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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-
Leibler (KL) divergence loss to stabilize training and prevent overfitting. How-
ever, in methods such as GRPO, its implementation may be guided by principles
from numerical value estimation—a practice that overlooks the term’s functional
role as an optimization loss. To analyze this issue, we establish a unified frame-
work that connects two seemingly distinct implementation styles: using the math-
ematical term kn as a detached coefficient for the policy’s score function (‘kn

in reward’) or as a direct loss function through which gradients are propagated
(‘kn as loss’). We show that the latter can always be analyzed via an equiva-
lent gradient coefficient in the former, unifying the two perspectives. Through
this framework, we first prove that conclusions from value estimation fail to guide
proper KL loss design, using the ‘k1 as loss’ as a counterexample. We then prove
the conventional ‘k1 in reward’ (like PPO) is the principled loss for Reverse
KL (RKL) regularization. We further establish a key finding: under on-policy
conditions, the ‘k2 as loss’ formulation is, in fact, gradient-equivalent to ‘k1 in
reward’. This equivalence, first proven in our work, identifies both as the theo-
retically sound implementations of the RKL objective. In contrast, we show that
the recently adopted ‘k3 as loss’ (like GRPO) is merely a first-order, biased ap-
proximation of the principled loss. Furthermore, we argue that common off-policy
implementations of ‘kn as loss’ methods are biased due to neglected importance
sampling, and we propose a principled correction. Our findings provide a com-
prehensive, gradient-based rationale for choosing and correctly implementing KL
regularization, paving the way for more robust and effective RLHF systems.

1 INTRODUCTION

The training of state-of-the-art Large Language Models (LLMs) is a multistage process. Following
large-scale pretraining and the Supervised Fine-Tuning (SFT) to learn instruction-following behav-
iors, a final post-training stage, Reinforcement Learning from Human Feedback (RLHF), is of-
ten employed. The objective of RLHF is twofold; it serves to align the model more closely with
complex human values (Ouyang et al., 2022) and, increasingly, to push the performance limits in
specialized reasoning tasks such as mathematics and code generation, as seen in models such as
DeepSeek-Math (Shao et al., 2024). A core component of this RLHF process is KL regularization,
implemented through a loss term derived from the Kullback-Leibler (KL) divergence (Kullback &
Leibler, 1951). The KL loss serves not only to stabilize the training process but also to improve
generalization by preventing the policy from overfitting the reward signal and deviating excessively
from the initial SFT model (Ouyang et al., 2022; Stiennon et al., 2020).

Despite the critical role of the KL loss, its theoretical foundations in the optimization context re-
main underexplored. The choice of its specific mathematical form is often guided by principles
from numerical value estimation, not from the perspective of gradient-based optimization. This cat-
egory error has led to a proliferation of ad-hoc implementations and suboptimal algorithm designs,
exemplified by recent methods like GRPO that adopt sure estimators under the mistaken assump-
tion that good value estimation properties translate to effective gradients. This paper argues that a
gradient-centric perspective is essential for designing robust and effective RLHF algorithms.
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We perform a systematic, gradient-based analysis of the KL loss to address these issues. We first
establish a unified framework that connects two seemingly distinct implementation styles: using the
mathematical term kn as a detached coefficient (‘kn in reward’) or as a direct loss function (‘kn

as loss’). This framework allows us to analyze any implementation by examining its equivalent
gradient coefficient. Using this lens, we first use the ‘k1 as loss’ case as a counterexample to
demonstrate the mistakes of the value estimation perspective. We then prove that the conventional
‘k1 in reward’ and the ‘k2 as loss’ formulations are, in fact, gradient equivalent and represent the
principled approach to reverse KL regularization. Finally, we analyze popular alternatives like ‘k3

as loss’, revealing their nature as biased approximations, and address a common but critical bug in
their off-policy implementation.

Our main contributions are threefold:

1. A Gradient-Centric Correction for KL Loss Design. We identify a fundamental flaw in
RLHF KL loss design, exemplified by GRPO, where value-estimation principles are mis-
applied to an optimization objective. We prove this with the ‘k1 as loss’ counterexample:
despite being an unbiased estimator, its gradient is independent of the reference policy, thus
providing no regularization signal.

2. Identification the Principled KL Loss. We prove that the conventional ‘k1 in reward’
formulation correctly implements the RKL gradient. We further establish a key, previously
unrecognized equivalence: ‘k1 in reward’ is gradient-equivalent to ‘k2 as loss’. This
discovery solidifies both as theoretically sound choices for KL regularization.

3. Analysis of GRPO Implementations and a Practical Correction. We analyze popular
‘k3 as loss’ used in GRPO is a biased first-order approximation of the principled gradi-
ent, leading to weaker regularization or potential instability. Furthermore, we identify a
common pitfall in off-policy algorithms where ‘kn as loss’ methods are often implemented
without correct importance sampling, and we provide a principled correction for this bias.

2 RELATED WORK

KL Value Estimation. Since the expectation of the KL divergence is often intractable, it is typi-
cally estimated by Monte Carlo sampling. Prior analyses have primarily assessed these estimators
as value estimators (John, 2020), characterizing k1 as unbiased but high variance, k2 as biased but
lower variance, and k3 as an ”optimal”, low variance and unbiased choice. We first challenge the
claimed superiority of k3 as a value estimator, showing that its advertised properties often fail to hold
in practical settings. More importantly, this emphasis is misplaced when these estimators are used
for regularization in RLHF. We show that a gradient-centric perspective is essential: conclusions
drawn from value estimation do not necessarily translate into effective optimization.

RLHF Methods. OpenRLHF (Hu et al., 2024) is the first framework that uses vLLM (Kwon et al.,
2023) to accelerate the rollout phase in RLHF training, and incorporates a variety of techniques that
make RLHF training more stable. Since then, several training frameworks have emerged, including
Verl (Sheng et al., 2024), slime (Zhu et al., 2025), and ROLL (Wang et al., 2025). These frame-
works primarily support PPO (Ouyang et al., 2022) and its variants, focusing on improving training
stability, particularly addressing challenges in training the critic model. VAPO (Yue et al., 2025)
proposed pretraining the critic model to mitigate these issues, while GRPO and Reinforce++ advo-
cate removing it altogether, leading to larger actor model scaling. Most RLHF methods incorporate
the KL loss, although some recent rule-based reward algorithms, such as DAPO, have suggested
removing the KL loss to enhance performance. However, Prorl (Liu et al., 2025a) solves the per-
formance problem by periodically resetting the reference models, and helps prove where the KL
loss still plays a crucial role in preventing overfitting and ensuring long-term training stability. In
particular, the KL loss used in Prorl is the ‘k2 as loss’ we propose and advocate in this paper.

KL Loss in RLHF. The practice of introducing a KL penalty in the reward is primarily based
on the OpenAI InstructGPT paper (Ouyang et al., 2022), which effectively applies the log-ratio
term as a coefficient for the policy’s score function, although without a formal justification. Earlier
work (Jaques et al., 2019) noted the potential equivalence of adding the KL term to the reward versus
the loss, but this was not formally proven. More recently, the GRPO method (Shao et al., 2024),
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utilized in influential models such as DeepSeek-R1 (Guo et al., 2025), has gained prominence by
adopting the term k3 directly as a KL loss. This choice is justified by citing (John, 2020) and its
claim of k3 being an ”unbiased estimator”, exemplifying the flawed practice of transferring value
estimation principles to loss design, a central issue we address.

