
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REWARD IS ENOUGH: LLMS ARE IN-CONTEXT
REINFORCEMENT LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is a framework for solving sequential decision-
making problems. In this work, we demonstrate that, surprisingly, RL emerges
during the inference time of large language models (LLMs), a phenomenon we
term in-context RL (ICRL). To reveal this capability, we introduce a simple multi-
round prompting framework, we call ICRL prompting, for inference-time self-
improvement. The goal of ICRL prompting is to guide LLMs to perform rein-
forcement learning during inference for self-improvement on a given task. After
each response, the model receives numerical scalar feedback, denoted as a reward.
In the next round, we prompt the LLM again together with a context that concate-
nates all prior responses and their associated rewards. We consistently observe
that response quality improves as the context grows. In other words, the LLM
can optimize scalar reward signals during inference, exhibiting behavior analo-
gous to reinforcement learning. We evaluate ICRL prompting on Game of 24,
creative writing, ScienceWorld, and Olympiad-level math competitions (AIME
and HMMT), demonstrating significant improvements over baselines such as Self-
Refine and Reflexion. Notably, even when the reward signals are generated by the
same LLM, ICRL prompting still improves performance, highlighting a promising
new paradigm for test-time scaling.

1 INTRODUCTION

For Large Language Models (LLMs) to act as effective agents on novel tasks, they must be able to
improve during inference time, a capability often referred to as test-time scaling (Zhang et al., 2025).
Learning and search are the two general methods that can leverage scaling computation for perfor-
mance improvement (Sutton, 2019), reaching superhuman performance on Chess (Campbell et al.,
2002) and Go (Silver et al., 2016). Search has been successfully applied to LLM self-improvement
in test-time scaling, starting from the simple Best-of-N (Stiennon et al., 2022) to Tree of Thoughts
(Yao et al., 2023) and Monte Carlo Tree Search (Ding et al., 2024).

Learning, however, has yet to receive the same attention for LLM self-improvement at inference
time. In-context (supervised) learning (ICL; Brown et al. (2020)), as a supervised learning paradigm,
requires expert demonstrations as ground-truth labels. However, such demonstration data are not
easily scalable during inference time, which restricts the applicability of ICL to test-time scaling.
Thus, LLMs must instead learn from their own generated experience for continual self-improvement
(Silver & Sutton, 2024).

Reinforcement learning is perhaps the most successful algorithm capable of self-improvement in-
dependent of human knowledge (Silver et al., 2017). However, its major successes have primarily
appeared in simulated environments (Mnih et al., 2015; Silver et al., 2016) or during the training
time of LLMs Guo et al. (2025). These current RL settings fall short in the big world setting (Javed
& Sutton, 2024), where the real-world environment is vastly more complex than the agent itself. In
such environments, agents will encounter numerous situations far beyond their prior training data
and must adapt and improve their solutions on the fly. Bridging this gap requires models that (1)
can handle diverse tasks in the real world, where natural language often constitutes an essential ac-
tion space (Silver & Sutton, 2025), and (2) can continually improve their solutions during inference,
rather than relying on costly retraining for every novel situation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This naturally raises the question: can reinforcement learning emerge during the inference phase of
LLMs? Enabling LLMs to perform RL purely in context provides an elegant mechanism to meet
both requirements: LLM provides a general-purpose initial policy, while RL introduces the capabil-
ity for continual self-improvement. Inspired by the first surprising evidence that LLMs can act as
in-context learners in supervised settings (Brown et al., 2020), a growing body of work has begun to
explore in-context reinforcement learning (ICRL; Moeini et al. (2025)). However, current instantia-
tions are largely restricted to bandit or simulated environments (Monea et al., 2025; Krishnamurthy
et al., 2024), failing short of addressing many diverse open-ended tasks where natural language is
the action space.

In this paper, we bridge this critical gap by demonstrating that LLMs can act as effective in-context
reinforcement learners, an emergent capability that improves performance on diverse, language-
based tasks ranging from conducting scientific experiments to creative writing to solving olympiad-
level mathematics. To reveal this capability, we introduce a simple multi-round prompting frame-
work, ICRL prompting. The goal of ICRL prompting is to guide LLMs to perform reinforcement
learning for self-improvement on a task. Initially, the prompt is only the task description. After the
LLM generates a response, we give numerical scalar feedbacks for the response, called the rewards.
Then in the next round, we prompt the LLM again with the same task description and a context
consisting of all previous responses and rewards. So on and so forth. We observe that the quality of
the LLM’s response increases as the context grows. In other words, the LLM is able to maximize
the scalar reward signal during the inference time, just like an RL algorithm.

A key design principle of ICRL prompting is minimality. To ensure that the observed gains arise
from the emergent RL capacity of LLMs rather than auxiliary mechanisms, we deliberately exclude
textual gradients (Yuksekgonul et al., 2025), prioritized experience replay, sampling-based heuris-
tics (Zhang et al., 2024; Yang et al., 2024), or additional engineered modules (Brooks et al., 2024).
The only supervision provided is the scalar reward itself. This complies with both the reward hy-
pothesis (Sutton, 2004), “that all of what we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum of a received scalar signal (reward)”, and
the “reward is enough” hypothesis (Silver et al., 2021), “intelligence, and its associated abilities,
can be understood as subserving the maximisation of reward”.

To summarize, this paper makes three contributions:
(1): We introduce the ICRL prompting framework, a minimal design that elicits inference-time self-
improvement in LLMs using only scalar rewards. Just as ICL places (x, y) pairs in context, our
framework places state–action–reward tuples with simple meta-instructions in context. This design
isolates the LLM’s intrinsic capacity for ICRL, free from external code or engineered mechanisms.
(2): We provide strong evidence suggesting the emergence of RL in LLM’s inference time when the
ICRL prompting framework is used. Specifically, we demonstrate the maximisation of the scalar
reward signal, the exploration-exploitation trade-off in LLM’s inference time, the performance im-
provements from the growth of the context, the performance drop with short context, and the perfor-
mance drop when the reward is absent. All those observations are well expected for an RL algorithm.
Essentially, this is a “duck test” (Heim, 2007)1 for the inference process.
(3): We demonstrate that ICRL prompting yields significant improvements over self-revision meth-
ods such as Self-Refine (Madaan et al., 2023) and Reflexion (Shinn et al., 2023), across diverse
benchmarks including Game of 24, creative writing, ScienceWorld, and Olympiad-level mathemat-
ics (AIME and HMMT). In Game of 24 and creative writing, the rewards are generated by the LLM
itself, yet consistent performance gains are still observed.

2 BACKGROUND

Reinforcement Learning. RL uses Markov Decision Processes (MDPs) to model a task, consisting
of a state space S, an action space A, a reward function r : S → R, an initial distribution p0 ∈
∆(S) with ∆(S) denoting the set of probability distributions over S, and a transition function p :
S × A → ∆(S). At time step 0, an initial state S0 sampled from p0. At time t, an agent at St

takes an action At according to its policy π : S → ∆(A) with ∆(A) denoting the set of probability
distributions over A, i.e., At ∼ π(St). The action At is then executed, after which the agent
transitions to a successor state St+1 ∼ p(St, At) and recieves a reward Rt+1

.
= r(St+1). This

1If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

agent-environment interaction continues until a time T , which marks the end of an episode. The
goal of the agent is to adapt its policy π such that the expected total rewards J(π) .

