomerang Sampler Bierkens et al. [2020] introduces
non-linear dynamics for both parameter and velocity terms,
and the inclusion of a Gaussian reference measure for the
parameters and velocity N (ω⋆,Σ⋆)⊗N (0,Σ⋆). The first
term in this reference measure can be seen as a replacement
for the prior in the joint probability over parameters and the
second as the known distribution for the velocity component.
The parameters ω⋆ and Σ⋆ can be specified as traditional
prior, or can be specified in an empirical approach where
they are learnt from the data. Within this work, we will set
ω⋆ to the MAP estimate. In the original paper, Σ⋆ is set to the
inverse of the Hessian, however, this can be computationally
prohibitive for BNNs. Instead, we sum over the first order
gradients at ω⋆, and then compute the derivative with respect
to this sum that is then inverted and scaled such that,

Σ⋆ = γ
[N−1∑

i=0

∇ω

P−1∑
j=0

∇ωp(Di|ω⋆)j

]−1

(5)

where N is the number of mini-batches present, P is the
number of parameters, subscript j indicates summation over
parameter gradients in our model and γ is a hyperparameter
to adjust the scale as needed. This can be seen as a weighted
stochastic average to the inverse of a Hessian matrix diago-
nal.

Unlike the BPS samplers, the velocity does not remain con-
stant between events. The dynamics of the Boomerang sam-
pler for ω and v within events are given by Ψ(ω,v, t)ω =
ω⋆ − (ωi − ω⋆) cos(t) + vi sin(t), Ψ(ω,v, t)v = −(ωi −
ω⋆) sin(t) + vi cos(t), where the subscripts denote the pa-
rameter and velocity trajectory within the deterministic seg-
ment. The event rate is the same as the BPS, and the starting

velocity for the next segment is updated upon events as,

vi+1 = vi − 2
∇U(ωi+1) · vi∥∥∥Σ 1

2
⋆∇U(ωi+1)

∥∥∥2Σ⋆∇U(ωi+1). (6)

2.4 VELOCITY REFRESHMENT

All of the samplers introduced fail to target the posterior
explicitly when using the above dynamics alone. Introduc-
tion of a refreshment step rectifies this, which is governed
by a homogeneous PP τref ∼ λ(λref ). When τref < τ ,
the velocity is instead randomly sampled from the known
reference distribution Φ(v), and τref is used for the update
event time. For BPS samplers in this work, we use a re-
freshment distribution of the form N (0, σ2), where σ is a
hyper-parameter to be set, and the Boomerang sampler re-
quires Φ(v) = N (0,Σ⋆). A summary of PDMP algorithms
for inference is described in Algorithm 1.

Algorithm 1: Application of PDMP samplers for Infer-
ence
Result: Samples from posterior distribution
while Sampling do

// Simulate event time
// event times in this work

simulated with Algorithm 2
τ ∼ PP(λ(ω,v));
// Simulate time of refresh event
τref ∼ PP(λref);
τ i = min(τ, τref);
// find end of current

piecewise-deterministic
segment, which will form start
of next segment

ωi+1 = Ψ(ω,v, τ i)ω;
if τ i = τ then

// update according kernel
vi+1 = R(ωi+1,vi);

else
// refresh velocity from known

distribution
vi+1 ∼ Φ(v);

end
end

2.5 PROBLEMS WITH THE EVENT RATE

With the deterministic dynamics illustrated in these sam-
plers, the main challenge in implementation of these meth-
ods is due to the sampling of the event times. Analytic
sampling from IPP

(
λ(t)

)
requires being able to invert the



integral of the event rate w.r.t. time,

Λ(t) =

∫ τ

0

λ(t)dt =

∫ τ

0

max{0,v ·A∇U(ω(v, t)}dt,
(7)

where A = I for the BPS and Boomerang samplers. Invert-
ing the above integral is feasible only for simple models. A
general case for sampling from IPPs is available through
thinning Lewis and Shedler [1979]. This requires introduc-
ing an additional rate function that we can sample from µ(t)
that is also a strict upper bound on the event rate function of
interest such that µ(t) ≥ λ(t) for all t ≥ 0.