3 PRELIMINARY

3.1 VALUE ESTIMATION OF KL DIVERGENCE

The Kullback-Leibler (KL) divergence from a distribution q(x) to a reference p(x) is defined as:

DKL(q ∥ p) = Ex∼q

[
log

q(x)

p(x)

]
. (1)

As this expectation is often intractable, it is estimated from Monte Carlo samples. Given the impor-
tance ratio δ(x) = p(x)/q(x), common estimators for the term within the expectation include:

k1(x) = − log δ(x),

k2(x) =
1

2
(log δ(x))

2
,

k3(x) = δ(x)− 1− log δ(x).

Except for the property mentioned in Section 2, the estimator k3 is particularly interesting, designed
to reduce the high variance. Although it can be effective when distributions p and q are close, the
claim that it is a ‘strictly better estimator’ (John, 2020) does not hold in the general case. Potential
issues of severe bias and infinite variance can arise when the support or tail of the distribution differs
significantly. Therefore, its application requires careful verification of some assumptions. A detailed
analysis of these statistical instabilities, supported by counterexamples, is provided in Appendix I.

3.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

RLHF fine-tunes a policy(actor model) πθ to produce responses y to prompts x that maximize a
reward r(x, y) derived from human preferences. Pure reward maximization may cause reward hack-
ing and distribution drift from a trusted SFT policy. To counteract this, RLHF adds a Reverse KL
penalty loss that regularizes the policy toward a fixed reference πref:

JRLHF(θ) = Ex∼D,y∼πθ(·|x) [r(x, y)]︸ ︷︷ ︸
Reward Maximization Term

−β DRKL (πθ(·|x) ∥ πref(·|x))︸ ︷︷ ︸
KL Regularization Term

= JReward(θ)− βJRKL(θ).

(2)

Here, D is the prompt distribution, y is sampled on-policy from the detached snapshot πθ (numeri-
cally equal to πθ at sampling time), and β trades off reward maximization and deviation from πref.

4 A UNIFIED FRAMEWORK FOR KL REGULARIZATION IN RLHF

Although most RLHF algorithms optimize for the same high-level objective as Equation (2), their
specific implementations differ significantly. To analyze these differences systematically, we estab-
lish a unified framework that decomposes the objective into its core components and categorizes the
different KL implementation styles.

Convention In our analysis, we use πθ to denote the trainable policy that carries gradients, and
follow the standard bandit setting. 1 Samples y are drawn from a detached and numerically identical
snapshot policy πθ(·|x), evaluated in the current iterate; gradients flow only through πθ. All scalar
coefficients that multiply the score function ∇θ log πθ(y|x) are treated as detached.

1To simplify analysis of core gradient properties, we model the entire response y as a single action. Our
derivations therefore operate on the joint probability π(y|x) of the sequence, rather than the token-level proba-
bilities used in standard sequential PPO.

3
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4.1 CORE COMPONENTS OF THE RLHF OBJECTIVE

The practical RLHF objective consists of two parts JReward(θ) and JKL(θ) estimated via Monte
Carlo sampling.

Reward Maximization The primary goal is to maximize the expected reward objective,
JReward(θ) = Ex∼D,y∼πθ(·|x) [r(x, y)]. As the discrete sampling process y ∼ πθ is non-
differentiable, the gradient is estimated via the policy gradient theorem, derived in Appendix B
and also known as REINFORCE (Williams, 1992). This approach recasts the gradient as an ex-
pectation, enabling its approximation with Monte Carlo samples y drawn from a detached policy
snapshot πθ (numerically equal to πθ at sampling time). The resulting gradient approximation used
for optimization is:

∇θJReward(θ) = Ex∼D, y∼πθ(·|x) [r(x, y) · ∇θ log πθ(y|x)] . (3)

In practice, r(x, y) represents a shaped advantage signal rather than the raw reward rraw(x, y) from
a reward model, with specifics detailed in Appendix A.

KL Regularization. RLHF regularizes the actor model to the reference model via the RKL:

JRKL(θ) = Ex∼D
[
DKL

(
πθ(·|x) ∥πref(·|x)

)]
= Ex∼D, y∼πθ(·|x)

[
log πθ(y|x)− log πref(y|x)

]
. (4)

Analogous to Equation (3), and as derived in Appendix C, RLHF methods utilize the policy gradient
trick to formulate a surrogate KL loss. Consequently, expectations are evaluated using Monte Carlo
samples y drawn from the detached snapshot πθ rather than the trainable policy πθ. This surrogate
loss incorporates a kn term; while these terms adopt functional forms from value estimators, they
serve a distinct optimization role here and are used primarily to unify the notation. Existing KL loss
implementations can be broadly categorized into the following two forms:

1. kn as a Detached Coefficient (‘kn in reward’): Treat kn as a detached coefficient weight
for the score function. A typical choice is k1(y|x) = log πθ(y|x)− log πref(y|x) in PPO.

Jkn in reward(θ) := Ex∼D, y∼πθ(·|x)

kn(πθ(y|x), πref(y|x)
)︸ ︷︷ ︸

detached coefficient

· log πθ(y|x)

 . (5)

2. kn as a Direct Loss (‘kn as loss’): Treat kn as a standalone loss with gradients propagated
directly through it. Common choices is k3(y|x) = πref(y|x)

πθ(y|x) −1−log πref(y|x)
πθ(y|x) used by GRPO

and k2(y|x) = 1
2

(
log πθ(y|x)

πref(y|x)
)2

we proposed.

Jkn as loss(θ) := Ex∼D, y∼πθ(·|x)
[
kn
(
πθ(y|x), πref(y|x)

)]
. (6)

While the gradient of the ‘kn as loss‘ formulation is computed by differentiating kn directly, under
on-policy conditions its gradient can be expressed in the ‘kn′ in reward‘ form. The equivalent
coefficient, kn′ , is derived as follows:

kn′
(
πθ(y|x), πref(y|x)

)
=

∂

∂ log πθ
kn
(
πθ(y|x), πref(y|x)

)
(7)

Crucially, this reveals that k2′ is equivalent to k1. We will subsequently prove that under on-policy
sampling, ‘k1 in reward‘ and ‘k2 as loss‘ are gradient-equivalent, principled implementations of the
RKL objective in Section 5.2.

4.2 KL INTEGRATION FORMS AND ALGORITHM MAPPING

The choice of KL formulation dictates how it is integrated with the reward objective.

Combined vs. Decoupled Forms. Since ‘kn in reward’ uses the same score function as the re-
ward objective, its coefficient can be merged into the reward coefficient to produce a Combined
Form—hence the name ‘in reward’:

LCombined(θ) = −Ex∼D, y∼πθ(·|x)
[(
r(x, y)− β kn

(
πθ(y|x), πref(y|x)

))
· log πθ(y|x)

]
. (8)

4
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In contrast, ‘kn as loss’ necessitates a Decoupled form with a separate loss form:

LDecoupled(θ) = −Ex∼D, y∼πθ(·|x) [r(x, y) · log πθ(y|x)] + β Ex∼D, y∼πθ(·|x)
[
kn
(
πθ(y|x), πref(y|x)

)]
. (9)

The decoupled form can also be used with ‘kn in reward’ by separating the two score function terms.
In off-policy updates, the merged coefficient in the combined form, r−β kn, must be corrected with
importance sampling; when combined with PPO, this correction is automatically inherited via the
clipped surrogate objective πθ/πθk . In contrast, ‘as loss’ implementations also explicitly require
applying IS and PPO clip, but these have always been omitted in practice (see Appendix G).

Positioning PPO and GRPO. This framework can position the main algorithms, as summarized
in Table 1. PPO is a canonical example of using ‘k1 in reward’ in a combined form. GRPO exem-
plifies the use of ‘k3 as loss’ in a decoupled form.