= E[
∑T

t=1 Rt] is
maximized. In modern deep RL (Mnih et al., 2015; Schulman et al., 2017), the policy π is usually
parameterized by a neural network. We use θ to denote the network parameter and write the policy
as πθ. Typically, RL algorithms update θ to adapt its policy. For example, at time t, the action At

is sampled from πθt(St). The RL algorithm then update θt to θt+1 based on available information
such as S0, A0, R1, . . . , St, At, Rt+1, St+1. Then at time t+1, the action At+1 is sampled from the
updated policy πθt+1(St+1). Essentially, the typical RL process is reflected in the updates of θt.

In-Context Reinforcement Learning. ICRL (Moeini et al., 2025), first coined by Laskin et al.
(2023), is an emerging inference-time compute paradigm where the RL process occurs in the infer-
ence time (i.e., the forward pass) of the network without any parameter update. In ICRL, the policy
πθ is additionally conditioned on a context called Ct, i.e., At ∼ πθ(St, Ct). The construction of Ct

is an active research area but one example is to use all previous state-action-reward pairs obtained in
the task. Notably, this usually includes state-action-reward pairs from all previous episodes, not just
the current episode (Laskin et al., 2023). In ICRL, there is a pretraining stage where the network θ is
pretrained in a wide range of tasks (MDPs). We use θ∗ to denote the parameter after the pretraining.
After the pretraining stage, the policy πθ∗ is evaluated in new tasks. In other words, in the new
MDP, the action At is sampled from πθ∗(St, Ct). Importantly, the θ∗ is kept fixed. Nevertheless,
it is observed that the quality of At increases as Ct grows in the new task. Since θ∗ is fixed, this
improvement can only from the increase of the context. This is thus called in-context policy im-
provement. Notably, this in-context policy improvement is also observed even when the new task
is out of the distribution of the pretraining tasks, e.g., Laskin et al. (2023) demonstrate in-context
policy improvement in new bandit problems that have the opposite optimal arms to the pretraining
bandit problems. Thus this in-context policy improvement cannot be attributed to the hypothesis that
θ∗ memorizes the pretraining tasks. The only plausible hypothesis seems to be that the forward pass
of the network parameterized by θ∗ implements some RL algorithm to process the information in
the context Ct to generate the action At. This inference-time (forward pass) RL is called in-context
RL.
LLMs as RL Agents. The token generation process of LLMs can be modeled via RL. In short, the
state is all generated tokens and the action is the next token to generate. Namely, let V be the set of
all possible tokens. We consider a state space S .

=
⋃∞

i=1 Vi and an action spaceA .
= V . At time step

0, an initial prompt is given, denoted as S0 ∈ S. In this work, S0 contains a description of a task.
We refer to the LLM with parameter θ as πθ. At time t, given the current tokens St, a new token
At is sampled from πθ(St). The new state is then St+1 = [StAt], i.e., the new state is obtained by
concatenating current tokens and the new token. A reward signal Rt+1

.
= r(St+1) is then emitted

according to a reward function r. This token generation process continues until a time T , where
either T is the maximal allowed response length or AT−1 is a special end-of-sequence token. Either
way, this marks the end of an episode and the final state ST , called the terminal state, contains both
the initial task description and the LLM’s response. There are two types of reward functions. One
is sparse (the outcome reward model, Ouyang et al. (2022)), where r(s) is nonzero only when s is a
terminal state. The other is dense (the progress reward model, Lightman et al. (2023)), where r(s)
can also be nonzero for non-terminal states.

3 IN-CONTEXT REINFORCEMENT LEARNING PROMPTING

We now present our main contribution, the ICRL prompting framework (Algorithm 1, Figure 1),
consisting of the following ingredients.

LLM as the Policy. An LLM, denoted as πθ, serves as the policy network. The goal is to prompt the
LLM to solve a task. We assume a natural language description of the task is available and we denote
it as stask ∈ S. At the beginning of each episode, we construct the initial prompt by concatenating
the LLM’s own previous attempts together with the corresponding rewards, the task description,
and some meta instruction denoted as sICRL. The details of the concatenation of previous attempts
and the choice of the meta instruction will be discussed shortly. With this initial prompt, the LLM
generates the response. Both the response and the rewards are stored in the buffer for future episodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 ICRL Prompting

Require: An LLM πθ. A reward function r. Number of episodes K. An experience buffer B.
A task description stask ∈ S. The ICRL instruction sICRL ∈ S.

1: for k = 1 to K do
2: Construct the initial prompt S0 by concatenating all the tokens in B, stask, and sICRL.
3: t← 0 // Execute the policy πθ starting from S0

4: while St is not terminal do
5: At ∼ πθ(St), St+1

.
= [St At], Rt+1

.
= r(St+1), t← t+ 1

6: end while
7: // [A0 A1, . . . , AT−1] is the LLM’s response to stask at the current episode
8: Push (A0, R1, A1, R2, A2, R3, . . . AT−1, RT) into B.
9: end for

Reward Function. A numerical scalar reward feedback is provided for each St in the episode. No-
tably, the reward can be either sparse (i.e., only RT is nonzero) or dense. The reward function can be
rule-based, learned separately, or instantiated via the same LLM for self-evaluation. The flexibility
of using LLM’s self-evaluation as the reward function allows the ICRL prompting framework to
be applied to a wide range of tasks. Notably, this scalar reward is the only feedback we provide to
the LLM. But we do tell the LLM that this scalar is a reward. We do so by explicitly writing down
the word “Reward” before this number when constructing the initial prompt. Notably, if the reward
function is rule-based and learned separately, the reward signal constitutes an external feedback. But
if the reward function is just the LLM’s own evaluation of the answer, there is no external feedback
at all in the ICRL prompting framework. Yet we still expect the LLM’s response to improve over the
episode. This is because of the widely believed hypothesis that evaluation is eaiser than generation.
But we do hypothesize that the ceiling with self-evaluation is lower than that with external feedback.

Figure 1: ICRL Prompting. At each episode k+1,
LLM generates action tokens based on previous
experiences up to k, and receives numerical re-
wards either from itself as the evaluator or from
the environment. At the end of the episode, the
rewards are then concatenated with the action to-
kens and placed back into the context.

Memory for Experience. We use an experi-
ence buffer B to store the LLM’s responses and
rewards for the task in previous episodes. Our
underlying hypothesis is that pretrained LLM
already has the ICRL ability. To use this in-
nate ICRL ability to improve LLM’s response
to the task, we concatenate its previous attempts
and rewards as many as the context window al-
lows. We expect that the LLM can reinforce-
ment learn from the experiences in the context
during the inference time.

