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ABSTRACT

Reinforcement learning (RL) is a framework for solving sequential decision-
making problems. In this work, we demonstrate that, surprisingly, RL emerges
during the inference time of large language models (LLMs), a phenomenon we
term in-context RL (ICRL). To reveal this capability, we introduce a simple multi-
round prompting framework, we call ICRL prompting, for inference-time self-
improvement. The goal of ICRL prompting is to guide LLMs to perform rein-
forcement learning during inference for self-improvement on a given task. After
each response, the model receives numerical scalar feedback, denoted as a reward.
In the next round, we prompt the LLM again together with a context that concate-
nates all prior responses and their associated rewards. We consistently observe
that response quality improves as the context grows. In other words, the LLM
can optimize scalar reward signals during inference, exhibiting behavior analo-
gous to reinforcement learning. We evaluate ICRL prompting on Game of 24,
creative writing, ScienceWorld, and Olympiad-level math competitions (AIME
and HMMT), demonstrating significant improvements over baselines such as Self-
Refine and Reflexion. Notably, even when the reward signals are generated by the
same LLM, ICRL prompting still improves performance, highlighting a promising
new paradigm for test-time scaling.

1 INTRODUCTION

For Large Language Models (LLMs) to act as effective agents on novel tasks, they must be able to
improve during inference time, a capability often referred to as test-time scaling (Zhang et al., 2025).
Learning and search are the two general methods that can leverage scaling computation for perfor-
mance improvement (Sutton, 2019), reaching superhuman performance on Chess (Campbell et al.,
2002) and Go (Silver et al., 2016). Search has been successfully applied to LLM self-improvement
in test-time scaling, starting from the simple Best-of-N (Stiennon et al., 2022) to Tree of Thoughts
(Yao et al., 2023) and Monte Carlo Tree Search (Ding et al., 2024).

Learning, however, has yet to receive the same attention for LLM self-improvement at inference
time. In-context (supervised) learning (ICL; Brown et al. (2020)), as a supervised learning paradigm,
requires expert demonstrations as ground-truth labels. However, such demonstration data are not
easily scalable during inference time, which restricts the applicability of ICL to test-time scaling.
Thus, LLMs must instead learn from their own generated experience for continual self-improvement
(Silver & Sutton, 2024).

Reinforcement learning is perhaps the most successful algorithm capable of self-improvement in-
dependent of human knowledge (Silver et al., 2017). However, its major successes have primarily
appeared in simulated environments (Mnih et al., 2015; Silver et al., 2016) or during the training
time of LLMs Guo et al. (2025). These current RL settings fall short in the big world setting (Javed
& Sutton, 2024), where the real-world environment is vastly more complex than the agent itself. In
such environments, agents will encounter numerous situations far beyond their prior training data
and must adapt and improve their solutions on the fly. Bridging this gap requires models that (1)
can handle diverse tasks in the real world, where natural language often constitutes an essential ac-
tion space (Silver & Sutton, 2025), and (2) can continually improve their solutions during inference,
rather than relying on costly retraining for every novel situation.
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This naturally raises the question: can reinforcement learning emerge during the inference phase of
LLMs? Enabling LLMs to perform RL purely in context provides an elegant mechanism to meet
both requirements: LLM provides a general-purpose initial policy, while RL introduces the capabil-
ity for continual self-improvement. Inspired by the first surprising evidence that LLMs can act as
in-context learners in supervised settings (Brown et al., 2020), a growing body of work has begun to
explore in-context reinforcement learning (ICRL; Moeini et al. (2025)). However, current instantia-
tions are largely restricted to bandit or simulated environments (Monea et al., 2025; Krishnamurthy
et al., 2024), failing short of addressing many diverse open-ended tasks where natural language is
the action space.

In this paper, we bridge this critical gap by demonstrating that LLMs can act as effective in-context
reinforcement learners, an emergent capability that improves performance on diverse, language-
based tasks ranging from conducting scientific experiments to creative writing to solving olympiad-
level mathematics. To reveal this capability, we introduce a simple multi-round prompting frame-
work, ICRL prompting. The goal of ICRL prompting is to guide LLMs to perform reinforcement
learning for self-improvement on a task. Initially, the prompt is only the task description. After the
LLM generates a response, we give numerical scalar feedbacks for the response, called the rewards.
Then in the next round, we prompt the LLM again with the same task description and a context
consisting of all previous responses and rewards. So on and so forth. We observe that the quality of
the LLM’s response increases as the context grows. In other words, the LLM is able to maximize
the scalar reward signal during the inference time, just like an RL algorithm.

A key design principle of ICRL prompting is minimality. To ensure that the observed gains arise
from the emergent RL capacity of LLMs rather than auxiliary mechanisms, we deliberately exclude
textual gradients (Yuksekgonul et al., 2025), prioritized experience replay, sampling-based heuris-
tics (Zhang et al., 2024; Yang et al., 2024), or additional engineered modules (Brooks et al., 2024).
The only supervision provided is the scalar reward itself. This complies with both the reward hy-
pothesis (Sutton, 2004), “that all of what we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum of a received scalar signal (reward)”, and
the “reward is enough” hypothesis (Silver et al., 2021), “intelligence, and its associated abilities,
can be understood as subserving the maximisation of reward”.

To summarize, this paper makes three contributions:
(1): We introduce the ICRL prompting framework, a minimal design that elicits inference-time self-
improvement in LLMs using only scalar rewards. Just as ICL places (x, y) pairs in context, our
framework places state–action–reward tuples with simple meta-instructions in context. This design
isolates the LLM’s intrinsic capacity for ICRL, free from external code or engineered mechanisms.
(2): We provide strong evidence suggesting the emergence of RL in LLM’s inference time when the
ICRL prompting framework is used. Specifically, we demonstrate the maximisation of the scalar
reward signal, the exploration-exploitation trade-off in LLM’s inference time, the performance im-
provements from the growth of the context, the performance drop with short context, and the perfor-
mance drop when the reward is absent. All those observations are well expected for an RL algorithm.
Essentially, this is a “duck test” (Heim, 2007)1 for the inference process.
(3): We demonstrate that ICRL prompting yields significant improvements over self-revision meth-
ods such as Self-Refine (Madaan et al., 2023) and Reflexion (Shinn et al., 2023), across diverse
benchmarks including Game of 24, creative writing, ScienceWorld, and Olympiad-level mathemat-
ics (AIME and HMMT). In Game of 24 and creative writing, the rewards are generated by the LLM
itself, yet consistent performance gains are still observed.

