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Abstract

Recently, large language models (LLMs)001
have demonstrated breakthrough mathematical002
problem-solving capabilities in grade school003
math word problems (MWP). For example,004
on the MWP benchmark GSM8K, the accu-005
racy of GPT-3.5-Turbo and MetaMath-70B006
reaches 80.80% and 82.30%, respectively. One007
question arises, does it mean that LLMs have008
truly mastered related mathematical problem-009
solving abilities, such as the ability to evaluate010
the mathematical reasoning process of MWP?011
In this paper, by presenting two types of bench-012
marks, where MCGSM8K aims at selecting013
one correct solution from four solutions, while014
GSM8K-Judgement judges whether a solution015
to a given question is true or false, we show016
that the ability of most LLMs to evaluate the017
mathematical reasoning process of MWP is far018
from sufficient. To compensate for this issue,019
we propose hybrid supervised fine-tuning data020
from the training data of GSM8K, MCGSM8K,021
and GSM8K-Judegment, which significantly022
improves performance on the proposed reason-023
ing process evaluation benchmarks. For ex-024
ample, fine-tuning improves the performance025
of LLaMA-2-13B from 33.51% to 70.89% on026
MCGSM8K. In conclusion, we experimentally027
demonstrate that most LLMs have limited abil-028
ity to evaluate the mathematical reasoning pro-029
cess of MWP, which can be enhanced through030
fine-tuning.031

1 Introduction032

It is reported that general close-source large lan-033

guage models (LLMs) have demonstrated promis-034

ing performance on several mathematical word035

problems (MWP) benchmarks, e.g., GPT-4 (Ope-036

nAI, 2023) and GPT-3.5-Turbo (OpenAI, 2022)037

achieving the accuracy of 92.00% and 80.80% on038

grade school MWP benchmark GSM8K (Cobbe039

et al., 2021a), respectively. With the develop-040

ment of prompt-based methods (Fu et al., 2023;041

Wang et al., 2023a) and finetuning-based meth-042

ods (Yu et al., 2023; Yue et al., 2023; Yuan 043

et al., 2023), mathematical specialized LLMs 044

tuned on specific tasks also exhibit competitive 045

performance. For example, MetaMath-70B (Yu 046

et al., 2023), WizardMath-70B (Luo et al., 2023), 047

and MAmmoTH-70B (Yue et al., 2023) achieves 048

82.30%, 81.60%, and 76.90% on GSM8K, respec- 049

tively. Now, one question arises, does the excellent 050

performance demonstrate that these LLMs truly 051

master related mathematical problem-solving abili- 052

ties, such as the ability to evaluate the mathematical 053

reasoning process of MWP? 054

Intuitively, picking one correct solution from 055

possible solutions is easy for humans, as it just 056

requires evaluating the correctness of the reason- 057

ing process. In comparison, reasoning the answer 058

based on the open-formed question is difficult, 059

which requires analyzing the problem, step-by- 060

step reasoning, and deriving the final result (Cobbe 061

et al., 2021b). Based on this theory, we design a 062

simple mathematical reasoning processes evalua- 063

tion benchmark, MCGSM8K aiming at choosing 064

one correct solution from four options, as shown 065

in Figure 2. Then, we utilize a few-shot (Chen 066

et al., 2022b; Min et al., 2022) setup to test the per- 067

formance of typical general open-source models 068

LLaMA-2, general closed-source models GPT-3.5- 069

Turbo and GPT-4, as well as mathematical spe- 070

cialized models MetaMath and MAmmoTH on it. 071

However, our experimental results in Figure 1 and 072

Table 1 reveal that most LLMs lag far behind on 073

MCGSM8K. For example, the accuracy of LLaMA- 074

2-70B, MetaMath-70B, and GPT-3.5-Turbo drop 075

from 56.80% to 38.29%, 82.30% to 34.87%, and 076

80.80% to 40.56%, respectively. Specifically, each 077

solution of MCGSM8K contains both the final an- 078

swer and a step-by-step reasoning process (ratio- 079

nale). We collect incorrect solutions by regener- 080

ating solutions for each question in the test set 081

of GSM8K. To keep the quality and diversity of 082

MCGSM8K, we use multiple advanced LLMs, e.g., 083
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Figure 1: Average few-shot testing accuracy by general open-source models (LLaMA-2 with 13B and 70B),
mathematical specialized models (MetaMath with 13B and 70B, and MAmmoTH with 13B and 70B), general
closed-source models (GPT-3.5-Turbo and GPT-4), and all tested models.