The efficiency of any thinning scheme relies on the tightness
of the upper bound; the greater the difference between the
upper bound and the true rate, the more likely a proposed
time will be rejected when sampling. Pakman et al. [2017]
propose a Bayesian linear regression method to generate
an upper bound suitable for thinning, though require the
calculation of variance within gradients to formulate a suit-
able upper bound. They calculate this variance empirically,
which requires computing the gradient for each data point
individually within a mini-batch. This computation prohibits
use for BNNs where automatic differentiation software is
used. Furthermore, the solution to the regression requires
matrix inversion which can be numerically unstable without
a strong prior, which limits its application for accelerating
sampling within larger models. In the next section, we ad-
dress this issue by instead introducing an interpolation-based
scheme for creating efficient and adaptive approximate up-
per bounds that avoids excessive gradient computations and
the numeric instability of matrix inversion.

3 ADAPTIVE BOUNDS FOR SAMPLERS

3.1 SAMPLING FROM IPPS WITH LINEAR
EVENT RATES

Our goal is to create a piecewise-linear envelope h(t) that
will serve as an approximate upper bound of our true event
rate, where each segment in h(t) is represented by ait+ bi.
This envelope will serve as the event rate for a proposal IPP
that will be suitable for use with the thinning method of
Lewis and Shedler [1979]. Acceptance of an event time t is
given by,

U ≤ λ(t)

h(t)
, (8)

where U ∼ Uniform[0, 1]. We begin by building on the
work of Klein and Roberts [1984] to demonstrate how to
sample times from an IPP with a piecewise-linear event rate
which we can use with thinning.

Within our proposal IPP with rate h(t), we wish to generate
the next event time ti given the previous event ti−1. The
probability of events occuring within the range of [ti−1, ti]

is given by Devroye [2006],

F (x) = 1− exp{−(Λ(ti)− Λ(ti−1))} (9)

We can solve this expression for ti by,

ti = Λ−1(ti−1 − U) (10)

where U ∼ Uniform[0,1]. For linear segments, the solution
to this system can be written as Klein and Roberts [1984],

ti =
(
− bi +

√
b2i + a2i t

2
i−1 + 2aibiti−1 log(1− U)

)
/ai.

(11)
This provides a framework for sampling from IPPs with a lin-
ear event rate. We now describe how we create a piecewise-
linear envelope for a proposal process that can be used for
thinning.

3.2 PIECEWISE INTERPOLATION FOR EVENT
THINNING

We begin by introducing a modified event rate for which we
will form our envelope,

λ̂(ω(t),v) = max{0, α∇U(ω) · vi}, (12)

where α ≥ 1 is a positive scaling factor to control the
tightness of the approximate bound on the rate. The use of λ̂
for creating our envelope is valid, since for values of α ≥ 1,
λ̂(t) ≥ λ(t). The scaling factor included in this event rate is
designed to provide flexibility to end users with respect to
computational time and bias that will be introduced during
inference. The closer α is to one, the lower the probability
for rejection of proposed event times, but the greater the
probability that the generated event rate will not be a strict
upper bound.

Our goal is to create a piecewise-linear upper bound suitable
for proposing event times using Equation 11. To achieve
this we have two growing sets, one for proposed event times
T = {t0, ..., tn} and the value of the adjusted event rates
at these times L = {λ̂(t0), . . . , λ̂(tn)} for which we can
create a set of functions,

h(t) = ait+ b, t ≥ ti. (13)

The values for ai and bi are found by interpolating between
the points (ti−1, λ̂(ti−1)) and (ti, λ̂(ti)).

At the beginning of every deterministic PDMP segment, the
sets T and L will be empty. To initialise the sets and create
our first linear segment, we evaluate the event rate at two
points, t0 = 0 and t = tinit, where tinit > t0. To evaluate
the values for a0 and b0, we interpolate between these two
segments. Once the values for the first linear segment are
found, t0 and λ̂(t0) are appended to their corresponding
sets, and tinit and λ̂(tinit) are discarded. With this initial
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Figure 2: Example of the progression of the proposed envelope scheme used for thinning. The blue line represents the true
event rate, orange section depicts the active regions for which we sample a new proposal time, and the red section depicts
previous segments in the envelope. Starting from the left, an initial segment is found through interpolation between time
points t0 and tinit. In the next segment, active regions of the envelope are found by interpolating between the two prior
points, which extends to create a new segment to propose times. This process continues until a proposed time is accepted
from thinning.

linear segment, we can propose a time ti through Equation
11. This proposed time is either accepted or rejected from
Equation 8.