Table 1: Decomposition of RLHF algorithms. Note: ‘kn in reward’ can also be implemented in a
decoupled form.

Algorithm Typical kn KL Formulation Style Integration Form Notes on Off-Policy Implementation
PPO / REINFORCE k1 ‘kn in reward’ Combined (typical) Inherits IS/clipping when paired with PPO.
GRPO k3 ‘kn as loss’ Decoupled Requires explicit IS/clipping, commonly omitted in practice.

5 GRADIENT-BASED ANALYSIS OF KL IMPLEMENTATIONS

In RLHF, KL regularizers should be selected for gradient properties rather than for accurate estima-
tion of values. In this section, we first use ‘k1 as loss’ as a counterexample to show that adopting
estimators without auditing the induced gradients can lead to vacuous updates. Then we derive the
principal surrogate loss of RKL and demonstrate that ‘k3 as loss’ is a first-order approximation.
Meanwhile, we also prove that ‘kn as loss’ and ‘kn′ in reward’ are often gradient equivalent and
can be converted to each other with the on-policy setting.

Figure 1: Comparison of KL regularization gradient coefficients. Each curve shows the scalar coef-
ficient c(x, y) which would multiply the score function ∇θ log πθ(y|x), plotted against log πθ(y|x)
with πref(y|x) = 0.25 (vertical dashed line). Principled implementations (‘k1 in reward’ or ‘k2
as loss’) yield c = log

(
πθ/πref

)
, a linear restoring force in log-probability. The ‘k3 as loss’ uses

c = 1− πref/πθ, a first-order Taylor surrogate of − log δ at δ = πref/πθ = 1: it is loose when log πθ
is large (πθ ≫ πref) and can blow up when log πθ is small (πθ ≪ πref). The naive ‘k1 as loss’ gives
c ≡ 1, producing a zero-mean, non-regularizing gradient in expectation.

5.1 THE COUNTEREXAMPLE: WHY k1 AS LOSS FAILS

A central lesson of this work is that the desirable properties of value estimation do not automati-
cally translate into effective losses of optimization. The case of using ‘k1 as loss’ provides a clean

5
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counterexample: although k1 is an unbiased estimator of the KL value, it is ineffective as a loss for
enforcing a KL constraint.

Consider the direct-loss formulation with on-policy sampling from a detached snapshot y ∼ πθ(·|x):
Jk1 as loss(θ) = Ex∼D, y∼πθ(·|x)

[
log πθ(y|x)− log πref(y|x)

]
. (10)

Since πref does not depend on θ, its term vanishes upon differentiation, leaving

∇θJk1 as loss(θ) = Ex∼D, y∼πθ(·|x)
[
∇θ log πθ(y|x)

]
. (11)

The result exposes a fundamental flaw: the gradient is entirely independent of the reference policy
πref; therefore, it carries no KL regularization signal.

By the zero-mean score identity in Lemma C.2, the gradient ∇θJk1 as loss(θ) = 0, precisely
the exact mechanism that underlies the subtraction of the baseline in policy gradients of REIN-
FORCE (Williams, 1992). Consequently, in Monte Carlo practice, the term injects only zero-mean
noise, which inflates the gradient variance and potentially destabilizes learning.

This counterexample is decisive: an “unbiased value estimator” can produce a useless optimization
signal. It directly challenges the assumption that favorable value estimation properties are suffi-
cient for designing effective KL losses, an assumption that has implicitly motivated certain recent
implementations, such as GRPO.

5.2 THE PRINCIPLED RKL LOSS IN RLHF: k1 IN REWARD ⇔ k2 AS LOSS

In the following, we derive the exact on-policy gradient of the Reverse KL objective in Equation (4)
and use it as the reference gradient to design surrogates KL loss. Applying the product rule and the
log-derivative trick to RKL (see Appendix C) gives:

∇θJRKL(θ) = Ex∼D

[∑
y

∇θπθ(y|x)
(
log

πθ(y|x)
πref(y|x)

+ 1

)]
. (12)

By the zero-mean score identity in Lemma C.2, the term ’+1’ vanishes in expectation, resulting in
the practical form of the policy gradient:

∇θJRKL(θ) = Ex∼D, y∼πθ(·|x)


(
log

πθ(y|x)
πref(y|x)

)
︸ ︷︷ ︸
k1 (detached) coefficient

∇θ log πθ(y|x)

 . (13)

Any principled KL regularization loss should reproduce this target gradient in expectation. The
following theorem shows that two structurally different surrogate losses do so exactly.
Theorem 5.1 (On-policy gradient equivalence of principled RKL surrogate losses). Let πθ be a
detached snapshot of the trainable policy πθ whose parameters coincide at the time of gradient
evaluation. For samples y drawn on-policy from πθ(·|x), the following objectives have the same
expected gradient as the target in Equation (13):

Jk1 in reward(θ) = Ex∼D, y∼πθ(·|x)

[ (
log πθ(y|x)

πref(y|x)

)
︸ ︷︷ ︸

k1 (detached) coefficient

log πθ(y|x)
]
, (14)

Jk2 as loss(θ) = Ex∼D, y∼πθ(·|x)

[
1
2

(
log πθ(y|x)

πref(y|x)

)2]
. (15)

Sketch (full proof in Appendix C). For Equation (14), it could recover Equation (13) because the
term k1 is a detached scalar multiplying ∇θ log πθ. For Equation (15), differentiating gives
∇θ

1
2 (log

πθ

πref
)2 = (log πθ

πref
)∇θ log πθ, so here ‘k2′ ’ is ‘k1’, and the general kn′ solution formula

is in Equation (72), it also yields the same coefficient as Equation (13).

Consequently, conventional ‘k1 in reward’ (as used in PPO / REINFORCE) and the newly proposed
‘k2 as loss’ are principled, gradient-equivalent, and interchangeable implementations of RKL regu-
larization under on-policy sampling. For off-policy updates, explicit importance sampling and PPO
clip are required, as discussed in Appendix G.

6
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5.3 FIRST-ORDER APPROXIMATION OF k2 AS LOSS: k3 AS LOSS ⇔ k3′ IN REWARD

Jk3 as loss(θ) = Ex∼D, y∼πθ(·|x)

[
πref(y|x)
πθ(y|x)

− log
πref(y|x)
πθ(y|x)

− 1

]
, (16)

where expectations are taken over on-policy samples from the detached snapshot πθ. Taking the
gradient of ‘k3 as loss’ yields the equivalent coefficient k3′ and could get ‘kn′ in reward’ form loss:

∇θJk3 as loss(θ) = Ex∼D, y∼πθ(·|x)

[ (
1− πref(y|x)

πθ(y|x)

)
︸ ︷︷ ︸

k3′ (detached) coefficient

∇θ log πθ(y|x)
]
= ∇θJk3′ in reward(θ).

(17)
Let δ = πref(y|x)

πθ(y|x) . The principled ‘k1 in reward’ in Section 5.2 and ‘k3′ in reward’ share the same
score function but differ only in their scalar coefficients:

Principled (k1 in reward / k2 as loss) : − log δ︸ ︷︷ ︸
(detached) coefficient

· ∇θ log πθ(y|x), (18)

Approximation (k3 as loss / k3′ in reward) : − (δ − 1)︸ ︷︷ ︸
(detached) coefficient

· ∇θ log πθ(y|x). (19)

The Taylor trap. Around δ = 1, the identity log δ = (δ − 1) + O
(
(δ − 1)2

)
implies − log δ ≈

1 − δ. Thus, 1 − δ is only a first-order surrogate of the principal coefficient − log δ. The mis-
match beyond first-order leads to three concrete issues (see Appendix E for formal statements). For
visualization, the coefficient curves are plotted in Figure 1, with the code in Appendix H.