Qwen (Bai et al., 2023), LLaMA-2 (Touvron et al.,084

2023b), MetaMath (Yu et al., 2023), and Wiz-085

ardLM (Xu et al., 2023), through few-shot Chain-086

of-thought (CoT) (Wei et al., 2022) prompting to087

generate incorrect solutions.088

To comprehensively investigate the performance089

of LLMs on MCGSM8K, we progressively con-090

duct the following experiments with a few-shot set-091

ting on three well-designed benchmarks as shown092

in Figure 2. First of all, the main reason for the093

poor performance of LLMs on MCGSM8K might094

include a) the model’s inability to solve multiple-095

choice format questions, and b) the model’s inabil-096

ity to evaluate the reasoning process. To verify, we097

propose a conventional multiple-choice-question098

benchmark MCGSM8K-No-Rationale by remov-099

ing the rationale and leaving only the final answer100

for each option from MCGSM8K. The average101

accuracy of all tested models on MCGSM8K-No-102

Rationale (63.96%) is 25.50% higher than that on103

MCGSM8K (41.59%) and close to that on GSM8K104

(68.98%). The result reveals that the poor per-105

formance might be due to the model has diffi-106

culty in evaluating the reasoning process instead107

of the answer directly. Furthermore, we analyze108

the performance of LLMs by reducing the diffi-109

culty of solving the problem in MCGSM8K to110

half. Specifically, we remove any two incorrect111

options for each question in MCGSM8K, result- 112

ing in MCGSM8K-2Options aiming at selecting 113

one correct solution from two. However, the av- 114

erage accuracy of all tested models on the two- 115

choice-question benchmark MCGSM8K-2Options 116

is merely 1.17% higher than that on the open- 117

formed-question benchmark MCGSM8K (70.15% 118

vs. 68.98%). MetaMath-70B and LLaMA-2- 119

70B achieve an accuracy of 66.94% and 64.22%, 120

which is merely 16.94% and 14.22% higher than 121

the random-chance accuracy of 50%, respectively. 122

This verifies the ability of most LLMs to evalu- 123

ate the mathematical reasoning process is insuffi- 124

cient. Are LLMs insufficient to evaluate the correct 125

solution or the incorrect solution? To figure this 126

out, we propose a true-or-false-question benchmark 127

GSM8K-Judegment to directly judge the correct- 128

ness of the solution to a given question. In gen- 129

eral, it is easier for humans to identify incorrect 130

solutions than correct solutions, as the former only 131

requires identifying a certain incorrect step, while 132

the latter must ensure the correctness of all steps. 133

Experimental results on general open-source mod- 134

els show that the average True Negative rate (TNR) 135

is significantly better than the average True Pos- 136

itive rate (TPR), which is consistent with human 137

behavior. However, when it comes to mathemat- 138

ical specialized models and GPT-3.5-Turbo, the 139

2



situation is completely reversed.140

Through the above experimental analysis, it can141

be concluded that most LLMs have a poor abil-142

ity to evaluate the mathematical reasoning pro-143

cess of MWP. Mathematical specialized models144

are mainly fine-tuned on abundant correct solu-145

tions, which greatly improves the ability to iden-146

tify correct solutions while causing catastrophic147

forgetting in identifying incorrect solutions. In ad-148

dition, we hypothesize that most LLMs only catch149

spurious signals in specific datasets resulting in150

"solving" the datasets while not mastering abili-151

ties related to mathematical problem-solving. In152

this paper, we try to compensate for these short-153

comings by finetuning models on hybrid training154

samples from GSM8K, MCGSM8K, and GSM8K-155

Judegment. This contributes to enhancing the gen-156

eralization ability to solve mathematical problems,157

mastering new data distribution on the MCGSM8K158

and GSM8K-Judgement, identifying correct solu-159

tions, as well as learning to analyze and evaluate the160

reasoning process. Specifically, we use LLaMA-2-161

13B as the base model. After fine-tuning, we ob-162

serve a substantial improvement in accuracy with163

an increase of +37.38% on MCGSM8K, +41.24%164

on TPR, +8.87% on TNR, +7.43% on MCGSM8K-165

No-Rationale, and +16.62% on GSM8K. The result166

demonstrates that fine-tuning can greatly improve167

the mathematical reasoning process evaluation abil-168

ity of LLMs.169

Our main contributions can be summarised as170

follows:171

• To explore whether LLMs have mastered172

the ability to evaluate the mathematical rea-173

soning process of MWP, we carefully cre-174

ate two kinds of benchmarks. The first cat-175

egory is multiple-choice questions, includ-176

ing MCGSM8K aiming at choosing one cor-177

rect solution from four options, MCGSM8K-178

2Options containing only two options, and179

MCGSM8K-No-Rationale with only the fi-180

nal answer in each option. The second type181

is true or false questions, including GSM8K-182

Judegment to judge the correctness of the so-183

lution to a given question.184

• We conduct experiments with typical general185

open-source models, general closed-source186

models, and mathematical specialized models187

on the four benchmarks. The experimental188

results reveal that existing LLMs except GPT-189

4 have a poor ability to evaluate the math- 190

ematical reasoning process of MWP. Mean- 191

while, fine-tuning with only correct solutions 192

improves the performance in evaluating cor- 193

rect solutions, but leads to a huge performance 194

drop in evaluating incorrect solutions. Fur- 195

thermore, we experimentally demonstrate that 196

these drawbacks of LLMs can be alleviated to 197

a certain extent through fine-tuning. 198

2 Related Work 199

Large Language Models. LLMs with billions of 200

parameters trained on extensive large-scale corpora 201

of textual data have led to massive changes in the 202

field of AI. OpenAI’s GPT series (Brown et al., 203

2020; OpenAI, 2023), which is the most represen- 204

tative general closed-source LLM, opens the era of 205

pre-trained LLMs, where a large number of promi- 206

nent instances are launched one after another in- 207

volving Anthropic’s Claude 2 (Bai et al., 2022), 208

Google’s PaLM (Chowdhery et al., 2023; Anil 209

et al., 2023), DeepMind’s Chinchilla (Hoffmann 210

et al., 2022), and Gopher (Rae et al., 2021). Sub- 211

sequently, numerous general open-source LLMs 212

have been released, whose code and weight pa- 213

rameters are open to the public. Typical examples 214

include LLaMA (Touvron et al., 2023a,b), GLM- 215

130B (Zeng et al., 2023), OPT (Zhang et al., 2022), 216

Falcon (Penedo et al., 2023), and so on. Although 217

general closed-source LLMs, e.g., GPT-3.5, GPT-4, 218

and PaLM-2, have achieved considerable advance- 219

ments in several MVP tasks such as GSM8K and 220

NumGLUE (Mishra et al., 2022), the performance 221

of general open-source LLMs is far from satisfac- 222

tory. 223

Large Language Models for Mathematical 224

Reasoning. Chain-of-thought (CoT) (Wei et al., 225

2022) reasoning by designing better prompts has 226

been proposed to generate step-by-step solutions 227

leading to improved performance in complex rea- 228

soning. To improve the mathematical reasoning 229

capabilities of general open-source LLMs, existing 230

methods focus on CoT prompting for augmenting 231

fine-tuning data. WizardMath (Luo et al., 2023) 232

utilizes few-shot CoT prompting to re-generate 233

solutions for GSM8K and MATH (Hendrycks 234

et al., 2021), then uses this data to construct SFT 235

data. MetaMath (Yu et al., 2023) aims to improve 236

finetuning-based methods by answer augmentation 237

and available mathematical questions bootstrap to 238

construct SFT data. RFT (Yuan et al., 2023) im- 239
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GSM8K
Question:Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
Rationale:Weng earns 12/60 = $<<12/60=0.2>>0.2 per minute.
Working 50 minutes, she earned 0.2*50 = $<<0.2*50=10>>10.
Final Answer: 10

MCGSM8K
Question:Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
Options:
(A) 600. Rationale: Weng earns $12*50 = $600 for 50 minutes of babysitting.
(B) 2430. Rationale: Weng earns $12/hour * 60 minutes/hour = $720/hour for babysitting. So she earned 720/hour - 12/hour =
608/hour - 12/hour = 486/hour for babysitting. As she worked for 50 minutes, she earned 486/hour * 50 minutes = 2430.
(C) 10. Rationale: Weng earns 12/60 = 0.2 per minute. Working 50 minutes, she earned 0.2*50 = 10.
(D) 1. Rationale: In an hour, there are 60 minutes. Weng did babysitting for 50 minutes, so she just worked for 50 / 60 = 1/12 of
an hour. So she earned $12 * 1/12 = $1.
Correct Option: C