If the proposed time is accepted, then the dynamics of the
PDMP sampler are updated at the given event time and
the sets T and L are cleared, ready to be re-initialised for
the new dynamics. If the time is rejected, the proposed
time ti and envelope evaluation λ̂(ti) are appended to their
respective sets, and a new linear segment is calculated to
interpolate between this rejected proposal and the previous
elements in the sets T and L. The rejected proposal time
will serve as the new starting point (ti−1) for the new linear
segment to propose the next time using Equation 11. This
will continue until the proposed event time is accepted. This
process depicted visually in Figure 2 and summarised in
Algorithm 2.

Within this work, we limit ourselves to models where the
envelope provided by h(t) will only be an approximate up-
per bound, meaning bias will likely be introduced during
inference. Diagnosis and correction of this can be identi-
fied through the acceptance ratio λ(t)/h(t); if this value is
greater than one, the condition of h(t) being a local upper
bound is violated. The amount of potential bias introduced
can be mitigated by increasing the scaling factor α in Equa-
tion 12 at the expense of increasing computation load. This
property is investigated in Supp. Material A. In the following
sections, we evaluate the proposed event thinning scheme
for BNNs to identify the suitability of different samplers for
inference in these challenging models, and how they can out-
perform other stochastic approximation methods in terms of
calibration, posterior exploration, sampling efficiency and
predictive performance.

Algorithm 2: Sampling event rate using proposed adap-
tive thinning method.
Result: Proposed PDMP Event Time τ
Initialize T, L;
Evaluate (0, λ(0)), (tinit, λ(tinit));
i = 1;
Compute ai, bi;
T0 ← 0, L0 ← λ(t);
Discard tinit, λ(tinit);
while not accepted do

// propose event time with ti−1, ai
and bi

ti ∼ PP
(
h(t)

)
;

u ∼ Uniform[0, 1];
if u ≤ λ(ti)/h(t) then

// sample is accepted
τ = ti;
accepted = True;

end
else

// increment counter
i+ = 1;
Ti ← ti, Li ← λ(ti);
// update linear segment
ai, bi = update(L, T );

end
end

4 RELATED WORK

The samplers used within this work require the use of an ad-
ditional reference process to provide velocity refreshments.
The Generalised BPS Wu and Robert [2017] is an updated
variant of the BPS algorithm that incorporates a stochas-



tic update of the velocity which alleviates the need for a
refreshment process. Simulations have shown comparable
performance to the BPS for simple models and how it can
reduce the need for fine-tuning the reference parameter τref .

Another prominent sampler is the Zig-Zag Process (ZZP)
[Bierkens et al., 2019], where at events the dynamics of a
single parameter are updated. For the one-dimensional case,
this sampler represents the same process as the BPS. This
sampler has shown favourable results in terms of mixing
performance and can achieve ergodicity for certain models
where the BPS cannot. A key characteristic of this method
is that each parameter is assigned an individual event rate,
making implementation for high-dimensional BNN models
challenging.

Another class of algorithms designed for subsampling are
discrete stochastic MCMC methods Wenzel et al. [2020],
Chen et al. [2014], Ma et al. [2015], Welling and Teh [2011],
Li et al. [2015]. These models have shown favourable per-
formance, with a recent variant achieving comparable pre-
dictive accuracy on the ImageNet data set Heek and Kalch-
brenner [2019]. Compared to algorithms related to PDMPs,
it has been shown that high variance related to naive subsam-
pling limits these methods to provide only an approximation
to the posterior Betancourt [2015]. The bias that is intro-
duced due to subsampling can be controlled by reducing the
step-size for these methods at the expense of mixing perfor-
mance and posterior explorationNagapetyan et al. [2017],
Brosse et al. [2018], Teh et al. [2016]. We investigate the
effect of this property for SGLD and compare performance
with PDMP samplers in the following section.