2 BACKGROUND

Reinforcement Learning. RL uses Markov Decision Processes (MDPs) to model a task, consisting
of a state space S, an action space A, a reward function r : S → R, an initial distribution p0 ∈
∆(S) with ∆(S) denoting the set of probability distributions over S, and a transition function p :
S × A → ∆(S). At time step 0, an initial state S0 sampled from p0. At time t, an agent at St

takes an action At according to its policy π : S → ∆(A) with ∆(A) denoting the set of probability
distributions over A, i.e., At ∼ π(St). The action At is then executed, after which the agent
transitions to a successor state St+1 ∼ p(St, At) and recieves a reward Rt+1

.
= r(St+1). This

1If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.
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agent-environment interaction continues until a time T , which marks the end of an episode. The
goal of the agent is to adapt its policy π such that the expected total rewards J(π) .

= E[
∑T

t=1 Rt] is
maximized. In modern deep RL (Mnih et al., 2015; Schulman et al., 2017), the policy π is usually
parameterized by a neural network. We use θ to denote the network parameter and write the policy
as πθ. Typically, RL algorithms update θ to adapt its policy. For example, at time t, the action At

is sampled from πθt(St). The RL algorithm then update θt to θt+1 based on available information
such as S0, A0, R1, . . . , St, At, Rt+1, St+1. Then at time t+1, the action At+1 is sampled from the
updated policy πθt+1(St+1). Essentially, the typical RL process is reflected in the updates of θt.

In-Context Reinforcement Learning. ICRL (Moeini et al., 2025), first coined by Laskin et al.
(2023), is an emerging inference-time compute paradigm where the RL process occurs in the infer-
ence time (i.e., the forward pass) of the network without any parameter update. In ICRL, the policy
πθ is additionally conditioned on a context called Ct, i.e., At ∼ πθ(St, Ct). The construction of Ct

is an active research area but one example is to use all previous state-action-reward pairs obtained in
the task. Notably, this usually includes state-action-reward pairs from all previous episodes, not just
the current episode (Laskin et al., 2023). In ICRL, there is a pretraining stage where the network θ is
pretrained in a wide range of tasks (MDPs). We use θ∗ to denote the parameter after the pretraining.
After the pretraining stage, the policy πθ∗ is evaluated in new tasks. In other words, in the new
MDP, the action At is sampled from πθ∗(St, Ct). Importantly, the θ∗ is kept fixed. Nevertheless,
it is observed that the quality of At increases as Ct grows in the new task. Since θ∗ is fixed, this
improvement can only from the increase of the context. This is thus called in-context policy im-
provement. Notably, this in-context policy improvement is also observed even when the new task
is out of the distribution of the pretraining tasks, e.g., Laskin et al. (2023) demonstrate in-context
policy improvement in new bandit problems that have the opposite optimal arms to the pretraining
bandit problems. Thus this in-context policy improvement cannot be attributed to the hypothesis that
θ∗ memorizes the pretraining tasks. The only plausible hypothesis seems to be that the forward pass
of the network parameterized by θ∗ implements some RL algorithm to process the information in
the context Ct to generate the action At. This inference-time (forward pass) RL is called in-context
RL.
LLMs as RL Agents. The token generation process of LLMs can be modeled via RL. In short, the
state is all generated tokens and the action is the next token to generate. Namely, let V be the set of
all possible tokens. We consider a state space S .

=
⋃∞

i=1 Vi and an action spaceA .
= V . At time step

0, an initial prompt is given, denoted as S0 ∈ S. In this work, S0 contains a description of a task.
We refer to the LLM with parameter θ as πθ. At time t, given the current tokens St, a new token
At is sampled from πθ(St). The new state is then St+1 = [StAt], i.e., the new state is obtained by
concatenating current tokens and the new token. A reward signal Rt+1

.
= r(St+1) is then emitted

according to a reward function r. This token generation process continues until a time T , where
either T is the maximal allowed response length or AT−1 is a special end-of-sequence token. Either
way, this marks the end of an episode and the final state ST , called the terminal state, contains both
the initial task description and the LLM’s response. There are two types of reward functions. One
is sparse (the outcome reward model, Ouyang et al. (2022)), where r(s) is nonzero only when s is a
terminal state. The other is dense (the progress reward model, Lightman et al. (2023)), where r(s)
can also be nonzero for non-terminal states.

3 IN-CONTEXT REINFORCEMENT LEARNING PROMPTING

We now present our main contribution, the ICRL prompting framework (Algorithm 1, Figure 1),
consisting of the following ingredients.

LLM as the Policy. An LLM, denoted as πθ, serves as the policy network. The goal is to prompt the
LLM to solve a task. We assume a natural language description of the task is available and we denote
it as stask ∈ S. At the beginning of each episode, we construct the initial prompt by concatenating
the LLM’s own previous attempts together with the corresponding rewards, the task description,
and some meta instruction denoted as sICRL. The details of the concatenation of previous attempts
and the choice of the meta instruction will be discussed shortly. With this initial prompt, the LLM
generates the response. Both the response and the rewards are stored in the buffer for future episodes.
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Algorithm 1 ICRL Prompting

Require: An LLM πθ. A reward function r. Number of episodes K. An experience buffer B.
A task description stask ∈ S. The ICRL instruction sICRL ∈ S.