MCGSM8K-2Options
Question:Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
Options:
(A) 600. Rationale: Weng earns $12*50 = $600 for 50 minutes of babysitting.
(B) 10. Rationale: Weng earns 12/60 = 0.2 per minute. Working 50 minutes, she earned 0.2*50 = 10.
Correct Option: B

MCGSM8K-No-Rationale
Question:Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
Options:
(A) 600 (B) 2430 (C) 10 (D) 1
Correct Option: C

GSM8K-Judgement
Statement: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
10. Rationale: Weng earns 12/60 = 0.2 per minute. Working 50 minutes, she earned 0.2*50 =10.
Answer: True

Figure 2: Four example problems constructed from the original problem in GSM8K.

proves mathematical reasoning performance by240

applying CoT prompts and Rejection Sampling241

(RS) on SFT models to construct augmented so-242

lutions. MAmmoTH (Yue et al., 2023) utilizes243

a unique hybrid of CoT and program-of-thought244

(PoT) (Chen et al., 2022a) rationales to construct245

augmented solutions for improving mathematical246

problem-solving ability. As a result, these mathe-247

matical specialized models have surpassed previous248

general open-source LLMs by a significant margin249

in mathematical problem-solving.250

Large Language Models for Mathematical251

Reasoning Process Evaluation. There are dif-252

ferent ways to investigate the mathematical rea-253

soning process, e.g., scoring each step of the rea-254

soning process (Lightman et al., 2023), examining255

and analyzing each step, as well as modifying the256

reasoning process based on analyses (An et al.,257

2023). However, the above methods are mainly258

used to improve reasoning capabilities in solving259

mathematical problems. Existing research rarely260

explores the mathematical reasoning process eval-261

uation ability of LLMs. We aim to design two262

types of benchmarks to test the ability of LLMs 263

to evaluate the mathematical reasoning process of 264

MWP. To achieve this goal, we design two direct 265

and simple benchmarks, i.e., choosing the correct 266

reasoning process from four candidates and judging 267

whether a given reasoning process is correct or not. 268

Please note that all existing mathematical reason- 269

ing benchmarks can be used to construct reasoning 270

process evaluation benchmarks by our proposed 271

method. 272

3 MCGSM8K 273

In this section, we describe in detail the process of 274

constructing MCGSM8K. Given an open-formed 275

question from the original test set of GSM8K, we 276

transform it into a multiple-choice question with 277

each option containing a solution. Specifically, the 278

correct solution synthesized by the ground-truth 279

answer and the answer rationale is utilized as a 280

positive example. Our goal is to construct three 281

negative examples. To ensure the quality and di- 282

versity of negative examples, we 1) use multiple 283

advanced open-source LLMs to generate solutions 284
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with wrong answers, 2) maintain the diversity of in-285

correct option differences based on Rouge-L (Lin,286

2005) scores and k-means cluster (Wong, 1979),287

and 3) ensure the confusability of the negative ex-288

ample with the positive sample based on similarity289

ranking.290

3.1 Generation of Incorrect Solutions291

Given a question qi taken from GSM8K, we use 8-292

shot CoT prompting to re-generate 50 solutions293

{(rji , a
j
i ) : j = 1, ..., 50} by advanced open-294

sourced models including Qwen (Bai et al., 2023),295

LLaMA-2 (Touvron et al., 2023b), MetaMath (Yu296

et al., 2023), and WizardLM (Xu et al., 2023), with297

sizes of 13B and 70B. Specifically, a question qi298

is appended to a few demonstrations, then fed to299

an LLM for generating its answer aji along with300

rationale rji step-by-step. In the generation process,301

we follow Wang et al. (2023b) to adopt tempera-302

ture sampling and set the temperature as 0.7. Then,303

find out those with a wrong answer according to304

the ground-truth answer to construct the incorrect305

solution set Setaug.306

Setaug ={(aji , r
j
i ) :

aji ̸= a∗i ; i = 1, ...,K; j = 1, ...50},
(1)

307

where a∗i is the ground-truth answer.308

3.2 Diversity and Quality309

To enlarge diversity, an incorrect solution to qi is310

added to Setaug only when its ROUGE-L similarity311

with any existing solutions to qi in Setaug is less312

than 0.7. We also remove the calculation annota-313

tions proposed in the original answer rationale of314

GSM8K from each solution to facilitate formatting315

consistency. Invalid solutions are identified and316

filtered out based on heuristics, e.g., too-long or317

too-short solutions, solutions contain codes, and so-318

lutions do not end in the specified format. Finally,319

the candidate solutions to qi are clustered into three320

categories using k-means clustering to ensure the321

diversity of solutions among each category.322

3.3 Construction of Dataset323

We have designed three different selection ways to324

avoid a single selection method causing a similar325

distribution or text of the three negative samples.326

The ablation study on data construction is analyzed327

in Appendix B. One way is picking the one with the328

highest ROUGE-L similarity score to the correct329

solution, which can ensure the confusability of the 330

negative example. Another way is picking out the 331

one with the lowest Perplexity (PPL) scored by 332

language model WizardLM-70B (Xu et al., 2023). 333

The lower the PPL, the sample is more natural 334

and more consistent with the model’s generation 335

preferences. The last one is the random selection 336

to keep diversity. For a question qi, we select one 337

solution from each of the three clusters to construct 338

three negative examples. At every election, we 339

choose one way in turn. Then, the three selected 340

negative examples are combined with the positive 341

sample as four options in randomly shuffled order. 342

Finally, we combine the question, options, and the 343

correct option label into a multiple-choice question. 344

4 Experiments 345

In this section, the core of our analysis is how 346

LLMs perform on the proposed benchmarks, what 347

factors are associated with the model performance, 348

and whether the performance can be further im- 349

proved through supervised fine-tuning, thus an- 350

swering the question: do LLMs master the ability 351

to evaluate the mathematical reasoning process of 352

MWP? 353

4.1 Can LLMs Solve Simple Mathematical 354

Reasoning Process Evaluation of MWP? 355

To verify this issue, we propose a mathematical rea- 356

soning process evaluation benchmark MCGSM8K 357

(Figure 2) consisting of 1319 samples aiming at 358

choosing the correct one from four solutions. We 359

utilize the settings of few-shot in-context learning 360

and CoT prompting, which is shown in Appendix 361

C Figure 4. 362

4.1.1 Models 363

We evaluate the testing accuracy on several repre- 364

sentative models – (i) general closed-source models 365

GPT-41 (OpenAI, 2023) and GPT-3.5-Turbo (Ope- 366

nAI, 2022), (ii) general open-source models: the 367

current state-of-the-art LLaMA-2 (Touvron et al., 368

2023b) with two different parameter sizes of 13B 369

and 70B, and (iii) mathematical specialized mod- 370

els: MetaMath (Yu et al., 2023) and MAmmoTH 371

(Yue et al., 2023) in sizes 13B and 70B, which 372

specifically tune LLaMA-2 on mathematical rea- 373

soning datasets. MetaMath is tuned on mathemat- 374

ical reasoning datasets collected by mathematical 375

questions bootstrap and answering augmentation. 376

1We use gpt4-1106-preview.
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GSM8K-Judgement
Model GSM8K MCGSM8K