5 EXPERIMENTS

We now validate the performance of PDMPs using the pro-
posed event sampling method on a number of synthetic and
real-world data sets for regression and classification. To anal-
yse performance for predictive tasks, the predictive posterior
needs to be evaluated. In this work, we discretise samples
from the trajectory to allow for Monte Carlo integration,

p(y∗|x∗,D) =
∫

π(ω)p(y∗|ω, x∗)dω

≈ 1

N

N∑
i=1

p(y∗|ωi, x
∗) ωi ∼ π(ω), (14)

where parameter samples of ω(i) are taken from the values
encountered at event times. Experimentation is first con-
ducted on synthetic data sets to allow us to easily visualise
predictive performance and uncertainty in our models, fol-
lowed by more difficult classification tasks with Bayesian
Convolutional Neural Networks (CNNs) on real data sets.
For all experimentation, we set our scaling factor from Equa-
tion 12 to α = 1.0 to promote computational efficiency. To

enable these experiments, we deliver a Python package ti-
tled Tensorflow PDMP (TPDMP). This package utilises the
Tensorflow Probability library Dillon et al. [2017], allowing
for hardware acceleration and graph construction of all our
models to accelerate computation. We deliver kernels to
implement the BPS, σBPS , and Boomerang sampler with
our proposed event thinning scheme. Code is available at
https://github.com/egstatsml/tpdmp.git.

5.1 REGRESSION AND BINARY
CLASSIFICATION WITH SYNTHETIC DATA

To visualise predictive performance and uncertainty estima-
tion, regression and binary classification tasks are formed
on synthetic data sets. Description of the networks used
for these tasks is described in Supp. Material E. Before
sampling, a MAP estimate was first found using stochas-
tic optimisation, and was used to initialise each sampler.
2,000 samples were generated using each sampling method,
with each sampler initialised from the same MAP estimate.
The σBPS requires an additional warmup period to iden-
tify suitable values for the preconditioner. We achieve this
by performing 1,000 initial samples using the BPS, and
standard deviation parameters used for the preconditioner
are estimated from these samples using the Welford algo-
rithm Welford [1962]. These preconditioner values are then
fixed throughout the sampling process. For the Boomerang
Sampler, the preconditioner scaling factor from Equation
5 is set to γ = 500.0. The PDMP methods are compared
against SGLD which starts with a learning rate that decays
to zero as required Welling and Teh [2011], Nagapetyan
et al. [2017], and with no decay of the learning rate as is
commonly done in practice (SGLD-ND). Examples of the
predictive posterior distribution for regression and binary
classification are shown in Figures 3 and 4 respectively, with
full analysis in Supp. Material B. All PDMP models are fit
with the proposed adaptive event thinning procedure.

Results from these experiments affirm that inference from
the PDMP models is suitable for predictive reasoning, with
low variance seen within the range of observed data and
greater variance as distance from observed samples in-
creases. We similarly see an increase in uncertainty along
the decision boundary, which is a desireable property. This is
in contrast to SGLD, which is unable to offer suitable predic-
tive uncertainty, even in the case for larger non-decreasing
learning rates. This highlights the known limitations of
SGLD, that with a decaying learning rate it can fail to ex-
plore the posterior, and with a larger non-decreasing learning
rate will converge to dynamics offered by traditional SGD
Brosse et al. [2018], Nagapetyan et al. [2017].

These tests indicate promising performance in terms of
predictive accuracy and uncertainty estimates. To further
demonstrate classification performance, we move to larger
and more complicated models for performing classification

https://github.com/egstatsml/tpdmp.git


(a) BPS (b) σBPS (c) Boomerang (d) SGLD (e) SGLD-ND

Figure 3: Examples of the different PDMP samplers using the proposed event thinning procedure on synthetic regression
task compared against SGLD with decaying learning rate and constant learning rate (SGLD-ND).

on real-world data sets.
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(a) BPS
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(b) SGLD

Figure 4: Examples of the predictive mean and variance for
synthetic classification task. Left column illustrates results
using the BPS and the right using SGLD. We see increased
uncertainty for the BPS around the decision boundary, whilst
SGLD shows greater certainty.

5.1.1 UCI-Datasets

We further evaluate the performance of the PDMP samplers
enabled by the proposed event sampling scheme on datasets
from the UCI repository Newman et al. [1998]. In Table 1,
we show performance metrics on the Boston houses dataset,
with the Naval, Energy, Yacht, and Concrete datasets eval-
uated in Supp. Material E.2. Each model is fit with 2,000
samples. For these experiments, we further include the naive
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Chen et al. [2014]. Predictive performance of these models
is measured with Mean Squared Error (MSE) and Negative
Log-Likelihood (NLL). Sampling efficiency is evaluated
with Effective Sample Size (ESS) Robert et al. [1999]. Due
to the high dimension of our models, we perform PCA on
returned samples and project them onto the first principal
component to report ESS on the direction of greatest vari-

Table 1: Summary of predictive performance using PDMP
samplers with the proposed event time sampling methods on
the Boston Houses dataset. Negative log-likelihood (NLL)
and Mean Squared Error (MSE) are reported. Effective sam-
ple size (ESS) is measured over the first principal component
of samples. Results are shown over 5 independent runs with
standard deviations reported.