1. Bias. For all δ ̸= 1, 1− δ ̸= − log δ, the update direction is biased relative to the true RKL
gradient.

2. Pathological asymmetry. The two coefficients agree near δ = 1, but behave very differ-
ently in the tails:

• Over-coverage (δ→ 0): − log δ→+∞ (a strong, sustained restoring force), whereas
1 − δ→ 1 (saturates), yielding a much weaker regularizer. This often occurs late in
RLHF training when πθ > πref, making the k3′ constraint weaker.

• Under-coverage (δ→∞): − log δ decays only logarithmically, but 1−δ→−∞ much
faster, inducing explosive updates.

3. Statistical instability. Under y ∼ πθ(·|x), E[δ] = 1 and Var[ 1 − δ ] = E[(δ − 1)2] =
χ2(πref∥πθ), the chi-square divergence, which is notoriously unstable. The stochastic gra-
dient inherits this high variance.

5.4 PRACTICAL RECOMMENDATIONS

Based on our gradient-centric analysis, we offer the following practical recommendations for imple-
menting KL regularization loss in RLHF, and the last two points will be discussed in Appendix G
and Appendix F:

Do not use ‘k1 as a loss’. Its expected gradient is zero and independent of the reference model,
providing no regularization signal, only noise.

Prefer ‘k1 in reward’ or ‘k2 as loss’ for theoretical soundness. In the on-policy setting, these
two formulations are gradient equivalent and correctly implement the RKL objective. They are the
principal default choices for KL regularization (see Appendix C for a detailed proof).

Understand the properties of ‘k3 as loss’. This formulation should be recognized as a biased first-
order approximation of ‘k2 as loss’ (see Appendix Appendix E for a formal analysis). Although
its weaker regularization strength at high policy probabilities might offer practical benefits in some
scenarios, practitioners should be aware of its theoretical deviation from the true RKL gradient and
its potential for pathological updates when the policy probability is low.

Correct for off-policy bias. When using any ‘kn as loss’ formulation in an off-policy setting like
PPO, it is crucial to apply importance sampling corrections to the KL term itself. Neglecting this

7
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introduces a systematic bias. The combined approach ‘kn in reward’ naturally avoids this trap. A
detailed discussion and our proposed correction are available in Appendix G.

Consider bounded alternatives for enhanced stability. If maximum stability is required, espe-
cially under significant policy updates, alternatives that produce bounded gradient coefficients can
be beneficial. For example, the MSE-based penalty, like the MiniMax-01 loss, induces a coefficient
bounded within [−1, 1]. Its derivation and properties are detailed in Appendix F.

6 EXPERIMENTAL VALIDATION

We conduct controlled GRPO experiments on a mathematical reasoning task to examine gradient
analysis in Section 5. Our experiment design isolates the effects of different KL formulations,
allowing us to: (i) validate that ‘k1 as loss’ does not provide a proper regularization term and (ii)
compare the principled ‘k2 as loss’ with its first-order surrogate, ‘k3 as loss’. We put the large-scale
experiment in Appendix L and downstream benchmark performance in Appendix M.

6.1 SETUP AND BASELINES

Dataset Construction. We use a curated subset of OpenR1-Math-220k2, primarily composed of
NuminaMath 1.5 prompts. Reasoning traces are generated by a strong model, Deepseek-R1, and
filtered by MathVerify3 for formatting and correctness. Sequences exceeding 2048 tokens are re-
moved, yielding 7,300 prompts with high-quality off-policy reasoning traces.

RL Configuration. To isolate the gradient properties of each KL term, we employ a fully on-
policy training configuration, with a rollout batch size of 32, 8 responses per prompt, and an update
batch size of 256. The sampling temperature is 1.0. We compute the format reward using regu-
lar expressions, use Math-Verify for the accuracy reward, and the actor model is Qwen2.5-Math-
1.5B (Yang et al., 2024). We turn off the entropy loss (coefficient 0) and set β = 0.5 for all KL
regularized losses.

6.2 KEY RESULTS

The empirical results shown in fig. 2 strongly support our theoretical analysis of ‘k1 as loss’. As
derived in Section 5, the gradient of this loss term is fundamentally flawed for regularization: first,
it is entirely independent of the reference policy πref, and second, its expectation over on-policy
samples is exactly zero. In practice, this term is equivalent to adding a scaled score function, β ·
∇θ log πθ, to the gradient. Although this does not alter the expected update direction, it injects
zero-mean noise, thereby increasing gradient variance. It is the inverse of the variance reduction
technique used in REINFORCE with a baseline.

Consequently, the theoretical expectation for ‘k1 as loss’ is that its performance will be, at best,
comparable to that of having no KL penalty and could potentially be worse due to the increased
variance that hinders optimization. Our experimental findings, where the training trajectories of ‘k1

as loss’ are nearly indistinguishable from the baseline without KL, fall squarely within this predicted
range of outcomes. This observation provides compelling evidence that ‘k1 as loss’ should be
avoided, as it does not benefit regularization while posing a potential risk to the stability of training.

In Figure 3, we compare the principled ‘k2 as loss’ with its approximation, ‘k3 as loss’. Both
methods successfully regularize the policy; a cross-figure comparison with Figure 2 shows that their
reward curves are suppressed relative to the baseline without KL, confirming that the KL penalty
actively constrains the optimization to stay closer to the reference model.

Both variants regularize the policy, and the principled ‘k2 as loss’ exhibits some advantages. It
delivers greater training stability and stronger regularization, reflected in lower variance of rewards
and response lengths, indicative of a smoother optimization landscape. It also maintains tighter cou-
pling to the reference policy, with a smaller actor–reference probability gap (see “Logprob Diff with
Smooth”) and slightly higher entropy, suggesting ‘k2 as loss’ preserves more exploration ability

2https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
3https://github.com/huggingface/Math-Verify
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Figure 2: Comparison of ‘k1 as loss’ versus no KL regularization. The training dynamics are nearly
indistinguishable, empirically confirming the theoretical prediction from Section 5: ‘k1 as loss’ is
ineffective as a KL regularizer due to its gradient’s independence from the reference model and its
zero-mean gradient expectation.
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Figure 3: Comparison of the principled ‘k2 as loss’ against its first-order surrogate ‘k3 as loss’.
Both variants effectively constrain the policy, but ‘k2 as loss’ demonstrates superior regularization
properties, maintaining a tighter coupling to the reference policy and yielding a more stable opti-
mization path, evidenced by lower reward variance.

while remaining stable. These empirical observations align with its role as the correct surrogate
loss for the RKL objective. In contrast, ‘k3 as loss’ is a first-order surrogate that imposes weaker
constraints, yielding larger probability gaps and reduced entropy. Although ‘k3 as loss’ may be a
viable choice when a milder late-stage constraint is desired, our results indicate that ‘k2 as loss’
offers a more robust and principled route to stable, effective regularization.
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7 CONCLUSION

We present a systematic, gradient-centric analysis of the KL loss in RLHF, challenging the common
GRPO practice of borrowing principles from numerical value estimation to design optimization
losses. We established a unified framework that connects the implementations of ‘kn in reward’
and ‘kn as loss’, allowing a direct comparison of their gradient properties. Our analysis identifies
conventional ‘k1 in reward’ and its newly revealed equivalent, ‘k2 as loss’, as the principled loss
of Reverse KL loss. And showing the recent ‘k3 as loss’ to be a biased first-order approximation
of the principal RKL loss. Our experimental results validate these theoretical distinctions. Our
work offers a clear and theoretically grounded foundation for implementing KL loss. This addresses
long-standing ambiguities in the field and provides practitioners with a robust rationale for designing
more effective and reliable RLHF systems.
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A DETAILED IMPLEMENTATION OF RLHF METHODS

In a typical RLHF training step, we draw N prompts {x(i)}Ni=1 from the dataset D. For each prompt
x(i), we sample G responses y(i,1), . . . , y(i,G) ∼ πθ(· | x(i)) from the (detached) current policy.
The G responses associated with the same prompt form a group, and the full minibatch contains
N×G prompt–response pairs. We use πθ for the trainable policy (which carries gradients) and πθ
for its numerically identical, detached snapshot (which does not).