MCGSM8K
-No-Rationale

MCGSM8K
-2Options TPR TNR

general open-source models
LLaMA-2-13B 28.70 33.51 34.34 62.62 36.85 75.26
LLaMA-2-70B 56.80 38.29 58.45 66.94 47.08 78.09
AVG 42.75 35.90 46.40 64.78 41.97 76.68

mathematical specialized models
MetaMath-13B 72.30 23.12 45.49 57.70 85.75 17.54
MAmmoTH-13B 62.00 35.25 55.34 58.91 59.21 48.17
MetaMath-70B 82.30 34.87 76.04 64.22 88.93 22.21
MAmmoTH-70B 76.90 44.58 68.69 81.20 94.01 23.48
AVG 73.38 34.46 61.39 65.51 81.98 27.85

general closed-source models
GPT-3.5-Turbo 80.80 40.56 79.68 75.06 88.48 47.69
GPT-4 92.00 82.56 93.63 94.56 93.70 87.79
AVG 86.40 61.56 86.66 84.81 91.09 67.74

AVG All 68.98 41.59 63.96 70.15 74.25 50.03

RC Acc 0 25 25 50 50 50

Table 1: Comparison of testing accuracy on GSM8K and the proposed four benchmarks. To ensure equitable
evaluations, we report the scores of all models using the settings of few-shot in-context learning. RC acc is the
abbreviation of Random-Chance accuracy.

MAmmoTH is trained on an instruction-tuning377

dataset compiled from 13 math datasets with a378

unique hybrid of CoT and PoT rationales. In all379

evaluation experiments, we set a temperature of380

zero for open-sourced models and mathematical381

specialized models following previous work Yu382

et al. (2023); Yue et al. (2023), and a temperature383

of 0.2 for general closed-source models to generate384

quality answers.385

4.1.2 Results386

In Table 1, we cite the metrics of all tested models387

on GSM8K from the paper of MetaMath (Yu et al.,388

2023) and MAmmoTH (Yue et al., 2023). We can389

see that general closed-source models and mathe-390

matical specialized models have shown promising391

performance in GSM8K. For example, the accuracy392

of GPT-3.5-Turbo and MetaMath-70B all exceeds393

80% from the third column in Table 1. These re-394

sults exhibit the strong ability of most LLMs to395

solve grade school math word problems.396

However, all models except GPT-4 achieve poor397

performance below 41% on the simple MCGSM8K398

compared with their performance on GSM8K.399

The accuracy of LLaMA-2-70B, MetaMath-70B,400

and GPT-3.5-Turbo drop from 56.80% to 38.29%,401

82.30% to 34.87%, and 80.80% to 40.56%, respec- 402

tively. To maximize accuracy, we test model ac- 403

curacy with and without CoT prompting. As illus- 404

trated in the second column of Table 3 in Appendix 405

A, the average performance gap between the test 406

accuracy with and without CoT prompting is tiny, 407

which is within 5%, exhibiting the incompetence of 408

most LLMs in solving problems from MCGSM8K. 409

Point 1: Although most LLMs can solve MWP to some
degree, they have difficulty in evaluating the reasoning
process of MWP. 410

4.2 Can LLMs Solve MWP in the Form of 411

Multiple-choice Questions? 412

In this subsection, we conduct the second experi- 413

ment to investigate whether LLMs are incapable of 414

solving multiple-choice format questions or evalu- 415

ating the reasoning process. Specifically, for each 416

option of MCGSM8K, we remove the reasoning 417

process (rationale) and leave only the final answer 418

to construct MCGSM8K-No-Rationale (Figure 2) 419

consisting of 1319 samples. The model setting is 420

the same as that in subsection 4.1.1. We report 421

the testing accuracy under the settings of 5-shot 422

in-context learning and CoT prompting, as shown 423

in Appendix C Figure 4. 424
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The average CoT performance of all tested425

models on MCGSM8K-No-Rationale is signifi-426

cantly higher than that on MCGSM8K (63.96%427

vs. 41.59%), and close to that on GSM8K (63.96%428

vs. 68.98%). From the paper of MAmmoTH (Yue429

et al., 2023), GPT-4 and MAmmoTH-70B achieve430

an accuracy of 72.60% and 65.00%, on the AQuA431

(Ling et al., 2017) dataset consisting of multiple-432

choice algebraic word problems, respectively. The433

results exhibit the ability of most LLMs to solve434

MWP in the form of multiple-choice questions. In435

addition, CoT prompting brings significant perfor-436

mance gains, e.g., the performance improvement437

of LLaMA-2-70B, and MetaMath-70B is 20.85%,438

and 38.74%, respectively, as shown in the third439

column of Table 3 in Appendix A.440

Point 2: Most LLMs are capable of solving MWP in the
form of multiple-choice questions.441