ICRL Instructions. To facilitate LLM’s infer-
ence time RL, we additionally provide some in-
structions in initial prompt S0 at each episode.
The instruction is in natural language and is de-
noted as sICRL. We consider three types of in-
structions: (1) the exploration instruction (Fig-
ure 4 in App. A), (2) the exploitation instruc-
tion (Figure 5 in App. A), (3) the exploration
or exploitation instruction (Figure 6 in App. A).
For exploration instruction, the model is asked
to provide a response that is different from all
its previous responses. For exploitation instruc-
tion, the model is asked to generate the best re-
sponse based on the the previous responses with
the highest reward. We consider two strategies.
(1) ICRL Preset: We alternate between the exploration and exploitation instructions. When the
episode number K is even, we use the exploration instruction. When the episode number K is odd,
we use the exploitation instruction. (2) ICRL Autonomous: We always provide the “exploration or
exploitation” instruction at each episode and let the LLM itself to decide on which to use.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 RELATED WORKS

4.1 IN-CONTEXT REINFORCEMENT LEARNING.

The study of inference-time RL algorithms dates back to Duan et al. (2016); Wang et al. (2016),
with Laskin et al. (2023) later coining the term in-context reinforcement learning (ICRL), spurring
rapid growth in the field (Kirsch et al., 2023; Raparthy et al., 2023; Schmied et al., 2024; Lee et al.,
2024; Zisman et al., 2023; Grigsby et al., 2024; Lu et al., 2023; Bauer et al., 2023; Wang et al.,
2025; Cook et al., 2024; Xu et al., 2024; Shi et al., 2024; Huang et al., 2024; Liu & Abbeel, 2023;
Dai et al., 2024). See Moeini et al. (2025) for a survey. Most existing ICRL works, as a subarea
of meta-RL (Beck et al., 2023), use small models trained from scratch in games or robotics. Some
employ pretrained LLMs, e.g., as simulators (Brooks et al., 2024; Mirchandani et al., 2023; Resendiz
& Klinger, 2025) or in bandit tasks (Krishnamurthy et al., 2024; Nie et al., 2024; Park et al., 2024;
Monea et al., 2025), where artificial interventions are often needed and LLMs remain uncompetitive
with algorithmic baselines.

4.2 INFERENCE-TIME LLM SELF-IMPROVEMENT

Existing methods often rely on natural language self-revision, e.g., Self-Refine (Madaan et al.,
2023), Reflexion (Shinn et al., 2023), and Textual Gradient (Yuksekgonul et al., 2025). Since the
quality of self-revision is dependent upon the model’s parametric knowledge of the task, such ap-
proaches are prone to hallucinated feedback that accumulates across iterations, leading to perfor-
mance collapse (Stechly et al., 2025). In essence, they resemble language-guided search (Liu et al.,
2025), where feedback serves as new explicit instructions for the next revision.

By contrast, ICRL requires only numerical rewards, without prescribing new instructions. The
model must infer a better response by recognizing patterns from its past experience, making the
process akin to reinforcement learning. Crucially, such rewards can also originate directly from the
environment, providing a strong source of verification signals.

A parallel line of work improves LLMs at inference via search, e.g., Tree-of-Thoughts (ToT) (Yao
et al., 2023), Graph-of-Thoughts (GoT) (Besta et al., 2024), Monte Carlo Tree Search (MCTS) (Ding
et al., 2024), and Intelligent Go-Explore (Lu et al., 2025). These methods largely depend on exter-
nally engineered components such as heuristics or memory management, rather than leveraging the
model’s intrinsic learning ability. Our work is also related to previous work on prompt optimization
(Yang et al., 2024), where numerical scores guide prompt refinement, though through top-k selection
and error filtering. Thus, it is more aligned with in-context supervised learning (e.g., filtered behav-
ior cloning, Grigsby et al. (2024)) than reinforcement learning. In contrast, ICRL enables learning
from failure experiences.

5 EXPERIMENT

In this section, we evaluate ICRL prompting on three benchmarks: Game of 24, creative writing
from Yao et al. (2023), and ScienceWorld (Wang et al., 2022). We compare several baselines in-
cluding CoT-only, Long-CoT style prompting, Best-of-N, Self-Refine, and Reflexion. Notably, in
all the experiments, we allow the prompt of Self-Refine and Reflexion to grow as long as the LLM
allows.

5.1 GAME OF 24

Task Setup. Given four input numbers, the model must use each number exactly once and apply
only addition, subtraction, multiplication, or division in any order to reach 24. We choose the
GPT-4.1 model for this experiment because of its excellent long-context capacity (OpenAI, 2025),
accessed through api calls. Following Yao et al. (2023), we use CoT prompting to elicit the model to
provide a step-by-step solution, where each step the model picks two numbers from the remaining
numbers and an operation to perform the calculation, and obtains one complete solution per LLM
query, containing a total of 4 thinking steps. To encure that the LLM generates response with
correct format, we additionally provide 5 in-context supervised learning demonstrations. The CoT

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Trial Number

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Best-of-N
Reflexion
Self-Refine

0 20 40 60 80 100
Trial Number

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Re
tu

rn

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Random Sampling
Reflexion
Self-Refine

0 5 10 15 20 25 30 35
Trial Number

30

40

50

60

70

80

Re
tu

rn

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Random Sampling
Reflexion
Self-Refine

Figure 2: Baseline Method Comparison. (Left) Mean Success Rate on Game of 24. (Middle)
Mean Coherence Reward on Creative Writing. Both ICRL Preset and Self-Refine went through an
additional run of 50 episodes. (Right) Mean Return on Science World. A running max version of
the plots is available in Figure 13 in App. B. This plot shows quality of the response at the current
trial while the running max version shows the quality of the best response until now. The shaded
region represents ±1 standard error of the performance calculated across the evaluated tasks.

instruction and the 5 demonstrations together form the task description stask (Figure 7 in App. A).

Evaluation. To verify the correctness of the solutions, we leverage SymPy (Meurer et al., 2017),
a library for symbolic mathematics, by extracting operands and operators and evaluating the
reconstructed expression to confirm it equals 24, and report the mean success rate over the 100
problems. This rule-based success rate is referred to as r∗ (i.e., the ground truth reward function)
in the rest of the paper. We use r to denote the reward function that the algorithms actually have
access to. In particular, we use GPT-4.1 as the r, the same LLM as the policy LLM but prompted
differently (see Figure 12 in App. A). After the policy LLM generates the response, for each
thinking step, GPT-4.1 scores the likelihood of reaching 24 with the remaining numbers on a 0-3
scale (0 = impossible, 3 = sure). The task in challenging in that no algorithm has access to r∗.
Instead, they have to rely on their own (possibly imperfect) evaluation, generated by the same LLM,
to improve the response.

Table 1: Game of 24 Success Rate. The running
max success rate of the last episode is reported.

Method Success Rate

CoT-only 6%
Long-CoT 47%
Reflexion 44%
Best-of-N 49%
Self-Refine 47%
ICRL Preset (Ours) 90%
ICRL Autonomous (Ours) 84%

Baselines. We compare our method with
CoT-only, Long-CoT style prompting, Best-
of-N, Reflexion, and Self-Refine. In CoT-only
prompting, the model receives only the task
description stask and produces a single step-by-
step solution. In Long-CoT style prompting,
we explicitly ask the LLM to generate a long
chain-of-thought, and keep retrying if the so-
lution is incorrect in "<think>...</think>" tags,
before finally providing the answer. Although
GPT-4.1 is not specifically trained for long-
form CoT reasoning, we find that Long-CoT
style prompting can elicit significantly longer
and self-correcting thought traces compared to
zero-shot prompting, making it a strong baseline for the Game of 24. Both methods cannot make
use of a reward signal and are run for one pass. For Best-of-N, to make it even stronger, we use the
ground truth reward r∗ to select the best response. Self-Refine does not require a reward function.
It instead asks the LLM itself to provide textual verbal feedback. Reflexion generates reflection
according to r. ICRL prompting is different from Self-Refine and Reflexion in that it uses the
reward r directly, without any verbal feedback. So the comparision between ICRL prompting and
Self-Refine / Reflexion is essentially the comparision between scalar feedback and verbal feedback.