Baseline Subtraction and Normalization Proposed by REINFORCE (Williams, 1992), sub-
tracting an action-independent baseline does not change the expected policy gradient (unbiased;
see Equation (35)) and typically reduces variance, accelerating convergence . We consider the fol-
lowing baseline operators applied to a scalar signal r:

fgroup-bl(r) = r −meangroup(r), (20)
fbatch-bl(r) = r −meanbatch(r). (21)

In practice, normalization is also used. Normalization is not unbiased but can improve numerical
stability by controlling the scale of the reward signal:

fBN(r) =
r −meanbatch(r)

stdbatch(r)
, (22)

fGN(r) =
r −meangroup(r)

stdgroup(r)
. (23)

How Common Algorithms Shape the Reward Signal Let rraw(x, y) denote the raw score from
the reward model before any shaping. The following variants differ in how they post-process rraw:

REINFORCE: r(x, y) = fBN
(
rraw(x, y)

)
, (24)

PPO/REINFORCE++: r(x, y) = fBN
(
rraw(x, y)

)
, (25)

GRPO: r(x, y) = fGN
(
rraw(x, y)

)
, (26)

Dr-GRPO (Liu et al., 2025b): r(x, y) = fgroup-bl
(
rraw(x, y)

)
, (27)

REINFORCE++baseline: r(x, y) = fBN

(
fgroup-bl

(
rraw(x, y)

))
. (28)

Integration of the KL Regularization Loss The transforms above shape only the reward signal.
The KL regularizer is typically integrated in one of two ways:

(i) Combined Form (‘kn in reward’): Used by REINFORCE/PPO methods. A combined
reward signal is formed first,

Acombined(x, y) = rraw(x, y) − β k1

(
πθ(y | x), πref(y | x)

)
,

and then baseline/normalization is applied to this combined signal Acombined before it mul-
tiplies the score function.

(ii) Decoupled Form (‘kn as loss’): Used by GRPO methods. The KL penalty kn
(
πθ(· |

x), πref(· | x)
)

is optimized as a separate, unnormalized loss term, added to the policy-
gradient loss driven by the shaped reward r(x, y).

Complete On-Policy Objectives for REINFORCE/PPO and GRPO REINFORCE/PPO
(Monte Carlo minibatch):

LREINFORCE/PPO,MC(θ) = − 1

NG

N∑
i=1

G∑
j=1

{
A
(
x(i), y(i,j)

)
log πθ

(
y(i,j) | x(i)

)}
, (29)

where A(x, y) = fBN

(
rraw(x, y)− β k1

(
πθ(y | x), πref(y | x)

))
. (30)

Here, the k1 term is evaluated using detached probabilities, consistent with the policy-gradient
framework where it acts as a coefficient for the score function.
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GRPO (Monte Carlo minibatch):

LGRPO,MC(θ) =− 1

NG

N∑
i=1

G∑
j=1

{
r
(
x(i), y(i,j)

)
log πθ

(
y(i,j) | x(i)

)}

+
β

NG

N∑
i=1

G∑
j=1

k3

(
πθ
(
y(i,j) | x(i)

)
, πref

(
y(i,j) | x(i)

))
.

(31)

In this decoupled form, the shaped reward r(x, y) drives the policy-gradient term, while the KL
penalty is a separate loss where gradients flow directly through πθ inside k3(·).
Remark. While baseline subtraction is an unbiased variance-reduction technique, normalization is a
biased but often crucial heuristic for practical stability. Both are important engineering details, even
if omitted from simplified theoretical analyses.

B POLICY GRADIENT DERIVATION FOR REWARD MAXIMIZATION

This section provides a detailed derivation of the policy gradient for the reward maximization ob-
jective. We clarify the distinction between the true objective, its gradient, and the surrogate loss
function, adhering to a strict notation where θ indicates a variable subject to differentiation and θ
indicates a detached parameter, such as in a sampling distribution.

The Objective Function The goal is to find parameters θ for a policy πθ that maximize the ex-
pected reward:

Jreward(θ) = Ex∼D,y∼πθ(·|x) [r(x, y)] = Ex∼D
∑
y

[r(x, y) · πθ(y|x)] . (32)

We assume standard regularity conditions that permit the interchange of differentiation and expec-
tation operators.

Policy Gradient Derivation We compute the gradient of the objective function Jreward(θ) using
the log-derivative trick. The distinction between θ and θ is crucial in the derivation steps:

∇θJreward(θ) = ∇θEx∼D
∑
y

[r(x, y) · πθ(y|x)]

= Ex∼D
∑
y

[r(x, y) · ∇θπθ(y|x)]

= Ex∼D
∑
y

[
r(x, y) · πθ(y|x) ·

∇θπθ(y|x)
πθ(y|x)

]
= Ex∼D

∑
y

πθ(y|x) [r(x, y) · ∇θ log πθ(y|x)]

= Ex∼D,y∼πθ(·|x) [r(x, y) · ∇θ log πθ(y|x)] .

(33)

In the third and fourth lines, πθ represents the current policy’s probability value, which is treated as
a constant factor in the application of the chain rule for logarithms, while πθ is the function being
differentiated. The final line expresses the gradient as an expectation over samples from πθ, where
the sampling process itself is treated as having no gradient path.

C FORMAL PROOF OF THE PRINCIPLE KL REGULARIZATION

This appendix provides a formal, step-by-step derivation showing that, under Assumptions
(A1)–(A4), the true KL divergence objective and two common surrogates—‘k1 in reward’ and
‘k2 as loss’—share the same expected gradient. We employ two numerically identical copies of the
policy: a gradient-carrying one, πθ(·|x), and its detached counterpart, πθ(·|x). Parameters marked
with θ carry gradients; black θ denotes detached parameters. Sampling measures, denominators,
and scalar coefficients multiplying a gradient term are always treated as detached by using πθ.
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C.1 ASSUMPTIONS AND NOTATION

Let D be a data distribution over x, πref(·|x) a fixed reference policy, and πθ(·|x) a differentiable
policy. All logarithms are natural.

(A1) For each x, the function y 7→ πθ(y|x) is a valid probability mass/density: πθ(y|x) > 0
on its support, it is differentiable in θ, and normalizes to one, i.e.,

∑
y πθ(y|x) = 1 (or∫

πθ(y|x) dy = 1).
(A2) The interchange of expectation/summation and differentiation is valid.
(A3) The data distribution D and reference policy πref do not depend on θ.
(A4) The KL divergence is well-defined: for all x and all y in the support of πθ(·|x), we have

πref(y|x) > 0.

Notation: πθ denotes the detached copy of πθ, numerically equal at the current iterate. Expectations
over y are taken with respect to y ∼ πθ(·|x) unless stated otherwise.

C.2 FUNDAMENTAL IDENTITIES

Lemma C.1 (Log-derivative identity with detached denominator). For any fixed x and any y with
πθ(y|x) > 0,

∇θ log πθ(y|x) =
∇θπθ(y|x)
πθ(y|x)

. (34)

Proof. By the chain rule, ∇θ log πθ = (∇θπθ)/πθ. Replacing the denominator with its detached,
numerically identical copy πθ preserves the numerical value while making the no-gradient path
explicit.