1: for k = 1 to K do
2: Construct the initial prompt S0 by concatenating all the tokens in B, stask, and sICRL.
3: t← 0 // Execute the policy πθ starting from S0

4: while St is not terminal do
5: At ∼ πθ(St), St+1

.
= [St At], Rt+1

.
= r(St+1), t← t+ 1

6: end while
7: // [A0 A1, . . . , AT−1] is the LLM’s response to stask at the current episode
8: Push (A0, R1, A1, R2, A2, R3, . . . AT−1, RT ) into B.
9: end for

Reward Function. A numerical scalar reward feedback is provided for each St in the episode. No-
tably, the reward can be either sparse (i.e., only RT is nonzero) or dense. The reward function can be
rule-based, learned separately, or instantiated via the same LLM for self-evaluation. The flexibility
of using LLM’s self-evaluation as the reward function allows the ICRL prompting framework to
be applied to a wide range of tasks. Notably, this scalar reward is the only feedback we provide to
the LLM. But we do tell the LLM that this scalar is a reward. We do so by explicitly writing down
the word “Reward” before this number when constructing the initial prompt. Notably, if the reward
function is rule-based and learned separately, the reward signal constitutes an external feedback. But
if the reward function is just the LLM’s own evaluation of the answer, there is no external feedback
at all in the ICRL prompting framework. Yet we still expect the LLM’s response to improve over the
episode. This is because of the widely believed hypothesis that evaluation is eaiser than generation.
But we do hypothesize that the ceiling with self-evaluation is lower than that with external feedback.

Figure 1: ICRL Prompting. At each episode k+1,
LLM generates action tokens based on previous
experiences up to k, and receives numerical re-
wards either from itself as the evaluator or from
the environment. At the end of the episode, the
rewards are then concatenated with the action to-
kens and placed back into the context.

Memory for Experience. We use an experi-
ence buffer B to store the LLM’s responses and
rewards for the task in previous episodes. Our
underlying hypothesis is that pretrained LLM
already has the ICRL ability. To use this in-
nate ICRL ability to improve LLM’s response
to the task, we concatenate its previous attempts
and rewards as many as the context window al-
lows. We expect that the LLM can reinforce-
ment learn from the experiences in the context
during the inference time.

ICRL Instructions. To facilitate LLM’s infer-
ence time RL, we additionally provide some in-
structions in initial prompt S0 at each episode.
The instruction is in natural language and is de-
noted as sICRL. We consider three types of in-
structions: (1) the exploration instruction (Fig-
ure 4 in App. A), (2) the exploitation instruc-
tion (Figure 5 in App. A), (3) the exploration
or exploitation instruction (Figure 6 in App. A).
For exploration instruction, the model is asked
to provide a response that is different from all
its previous responses. For exploitation instruc-
tion, the model is asked to generate the best re-
sponse based on the the previous responses with
the highest reward. We consider two strategies.
(1) ICRL Preset: We alternate between the exploration and exploitation instructions. When the
episode number K is even, we use the exploration instruction. When the episode number K is odd,
we use the exploitation instruction. (2) ICRL Autonomous: We always provide the “exploration or
exploitation” instruction at each episode and let the LLM itself to decide on which to use.

4
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4 RELATED WORKS

4.1 IN-CONTEXT REINFORCEMENT LEARNING.

The study of inference-time RL algorithms dates back to Duan et al. (2016); Wang et al. (2016),
with Laskin et al. (2023) later coining the term in-context reinforcement learning (ICRL), spurring
rapid growth in the field (Kirsch et al., 2023; Raparthy et al., 2023; Schmied et al., 2024; Lee et al.,
2024; Zisman et al., 2023; Grigsby et al., 2024; Lu et al., 2023; Bauer et al., 2023; Wang et al.,
2025; Cook et al., 2024; Xu et al., 2024; Shi et al., 2024; Huang et al., 2024; Liu & Abbeel, 2023;
Dai et al., 2024). See Moeini et al. (2025) for a survey. Most existing ICRL works, as a subarea
of meta-RL (Beck et al., 2023), use small models trained from scratch in games or robotics. Some
employ pretrained LLMs, e.g., as simulators (Brooks et al., 2024; Mirchandani et al., 2023; Resendiz
& Klinger, 2025) or in bandit tasks (Krishnamurthy et al., 2024; Nie et al., 2024; Park et al., 2024;
Monea et al., 2025), where artificial interventions are often needed and LLMs remain uncompetitive
with algorithmic baselines.

4.2 INFERENCE-TIME LLM SELF-IMPROVEMENT

Existing methods often rely on natural language self-revision, e.g., Self-Refine (Madaan et al.,
2023), Reflexion (Shinn et al., 2023), and Textual Gradient (Yuksekgonul et al., 2025). Since the
quality of self-revision is dependent upon the model’s parametric knowledge of the task, such ap-
proaches are prone to hallucinated feedback that accumulates across iterations, leading to perfor-
mance collapse (Stechly et al., 2025). In essence, they resemble language-guided search (Liu et al.,
2025), where feedback serves as new explicit instructions for the next revision.

By contrast, ICRL requires only numerical rewards, without prescribing new instructions. The
model must infer a better response by recognizing patterns from its past experience, making the
process akin to reinforcement learning. Crucially, such rewards can also originate directly from the
environment, providing a strong source of verification signals.

A parallel line of work improves LLMs at inference via search, e.g., Tree-of-Thoughts (ToT) (Yao
et al., 2023), Graph-of-Thoughts (GoT) (Besta et al., 2024), Monte Carlo Tree Search (MCTS) (Ding
et al., 2024), and Intelligent Go-Explore (Lu et al., 2025). These methods largely depend on exter-
nally engineered components such as heuristics or memory management, rather than leveraging the
model’s intrinsic learning ability. Our work is also related to previous work on prompt optimization
(Yang et al., 2024), where numerical scores guide prompt refinement, though through top-k selection
and error filtering. Thus, it is more aligned with in-context supervised learning (e.g., filtered behav-
ior cloning, Grigsby et al. (2024)) than reinforcement learning. In contrast, ICRL enables learning
from failure experiences.