ICRL prompting. As discussed before, both πθ and r in Algorithm 1 are the same LLM GPT-4.1
(prompted differently). We now clarify how we compute S0 at each episode. Since each action is a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

token, not all actions receive a reward. In fact, since we use CoT to prompt the LLM for 4 thinking
steps, only 4 rewards are available for each episode. We thus only include those 4 rewards in S0.
We add a “Reward: ” tag before the actual scalar reward and then concatenate the tagged reward
immediately after the corresponding action (i.e., token).

Results. The success rate (i.e., r∗) against the number of trials (i.e., the episodes in Algorithm 1) is
reported in Figure 2. The ICRL Preset method achieves the highest performance, and the observed
oscillations in success rate reflect the model’s alternating phases of exploration and exploitation.
The mean of running max is also plotted in Figure 13 in App. B. For each problem, we compute its
running maximum success rate up to each episode and then average these values across all problems
at every episode. As summarized in Table 1, after 50 trials, our methods achieve a success rate of
90% which is significantly higher than 49% from Best-of-N sampling, 47% from Self-Refine, and
44% from Reflexion.

5.2 CREATIVE WRITING

Task Setup. We consider the creative writing task from Yao et al. (2023), where four sentences are
randomly sampled from a pool of sentences. The task for LLMs is to generate four paragraphs, each
ending with a sentence, while ensuring that the generated passage is coherent. This is a difficult
task, as it challenges the LLMs to craft a unified storyline that logically justifies each of the four
sampled sentences by weaving them into a single narrative. A total of 100 problems are evaluated.
An example of stask is in Figure 8 in App. A.

Table 2: Length-Controlled Win Rate
(LC) and Standard Error (SE) from
Alpaca-Eval 2.0 on Creative Writing.

Comparison LC ± SE (%)

Ours vs Reflexion 59.48± 3.47
Ours vs Long CoT 78.36± 1.99
Ours vs Self-Refine 86.32± 3.03
Ours vs Best-of-N 93.81± 1.01

Evaluation. We evaluated outputs using the Length-
Controlled Alpaca-Eval 2 (Tatsu Lab, 2025) framework,
a widely used proxy for human evaluation (Hong et al.,
2024; Ethayarajh et al., 2024; Meng et al., 2024) with up
to 0.98 Pearson correlation with human judgments. For
100 creative writing problems, we present each method’s
top response: for Reflexion and Best-of-N, the highest-
reward output among 50 trials; for ICRL and Self-Refine,
the 50th episode output. Alpaca-Eval then computes pair-
wise win rates, denoted as r∗.

We next introduce the reward function r accessible to
the algorithms. We follow standard pairwise comparison
(Zheng et al., 2023), using GPT-4.1 with a coherent reference paragraph to score each response from
1–10 (see Fig. 11). Notably, although both r and r∗ use an LLM as a judge, they serve distinct pur-
poses. r compares responses against a fixed reference text with emphasis on coherence. By contrast,
r∗ performs pairwise comparison between two responses generated by our method and a baseline
method.

Baselines. We compare our method with Best-of-N, Reflexion, and Self-Refine. We allow Best-of-
N, Reflexion and ICRL prompting to use r. Self-Refine do not use r and instead asks GPT-4.1 to
provide verbal feedback. Since it is hard to distinguish CoT and Long-CoT style prompting for this
task, we include Long-CoT style prompting as the baseline.
ICRL prompting. GPT-4.1 is used as both the policy LLM πθ and the reward model r in Algo-
rithm 1. At each episode, the initial prompt S0 is constructed by concatenating all of the previous
generations along with their coherence scores from r. Notably, this reward is sparse and only RT

can be nonzero. We, therefore, only include RT in constructing S0.

Results. Our method achieves a length-controlled win rate of 59.48% against Reflexion, 78.36 %
against Long-CoT style prompting, 86.32 % against Self-Refine, and 93.81 % against Best-of-N
as shown in Table 2. This shows the responses generated by our method outperform the ones by
baselines in terms of following the instruction to write coherent paragraphs and achieving better
human preference. The return curve from reward model r is plotted in Figure 2, and a running
max of the return is plotted in Figure 13 in App. B. Although Self-Refine initially matches ICRL
in terms of coherence reward, extending both methods by 50 additional episodes, our methods keep

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

improving, whereas self-refine first plateaus, then declines, likely due to the significant growth of its
context.

5.3 SCIENCEWORLD

Task Setup. ScienceWorld (Wang et al., 2022) is an interactive, text-based benchmark consisting of
30 science-experiment tasks set in a multi-room environment populated with diverse objects. The
environment is challenging due to sparse rewards, large action spaces, and the requirement for sci-
entific knowledge and efficient exploration. At each step, the agent observes the result of its action
and receives zero reward unless it completes a predefined subgoal. This reward signal is used both
for evaluation and for inference-time self-improvement (i.e., r and r∗ are identical in this task).
Completing all subgoals yields a cumulative reward of 100 and marks the episode as successful.
An episode ends in failure if the agent either reaches the maximum number of steps or executes an
incorrect terminating action. The input stask provided to the agent describes the environment, the
task, and the template of all possible actions. An example of stask is provided in App. A
Evaluation. We use the environment-provided reward function for each task both to construct the
trajectories used in the context (r), and to evaluate the model (r∗). We benchmark each method on
all 30 tasks and aggregate the results. GPT-4.1 mini is used as the policy for all compared algo-
rithms.
Baselines. In Reflexion, at the end of each episode, the agent is prompted to reflect on its attempt.
The reflection is then sanitized and appended to a reflection buffer, which is formatted into the con-
text for subsequent trials. Self-Refine similarly generates self-feedback, but appends it to a trajectory
summary, which is then added to the buffer. To ensure a fair comparison, we allow these methods
access to the reward signals of the current episode (unlike ICRL) before prompting for reflection.
ICRL Setup. Each trial corresponds to a single episode in the environment. After the trial, the new
trajectory added to the buffer is constructed by concatenating the actions, observations, rewards,
and the final outcome (success or failure). As each episode typically yields only a few rewards, we
include only those. At the start of each trial, S0 is constructed by concatenating the task description
Stask, the collected trajectories, and then the instruction SICRL. An example of S0 is provided in
App.A.
Results. The mean return at each trial, is presented in Figure 2 Right. Steady improvements are ob-
served for methods that make use of some form of history of interactions similar to ICRL prompting.
However, ICRL prompting outperforms baseline methods by about 20% after enough iterations. To
make the comparison fair for efficient baselines such as Best-of-N, in App. B, we compare baslines
as we scale test-time compute budget and observe that ICRL also scales better than the baselines not
only in terms of number of trials but also the test-time compute budget (in dollar amounts).

6 ANALYSIS

Ablation Study. To better understand ICRL prompting, we consider following ablations. (1)
Zero Rewards: We set all rewards to 0. (2) Short Context: In Algorithm 1, the buffer B is
essentially a queue of infinite length. Instead, we now make it a deque of length 3. In other
words, only the recent 3 episodes are used in constructing S0. (3) Exploration Only: We simply
ask the LLM to provide a different response than the ones in context, using the exploration
instruction as sICRL, without the reward signal. (4) Exploitation Only: We always use the exploita-
tion instruction as sICRL, with the reward signal. (5) No ICRL Instruction: We entirely remove sICRL.