Lemma C.2 (Zero-mean score). For any fixed x,

Ey∼πθ(·|x)
[
∇θ log πθ(y|x)

]
= 0. (35)

Proof. Using Lemma C.1,∑
y

πθ(y|x)
∇θπθ(y|x)
πθ(y|x)

=
∑
y

∇θπθ(y|x) = ∇θ

∑
y

πθ(y|x) = ∇θ(1) = 0. (36)

Corollary C.0.1 (Score-function reweighting). For any function z(y, x) detached with respect to θ,∑
y

∇θπθ(y|x) z(y, x) = Ey∼πθ(·|x)
[
z(y, x)∇θ log πθ(y|x)

]
. (37)

Corollary C.0.2 (Baseline invariance). For any function b(x) detached with respect to θ,

Ey∼πθ(·|x)
[
b(x)∇θ log πθ(y|x)

]
= b(x) · Ey∼πθ(·|x)

[
∇θ log πθ(y|x)

]
= 0. (38)

Thus, adding a detached, action-independent baseline b(x) to any coefficient does not change the
expected gradient.

C.3 DERIVATION OF THE TRUE RKL GRADIENT

The RKL divergence objective is:

JRKL(θ) = Ex∼D

[∑
y

πθ(y|x) log
πθ(y|x)
πref(y|x)

]
. (39)

Step 1 (Differentiate under the expectation). By (A2), the gradient operator is moved inside the
expectation and sum.
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Step 2 (Apply product rule). For each y, we apply the product rule and display detached copies
for undifferentiated factors:

∇θ

[
πθ(y|x) log πθ(y|x)

]
= (∇θπθ) log πθ + πθ · ∇θ log πθ

= (∇θπθ) (log πθ + 1).
(40)

By (A3), the gradient of the reference term is ∇θ[−πθ(y|x) log πref(y|x)] =
−(∇θπθ(y|x)) log πref(y|x).

Step 3 (Collect terms). Combining terms yields an expression with a detached coefficient:

∇θJRKL(θ) = Ex∼D

[∑
y

∇θπθ(y|x)
(
log

πθ(y|x)
πref(y|x)

+ 1

)]
. (41)

Step 4 (Apply score-function reweighting). Using Corollary C.0.1 with the detached coefficient
z(y, x) := log πθ(y|x)

πref(y|x) + 1:

∇θJRKL(θ) = Ex∼D, y∼πθ(·|x)

[(
log

πθ(y|x)
πref(y|x)

+ 1

)
∇θ log πθ(y|x)

]
. (42)

Step 5 (Simplify using the zero-mean score property). The expectation of the ‘+1‘ term is zero
by Lemma C.2, yielding the final gradient:

∇θJRKL(θ) = Ex∼D, y∼πθ(·|x)

[
log

πθ(y|x)
πref(y|x)

∇θ log πθ(y|x)
]
. (43)

C.4 THE GOLD STANDARD: k1 IN REWARD ⇔ k2 AS LOSS

Surrogate 1: ‘k1 in reward’.

Jk1 in reward(θ) = Ex∼D, y∼πθ(·|x)


(
log

πθ(y|x)
πref(y|x)

)
︸ ︷︷ ︸

detached coefficient

log πθ(y|x)

 . (44)

Since the coefficient is detached, its gradient is identical to Equation (43).

Surrogate 2: ‘k2 as loss’.

Jk2 as loss(θ) = Ex∼D, y∼πθ(·|x)

[
1

2
(log πθ(y|x)− log πref(y|x))2

]
. (45)

By the chain rule, and displaying the resulting scalar multiplier as its detached copy for clarity:

∇θJk2 as loss(θ) = Ex∼D, y∼πθ(·|x) [(log πθ(y|x)− log πref(y|x)) ∇θ log πθ(y|x)] , (46)

which is also identical to Equation (43).

C.5 CONCLUSION AND IMPLEMENTATION GUIDANCE

Under Assumptions (A1)–(A4), the true KL objective and both surrogates share the same expected
gradient, given by Equation (43). This equivalence is based on the following key conventions.

Sampling Measure: The samples are drawn from a detached policy y ∼ πθ(·|x)(usually vLLM).

Detached Coefficients: The scale coefficients that multiply the score function are treated as de-
tached. Applying Corollary C.0.2, any detached baseline b(x) can be added to reduce variance.

Gradient Path: Gradients propagate only through terms explicitly parameterized by θ.
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Implementation Notes. For a single on-policy sample y ∼ πθ(·|x):

• ‘k1 in reward’: To minimize JKL, define the loss as weight := log πθ(y|x) −
log πref(y|x) (detached) and Loss := weight · log πθ(y|x). A gradient descent step on
this loss performs descent on JKL. The common RL loss, −weight · log πθ, implements
objective ascent.

• ‘k2 as loss’: To minimize JKL, define log ratio := log πθ(y|x) − log πref(y|x) and
Loss := 1

2 (log ratio)2.

Remarks. (i) For continuous spaces, replace sums by integrals; the proof is unchanged pro-
vided densities are positive on their support. (ii) The equivalence requires on-policy sampling.
If samples are drawn from a stale policy πold, exact correction uses importance weights ρ(x, y) =
πθ(y|x)/πold(y|x) inside the expectations.

D SURROGATE OBJECTIVE: FULL-VOCABULARY VS. MONTE CARLO

This section formalizes the connection between the theoretical policy-gradient objective and its prac-
tical mini-batch implementations. We detail two key estimators: a full-vocabulary loss, which is
exact but computationally infeasible, and a Monte Carlo (MC) loss, which provides an unbiased,
practical approximation.

Conventions and gradient paths.

1. The trainable policy πθ carries gradients; its detached, numerically identical snapshot at
the current iterate is denoted πθ.

2. All scalars that multiply the score function are detached: the reward r(x, y), any KL-
derived term kn(·), and their combination r(x, y)− β kn(·).

3. Gradients flow only through log πθ(y|x); everything inside the coefficient c(x, y) is de-
tached.

4. We adopt the naming used in the main text: reward (detached) coefficient, kn (detached)
coefficient, and combined form coefficient.

We express the objective using a generic, detached scalar coefficient c(x, y), which can take several
forms:

c(x, y) ∈


r(x, y) reward (detached) coefficient
kn
(
πθ(y|x), πref(y|x)

)
kn (detached) coefficient

r(x, y)− β kn
(
πθ(y|x), πref(y|x)

)
combined form coefficient

 . (47)

A typical KL choice is
k1(y|x) = log πθ(y|x)− log πref(y|x). (48)

Policy gradient in expectation form (with baseline). For the population objective Jtrue(θ) =
Ex∼D, y∼πθ(·|x)[ c(x, y) ], using a detached, action-independent baseline b(x) and the log-derivative
identity with a detached denominator,

∇θ log πθ(y|x) =
∇θπθ(y|x)
πθ(y|x)

, (49)

the unbiased policy gradient is

∇θJtrue(θ) = Ex∼D, y∼πθ(·|x)

[
(c(x, y)− b(x))∇θ log πθ(y|x)

]
. (50)

This relies on the zero-mean score property under y ∼ πθ(·|x) as proved in Equation (35), ensuring
b(x) does not change the expected gradient.

Population surrogate loss. A surrogate loss whose negative gradient recovers Equation (50) is

Lsur(θ) = −Ex∼D, y∼πθ(·|x)

[(
c(x, y)− b(x)

)
log πθ(y|x)

]
. (51)
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Two interchangeable mini-batch implementations. We provide two equivalent mini-batch es-
timators of Equation (51). The first computes the exact inner expectation over the discrete action
space V by summing all actions with a detached sampling weight; the second replaces this inner sum
with i.i.d. on-policy samples, yielding an unbiased estimate conditional on the mini-batch prompts.