5 EXPERIMENT

In this section, we evaluate ICRL prompting on three benchmarks: Game of 24, creative writing
from Yao et al. (2023), and ScienceWorld (Wang et al., 2022). We compare several baselines in-
cluding CoT-only, Long-CoT style prompting, Best-of-N, Self-Refine, and Reflexion. Notably, in
all the experiments, we allow the prompt of Self-Refine and Reflexion to grow as long as the LLM
allows.

5.1 GAME OF 24

Task Setup. Given four input numbers, the model must use each number exactly once and apply
only addition, subtraction, multiplication, or division in any order to reach 24. We choose the
GPT-4.1 model for this experiment because of its excellent long-context capacity (OpenAI, 2025),
accessed through api calls. Following Yao et al. (2023), we use CoT prompting to elicit the model to
provide a step-by-step solution, where each step the model picks two numbers from the remaining
numbers and an operation to perform the calculation, and obtains one complete solution per LLM
query, containing a total of 4 thinking steps. To encure that the LLM generates response with
correct format, we additionally provide 5 in-context supervised learning demonstrations. The CoT
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Figure 2: Baseline Method Comparison. (Left) Mean Success Rate on Game of 24. (Middle)
Mean Coherence Reward on Creative Writing. Both ICRL Preset and Self-Refine went through an
additional run of 50 episodes. (Right) Mean Return on Science World. A running max version of
the plots is available in Figure 13 in App. B. This plot shows quality of the response at the current
trial while the running max version shows the quality of the best response until now. The shaded
region represents ±1 standard error of the performance calculated across the evaluated tasks.

instruction and the 5 demonstrations together form the task description stask (Figure 7 in App. A).

Evaluation. To verify the correctness of the solutions, we leverage SymPy (Meurer et al., 2017),
a library for symbolic mathematics, by extracting operands and operators and evaluating the
reconstructed expression to confirm it equals 24, and report the mean success rate over the 100
problems. This rule-based success rate is referred to as r∗ (i.e., the ground truth reward function)
in the rest of the paper. We use r to denote the reward function that the algorithms actually have
access to. In particular, we use GPT-4.1 as the r, the same LLM as the policy LLM but prompted
differently (see Figure 12 in App. A). After the policy LLM generates the response, for each
thinking step, GPT-4.1 scores the likelihood of reaching 24 with the remaining numbers on a 0-3
scale (0 = impossible, 3 = sure). The task in challenging in that no algorithm has access to r∗.
Instead, they have to rely on their own (possibly imperfect) evaluation, generated by the same LLM,
to improve the response.

Table 1: Game of 24 Success Rate. The running
max success rate of the last episode is reported.

Method Success Rate

CoT-only 6%
Long-CoT 47%
Reflexion 44%
Best-of-N 49%
Self-Refine 47%
ICRL Preset (Ours) 90%
ICRL Autonomous (Ours) 84%

Baselines. We compare our method with
CoT-only, Long-CoT style prompting, Best-
of-N, Reflexion, and Self-Refine. In CoT-only
prompting, the model receives only the task
description stask and produces a single step-by-
step solution. In Long-CoT style prompting,
we explicitly ask the LLM to generate a long
chain-of-thought, and keep retrying if the so-
lution is incorrect in "<think>...</think>" tags,
before finally providing the answer. Although
GPT-4.1 is not specifically trained for long-
form CoT reasoning, we find that Long-CoT
style prompting can elicit significantly longer
and self-correcting thought traces compared to
zero-shot prompting, making it a strong baseline for the Game of 24. Both methods cannot make
use of a reward signal and are run for one pass. For Best-of-N, to make it even stronger, we use the
ground truth reward r∗ to select the best response. Self-Refine does not require a reward function.
It instead asks the LLM itself to provide textual verbal feedback. Reflexion generates reflection
according to r. ICRL prompting is different from Self-Refine and Reflexion in that it uses the
reward r directly, without any verbal feedback. So the comparision between ICRL prompting and
Self-Refine / Reflexion is essentially the comparision between scalar feedback and verbal feedback.

ICRL prompting. As discussed before, both πθ and r in Algorithm 1 are the same LLM GPT-4.1
(prompted differently). We now clarify how we compute S0 at each episode. Since each action is a
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token, not all actions receive a reward. In fact, since we use CoT to prompt the LLM for 4 thinking
steps, only 4 rewards are available for each episode. We thus only include those 4 rewards in S0.
We add a “Reward: ” tag before the actual scalar reward and then concatenate the tagged reward
immediately after the corresponding action (i.e., token).

Results. The success rate (i.e., r∗) against the number of trials (i.e., the episodes in Algorithm 1) is
reported in Figure 2. The ICRL Preset method achieves the highest performance, and the observed
oscillations in success rate reflect the model’s alternating phases of exploration and exploitation.
The mean of running max is also plotted in Figure 13 in App. B. For each problem, we compute its
running maximum success rate up to each episode and then average these values across all problems
at every episode. As summarized in Table 1, after 50 trials, our methods achieve a success rate of
90% which is significantly higher than 49% from Best-of-N sampling, 47% from Self-Refine, and
44% from Reflexion.

5.2 CREATIVE WRITING

Task Setup. We consider the creative writing task from Yao et al. (2023), where four sentences are
randomly sampled from a pool of sentences. The task for LLMs is to generate four paragraphs, each
ending with a sentence, while ensuring that the generated passage is coherent. This is a difficult
task, as it challenges the LLMs to craft a unified storyline that logically justifies each of the four
sampled sentences by weaving them into a single narrative. A total of 100 problems are evaluated.
An example of stask is in Figure 8 in App. A.

Table 2: Length-Controlled Win Rate
(LC) and Standard Error (SE) from
Alpaca-Eval 2.0 on Creative Writing.

Comparison LC ± SE (%)

Ours vs Reflexion 59.48± 3.47
Ours vs Long CoT 78.36± 1.99
Ours vs Self-Refine 86.32± 3.03
Ours vs Best-of-N 93.81± 1.01

Evaluation. We evaluated outputs using the Length-
Controlled Alpaca-Eval 2 (Tatsu Lab, 2025) framework,
a widely used proxy for human evaluation (Hong et al.,
2024; Ethayarajh et al., 2024; Meng et al., 2024) with up
to 0.98 Pearson correlation with human judgments. For
100 creative writing problems, we present each method’s
top response: for Reflexion and Best-of-N, the highest-
reward output among 50 trials; for ICRL and Self-Refine,
the 50th episode output. Alpaca-Eval then computes pair-
wise win rates, denoted as r∗.