The running max results of the ablation study are plotted in Figure 3. Both our two methods and the
exploitation only with reward signals demonstrate the best-performing curves. This demonstrates
our ICRL prompting framework is quite robust to the different prompts setup. We have also ob-
served performance drop with short context and performance drop when the reward is absent. A
key finding is that the “exploration only without reward signal” method (shown in green) performs
significantly worse than our approach when comparing the maximum performance achieved over
time (running max). This demonstrates that our method’s improvement is not just due to exploring
various responses and then picking the best one previously seen as doing a Best-of-N. Instead, ICRL
can genuinely generate novel responses that are better than the ones during the exploration phase.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Trial Number

0.0

0.2

0.4

0.6

0.8

Ru
nn

in
g

M
ax

 S
uc

ce
ss

 R
at

e

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Exploration Only
Exploitation Only
No ICRL Instruction
Zero Rewards
Only 3 Trajectories

0 10 20 30 40 50
Trial Number

5

6

7

8

Ru
nn

in
g

M
ax

 R
et

ur
n

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Exploration Only
Exploitation Only
No ICRL Instruction
Zero Rewards
Only 3 Trajectories

0 5 10 15 20 25 30 35
Trial Number

55

60

65

70

75

80

85

90

Ru
nn

in
g

M
ax

 R
et

ur
n

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Exploration Only
Exploitation Only
No ICRL Instruction
Zero Rewards
Only 3 Trajectories

Figure 3: Ablation Studies (Running Max). (Left) The mean of running max success rate on
Game of 24. (Middle) The mean of running max coherence reward on creative criting. (Right).
The mean of running max return on ScienceWorld. The shaded region represents ±1 standard error
of the mean (SEM) of the performance calculated across the evaluated tasks within each benchmark.

Table 4: Performance across benchmarks (HMMT, AIME, Creative Writing) for different models
and inference-time improvement methods.

Method
Qwen3 32B (32k) Qwen3 32B think (32k) Llama 4 Maverick (32k) Phi-4 (16k)

HMMT AIME CW HMMT AIME CW HMMT AIME CW HMMT AIME CW

Base 9.14 22.54 34.14 52.00 66.58 1.24 8.50 17.58 0.98 5.55 20.00 10.85
Self-Refine 16.66 43.33 46.00 56.66 83.33 30.23 13.33 20.00 45.52 13.33 33.33 51.98
Reflexion 23.33 33.33 41.17 60.00 70.00 38.33 10.00 23.33 24.96 13.33 40.00 33.30
ICRL 33.33 46.66 50.00 60.00 80.00 50.00 20.00 35.00 50.00 13.33 40.00 50.00

Context Length Analysis. To assess compute efficiency under different input scales, we evaluate
ICRL on Qwen3-32B (Yang et al., 2025) across context lengths of 8k, 16k, and 32k (Table 3). The
results show that ICRL consistently surpasses Self-Refine and Reflexion in both Creative Writing
and AIME, demonstrating superior performance per unit of compute.

Table 3: Performance of Qwen/Qwen3-32B with-
out reasoning on Creative Writing (LC-WR: length-
controlled win rate) and AIME (% solved) across dif-
ferent context lengths.

Method
CW (LC-WR) AIME (% solved)

8k 16k 32k 8k 16k 32k

Self-Refine 46.33 45.83 44.41 33.33 43.33 43.33
Reflexion 42.73 40.87 40.72 30.00 30.00 33.33
ICRL 50.00 50.00 50.00 40.00 43.33 46.66

Evaluating ICRL on Open-Source
Models and Olympiad-level Math-
ematics. To demonstrate the broad
applicability of ICRL, we evaluated its
performance across two key dimensions:
model architecture and task complexity.
First, we tested ICRL on a range of
open-source models, including Phi-4
(Abdin et al., 2024), Llama-4 Maverick
(AI, 2025), Qwen3-32B, and Qwen3-32B-
thinking mode (Yang et al., 2025) on the
creative writing task. Second, we applied
it to challenging Olympiad-level mathe-
matics (AIME (Mathematical Association
of America), HMMT (Harvard–MIT
Mathematics Tournament)). For details of the experimental setup, please refer to Appendix B.1.
ICRL consistently outperforms baselines like self-refine and Reflexion in all settings. Notably, the
performance gains are substantial across the board, with improvements of up to 10–20 points over
the base model on both creative and mathematical benchmarks. These results demonstrate that
ICRL is a robust capability that exists across diverse models and proves effective in challenging
task domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Learning from Rewards vs. Parametric Knowledge Search. To verify that ICRL truly learns
from external rewards rather than merely searching within the model’s parametric knowledge, we
evaluated it on generating abstracts for arXiv papers published after the model’s training cutoff.
In this setting, where the ground truth is absent from the model’s training data, standard search
methods like Best-of-N and self-correction methods like Reflexion plateau quickly (Figure 16). In
contrast, ICRL continues to improve ROUGE-Recall scores over 200 iterations, demonstrating its
ability to uncover unseen information solely by exploiting the scalar reward signal. Detailed results
are provided in Appendix C.

7 CONCLUSION

In this paper, we demonstrate that reinforcement learning is an emergent capability of LLMs at
inference time. We show that our minimal, scalar-reward-based ICRL prompting framework unlocks
this ability across diverse models and general-purpose tasks, outperforming self-revision methods. A
key direction in future work is to investigate how training-time interventions might further enhance
this in-context RL capability in LLMs. This surprisingly effective capability points toward a future
of more autonomous agents that can explore, adapt, and self-improve in open-ended settings by
learning from their own experience.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril
Zhang, and Yi Zhang. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.
08905.

Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai in-
novation. https://ai.meta.com/blog/llama-4-multimodal-intelligence/,
2025. Accessed: 2025-09-25.

Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg,
Michael Chang, Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, et al. Human-
timescale adaptation in an open-ended task space. In Proceedings of the International Conference
on Machine Learning, 2023.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
mon Whiteson. A survey of meta-reinforcement learning. ArXiv Preprint, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Giani-
nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: Solving elaborate problems with large language models. Proceedings of
the AAAI Conference on Artificial Intelligence, 2024.

Ethan Brooks, Logan Walls, Richard L Lewis, and Satinder Singh. Large language models can
implement policy iteration. In Advances in Neural Information Processing Systems, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, 2020.

Murray Campbell, Feng-Hsiung Hsu, and A. Joseph Hoane. Deep blue. Artificial Intelligence, 134
(1):57–83, 2002. doi: 10.1016/S0004-3702(01)00129-1.

Jonathan Cook, Chris Lu, Edward Hughes, Joel Z Leibo, and Jakob Foerster. Artificial generational
intelligence: Cultural accumulation in reinforcement learning. ArXiv Preprint, 2024.

10

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://ai.meta.com/blog/llama-4-multimodal-intelligence/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenwen Dai, Federico Tomasi, and Sina Ghiassian. In-context exploration-exploitation for rein-
forcement learning. ArXiv Preprint, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. ArXiv Preprint, 2025.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan Ra-
jmohan, Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of penrose
triangle for thought generation. In Findings of the Association for Computational Linguistics:
ACL 2024, 2024.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: fast
reinforcement learning via slow reinforcement learning. ArXiv Preprint, 2016.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. ArXiv Preprint, 2024.

Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
adaptive agents. In Proceedings of the International Conference on Learning Representations,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. ArXiv Preprint, 2025.

Harvard–MIT Mathematics Tournament. Hmmt (harvard–mit mathematics tournament). URL
https://www.hmmt.org/.