Lsur,Full(θ) = − 1

N

N∑
i=1

∑
y(i)∈V

πθ
(
y(i) | x(i)

)︸ ︷︷ ︸
detached weight

(
c
(
x(i), y(i)

)
− b(x(i))

)
log πθ

(
y(i) | x(i)

)
. (52)

Here, “detached weight” indicates that gradients do not flow through πθ; the score path is solely via
log πθ.

Lsur,MC(θ) = − 1

N

N∑
i=1

1

G

G∑
j=1

(
c
(
x(i), y(i,j)

)
− b(x(i))

)
log πθ

(
y(i,j) | x(i)

)
, y(i,j) ∼ πθ(·|x(i)).

(53)
In Equation (53), {y(i,j)}Gj=1 are i.i.d. samples from the detached snapshot πθ(·|x(i)); increasing G
reduces variance while preserving unbiasedness.

Unbiasedness and practical considerations. For any fixed x(i) and function f ,

E{y(i,j)}G
j=1 i.i.d.∼πθ(·|x(i))

 1

G

G∑
j=1

f
(
y(i,j)

) =
∑

y(i)∈V

πθ
(
y(i) | x(i)

)
f
(
y(i)
)
, (54)

hence E
[
Lsur,MC | {x(i)}

]
= Lsur,Full. In practice, computing r(x, y) or kn(·) over the full vocabulary

is infeasible for LLMs due to GPU memory constraints; MC estimation is therefore standard.

Alternative decoupled formulation: ‘kn as loss’. In addition to incorporating KL via the co-
efficient c(x, y), one may add a separate penalty-only loss that differentiates directly through the
log-ratio. Let ψn : R → R be differentiable (e.g., ψ1(t) = t, ψ2(t) =

1
2 t

2). Define

Lkn as loss,MC(θ) = − 1

NG

N∑
i=1

G∑
j=1

ψn

(
log πθ(y

(i,j)|x(i))︸ ︷︷ ︸
with grad

− log πref(y
(i,j)|x(i))︸ ︷︷ ︸

detached

)
. (55)

Its gradient takes the score-like form

∇θLkn as loss,MC(θ) = − 1

NG

N∑
i=1

G∑
j=1

ψ′
n(·) ∇θ log πθ(y

(i,j)|x(i)), (56)

where (·) denotes the log-ratio in Equation (55). Here the prime denotes differentiation with respect
to the scalar argument:

ψ′
n(t) ≜

d

dt
ψn(t). (57)

Under on-policy sampling, evaluating the scalar coefficientψ′
n(·) at the current iterate (i.e., treating it

as detached) yields the gradient-equivalence established in the main text (see Theorem in Section 5.2
and Appendix C). A common choice ψ2(t) =

1
2 t

2 recovers the squared log-ratio penalty. The total
objective is then Lreward,MC − β · Lkn as loss,MC, with πref fixed and detached.

E FORMAL ANALYSIS OF THE ‘k3 AS LOSS’ GRADIENT SURROGATE

This appendix provides the formal analysis underpinning Section 5.3, proving that the ‘k3 as loss’
formulation acts as a first-order, biased surrogate for the principled Reverse KL (RKL) gradient. We
first derive its gradient-equivalent ‘in-reward‘ coefficient under on-policy sampling, then dissect its
three core deficiencies: local bias, global asymmetry, and statistical instability.
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Throughout, we fix a prompt x and consider samples y ∼ πθ(·|x) drawn on-policy from a detached
snapshot of the trainable policy πθ. We define the probability ratio as:

δ(y) :=
πref(y|x)
πθ(y|x)

. (58)

Our analysis compares the coefficient induced by ‘k3 as loss’ against the principled RKL gradient co-
efficient, c⋆(y) = − log δ(y). All scalar coefficients multiplying the score function ∇θ log πθ(y|x)
are treated as detached.

Gradient-Equivalent Coefficient of ‘k3 as loss’. The ‘k3 as loss’ objective is given by:

Jk3 as loss(θ) = Ex∼D,y∼πθ(·|x)

[
πref(y|x)
πθ(y|x)

− 1− log
πref(y|x)
πθ(y|x)

]
. (59)

Differentiating and evaluating the resulting scalar multiplier at the detached snapshot yields:

∇θJk3 as loss(θ) = Ex∼D,y∼πθ(·|x)

[(
1− πref(y|x)

πθ(y|x)

)
∇θ log πθ(y|x)

]
. (60)

This confirms that ‘k3 as loss’ is gradient-equivalent (under on-policy sampling) to an ‘in-reward‘
update with the detached coefficient:

c3′(y) := 1− δ(y). (61)

Jk3′ in reward(θ) = Ex∼D,y∼πθ(·|x)

[(
1− πref(y|x)

πθ(y|x)

)
log πθ(y|x)

]
. (62)

The remainder of this section formally analyzes the deficiencies of this proxy, c3′ , when compared
to the principled target, c⋆ = − log δ.

Lemma E.1 (First-order agreement and second-order bias). The proxy 1−δ is the first-order Taylor
approximation of the principled coefficient − log δ around δ = 1. The approximation error (bias) is
of second order:

Bias(δ) = (− log δ)− (1− δ) =
1

2
(δ − 1)2 − 1

3
(δ − 1)3 +O

(
(δ − 1)4

)
. (63)

Proof sketch. The result is obtained by expanding − log δ in a Taylor series at r = 1 and subtracting
the term (1− δ).

Lemma E.2 (One-sided domination and asymmetric tails). For all δ > 0, the proxy is a strict lower
bound, 1− δ ≤ − log δ, with equality holding only at δ = 1. Their tail behaviors are pathologically
asymmetric:

• Over-coverage (δ → 0+): The proxy provides a weak, saturating restoring force
(limδ→0+(1 − δ) = 1), whereas the principled coefficient provides an unbounded penalty
(limδ→0+(− log δ) = +∞).

• Under-coverage (δ → ∞): The proxy induces an aggressive, linearly explosive penalty
(limδ→∞(1− δ) = −∞), while the principled coefficient’s penalty grows only logarithmi-
cally.

Proof sketch. The inequality follows from the fundamental property log δ ≤ δ − 1. The limits are
elementary.

Theorem E.1 (Variance equals chi-squared divergence). Assuming supp(πref(·|x)) ⊆
supp(πθ(·|x)), the proxy coefficient c3′ has zero mean under the on-policy sampling distribution,
and its variance is exactly the chi-squared divergence:

Ey∼πθ
[1− δ(y)] = 0, Vary∼πθ

[1− δ(y)] = χ2(πref(·|x) ∥ πθ(·|x)). (64)

If the support condition is violated, the variance is infinite.
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Proof sketch. E[δ] =
∑

y πθ(y|x)
πref(y|x)
πθ(y|x) = 1, thus E[1 − r] = 0. The variance identity then

follows directly from the definition of χ2(p ∥ q).

Corollary E.1.1 (Implication for stochastic gradient variance). The variance of the stochastic gra-
dient term induced by ‘k3 as loss’ is directly governed by the chi-squared divergence, a notoriously
unstable metric:

E
[
∥(1− δ(y))∇θ log πθ(y|x)∥2

]
= E

[
(1− δ(y))2 ∥∇θ log πθ(y|x)∥2

]
. (65)

Conclusion. These results provide a rigorous, gradient-centric justification for the claims in the
main text. The ‘k3 as loss’ formulation does not implement the true RKL gradient. Instead, it
deploys a first-order proxy (c3′ = 1 − δ) that is accurate only when the policy is very close to
the reference (δ ≈ 1). Its pathological tail behavior and high variance, linked to the chi-squared
divergence, introduce optimization challenges not present in the principled ‘k1 in reward‘ or ‘k2
as loss‘ formulations. This analysis underscores the critical importance of selecting regularization
losses based on their gradient properties, not merely their characteristics as value estimators.