4.3 Can Reducing Options on the Problem to442

Be Solved in MCGSM8K Improve Model443

Performance?444

For each sample in MCGSM8K, we remove any445

two incorrect options from the four options, leaving446

only one correct and one incorrect option, resulting447

in MCGSM8K-2Options (Figure 2) consisting of448

1319 samples. The model setup is the same as that449

in subsection 4.1.1. and we use 8-shot in-context450

learning without CoT prompting.451

As illustrated in Table 1, the average accuracy452

of all tested models on the two-choice-question453

benchmark MCGSM8K-2Options is merely 1.17%454

higher than that on the open-formed-question455

benchmark MCGSM8K (70.15% vs. 68.98%), con-456

firming that the ability of most LLMs to evaluate457

the reasoning process of MWP is insufficient.458

459
Point 3: The ability of most LLMs to evaluate the reasoning
process of MWP is insufficient.460

4.4 Incapable of Identifying Correct Solutions461

or Incorrect Solutions?462

From the previous experimental results, we observe463

that most LLMs perform poorly on MCGSM8K464

and MCGSM8K-2Options. To figure out whether465

the model is incapable of identifying correct so-466

lutions or incorrect solutions, we propose a true-467

or-false-question benchmark GSM8K-judgement468

(Figure 2) aiming at directly judging the correct-469

ness of a solution. Specifically, for each question470

in GSM8K, we append a solution to the end of the471

question. We utilize the correct solution synthe- 472

sized by the ground-truth answer and the answer 473

rationale for constructing the positive sample. For 474

one open-formed question, there are theoretically 475

infinite numbers of incorrect solutions generated 476

by the model with each one varying from others. 477

To eliminate randomness, we design three various 478

negative samples utilizing the three high-quality in- 479

correct solutions from the options of MCGSM8K, 480

thus resulting in a total of 1319 positive samples 481

and 3957 negative samples. The model setting is 482

the same as that in subsection 4.1.1. We utilize 5- 483

shot in-context learning and CoT prompts to max- 484

imize accuracy, as shown in Appendix C Figure 485

4. 486

The testing accuracy of GSM8K-judgement is il- 487

lustrated in the sixth and seventh columns of Table 488

1. As for general open-source models, the aver- 489

age True Negative Rate (TNR) is 76.68%, which 490

is 34.71% higher than the average True Negative 491

Rate (TNR) (41.97%) and 26.68% higher than the 492

random-chance accuracy (50%). In general, it is 493

easier for humans to identify incorrect solutions 494

than correct solutions. This experimental result is 495

consistent with human behavior. However, the per- 496

formance of mathematical specialized models con- 497

tradicts human performance, which are tuned on 498

numerous augmented correct solutions. In contrast 499

to general open-source models, the average TPR of 500

mathematical specialized models is 40.01% higher, 501

but the average TNR is 48.83% lower, which sug- 502

gests that models merely fine-tuned on correct so- 503

lutions can improve the ability to judge the correct 504

reasoning process but greatly weaken the ability 505

to judge the incorrect reasoning process. GPT-3.5- 506

Turbo also shows similar performance as mathe- 507

matical specialized models. Only GPT-4 achieves 508

remarkable TPR and TNR results at the same time. 509

Point 4: Fine-tuning with only correct solutions improves
the performance in evaluating correct solutions, but leads
to a huge drop in evaluating incorrect solutions. 510

4.5 Fine-tuning 511

Finally, we explore whether fine-tuning can im- 512

prove the ability of LLMs to evaluate the reasoning 513

process of MWP. We use the most widely used 514

model LLaMA-2-13B as the base model for fine- 515

tuning. The LLaMA-2-13B is trained by fully fine- 516

tuning on 8 NVIDIA A100 GPUs. The training 517

details are following Yu et al. (2023). 518

In Table 2, the accuracy of SFT-GSM8K by fine- 519

tuning the LLaMA-2-13B on the training data of 520
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GSM8K-Judgement
Model GSM8K MCGSM8K

MCGSM8K
-No-Rationale

MCGSM8K
-2Options TPR TNR

LLaMA-2-13B 28.70 33.51 34.34 62.62 36.85 74.91
SFT-GSM8K 50.00 - - - - -
SFT-MCGSM8K 0.00 75.97 33.66 87.26 0.00 0.00
SFT-Judgement 0.00 22.21 27.82 51.60 69.60 83.24
SFT-hybrid 43.52 70.89 41.77 80.29 78.09 83.78

Table 2: Testing accuracy of LLaMA-2-13B trained on different data.

GSM8K is extracted from RFT (Yuan et al., 2023).521

First, we fine-tune the base model on 6,000 train-522

ing data from MCGSM8K and 3,000 training data523

from GSM8K-Judegment (1,500 positive samples524

and 1,500 negative samples), respectively. Sig-525

nificant performance improvements are obtained526

for both SFT-MCGSM8K and SFT-Judgement on527

in-domain datasets (IND), demonstrating the effec-528

tiveness of the training data in improving mathe-529

matical reasoning process evaluation ability. Mean-530

while, SFT-Judgement achieves an improvement531

of 32.75% on TPR and 8.33% on TNR, reveal-532

ing that finetuning on training data from GSM8K-533

Judegment is effective for enhancing capabilities534

in identifying both correct and incorrect solu-535

tions. On out-of-domain datasets (OOD) including536

GSM8K, MCGSM8K -No-Rationale, and GSM8K-537

Judgement, the performance decline between SFT-538

MCGSM8K and the base model can even reach up539

to 100%, which is consistent with the conclusion540

drawn from MAmmoTH (Yue et al., 2023) that541

fine-tuning LLMs using supervised data specific to542

certain datasets improves in-domain performance543

while reduces generalization to tasks beyond their544

fine-tuning data. Especially in the GSM8K bench-545

mark, SFT-MCGSM8K and SFT-Judgement have546

completely lost their ability to follow instructions,547

resulting in irrelevant answers.548

To maintain the generalization ability of the549

model in solving mathematical problems, we col-550

lect a hybrid fine-tuning dataset by mixing the train-551

ing data from GSM8K, MCGSM8K, and GSM8K-552

Judegment. On GSM8K, SFT-hybrid lags behind553

SFT-GSM8K. We speculate that the question form554

of MCGSM8K and GSM8K-Judegment is com-555

pletely different from that of GSM8K, resulting in556

the ability to evaluate the mathematical reasoning557

process not being successfully transferred to solve558

the mathematical reasoning problems. Compared559

with the base model, the improvement of the SFT-560

hybrid in TPR, TNR, MCGSM8K, and GSM8K 561

is 41.24%, 8.87%, 37.38%, and 16.62%, respec- 562

tively. Moreover, for the unseen MCGSM8K-No- 563

Rationale task, the performance of the SFT-hybrid 564

is better than the base model (+7.43%). The re- 565

sults show that we can improve the ability of LLMs 566

to evaluate the mathematical reasoning process of 567

MWP by fine-tuning. 568

4.6 Case Study 569

Appendix D shows some examples generated by 570

different models to solve MCGSM8K and GSM8K- 571

Judegment problems. 572

5 Conclusion 573

In this paper, we focus on exploring the ability of 574

LLMs to evaluate the mathematical reasoning pro- 575

cesses of MWP. To achieve this, we utilize incorrect 576

solutions generated by multiple advanced LLMs 577

to curate two benchmarks. One is MCGSM8K 578

and its two variants, a new type of multiple-choice 579

question dataset, in which each option contains a 580

solution to solve the problem. The other one is 581

GSM8K-Judegment, which judges whether a solu- 582

tion to a given problem is true or false. The poor 583

performance of LLMs on MCGSM8K confirms the 584

incapable ability of most LLMs in mathematical 585

reasoning process evaluation. In particular, the per- 586

formance on GSM8K-Judegment exhibits that it 587

is easier to identify incorrect solutions. However, 588

merely fine-tuning with correct solutions improves 589

the performance in evaluating correct solutions, but 590

leads to a huge drop in evaluating incorrect solu- 591

tions. Fine-tuning models on the proposed training 592

data greatly improves the mathematical process 593

evaluation ability. Exploring the relation between 594

the ability of mathematical problem-solving and 595

mathematical reasoning process evaluation is left 596

to future work. 597
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Limitations598