Inference NLL ↓ MSE ↓ ESS ↑

BPS 51.26 ± 0.19 3.81 ± 0.08 2.73 ± 0.03
σBPS 51.14 ± 0.10 3.76 ± 0.05 2.74 ± 0.05
Boomerang 51.40 ± 0.32 3.87 ± 0.14 1974.73 ± 34.83
SGLD-ND 51.07 ± 0.00 3.73 ± 0.00 2.87 ± 0.00
SGHMC 51.08 ± 0.08 3.74 ± 0.03 2.72 ± 0.01

ance within samples.

From these results, we see SGLD and SGHMC provide a
slight improvement in terms of MSE and NLL, though we
see that the Boomerang Sampler considerably outperforms
both of these methods in terms of sample efficiency. This
result follows from the previous sections where we see
that SGLD frequently converges to the SGD solution space,
whilst the PDMP samplers can explore the posterior space.
Additional results in Supp. Material E.2 further validate
these results.

5.2 MULTI-CLASS CLASSIFICATION

We now evaluate the performance of the proposed sampling
procedures on the popular MNIST LeCun et al. [1998], Fash-
ion MNIST Xiao et al. [2017], SVHN Netzer et al. [2011],
CIFAR-10 and CIFAR-100 Krizhevsky and Hinton [2009]
data sets using CNNs. For MNIST and Fashion-MNIST, the
LeNet5 architecture was used whilst for SVHN, CIFAR-10,
and CIFAR-100 the modified ResNet20 architecture from
Wenzel et al. [2020] was used. Each parameter was again
supplied a standard normal prior.

Similar to the experiments on regression, a MAP estimate is
found and used to initialise each sampler. 2,000 samples for
each model are then generated, though a thinning factor of
10 is used to reduce the number of returned samples used for



Table 2: Summary of predictive performance using PDMP
samplers with the proposed event time sampling methods.
Negative log-likelihood (NLL) is reported, along with cali-
bration measured using the expected calibration error (ECE)
Guo et al. [2017]. Effective sample size (ESS) is measured
over the first principal component of samples. Mean and
standard deviation in results presented over 5 independent
runs.

Inference ACC ↑ NLL ↓ ECE ↓ ESS ↑

MNIST

BPS 0.99 ± 0.01 62.63 ± 5.60 1.05 ± 0.12 2.70 ± 0.03
σBPS 0.97 ± 0.03 51.72 ± 10.85 0.88 ± 0.41 2.74 ± 0.04
Boomerang 0.99 ± 0.00 0.18 ± 0.05 0.02 ± 0.00 138.17 ± 47.08
SGLD 0.99 ± 0.00 6.10 ± 0.00 0.09 ± 0.00 19.88 ± 0.02
SGLD-ND 0.99 ± 0.00 77.05 ± 0.00 1.52 ± 0.00 3.40 ± 0.00
SGHMC 0.99 ± 0.00 0.14 ± 0.02 0.02 ± 0.00 2.71 ± 0.00

Fashon-MNIST

BPS 0.91 ± 0.00 16.79 ± 1.65 0.44 ± 0.02 2.74 ± 0.02
σBPS 0.90 ± 0.00 3.43 ± 1.00 0.32 ± 0.02 2.79 ± 0.12
Boomerang 0.91 ± 0.00 3.82 ± 0.29 0.31 ± 0.01 200.00 ± 0.00
SGLD 0.91 ± 0.00 5.53 ± 0.00 0.30 ± 0.00 19.85 ± 0.02
SGLD-ND 0.91 ± 0.00 69.17 ± 0.01 1.58 ± 0.00 3.59 ± 0.00
SGHMC 0.91 ± 0.00 4.63 ± 0.13 0.34 ± 0.00 2.71 ± 0.00