Michael Heim. Exploring Indiana Highways. 2007.

Jiwoo Hong, Noah Lee, and James Thorne. ORPO: Monolithic preference optimization without ref-
erence model. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, 2024.

11

https://www.hmmt.org/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sili Huang, Jifeng Hu, Hechang Chen, Lichao Sun, and Bo Yang. In-context decision transformer:
Reinforcement learning via hierarchical chain-of-thought. ArXiv Preprint, 2024.

Khurram Javed and Richard S. Sutton. The big world hypothesis and its ramifications for artifi-
cial intelligence. In Finding the Frame Workshop at the Reinforcement Learning Conference.
OpenReview, 2024. URL https://openreview.net/pdf?id=Sv7DazuCn8. CC BY
4.0.

Louis Kirsch, James Harrison, C. Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. To-
wards general-purpose in-context learning agents. In NeurIPS Foundation Models for Decision
Making Workshop, 2023.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? ArXiv Preprint, 2024.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
distillation. In Proceedings of the International Conference on Learning Representations, 2023.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. In Advances in
Neural Information Processing Systems, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. ArXiv Preprint,
2023.

Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience. In
Proceedings of the International Conference on Machine Learning, 2023.

Max Liu, Chan-Hung Yu, Wei-Hsu Lee, Cheng-Wei Hung, Yen-Chun Chen, and Shao-Hua Sun.
Synthesizing programmatic reinforcement learning policies with large language model guided
search. In Proceedings of the International Conference on Learning Representations, 2025.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and Fer-
yal Behbahani. Structured state space models for in-context reinforcement learning. In Advances
in Neural Information Processing Systems, 2023.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models. In Proceedings of the International Conference on Learning Representations,
2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Advances in Neural Information Processing Systems,
2023.

Mathematical Association of America. American invitational mathematics examination (aime).
URL https://maa.org/maa-invitational-competitions/.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. ArXiv Preprint, 2024.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Certik, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Simon Roucka,
Akshay Saboo, Ishaan Fernando, Shravan Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:
symbolic computing in python. PeerJ Computer Science, 2017.

12

https://openreview.net/pdf?id=Sv7DazuCn8
https://maa.org/maa-invitational-competitions/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Are-
nas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large Language Models as General Pattern
Machines. ArXiv Preprint, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shang-
tong Zhang. A survey of in-context reinforcement learning. ArXiv Preprint, 2025.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context bandit
reinforcement learners. ArXiv Preprint, 2025.

Allen Nie, Yi Su, Bo Chang, Jonathan N. Lee, Ed H. Chi, Quoc V. Le, and Minmin Chen. EVOLvE:
Evaluating and Optimizing LLMs For Exploration. ArXiv Preprint, 2024.

OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, 2022.

Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have regret? a
case study in online learning and games. ArXiv Preprint, 2024.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gen-
eralization to new sequential decision making tasks with in-context learning. ArXiv Preprint,
2023.

Yarik Menchaca Resendiz and Roman Klinger. Parl: Prompt-based agents for reinforcement learn-
ing, 2025. URL https://arxiv.org/abs/2510.21306.

Thomas Schmied, Thomas Adler, Vihang Patil, Maximilian Beck, Korbinian Pöppel, Johannes
Brandstetter, Günter Klambauer, Razvan Pascanu, and Sepp Hochreiter. A Large Recurrent Ac-
tion Model: xLSTM enables Fast Inference for Robotics Tasks. ArXiv Preprint, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv Preprint, 2017.

Lucy Xiaoyang Shi, Yunfan Jiang, Jake Grigsby, Linxi Fan, and Yuke Zhu. Cross-episodic curricu-
lum for transformer agents. In Advances in Neural Information Processing Systems, 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. In Advances in
Neural Information Processing Systems, 2023.

David Silver and Richard S. Sutton. Welcome to the era of experience, 2024.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 2025.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, 2017. doi: 10.1038/
nature24270.

13

https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/2510.21306

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artificial
Intelligence, 2021.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks. In Proceedings of the International
Conference on Learning Representations, 2025.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Rad-
ford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. ArXiv
Preprint, 2022.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains,
April 2025. URL http://arxiv.org/abs/2503.23829.

Richard S. Sutton. The reward hypothesis. http://incompleteideas.net/rlai.cs.
ualberta.ca/RLAI/rewardhypothesis.html, 2004.

Richard S. Sutton. The bitter lesson. http://www.incompleteideas.net/IncIdeas/
BitterLesson.html, 2019.

Tatsu Lab. alpaca_eval: An evaluation framework for llms. https://github.com/
tatsu-lab/alpaca_eval, 2025.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
ArXiv Preprint, 2016.

Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers can learn tempo-
ral difference methods for in-context reinforcement learning. In Proceedings of the International
Conference on Learning Representations, 2025.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. ScienceWorld: Is
your Agent Smarter than a 5th Grader? ArXiv Preprint, 2022.

Tengye Xu, Zihao Li, and Qinyuan Ren. Meta-reinforcement learning robust to distributional shift
via performing lifelong in-context learning. In Proceedings of the International Conference on
Machine Learning, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. ArXiv Preprint, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. ArXiv
Preprint, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
2025.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Niklas
Muennighoff, Irwin King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on
test-time scaling in large language models, 2025. URL https://arxiv.org/abs/2503.
24235.

14

http://arxiv.org/abs/2503.23829
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shimao Zhang, Yu Bao, and Shujian Huang. Edt: Improving large language models’ generation by
entropy-based dynamic temperature sampling. ArXiv Preprint, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. ArXiv Preprint, 2023.

Ilya Zisman, Vladislav Kurenkov, Alexander Nikulin, Viacheslav Sinii, and Sergey Kolesnikov.
Emergence of in-context reinforcement learning from noise distillation. ArXiv Preprint, 2023.

A PROMPT EXAMPLES

Instruction: Examine all the <attempt>...</attempt> examples, each showing a candidate Response,
and the Rewards for each step of the Response. Provide a response that is completely different for any
steps from every single one of the previous attempts demonstrated in the context.

Figure 4: The Exploration Instruction (sICRL).

Instruction: You will be given multiple <attempt>...</attempt> examples, each showing a candidate
Response, and the Rewards for each step of the Response. Your task: Based on the previous attempts,
try your best to produce a response that can achieve higher rewards.

Figure 5: The Exploitation Instruction (sICRL).

Instruction: Examine all the <attempt>...</attempt> examples, each showing a candidate Response
and its Reward. You have two options: exploration or exploitation.

For exploration, provide a response that is completely different for any steps from every single
one of the previous attempts demonstrated in the context, while making sure it correctly follows the
task instruction.

For exploitation, based on the previous attempts, try your best to produce a response that can
achieve higher rewards.

Pick one option to follow.

Figure 6: The Exploration or Exploitation Instruction (sICRL).

Prompt: Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must
be: For some unfathomable reason, the response team didn’t consider a lack of milk for my cereal as a
proper emergency. You realize you’re not alone as you sit in your bedroom massaging your calves after
a long day of playing tug-of-war with Grandpa Joe in the hospital. He poured rocks in the dungeon of
his mind. I’m a living furnace. Make a plan then write. Your output should be of the following format:
Plan: Your plan here. Passage: Your passage here.