We next introduce the reward function r accessible to
the algorithms. We follow standard pairwise comparison
(Zheng et al., 2023), using GPT-4.1 with a coherent reference paragraph to score each response from
1–10 (see Fig. 11). Notably, although both r and r∗ use an LLM as a judge, they serve distinct pur-
poses. r compares responses against a fixed reference text with emphasis on coherence. By contrast,
r∗ performs pairwise comparison between two responses generated by our method and a baseline
method.

Baselines. We compare our method with Best-of-N, Reflexion, and Self-Refine. We allow Best-of-
N, Reflexion and ICRL prompting to use r. Self-Refine do not use r and instead asks GPT-4.1 to
provide verbal feedback. Since it is hard to distinguish CoT and Long-CoT style prompting for this
task, we include Long-CoT style prompting as the baseline.
ICRL prompting. GPT-4.1 is used as both the policy LLM πθ and the reward model r in Algo-
rithm 1. At each episode, the initial prompt S0 is constructed by concatenating all of the previous
generations along with their coherence scores from r. Notably, this reward is sparse and only RT

can be nonzero. We, therefore, only include RT in constructing S0.

Results. Our method achieves a length-controlled win rate of 59.48% against Reflexion, 78.36 %
against Long-CoT style prompting, 86.32 % against Self-Refine, and 93.81 % against Best-of-N
as shown in Table 2. This shows the responses generated by our method outperform the ones by
baselines in terms of following the instruction to write coherent paragraphs and achieving better
human preference. The return curve from reward model r is plotted in Figure 2, and a running
max of the return is plotted in Figure 13 in App. B. Although Self-Refine initially matches ICRL
in terms of coherence reward, extending both methods by 50 additional episodes, our methods keep
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improving, whereas self-refine first plateaus, then declines, likely due to the significant growth of its
context.

5.3 SCIENCEWORLD

Task Setup. ScienceWorld (Wang et al., 2022) is an interactive, text-based benchmark consisting of
30 science-experiment tasks set in a multi-room environment populated with diverse objects. The
environment is challenging due to sparse rewards, large action spaces, and the requirement for sci-
entific knowledge and efficient exploration. At each step, the agent observes the result of its action
and receives zero reward unless it completes a predefined subgoal. This reward signal is used both
for evaluation and for inference-time self-improvement (i.e., r and r∗ are identical in this task).
Completing all subgoals yields a cumulative reward of 100 and marks the episode as successful.
An episode ends in failure if the agent either reaches the maximum number of steps or executes an
incorrect terminating action. The input stask provided to the agent describes the environment, the
task, and the template of all possible actions. An example of stask is provided in App. A
Evaluation. We use the environment-provided reward function for each task both to construct the
trajectories used in the context (r), and to evaluate the model (r∗). We benchmark each method on
all 30 tasks and aggregate the results. GPT-4.1 mini is used as the policy for all compared algo-
rithms.
Baselines. In Reflexion, at the end of each episode, the agent is prompted to reflect on its attempt.
The reflection is then sanitized and appended to a reflection buffer, which is formatted into the con-
text for subsequent trials. Self-Refine similarly generates self-feedback, but appends it to a trajectory
summary, which is then added to the buffer. To ensure a fair comparison, we allow these methods
access to the reward signals of the current episode (unlike ICRL) before prompting for reflection.
ICRL Setup. Each trial corresponds to a single episode in the environment. After the trial, the new
trajectory added to the buffer is constructed by concatenating the actions, observations, rewards,
and the final outcome (success or failure). As each episode typically yields only a few rewards, we
include only those. At the start of each trial, S0 is constructed by concatenating the task description
Stask, the collected trajectories, and then the instruction SICRL. An example of S0 is provided in
App.A.
Results. The mean return at each trial, is presented in Figure 2 Right. Steady improvements are ob-
served for methods that make use of some form of history of interactions similar to ICRL prompting.
However, ICRL prompting outperforms baseline methods by about 20% after enough iterations. To
make the comparison fair for efficient baselines such as Best-of-N, in App. B, we compare baslines
as we scale test-time compute budget and observe that ICRL also scales better than the baselines not
only in terms of number of trials but also the test-time compute budget (in dollar amounts).

6 ANALYSIS

Ablation Study. To better understand ICRL prompting, we consider following ablations. (1)
Zero Rewards: We set all rewards to 0. (2) Short Context: In Algorithm 1, the buffer B is
essentially a queue of infinite length. Instead, we now make it a deque of length 3. In other
words, only the recent 3 episodes are used in constructing S0. (3) Exploration Only: We simply
ask the LLM to provide a different response than the ones in context, using the exploration
instruction as sICRL, without the reward signal. (4) Exploitation Only: We always use the exploita-
tion instruction as sICRL, with the reward signal. (5) No ICRL Instruction: We entirely remove sICRL.

The running max results of the ablation study are plotted in Figure 3. Both our two methods and the
exploitation only with reward signals demonstrate the best-performing curves. This demonstrates
our ICRL prompting framework is quite robust to the different prompts setup. We have also ob-
served performance drop with short context and performance drop when the reward is absent. A
key finding is that the “exploration only without reward signal” method (shown in green) performs
significantly worse than our approach when comparing the maximum performance achieved over
time (running max). This demonstrates that our method’s improvement is not just due to exploring
various responses and then picking the best one previously seen as doing a Best-of-N. Instead, ICRL
can genuinely generate novel responses that are better than the ones during the exploration phase.
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Figure 3: Ablation Studies (Running Max). (Left) The mean of running max success rate on
Game of 24. (Middle) The mean of running max coherence reward on creative criting. (Right).
The mean of running max return on ScienceWorld. The shaded region represents ±1 standard error
of the mean (SEM) of the performance calculated across the evaluated tasks within each benchmark.