Through the above experiments and analyses, we599

summarize the following limitations:600

1) In this work, we test the mathematical reason-601

ing process evaluation ability of LLMs on limited602

benchmarks. In the future, we will utilize various603

MWP benchmarks, e.g., MATH and AQuA, to con-604

struct more comprehensive mathematical reasoning605

process evaluation benchmarks.606

2) All incorrect solutions in the proposed bench-607

marks are generated by advanced LLMs, thus there608

are inevitably biases inherent in model generations.609

Furthermore, the constructed benchmark does not610

reflect the ability of LLMs to evaluate incorrect611

solutions written by humans.612

3) The fine-tuned model does not exhibit a sig-613

nificant improvement in mathematical problem-614

solving. How to transfer the ability in mathemati-615

cal reasoning process evaluation to mathematical616

problem-solving will be a future work.617
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man participants were in accordance with the eth-620
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research committee and with the 1964 Helsinki622
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any studies with animals performed by any of the625

authors. Informed consent was obtained from all626

individual participants included in the study.627
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average accuracy of all tested models with and937

without CoT prompting is 41.59% and 38.46%, re-938

spectively, exhibiting that CoT prompting brings939

slight improvements. By analyzing CoT answers940

illustrated in Figure 5 and Figure 6, we find that941

most models have difficulty in identifying incor-942

rect computational processes and logical fallacies943

in reasoning steps, thus leading to incorrect results.944

In addition to fine-tuning, some well-designed CoT945

prompts can also bring a certain degree of perfor-946

mance improvement.947

On the MCGSM8K-No-Rationale benchmark,948

the accuracy with CoT prompting is significantly949

higher than the accuracy without CoT prompting950

for all tested models, e.g., the accuracy of LLaMA-951

2-70B with and without CoT prompting is 58.45%952

and 37.60%, and the accuracy of MetaMath-70B953

with and without CoT is 76.04% and 37.30%.954

On the GSM8K-Judgement benchmark, the per-955

formance gap with and without CoT prompting is956

negligible for general closed-source models. Mean-957

while, CoT prompting brings significant perfor-958

mance improvements for LLaMA-2-70B. We can959

observe a huge performance decline between CoT960

prompting and no CoT prompting for mathematical961

specialized models, as they forget the instruction-962

following ability without CoT prompting, resulting963

in completely irrelevant answers.964
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Figure 3: Testing accuracy of LLaMA-2-70B on the
data constructed by different selecting ways.

B Ablation Study on Data Construction965

To keep the incorrect options in MCGSM8K con-966

fusing and diverse, we have designed three effec-967

tive ways to select negative examples from candi-968

date solutions, including random selection, similar-969

ity ranking, and PPL ranking. To explore the role970

of these three ways on the testing accuracy of the971

benchmark, we study the following setups: 972

(1) PPL Ranking (P): On the test data con- 973

structed by only PPL Ranking selection, LLaMA- 974

2-70B achieves an accuracy of 51.60%, which is 975

13.31% higher than that on MCGSM8K, as shown 976

in Figure 3. We suggest that the single PPL rank- 977

ing selection may cause the constructed negative 978

examples with high textual similarity. Thus, the 979

performance gain may not be the improved ability 980

of the model to evaluate the reasoning process, but 981

rather the model successfully selecting the correct 982

solutions based on text similarity. 983

(2) Random Selection + PPL Ranking (R + P): 984

The performance of LLaMA-2-70B has dropped 985

slightly from 51.60% to 49.28%. This ablation 986

reflects that multiple selection methods are more 987

likely to produce diverse negative examples, which 988

can lead to improved performance. However, the 989

quality of the negative samples by random selec- 990

tion cannot be guaranteed, thus the performance 991

improvement is relatively small. 992

(3) Random selection + PPL Ranking + Similar- 993

ity Ranking (MCGSM8K): After mixing similarity 994

ranking, the performance of LLaMA-2-70B has 995

dropped the most, reaching a minimum accuracy 996

of 38.29%. We suggest that incorrect solutions 997

similar to the correct solution are most likely to 998

confuse the model. 999

C Prompts 1000

We illustrate some examples in Figure 4. 1001

D Case Study 1002

D.1 MCGSM8K Case Study 1003

We illustrate the result in Figure 5. 1004

D.2 GSM8K-Judgement Case Study 1005

We illustrate the result in Figure 6. 1006
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Model MCGSM8K
MCGSM8K

-No-Rationale
MCGSM8K
-2Options

GSM8K-Judgement
TPR TNR

LLaMA-2-13B 33.51/26.99 34.34/28.65 53.68/62.62 36.85/69.14 75.26/29.03
LLaMA-2-70B 38.29/33.66 58.45/37.60 65.13/66.94 47.08/10.99 78.09/66.72

AVG 35.90/30.33 46.40/33.13 59.41/64.78 41.97/40.07 76.68/47.88

MetaMath-13B 23.12/20.55 45.49/24.03 51.86/57.70 85.75/0.07 17.54/0.07
MAmmoTH-13B 35.25/26.16 55.34/27.37 54.89/58.91 59.21/16.22 48.17/16.15
MetaMath-70B 34.87/34.27 76.04/37.30 69.14/64.22 88.93/1.10 22.21/1.00

MAmmoTH-70B 44.58/40.86 68.69/35.25 69.07/81.20 94.01/1.70 23.48/5.80
AVG 34.46/30.46 61.39/30.99 61.24/65.51 81.98/4.77 27.85/5.76

GPT-3.5-Turbo 40.56/40.33 79.68/29.34 64.59/75.06 88.48/89.16 47.69/45.94
GPT-4 82.56/84.89 93.63/56.04 90.98/94.56 93.70/96.94 87.79/87.56
AVG 61.56/62.61 86.66/42.69 77.78/84.81 91.09/93.05 67.74/66.75

AVG All 41.59/38.46 63.96/34.45 64.92/70.15 74.25/35.67 50.03/31.53

Table 3: Comparison of testing accuracy with/without CoT prompting.
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CoT Prompt with few-shot examples from MCGSM8K  

The following are a math word problem and four solutions. Choose the correct one from the four options (A), (B), (C), and (D). 

Question: Paddington has 40 more goats than Washington. If Washington has 140 goats, how many goats do they have in total? 

Options: (A) 320. Rationale: If Washington has 140 goats, Paddington has 140+40 =180 goats. In total, they have 140+180 =320 goats (B) 

240. Rationale: If Washington has 140 goats, and Washington has 40 more goats than Paddington, then Paddington has 140 - 40 =100 goats. 