SVHN

BPS 0.95 ± 0.00 35.35 ± 5.91 0.61 ± 0.10 2.69 ± 0.02
σBPS 0.95 ± 0.00 0.36 ± 0.11 0.19 ± 0.00 2.74 ± 0.05
Boomerang 0.95 ± 0.00 0.50 ± 0.07 0.19 ± 0.00 186.33 ± 21.10
SGLD 0.95 ± 0.00 7.01 ± 10.12 0.24 ± 0.10 16.61 ± 6.44
SGLD-ND 0.96 ± 0.00 27.32 ± 0.08 0.44 ± 0.00 3.73 ± 0.00
SGHMC 0.95 ± 0.00 0.47 ± 0.05 0.19 ± 0.00 2.71 ± 0.00

CIFAR-10

BPS 0.79 ± 0.01 42.03 ± 2.42 1.18 ± 0.07 2.82 ± 0.10
σBPS 0.79 ± 0.00 5.93 ± 6.43 0.70 ± 0.05 2.75 ± 0.08
Boomerang 0.81 ± 0.00 6.71 ± 2.20 0.64 ± 0.06 200.00 ± 0.00
SGLD 0.81 ± 0.00 13.31 ± 0.01 0.85 ± 0.00 19.83 ± 0.00
SGLD-ND 0.82 ± 0.00 31.12 ± 0.13 0.89 ± 0.00 4.04 ± 0.00
SGHMC 0.80 ± 0.00 13.84 ± 0.27 0.92 ± 0.02 2.71 ± 0.00

CIFAR-100

BPS 0.57 ± 0.01 42.45 ± 1.63 2.48 ± 0.09 2.69 ± 0.02
σBPS 0.63 ± 0.00 8.27 ± 0.37 1.39 ± 0.00 2.78 ± 0.08
Boomerang 0.64 ± 0.00 6.85 ± 0.86 1.35 ± 0.01 162.21 ± 43.74
SGLD 0.64 ± 0.00 12.40 ± 0.07 1.45 ± 0.00 20.40 ± 0.07
SGLD-ND 0.64 ± 0.00 11.10 ± 0.05 1.42 ± 0.00 2.83 ± 0.00
SGHMC 0.64 ± 0.00 12.34 ± 0.10 1.45 ± 0.00 2.71 ± 0.00

prediction to 200. For these models, we measure predictive
performance and calibration through the Accuracy, NLL,
and Expected Calibration Error (ECE) Guo et al. [2017],
and similarly measure sampling efficiency using the ESS
with on samples after performing PCA. A full description
of the models used, and experiment parameters is shown in
Supp. Material E.3. Table 2 summarises the results of these
experiments.

These results highlight favourable performance for certain
samplers. The BPS sampler is unable to provide calibrated
predictions, whilst the σBPS and Boomerang samplers con-
sistently provide calibrated predictive performance and re-
duction in NLL. Most importantly, we note the Boomerang
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Figure 5: Example of ACF and trace plots for first princi-
pal component of the samples from network fit on SVHN
dataset.
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Figure 6: Examples from predictive posterior for difficult-to-
classify samples from SVHN. Top row shows the original
image and the bottom row shows the predictive distribution
for the Boomerang sampler and SGLD. The mean for each
class represented by the dot, and the 95% credible intervals
shown with the error bars.

sampler consistently outperforms other samplers in terms
of effective sample size, whilst also promoting competitive
or improved predictive accuracy. This highlights the poten-
tial for the Boomerang sampler for probabilistic inference
within neural networks.

With measures of predictive performance and ESS within
our models, we wish to further investigate the mixing proper-
ties of the samplers presented within to identify how well the
posterior space is being explored. ESS only gives a measure
to approximate the number of independent samples within
our MCMC chain, though we are also interested in how well
the support for the posterior is being explored. Given the
large number of parameters seen within a BNN, it is infeasi-
ble to evaluate the coordinate trace and autocorrelation plots
for individual parameters as is typically done for MCMC
models. Instead, we again perform PCA to reduce the di-
mension of our data and investigate the trace plots of the
first principal component as illustrated in Figure. 5. From
these figures, we can identify strong correlation between
samples from the BPS, σBPS , SGHMC, and SGLD-ND
solutions. SGLD offers reduced correlation in samples, how-
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Figure 7: Entropy histograms comparing SGLD and
Boomerang sampler fit on the CIFAR-10 dataset. OOD
data represented by SVHN. We see the predictive entropy
from the Boomerang sampler increases as desired for OOD
data, whilst SGLD remains overly confident for erroneous
samples.