Table 4: Performance across benchmarks (HMMT, AIME, Creative Writing) for different models
and inference-time improvement methods.

Method
Qwen3 32B (32k) Qwen3 32B think (32k) Llama 4 Maverick (32k) Phi-4 (16k)

HMMT AIME CW HMMT AIME CW HMMT AIME CW HMMT AIME CW

Base 9.14 22.54 34.14 52.00 66.58 1.24 8.50 17.58 0.98 5.55 20.00 10.85
Self-Refine 16.66 43.33 46.00 56.66 83.33 30.23 13.33 20.00 45.52 13.33 33.33 51.98
Reflexion 23.33 33.33 41.17 60.00 70.00 38.33 10.00 23.33 24.96 13.33 40.00 33.30
ICRL 33.33 46.66 50.00 60.00 80.00 50.00 20.00 35.00 50.00 13.33 40.00 50.00

Context Length Analysis. To assess compute efficiency under different input scales, we evaluate
ICRL on Qwen3-32B (Yang et al., 2025) across context lengths of 8k, 16k, and 32k (Table 3). The
results show that ICRL consistently surpasses Self-Refine and Reflexion in both Creative Writing
and AIME, demonstrating superior performance per unit of compute.

Table 3: Performance of Qwen/Qwen3-32B with-
out reasoning on Creative Writing (LC-WR: length-
controlled win rate) and AIME (% solved) across dif-
ferent context lengths.

Method
CW (LC-WR) AIME (% solved)

8k 16k 32k 8k 16k 32k

Self-Refine 46.33 45.83 44.41 33.33 43.33 43.33
Reflexion 42.73 40.87 40.72 30.00 30.00 33.33
ICRL 50.00 50.00 50.00 40.00 43.33 46.66

Evaluating ICRL on Open-Source
Models and Olympiad-level Math-
ematics. To demonstrate the broad
applicability of ICRL, we evaluated its
performance across two key dimensions:
model architecture and task complexity.
First, we tested ICRL on a range of
open-source models, including Phi-4
(Abdin et al., 2024), Llama-4 Maverick
(AI, 2025), Qwen3-32B, and Qwen3-32B-
thinking mode (Yang et al., 2025) on the
creative writing task. Second, we applied
it to challenging Olympiad-level mathe-
matics (AIME (Mathematical Association
of America), HMMT (Harvard–MIT
Mathematics Tournament)). For details of the experimental setup, please refer to Appendix B.1.
ICRL consistently outperforms baselines like self-refine and Reflexion in all settings. Notably, the
performance gains are substantial across the board, with improvements of up to 10–20 points over
the base model on both creative and mathematical benchmarks. These results demonstrate that
ICRL is a robust capability that exists across diverse models and proves effective in challenging
task domains.
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Learning from Rewards vs. Parametric Knowledge Search. To verify that ICRL truly learns
from external rewards rather than merely searching within the model’s parametric knowledge, we
evaluated it on generating abstracts for arXiv papers published after the model’s training cutoff.
In this setting, where the ground truth is absent from the model’s training data, standard search
methods like Best-of-N and self-correction methods like Reflexion plateau quickly (Figure 16). In
contrast, ICRL continues to improve ROUGE-Recall scores over 200 iterations, demonstrating its
ability to uncover unseen information solely by exploiting the scalar reward signal. Detailed results
are provided in Appendix C.

7 CONCLUSION

In this paper, we demonstrate that reinforcement learning is an emergent capability of LLMs at
inference time. We show that our minimal, scalar-reward-based ICRL prompting framework unlocks
this ability across diverse models and general-purpose tasks, outperforming self-revision methods. A
key direction in future work is to investigate how training-time interventions might further enhance
this in-context RL capability in LLMs. This surprisingly effective capability points toward a future
of more autonomous agents that can explore, adapt, and self-improve in open-ended settings by
learning from their own experience.
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A PROMPT EXAMPLES

Instruction: Examine all the <attempt>...</attempt> examples, each showing a candidate Response,
and the Rewards for each step of the Response. Provide a response that is completely different for any
steps from every single one of the previous attempts demonstrated in the context.

Figure 4: The Exploration Instruction (sICRL).

Instruction: You will be given multiple <attempt>...</attempt> examples, each showing a candidate
Response, and the Rewards for each step of the Response. Your task: Based on the previous attempts,
try your best to produce a response that can achieve higher rewards.

Figure 5: The Exploitation Instruction (sICRL).

Instruction: Examine all the <attempt>...</attempt> examples, each showing a candidate Response
and its Reward. You have two options: exploration or exploitation.

For exploration, provide a response that is completely different for any steps from every single
one of the previous attempts demonstrated in the context, while making sure it correctly follows the
task instruction.

For exploitation, based on the previous attempts, try your best to produce a response that can
achieve higher rewards.

Pick one option to follow.

Figure 6: The Exploration or Exploitation Instruction (sICRL).

Prompt: Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must
be: For some unfathomable reason, the response team didn’t consider a lack of milk for my cereal as a
proper emergency. You realize you’re not alone as you sit in your bedroom massaging your calves after
a long day of playing tug-of-war with Grandpa Joe in the hospital. He poured rocks in the dungeon of
his mind. I’m a living furnace. Make a plan then write. Your output should be of the following format:
Plan: Your plan here. Passage: Your passage here.