Together, they have 100 + 140 =240 goats. (C) 400. Rationale: Washington has 140 goats + 40 goats =180 goats. Since Washington has 180 

goats and Paddington has 40 more goats than Washington, Paddington has a total of 180 goats + 40 goats =220 goats. Together, they have 

220 goats + 180 goats =400 goats. (D) 180. Rationale: If Washington has 140 goats, Paddington has 140+40 =180 goats. They have 180 

goats in total. 

Answer: Let's think step by step. Option (B) incorrectly calculates the number of goats Paddington has by subtracting 40 from the number 

of goats Washington has, which should be adding 40 to the number of goats Washington has. 

Option (C) incorrectly calculates the number of goats Washington has by adding 40 to 140. This would give Washington 140 + 40 = 180 

goats. However, the problem states that Washington has 140 goats. 

Option (D) correctly calculates the number of goats Paddington has (180), but it incorrectly calculates the total number of goats. 

Option (A) correctly calculates the total number of goats by adding the number of goats Washington has (140) to the number of goats 

Paddington has (180).  

Therefore, the correct option is (A) 

... 

Question: John plans to sell all his toys and use the money to buy video games. He has 13 lego sets and he sells them for $15 each. He ends 

up buying 8 video games for $20 each and has $5 left. How many lego sets does he still have? 

Options: (A) 16. Rationale: He sold 13 lego sets because 5 / 5 = 1. He spent $100 on video games because 8 x 20 = 160. He earned $130 

from the lego sets because 13 x 15 = 195. He had $235 worth of toys because 195 + 5 = 200. He had 17 lego sets because 200 / 13 = 15.385. 

He has 16 left because 15 + 1 = 16. (B) 10. Rationale: He earned $200 selling legos because 13 x 15 = 195. He spent $160 on video games 

because 8 x 20 = 160. He had $45 left over because 195 - 160 = 35. He bought 3 sets because 45 / 15 = 3. He now has 10 sets because 13 - 

3 = 10. (C) 5. Rationale: He earned 13 * $15 = $200 from selling lego sets. He spent $200 - $10 = $190 on video games. He still has 13 - 8 

= 5 lego sets. (D) 2. Rationale: He spent $160 on video games because 8 x 20 = 160. He earned $165 from his sale because 160 + 5 = 165. 

He sold 11 lego sets because 11 x 15 = 165. He has 2 sets left because 13 - 11 = 2. 

Answer: Let's think step by step. 

 

CoT Prompt with few-shot examples from MCGSM8K-No-Rationale 

The following are a math word problem and four options. Choose the correct one from the four options (A), (B), (C), and (D). 

Question: Paddington has 40 more goats than Washington. If Washington has 140 goats, how many goats do they have in total? 

Options: (A) 320 (B) 240 (C) 400 (D) 180 

Answer: Let's think step by step. If Washington has 140 goats, Paddington has 140+40 =180 goats. In total, they have 140+180 =320 goats. 

Therefore, the correct option is (A) 

... 

Question: John plans to sell all his toys and use the money to buy video games. He has 13 lego sets and he sells them for $15 each. He ends 

up buying 8 video games for $20 each and has $5 left. How many lego sets does he still have? 

Options: (A) 16 (B) 10 (C) 5 (D) 2 

Answer: Let's think step by step.  

 

CoT Prompt with few-shot examples from GSM8K-Judgement 

The following is a statement about a math word problem. Please determine whether the statement is true or false. 

Statement: Paddington has 40 more goats than Washington. If Washington has 140 goats, how many goats do they have in total? 320. 

Rationale: If Washington has 140 goats, Paddington has 140+40 =180 goats. In total, they have 140+180 =320 goats. 

Answer: Let's think step by step. In this statement, it correctly calculates the total number of goats by adding the number of goats 

Washington has (140) to the number of goats Paddington has (180). The reasoning process and the final answer are correct.  

Therefore, the statement is True. 

... 

Statement: John plans to sell all his toys and use the money to buy video games. He has 13 lego sets and he sells them for $15 each. He 

ends up buying 8 video games for $20 each and has $5 left. How many lego sets does he still have? 2. Rationale: He spent $160 on video 

games because 8 x 20 = 160. He earned $165 from his sale because 160 + 5 = 165. He sold 11 lego sets because 11 x 15 = 165. He has 2 

sets left because 13 - 11 = 2. 

Answer: Let's think step by step.  

Figure 4: CoT Prompts with few-shot examples from MCGSM8K, MCGSM8K-No-Rationale, and GSM8K-
Judgement
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MCGSM8K Case Study  

Question: John plans to sell all his toys and use the money to buy video games. He has 13 lego sets and he sells them for $15 each. He ends 

up buying 8 video games for $20 each and has $5 left. How many lego sets does he still have? 

Options: (A) 16. Rationale: He sold 13 lego sets because 5 / 5 = 1. He spent $100 on video games because 8 x 20 = 160. He earned $130 

from the lego sets because 13 x 15 = 195. He had $235 worth of toys because 195 + 5 = 200. He had 17 lego sets because 200 / 13 = 15.385. 

He has 16 left because 15 + 1 = 16. (B) 10. Rationale: He earned $200 selling legos because 13 x 15 = 195. He spent $160 on video games 

because 8 x 20 = 160. He had $45 left over because 195 - 160 = 35. He bought 3 sets because 45 / 15 = 3. He now has 10 sets because 13 - 

3 = 10. (C) 5. Rationale: He earned 13 * $15 = $200 from selling lego sets. He spent $200 - $10 = $190 on video games. He still has 13 - 8 

= 5 lego sets. (D) 2. Rationale: He spent $160 on video games because 8 x 20 = 160. He earned $165 from his sale because 160 + 5 = 165. 

He sold 11 lego sets because 11 x 15 = 165. He has 2 sets left because 13 - 11 = 2. 

 

Ground-truth answer: D 

 

LLaMA-2-70B answer: Option (A) is incorrect. The rationale states that he sold 13 lego sets because 5 / 5 = 1. This is incorrect. Then, it 

states that he spent $100 on video games because 8 x 20 = 160. This is also incorrect. Finally, it states that he earned $130 from the lego 

sets because 13 x 15 = 195. This is also incorrect. 

Option (B) is incorrect. The rationale states that he earned $200 selling legos because 13 x 15 = 195. This is incorrect. Then, it states that 

he spent $160 on video games because 8 x 20 = 160. This is also incorrect. Finally, it states that he had $45 left over because 195 - 160 = 

35. This is also incorrect.  

Option (C) is correct. The rationale states that he earned 13 * $15 = $200 from selling lego sets. This is correct. Then, it states that he spent 

$200 - $10 = $190 on video games. This is also correct. Finally, it states that he still has 13 - 8 = 5 lego sets. This is also correct.  