Figure 8: An example of stask for creative writing.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

<attempt>
Input: 4 4 6 8
Step1: 4 + 8 = 12 (left: 4 6 12)
Step2: 6 - 4 = 2 (left: 2 12)
Step3: 2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24
</attempt>

<attempt>
Input: 2 9 10 12
Step1: 12 * 2 = 24 (left: 9 10 24)
Step2: 10 - 9 = 1 (left: 1 24)
Step3: 24 * 1 = 24 (left: 24)
Answer: (12 * 2) * (10 - 9) = 24
</attempt>

<attempt>
Input: 4 9 10 13
Step1: 13 - 10 = 3 (left: 3 4 9)
Step2: 9 - 3 = 6 (left: 4 6)
Step3: 4 * 6 = 24 (left: 24)
Answer: 4 * (9 - (13 - 10)) = 24
</attempt>

<attempt>
Input: 1 4 8 8
Step1: 8 / 4 = 2 (left: 1 2 8)
Step2: 1 + 2 = 3 (left: 3 8)
Step3: 3 * 8 = 24 (left: 24)
Answer: (1 + 8 / 4) * 8 = 24
</attempt>

<attempt>
Input: 5 5 5 9
Step1: 5 + 5 = 10 (left: 5 9 10)
Step2: 10 + 5 = 15 (left: 9 15)
Step3: 15 + 9 = 24 (left: 24)
Answer: ((5 + 5) + 5) + 9 = 24
</attempt>

Task: Use numbers and basic arithmetic operations (+ - * /) to obtain 24. Put your an-
swer in this format ‘<answer>**Response** Step1: ... (left: ...) Step2: ... (left: ...) Step3: ... (left:
...) **Answer**: <math operations of the 4 input numbers, even if it does not equal 24></answer>‘.
Whether it is correct or not, do not try again.
Prompt: Input: 1 8 10 11

Figure 7: An example of stask for Game of 24 with few-shot CoT prompting.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You are a helpful assistant to do some scientific experiment in an environment.
<Environment description> # stask
In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway
You should explore the environment and find the items you need to complete the experiment.

The available actions are: Available Actions

FOCUS is a extremely critical action that can be only used the number of times ’focus’ is mentioned
in the task description. Using it more than that or inappropiately (such as on a wrong object) will
terminate the session and the task WILL FAIL.

Task Description:
Your task is to change the state of matter of water. First, focus on the substance. Then, take actions
that will cause it to change its state of matter.
</Environment description>

<Instruction> sICRL </Instruction>

<Attempts> # Buffer

...

Attempt n:
teleport to bathroom -> Observation: You teleport to the bathroom. (reward=3)
-> focus on substance in toilet -> Observation: You focus on the water. (reward=66)
-> use cup on substance in toilet -> Observation: I’m not sure how to do that. (reward=0)
-> activate sink -> Observation: The sink is now activated. (reward=0)
-> dunk cup into sink -> Observation: No known action matches that input. (reward=0)
-> move cup to sink -> Observation: You move the glass cup to the sink. (reward=0)
-> teleport to kitchen -> Observation: You teleport to the kitchen. (reward=0)
-> use cup on stove -> Observation: I’m not sure how to do that. (reward=0)
-> activate stove -> Observation: The stove is now activated. (reward=2)
-> move cup to table -> Observation: You move the glass cup to the chair. (reward=0)
-> examine cup -> Observation: a glass cup (containing nothing) (reward=0)
Task Failed. You have exceeded the maximum number of steps. (reward=0) Total reward: 71

Attempt n+ 1:
teleport to bathroom -> Observation: You teleport to the bathroom. (reward=3)
-> focus on substance in toilet -> Observation: You focus on the water. (reward=66)
-> pick up cup -> Observation: You move the glass cup to the inventory. (reward=0)
-> move cup to sink -> Observation: You move the glass cup to the sink. (reward=0)
-> activate sink -> Observation: The sink is now activated. (reward=0)
-> dunk cup into sink -> Observation: No known action matches that input. (reward=0)
-> pour substance in cup into sink -> Observation: You pour the water into the sink. (reward=0)
-> activate stove -> Your generated action “activate stove” cannot be matched to a valid action. (re-
ward=0)
-> teleport to kitchen -> Observation: You teleport to the kitchen. (reward=0)
-> pick up cup containing nothing in table -> Observation: You move the glass cup to the inventory.
(reward=0)
-> activate sink -> Observation: The sink is now activated. (reward=0)
Task Failed. You have exceeded the maximum number of steps. (reward=0) Total reward: 69

...

</Attempts>

Figure 9: An example of S0 from ScienceWorld.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Buffer:
<attempt>
Input: 4 9 10 13.
Response:
Step1: 10 - 4 = 6 (left: 6 9 13) <Reward: 3.00>
Step2: 13 - 6 = 7 (left: 7 9) <Reward: 0.00>
Step3: 9 * 7 = 63 (left: 63) <Reward: 0.00>
*Answer**: (13 - (10 - 4)) * 9 = 63 <Reward: 3.00>
</attempt>

<attempt>
Input: 4 9 10 13.
Response:
Step1: 10 + 4 = 14 (left: 9 13 14) <Reward: 0.00>
Step2: 14 + 9 = 23 (left: 13 23) <Reward: 0.00>
Step3: 23 + 13 = 36 (left: 36) <Reward: 0.00>
*Answer**: (10 + 4 + 9) + 13 = 36 <Reward: 0.00>
</attempt>

<attempt>
Input: 4 9 10 13.
Response:
Step1: 9 + 10 = 19 (left: 4 13 19) <Reward: 3.00>
Step2: 19 - 13 = 6 (left: 4 6) <Reward: 3.00>
Step3: 6 + 4 = 10 (left: 10) <Reward: 0.00>
*Answer**: ((9 + 10) - 13) + 4 = 10 <Reward: 6.00>
</attempt>
sICRL
stask

Figure 10: An example of S0 from Game of 24.

Instruction: You are a seasoned text coherence evaluator. Read the TEXT below and rate its overall
coherence on a scale from 1 to 10, where 1 means significantly less coherent than the Base Answer,
5 means equally coherent, and 10 means significantly more coherent. Be a strict and conservative
evaluator-only assign high scores when the TEXT is clearly better than the Base Answer.

Base Answer:
{At dawn, golden light slips past pale curtains, rousing the world
in quiet celebration. A lone robin greets the morning with a
clear, cheerful trill, its song drifting across dew-laden grass. A
gentle breeze stirs the leaves, carrying the fresh, earthy scent
of new growth. Nearby, rooftops and empty streets lie poised
between night’s calm and the city’s stirring pulse, promising
simple comforts like a warm cup of coffee. In this tranquil pause,
one senses life’s renewal and the gentle invitation to greet the
day with hope and gratitude.}

TEXT: { model_answer}

Return your answer in exactly this format: Coherency score: <integer 1–10>.
Response:

Figure 11: Prompt for Pairwise Coherence Evaluation for Reward Model r.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Rule of the Game of 24: Use all four numbers provided in the input, without repetition, and only
basic arithmetic operations (+, –, ×, ÷) to obtain 24. Only three steps are allowed.

Given the following two remaining numbers from a previous step in the Game of 24, the current step
is: {step}. Evaluate this step.

Examine the numbers shown in each “left: . . . ” after the step and reason whether it is still possible to
reach 24: • Sure → 3 • Likely → 1 • Impossible → 0

Return the score in the following format: **Answer**: <integer score>

Response:

Figure 12: Prompt for single-step evaluation used in the reward model r for Game of 24.