Figure 8: An example of stask for creative writing.
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<attempt>
Input: 4 4 6 8
Step1: 4 + 8 = 12 (left: 4 6 12)
Step2: 6 - 4 = 2 (left: 2 12)
Step3: 2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24
</attempt>

<attempt>
Input: 2 9 10 12
Step1: 12 * 2 = 24 (left: 9 10 24)
Step2: 10 - 9 = 1 (left: 1 24)
Step3: 24 * 1 = 24 (left: 24)
Answer: (12 * 2) * (10 - 9) = 24
</attempt>

<attempt>
Input: 4 9 10 13
Step1: 13 - 10 = 3 (left: 3 4 9)
Step2: 9 - 3 = 6 (left: 4 6)
Step3: 4 * 6 = 24 (left: 24)
Answer: 4 * (9 - (13 - 10)) = 24
</attempt>

<attempt>
Input: 1 4 8 8
Step1: 8 / 4 = 2 (left: 1 2 8)
Step2: 1 + 2 = 3 (left: 3 8)
Step3: 3 * 8 = 24 (left: 24)
Answer: (1 + 8 / 4) * 8 = 24
</attempt>

<attempt>
Input: 5 5 5 9
Step1: 5 + 5 = 10 (left: 5 9 10)
Step2: 10 + 5 = 15 (left: 9 15)
Step3: 15 + 9 = 24 (left: 24)
Answer: ((5 + 5) + 5) + 9 = 24
</attempt>

**Task**: Use numbers and basic arithmetic operations (+ - * /) to obtain 24. Put your an-
swer in this format ‘<answer>**Response** Step1: ... (left: ...) Step2: ... (left: ...) Step3: ... (left:
...) **Answer**: <math operations of the 4 input numbers, even if it does not equal 24></answer>‘.
Whether it is correct or not, do not try again.
**Prompt**: Input: 1 8 10 11

Figure 7: An example of stask for Game of 24 with few-shot CoT prompting.
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You are a helpful assistant to do some scientific experiment in an environment.
<Environment description> # stask
In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway
You should explore the environment and find the items you need to complete the experiment.

The available actions are: Available Actions

FOCUS is a extremely critical action that can be only used the number of times ’focus’ is mentioned
in the task description. Using it more than that or inappropiately (such as on a wrong object) will
terminate the session and the task WILL FAIL.

Task Description:
Your task is to change the state of matter of water. First, focus on the substance. Then, take actions
that will cause it to change its state of matter.
</Environment description>

<Instruction> sICRL </Instruction>

<Attempts> # Buffer

...

Attempt n:
teleport to bathroom -> Observation: You teleport to the bathroom. (reward=3)
-> focus on substance in toilet -> Observation: You focus on the water. (reward=66)
-> use cup on substance in toilet -> Observation: I’m not sure how to do that. (reward=0)
-> activate sink -> Observation: The sink is now activated. (reward=0)
-> dunk cup into sink -> Observation: No known action matches that input. (reward=0)
-> move cup to sink -> Observation: You move the glass cup to the sink. (reward=0)
-> teleport to kitchen -> Observation: You teleport to the kitchen. (reward=0)
-> use cup on stove -> Observation: I’m not sure how to do that. (reward=0)
-> activate stove -> Observation: The stove is now activated. (reward=2)
-> move cup to table -> Observation: You move the glass cup to the chair. (reward=0)
-> examine cup -> Observation: a glass cup (containing nothing) (reward=0)
Task Failed. You have exceeded the maximum number of steps. (reward=0) Total reward: 71

Attempt n+ 1:
teleport to bathroom -> Observation: You teleport to the bathroom. (reward=3)
-> focus on substance in toilet -> Observation: You focus on the water. (reward=66)
-> pick up cup -> Observation: You move the glass cup to the inventory. (reward=0)
-> move cup to sink -> Observation: You move the glass cup to the sink. (reward=0)
-> activate sink -> Observation: The sink is now activated. (reward=0)
-> dunk cup into sink -> Observation: No known action matches that input. (reward=0)
-> pour substance in cup into sink -> Observation: You pour the water into the sink. (reward=0)
-> activate stove -> Your generated action “activate stove” cannot be matched to a valid action. (re-
ward=0)
-> teleport to kitchen -> Observation: You teleport to the kitchen. (reward=0)
-> pick up cup containing nothing in table -> Observation: You move the glass cup to the inventory.
(reward=0)
-> activate sink -> Observation: The sink is now activated. (reward=0)
Task Failed. You have exceeded the maximum number of steps. (reward=0) Total reward: 69

...

</Attempts>

Figure 9: An example of S0 from ScienceWorld.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

# Buffer:
<attempt>
Input: 4 9 10 13.
Response:
Step1: 10 - 4 = 6 (left: 6 9 13) <Reward: 3.00>
Step2: 13 - 6 = 7 (left: 7 9) <Reward: 0.00>
Step3: 9 * 7 = 63 (left: 63) <Reward: 0.00>
*Answer**: (13 - (10 - 4)) * 9 = 63 <Reward: 3.00>
</attempt>

<attempt>
Input: 4 9 10 13.
Response:
Step1: 10 + 4 = 14 (left: 9 13 14) <Reward: 0.00>
Step2: 14 + 9 = 23 (left: 13 23) <Reward: 0.00>
Step3: 23 + 13 = 36 (left: 36) <Reward: 0.00>
*Answer**: (10 + 4 + 9) + 13 = 36 <Reward: 0.00>
</attempt>

<attempt>
Input: 4 9 10 13.
Response:
Step1: 9 + 10 = 19 (left: 4 13 19) <Reward: 3.00>
Step2: 19 - 13 = 6 (left: 4 6) <Reward: 3.00>
Step3: 6 + 4 = 10 (left: 10) <Reward: 0.00>
*Answer**: ((9 + 10) - 13) + 4 = 10 <Reward: 6.00>
</attempt>
sICRL
stask

Figure 10: An example of S0 from Game of 24.

Instruction: You are a seasoned text coherence evaluator. Read the TEXT below and rate its overall
coherence on a scale from 1 to 10, where 1 means significantly less coherent than the Base Answer,
5 means equally coherent, and 10 means significantly more coherent. Be a strict and conservative
evaluator-only assign high scores when the TEXT is clearly better than the Base Answer.