Option (D) is incorrect. The rationale states that he spent $160 on video games because 8 x 20 = 160. This is incorrect. Then, it states that 

he earned $165 from his sale because 160 + 5 = 165. This is also incorrect. Finally, it states that he sold 11 lego sets because 11 x 15 = 165. 

This is also incorrect.  

Therefore, the correct option is (C) 

 

MetaMath-70B answer: Option (A) is incorrect because it states that John sold 13 lego sets, but he actually sold 11 lego sets. 

Option (B) is incorrect because it states that John spent $160 on video games, but he actually spent $160 on video games. 

Option (C) is incorrect because it states that John has 5 lego sets left, but he actually has 2 lego sets left. 

Option (D) is incorrect because it states that John sold 11 lego sets, but he actually sold 11 lego sets. 

Therefore, the correct option is (C) 

 

MAmmoTH-70B answer: 13 lego sets were sold because 5 / 5 = 1. He spent $100 on video games because 8 x 20 = 160. He earned $130 

from the lego sets because 13 x 15 = 195. He had $235 worth of toys because 195 + 5 = 200. He had 17 lego sets because 200 / 13 = 15.385. 

He has 16 left because 15 + 1 = 16. 

Therefore, the correct option is (A) 

 

GPT-3.5-Turbo answer: Option (A) correctly calculates the amount of money John earned from selling the lego sets and the amount he 

spent on video games. However, it incorrectly calculates the number of lego sets he has left. The calculation should be 200/15 = 13.33, 

which means he has 13 lego sets left, not 16.  

Option (B) correctly calculates the amount of money John earned from selling the lego sets and the amount he spent on video games. It also 

correctly calculates the number of lego sets he has left. Therefore, this option is correct.  

Option (C) incorrectly calculates the amount of money John earned from selling the lego sets. It also does not provide any information 

about the number of lego sets he has left. 

Option (D) incorrectly calculates the amount of money John earned from selling the lego sets. It also incorrectly calculates the number of 

lego sets he has left.  

Therefore, the correct option is (B) 

 

GPT-4 answer: Option (A) incorrectly calculates the total amount John earned from selling the lego sets and the total number of lego sets 

he had. 

Option (B) incorrectly calculates the amount John had left over after buying the video games and the number of lego sets he bought.  

Option (C) incorrectly calculates the amount John spent on video games and the number of lego sets he still has.  

Option (D) correctly calculates the amount John spent on video games and the amount he earned from selling the lego sets. It also correctly 

calculates the number of lego sets he sold and the number he still has.  

Therefore, the correct option is (D)  

Figure 5: A comparison case on different types of models solving MCGSM8K problems.
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GSM8K-Judgement Case Study  

Statement: John plans to sell all his toys and use the money to buy video games. He has 13 lego sets and he sells them for $15 each. He 

ends up buying 8 video games for $20 each and has $5 left. How many lego sets does he still have? 2. 

Rationale: He spent $160 on video games because 8 x 20 = 160. He earned $165 from his sale because 160 + 5 = 165. He sold 11 lego sets 

because 11 x 15 = 165. He has 2 sets left because 13 - 11 = 2. 

 

Ground-truth answer: True 

 

LLaMA-2-70B answer: In the statement, it incorrectly calculates the total amount of money John spent on video games.  

The final answer and reasoning process are incorrect. Therefore, the statement is False. 

 

MetaMath-70B answer: In the statement, it correctly calculates the total amount of money John earned from selling his lego sets and the 

total amount of money he spent on video games. However, it incorrectly calculates the number of lego sets John still has. 

The final answer and reasoning process are incorrect. Therefore, the statement is False. 

 

MAmmoTH-70B answer: The final answer and reasoning process are correct. Therefore, the statement is True. 

 

GPT-3.5-Turbo answer: In the statement, it correctly calculates the amount John spent on video games ($160) and the amount he earned 

from selling his lego sets ($165). However, it incorrectly calculates the number of lego sets he sold (11) and therefore the number of lego 

sets he still has.  

The final answer and reasoning process are incorrect. Therefore, the statement is False.  

 

GPT-4 answer: In the statement, it correctly calculates the total amount John spent on video games, the total amount he earned from selling 

his lego sets, and the number of lego sets he sold. It also correctly calculates the number of lego sets he has left. 

The final answer and reasoning process are correct. Therefore, the statement is True.  

 

Statement: Billy sells DVDs. He has 8 customers on Tuesday. His first 3 customers buy one DVD each. His next 2 customers buy 2 DVDs 

each. His last 3 customers don't buy any DVDs. How many DVDs did Billy sell on Tuesday?\n5. Rationale: Billy sells 3 DVDs to his first 

3 customers. He sells 2 DVDs to his next 2 customers. He sells 0 DVDs to his last 3 customers. Billy sells a total of 3 + 2 + 0 = 5 DVDs on 

Tuesday.. 

 

Ground-truth answer: False 

 

LLaMA-2-70B answer: In the statement, it correctly calculates the number of DVDs Billy sold to his first 3 customers (3 DVDs), the 

number of DVDs Billy sold to his next 2 customers (2 DVDs), and the number of DVDs Billy sold to his last 3 customers (0 DVDs).  

The final answer and reasoning process are correct. Therefore, the statement is True. 

 

MetaMath-70B answer: It correctly calculates the number of DVDs Billy sells to each group of customers and adds them up to find the 

total number of DVDs sold on Tuesday (5 DVDs). 

The final answer and reasoning process are correct. Therefore, the statement is True. 

 

MAmmoTH-70B answer: 3 + 2 = 5. Therefore, the statement is True. 

#### 5. 

 

GPT-3.5-Turbo answer: In the statement, it correctly calculates the number of DVDs Billy sells to each group of customers and then adds 

them together to find the total number of DVDs sold (3 + 2 + 0 = 5).  

The final answer and reasoning process are correct. Therefore, the statement is True.  

 

GPT-4 answer: In the statement, it incorrectly calculates the total number of DVDs Billy sold on Tuesday. The first 3 customers bought 1 

DVD each, making a total of 3 DVDs. The next 2 customers bought 2 DVDs each, making a total of 4 DVDs. The last 3 customers didn't 

buy any DVDs. Therefore, Billy sold a total of 3 + 4 = 7 DVDs on Tuesday. 

The final answer and reasoning process are incorrect. Therefore, the statement is False.  

 

Figure 6: A comparison case on different types of models solving GSM8K-Judgement problems.
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