B ADDITIONAL EXPERIMENTAL RESULTS

0 10 20 30 40 50
Trial Number

0.0

0.2

0.4

0.6

0.8

Ru
nn

in
g

M
ax

 S
uc

ce
ss

 R
at

e

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Best-of-N
Reflexion
Self-Refine

0 20 40 60 80 100
Trial Number

5

6

7

8

Ru
nn

in
g

M
ax

 R
et

ur
n

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Best-of-N
Reflexion
Self-Refine

0 5 10 15 20 25 30 35
Trial Number

40

50

60

70

80

90

Ru
nn

in
g

M
ax

 R
et

ur
n

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Best-of-N
Reflexion
Self-Refine
ReAct

Figure 13: Benchmark results: Mean of Running Max. (Left) The mean of running max success
rate on Game of 24. (Middle) The mean of running max coherence reward on creative writing. Both
ICRL Preset and Self-Refine went through an additional run of 50 episodes. (Right). The mean of
running max return on ScienceWorld.

0 10 20 30 40 50
Trial Number

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Exploration Only
Exploitation Only
No ICRL Instruction
Zero Rewards
Only 3 Trajectories

0 10 20 30 40 50
Trial Number

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Re
tu

rn

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Exploration Only
Exploitation Only
No ICRL Instruction
Zero Rewards
Only 3 Trajectories

0 5 10 15 20 25 30 35
Trial Number

50

60

70

80

Re
tu

rn

ICRL Preset (Ours)
ICRL Autonomous (Ours)
Exploration Only
Exploitation Only
No ICRL Instruction
Zero Rewards
Only 3 Trajectories

Figure 14: Ablation study results: Original Curves. (Left) The mean of success rate on Game of
24 ablation studies. (Middle) The mean of coherence reward on creative writing ablation studies.
(Right). The mean return on ScienceWorld ablation studies.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Running max of return averaged over all the tasks in ScienceWorld.

Method Return (max = 100)

ReAct 69 ± 1.4
Reflexion 74 ± 1.1
Best-of-N 75 ± 1.2
Self-Refine 83 ± 0.9
ICRL Preset (Ours) 88 ± 0.7
ICRL Autonomous (Ours) 87 ± 0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cumulative Cost (USD)

40

50

60

70

80

Ru
nn

in
g

M
ax

 R
et

ur
n

T5

T10

T15

T5

T10
T15

T20

T25 T30

T35
T40 T45 T50 T55 T60 T65 T70 T75 T80

T5 T10 T15

T20 T25

T5

T10
T15

T20

T5

T10

T15 T20
T25

T30

T35

ICRL Autonomous (Ours)
Best-of-N
Reflexion
Self-Refine
ReAct

0 5 10 15 20 25 30 35
Trial Number

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ru
nn

in
g

M
ax

 S
uc

ce
ss

 R
at

e

ICRL Autonomous (Ours)
Best-of-N
Reflexion
Self-Refine
ReAct

Figure 15: Additional ScienceWorld Results. (Left) Although ICRL’s context (comprising the
experience buffer) is longer than that of random sampling methods, it still outperforms them and
other experience-based approaches given additional compute budget. (Right) ICRL’s superior return
improvement as seen in other results, also leads to a greater increase in success rate.

B.1 ADDITIONAL BENCHMARK: MATH COMPETITIONS

Task Setup. AIME (Mathematical Association of America) and HMMT (Harvard–MIT Mathemat-
ics Tournament) are two of the most difficult mathematics competitions in the U.S. for high school
students. They require not only strong mathematical knowledge but also advanced problem-solving
skills. Training language models for reasoning has been one of the most effective methods for im-
proving performance on these benchmarks (DeepSeek-AI et al., 2025).

We aim to test whether reward signals derived from previous reasoning traces can improve subse-
quent reasoning attempts. To access these traces, we rely on open-source models. In addition to
evaluating reasoning models on these benchmarks, we also include a broader set of open-source
models to demonstrate the prevalence of ICRL capability across a wide spectrum.

In this benchmark, the model is given a single question and asked to produce an answer. The only
additional instruction concerns formatting: the model must place its final answer within <answer>
</answer> tags. The dataset includes the ground-truth answer for each question.

For the reward model, we use the model proposed by Su et al. (2025), which provides a denser signal
than simply checking with SymPy whether the model’s output matches the ground truth. Using such
a model aligns with our belief that the growing ecosystem of judge and reward models, primarily
designed for reinforcement fine-tuning of language models (Lightman et al., 2023), will also play a
key role in enabling ICRL as a test-time scaling method.

Evaluation. To verify correctness, we parse the model’s output and check whether its answer
matches the ground truth answer provided in the datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Baselines. We compare our method with Reflexion and Self-Refine, the two strongest baselines
from the other benchmarks. Their implementations are consistent with those used in the prior ex-
periments.

ICRL Setup. For attempts after the first, we insert the model’s previous answer (including reasoning
or CoT tokens) into the context, along with its associated reward. We then prompt the model either
to try a new method or to refine its best previous approaches. We truncate past answers to ensure
that at least 32 prior attempts can fit in the context.

Results. Our method outperforms the baselines in almost all cases. For the reasoning mode of
Qwen3-32B, our approach remains competitive with Self-Refine on AIME and surpasses it on
HMMT, which is the harder benchmark. Notably, this is achieved using scalar rewards computed
with three orders of magnitude less computation, while Reflexion and Self-Refine are allowed nearly
twice the compute budget for generating long-CoT verbal feedback.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C ADDITIONAL ANALYSIS RESULTS

C.1 UNSEEN PAPER ABSTRACT GENERATION

To isolate whether ICRL truly learns from external rewards rather than merely searching or selecting
from the model’s parametric knowledge, we design a task where search within parametric knowledge
alone is expected to be ineffective.

Setup. We fetch 30 arXiv papers published after GPT-4.1-mini’s training cutoff. Provided only
the title of the papers, the model is instructed to generate the abstract. The goal is to uncover the
unseen expert-written abstract as much as possible. We measure performance using ROUGE-recall
between the model’s generated abstract and the ground-truth abstract, and we use the same score as
the external reward. Because these abstracts lie outside the model’s pre-training distribution, success
requires learning from external rewards rather than searching through memorized content.

Results. As shown in Fig. 16, Best-of-1024 sampling reaches only 0.44 ROUGE-recall, indicating
that direct search over the model’s base distribution cannot recover the missing content. Self-Refine
plateaus within a few rounds to 0.45 because it does not use external reward. Reflexion performs
slightly better at 0.46 but largely mirrors Self-Refine, suggesting that its revisions are dominated by
the model’s self-verbal feedback, which carries little useful information in this setup. In contrast,
ICRL continues to improve over 200 iterations and achieves substantially higher ROUGE-recall at
0.59, demonstrating that it can effectively learn from the external reward signal and is not limited by
the model’s pre-training knowledge.

Figure 16: ROUGE-Recall on Generating Unseen Paper Abstracts

22

	Introduction
	Background
	In-Context Reinforcement Learning Prompting
	Related Works
	In-Context Reinforcement Learning.
	Inference-Time LLM Self-Improvement

	Experiment
	Game of 24
	Creative Writing
	ScienceWorld

	Analysis
	Conclusion
	Prompt Examples
	Additional Experimental Results
	Additional Benchmark: Math Competitions

	Additional Analysis Results
	Unseen Paper Abstract Generation