ever as seen in the trace plot, samples fail to explore the
posterior and instead converge to a steady state, whilst the
Boomerang sampler provides considerably reduced correla-
tion and more favourable mixing. Convergence of the SGLD
samples can be attributed to the reduction in learning rate
required to target the posterior. We verify this result in Supp.
Material C, where we provide further analysis into results
from all networks and remaining principal components. The
effect of this convergence in terms of predictive uncertainty
is illustrated within Figure 6, where the PDMP sampler is
able to provide more meaningful uncertainty estimates for
difficult-to-classify samples, and the SGLD predictive re-
sults converge to that similar of a point estimate. Additional
examples of the predictive distributions is shown in Supp.
Material H.

Probabilistic methods have shown favourable performance
in terms of Out of Distribution (OOD) detection Grathwohl
et al. [2019], Maddox et al. [2019]. Given the point-estimate-
like nature of the results returned by SGLD, we wish to com-
pare with results from the Boomerang sampler to see if both
can offer similar performance for OOD data. We see in Fig-
ure 7 that the Boomerang sampler offers greater entropy for
OOD data, indicating a desireable increase in aleatoric un-
certainty. Additional analysis is provided in Supp. Material
G. Given the consistent predictive performance, quality of
uncertainty estimates, and posterior exploration, we would
recommend researchers wishing to apply MCMC methods
for BNNs consider the use of the Boomerang sampler.

6 DISCUSSION AND LIMITATIONS

Whilst the PDMP methods have shown favourable perfor-
mance in terms of predictive accuracy, calibration and un-
certainty in BNNs, there are certain challenges with fitting
them. The PDMP samplers used within this work are de-
signed to target the joint distribution,

p(ω,v) = π(ω)Φ(v) (15)

where π(ω) is the target posterior and Φ(v) is the distribu-
tion of the auxiliary velocity components which must be
set by users in the form of the refreshment distribution. For
the BPS and σBPS samplers, it has been shown that with
a reference distribution may be a Gaussian or restricted to
the unit hypersphere Bouchard-Côté et al. [2018]. For the
Boomerang sampler, the velocity distribution is designed
with respect to a reference measure to ensure invariance to
the target distribution, such that Φ(v) = N (0,Σ⋆), where
Σ⋆ is the same factor used to precondition the dynamics.
The choice in distribution used for the velocity component
has an explicit effect on the mixing capabilities of the mod-
els when applied to BNNs. We demonstrate this effect in
Supp. Material D.1. We find that a velocity distribution with
too much variance can cause effects similar to that of diver-
gences seen in HMC and NUTS. Furthermore, we see that
with variance set too low, the samplers can fail to explore
the posterior sufficiently to provide the desired meaningful
uncertainty estimates. A similar effect can be seen for the
choice of refreshment rate, which we investigate in Supp.
Material D.2. We highlight these limitations as areas for fu-
ture research to enable robust application of PDMP methods
for BNNs.

The Boomerang sampler as implemented within this work
and the original paper is probabilistic, though is not purely
Bayesian. This is due to the reference measure for the ve-
locity being identified through the data itself. A strictly
Bayesian approach can be recovered by setting the refer-
ence measure and associated preconditioner matrix from a
prior distribution, though we would lose some favourable
sampling performance offered by this sampler. We can view
the approach implemented within similar to an empirical
Bayes, where we are gleaning information about the prior
(reference measure for the Boomerang sampler), from the
data itself. Given the difficulty of specifying a meaningful
and informative prior, and the success seen when using em-
perical priors for BNNs Krishnan et al. [2020], we believe
the use of such an approach for the Boomerang sampler is
justified.

7 CONCLUSION

Within this work, we demonstrate how PDMPs can be used
for BNNs. We provide a flexible piecewise linear bound to
enable sampling of event times within these frameworks that
permits inference in BNNs. A GPU-accelerated software
package is offered to increase the availability of PDMPs
for a wide array of models. Experimentation on BNNs for
regression and classification indicates comparable or im-
proved predictive performance and calibration, though were
able to consistently improve sampling efficiency and uncer-
tainty estimation when compared against existing stochastic
inference methods.
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