Base Answer:
{At dawn, golden light slips past pale curtains, rousing the world
in quiet celebration. A lone robin greets the morning with a
clear, cheerful trill, its song drifting across dew-laden grass. A
gentle breeze stirs the leaves, carrying the fresh, earthy scent
of new growth. Nearby, rooftops and empty streets lie poised
between night’s calm and the city’s stirring pulse, promising
simple comforts like a warm cup of coffee. In this tranquil pause,
one senses life’s renewal and the gentle invitation to greet the
day with hope and gratitude.}

TEXT: { model_answer}

Return your answer in exactly this format: Coherency score: <integer 1–10>.
Response:

Figure 11: Prompt for Pairwise Coherence Evaluation for Reward Model r.
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Rule of the Game of 24: Use all four numbers provided in the input, without repetition, and only
basic arithmetic operations (+, –, ×, ÷) to obtain 24. Only three steps are allowed.

Given the following two remaining numbers from a previous step in the Game of 24, the current step
is: {step}. Evaluate this step.

Examine the numbers shown in each “left: . . . ” after the step and reason whether it is still possible to
reach 24: • Sure → 3 • Likely → 1 • Impossible → 0

Return the score in the following format: **Answer**: <integer score>

Response:

Figure 12: Prompt for single-step evaluation used in the reward model r for Game of 24.

B ADDITIONAL EXPERIMENTAL RESULTS
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Figure 13: Benchmark results: Mean of Running Max. (Left) The mean of running max success
rate on Game of 24. (Middle) The mean of running max coherence reward on creative writing. Both
ICRL Preset and Self-Refine went through an additional run of 50 episodes. (Right). The mean of
running max return on ScienceWorld.
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Figure 14: Ablation study results: Original Curves. (Left) The mean of success rate on Game of
24 ablation studies. (Middle) The mean of coherence reward on creative writing ablation studies.
(Right). The mean return on ScienceWorld ablation studies.
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Table 5: Running max of return averaged over all the tasks in ScienceWorld.

Method Return (max = 100)

ReAct 69 ± 1.4
Reflexion 74 ± 1.1
Best-of-N 75 ± 1.2
Self-Refine 83 ± 0.9
ICRL Preset (Ours) 88 ± 0.7
ICRL Autonomous (Ours) 87 ± 0.8
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Figure 15: Additional ScienceWorld Results. (Left) Although ICRL’s context (comprising the
experience buffer) is longer than that of random sampling methods, it still outperforms them and
other experience-based approaches given additional compute budget. (Right) ICRL’s superior return
improvement as seen in other results, also leads to a greater increase in success rate.

B.1 ADDITIONAL BENCHMARK: MATH COMPETITIONS

Task Setup. AIME (Mathematical Association of America) and HMMT (Harvard–MIT Mathemat-
ics Tournament) are two of the most difficult mathematics competitions in the U.S. for high school
students. They require not only strong mathematical knowledge but also advanced problem-solving
skills. Training language models for reasoning has been one of the most effective methods for im-
proving performance on these benchmarks (DeepSeek-AI et al., 2025).

We aim to test whether reward signals derived from previous reasoning traces can improve subse-
quent reasoning attempts. To access these traces, we rely on open-source models. In addition to
evaluating reasoning models on these benchmarks, we also include a broader set of open-source
models to demonstrate the prevalence of ICRL capability across a wide spectrum.

In this benchmark, the model is given a single question and asked to produce an answer. The only
additional instruction concerns formatting: the model must place its final answer within <answer>
</answer> tags. The dataset includes the ground-truth answer for each question.

For the reward model, we use the model proposed by Su et al. (2025), which provides a denser signal
than simply checking with SymPy whether the model’s output matches the ground truth. Using such
a model aligns with our belief that the growing ecosystem of judge and reward models, primarily
designed for reinforcement fine-tuning of language models (Lightman et al., 2023), will also play a
key role in enabling ICRL as a test-time scaling method.

Evaluation. To verify correctness, we parse the model’s output and check whether its answer
matches the ground truth answer provided in the datasets.
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Baselines. We compare our method with Reflexion and Self-Refine, the two strongest baselines
from the other benchmarks. Their implementations are consistent with those used in the prior ex-
periments.

ICRL Setup. For attempts after the first, we insert the model’s previous answer (including reasoning
or CoT tokens) into the context, along with its associated reward. We then prompt the model either
to try a new method or to refine its best previous approaches. We truncate past answers to ensure
that at least 32 prior attempts can fit in the context.

Results. Our method outperforms the baselines in almost all cases. For the reasoning mode of
Qwen3-32B, our approach remains competitive with Self-Refine on AIME and surpasses it on
HMMT, which is the harder benchmark. Notably, this is achieved using scalar rewards computed
with three orders of magnitude less computation, while Reflexion and Self-Refine are allowed nearly
twice the compute budget for generating long-CoT verbal feedback.
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C ADDITIONAL ANALYSIS RESULTS

C.1 UNSEEN PAPER ABSTRACT GENERATION

To isolate whether ICRL truly learns from external rewards rather than merely searching or selecting
from the model’s parametric knowledge, we design a task where search within parametric knowledge
alone is expected to be ineffective.

Setup. We fetch 30 arXiv papers published after GPT-4.1-mini’s training cutoff. Provided only
the title of the papers, the model is instructed to generate the abstract. The goal is to uncover the
unseen expert-written abstract as much as possible. We measure performance using ROUGE-recall
between the model’s generated abstract and the ground-truth abstract, and we use the same score as
the external reward. Because these abstracts lie outside the model’s pre-training distribution, success
requires learning from external rewards rather than searching through memorized content.

Results. As shown in Fig. 16, Best-of-1024 sampling reaches only 0.44 ROUGE-recall, indicating
that direct search over the model’s base distribution cannot recover the missing content. Self-Refine
plateaus within a few rounds to 0.45 because it does not use external reward. Reflexion performs
slightly better at 0.46 but largely mirrors Self-Refine, suggesting that its revisions are dominated by
the model’s self-verbal feedback, which carries little useful information in this setup. In contrast,
ICRL continues to improve over 200 iterations and achieves substantially higher ROUGE-recall at
0.59, demonstrating that it can effectively learn from the external reward signal and is not limited by
the model’s pre-training knowledge.

Figure 16: ROUGE-Recall on Generating Unseen Paper Abstracts
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