F DERIVATION OF AN ALTERNATIVE REGULARIZER: THE MINIMAX-01
LOSS FROM MSE DISTANCE

As an alternative to KL regularization, this section derives the MiniMax-01 loss (Li et al., 2025).
We will prove it originates from a mean squared error (MSE) objective and fits within our gradient-
centric framework. We adhere to the established on-policy conventions: πθ is the trainable policy,
πθ is its detached snapshot (numerically equal at the current iterate), and all scalar coefficients that
multiply the score function are treated as detached during backpropagation.

Objective. We minimize the full-vocabulary MSE between the policy and the reference:

JMSE(θ) = Ex∼D

[
1

2

∑
y

(
πθ(y | x)− πref(y | x)

)2]
. (66)

On-policy gradient. Differentiating Equation (66) with respect to θ, evaluating the scalar multi-
plier at the detached snapshot πθ (our standard on-policy convention), and converting to the score-
function form yields:

∇θJMSE(θ) = Ex∼D

∑
y

[
1

2
∇θ(πθ(y|x)− πref(y|x))2

]
= Ex∼D

∑
y

(
πθ(y | x)− πref(y | x)

)
︸ ︷︷ ︸

detached coefficient

∇θπθ(y | x)

= Ex∼D
∑
y

πθ(y | x)
(
πθ(y | x)− πref(y | x)

)
∇θ log πθ(y | x)

= Ex∼D, y∼πθ(·|x)

[(
πθ(y | x)− πref(y | x)

)
∇θ log πθ(y | x)

]
.

(67)

The last line reveals that MSE regularization induces a score-function update whose scalar coeffi-
cient is the probability difference πθ − πref.

MiniMax-01 surrogate loss (Monte Carlo). Using a on-policy sampler that draws G responses
y(i,j) ∼ πθ(· | x(i)) per prompt, the unbiased minibatch surrogate whose negative gradient recov-
ers Equation (67) is

LMSE,MC(MiniMax-01)(θ) = − 1

NG

N∑
i=1

G∑
j=1

(
πθ(y

(i,j) | x(i))−πref(y
(i,j) | x(i))

)
log πθ(y

(i,j) | x(i)).

(68)
This head shares the same in-reward score-function structure as our principled KL implementations:
the coefficient is detached, and gradients flow only through log πθ.
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Key properties and implications.

1. Bounded gradient coefficient. Since 0 ≤ πθ(y | x), πref(y | x) ≤ 1, the coefficient satisfies
−1 ≤ πθ(y | x) − πref(y | x) ≤ 1. This boundedness enhances stability against large or
pathological updates, in contrast to the unbounded log-ratio used by KL (see Figure 1). This
supports our recommendation in Section 5 to consider bounded alternatives when stability
is paramount.

2. Symmetry in probability space. The MSE penalty is symmetric with respect to probability
differences, providing more conservative corrections when policies diverge, compared to
the logarithmic penalty of Reverse KL.

3. Off-policy compatibility. Owing to its in-reward form with a detached coefficient, this head
is fully compatible with importance sampling and clipping, following the same correction
rules as in Appendix G.

Remark. Consistent with our KL analysis, Equation (67) is obtained by evaluating scalar mul-
tipliers at the detached snapshot πθ (on-policy). This keeps all regularizers within a unified kn
multiply score-function lens and enables direct, apples-to-apples comparison of their induced up-
date dynamics.

G OFF-POLICY CORRECTION FOR KL REGULARIZATION

Many RLHF implementations harbor a subtle yet critical off-policy bias, particularly when the KL
term is implemented “as loss.” Such formulations are only gradient-correct under on-policy sam-
pling. For off-policy updates, they require explicit importance sampling (IS) and PPO-style clip-
ping. Omitting these steps systematically biases the update and undermines training stability. This
section provides the principled correction, fully aligned with our gradient-centric framework.

G.1 FROM ON-POLICY TO OFF-POLICY GRADIENTS

We operate in the policy-gradient view, where updates are driven by a detached (stop-gradient)
coefficient c(x, y) multiplying the score function. The on-policy gradient estimator is:

∇θJc(θ) = Ex∼D, y∼πθ(·|x)
[
c(x, y)∇θ log πθ(y | x)

]
, (69)

where πθ is a detached snapshot numerically equal to πθ at the time of gradient evaluation. For
samples drawn from a behavior policy y ∼ πθk(· | x), an unbiased off-policy estimator requires IS,
assuming the behavior policy has support over the sampled data (πθk(y | x) > 0):

∇θJc(θ) = Ex∼D, y∼πθk
(·|x)

 πθ(y | x)
πθk(y | x)︸ ︷︷ ︸

detached IS weight

c(x, y)∇θ log πθ(y | x)

 . (70)

In practice, PPO replaces this detached IS weight with the gradient-carrying ratio ρk(θ) =
πθ(y|x)
πθk

(y|x)
(where gradients flow only through the numerator) and employs a clipped surrogate objective to
reduce variance. For any detached coefficient c(x, y), the clipped objective to be maximized is:

Jc,clipped(θ) = Ex∼D, y∼πθk
(·|x)

[
min

(
ρk(θ) c(x, y), clip

(
ρk(θ), 1− ϵ, 1 + ϵ

)
c(x, y)

)]
. (71)

G.2 CORRECTING “kn AS LOSS” BY CONVERTING TO AN “IN REWARD” HEAD

A “kn as loss” head is gradient-correct only on-policy. To adapt it for off-policy use, it must first
be converted to its gradient-equivalent “in reward” form. This is achieved by defining a detached
(stop-gradient) coefficient kn′(x, y) that reproduces the on-policy gradient of the original loss. For
a differentiable penalty kn

(
πθ(y|x), πref(y|x)

)
, this coefficient is its derivative with respect to the

policy’s log-probability, evaluated at the current detached snapshot:

kn′
(
πθ(y|x), πref(y|x)

)
:=

∂

∂ log πθ
kn
(
πθ(y|x), πref(y|x)

)∣∣∣∣
log π=log πθ(y|x)

. (72)
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This conversion precisely aligns with the theoretical equivalences established in the main text:

• Principled k2 as loss: k2 = 1
2 (log πθ − log πref)

2 ⇒ k2′ = log πθ − log πref (the k1 in
reward coefficient).

• Proxy k3 as loss: k3 = πref
πθ

− 1− log πref
πθ

⇒ k3′ = 1− πref
πθ

(the k3′ in reward coefficient).

Once expressed as a detached coefficient kn′(x, y), the KL head is handled off-policy exactly like
any other score-function head via Equation (71). In PPO with multiple epochs per batch, kn′ should
be recomputed at each epoch using the updated detached snapshot πθ to maintain strict gradient
equivalence (the denominator πθk remains fixed from the rollout).

G.3 TWO PRINCIPLED OFF-POLICY INTEGRATION STRATEGIES

With the correctly derived coefficient kn′ in hand, there are two principled ways to integrate it into
the PPO objective, mirroring the on-policy discussion in Section 4.

1. Combined Form (Single Clipped Head). Merge the reward advantage and the KL coefficient
before applying the PPO machinery:

Acombined(x, y) := r(x, y) − β kn′
(
πθ(y|x), πref(y|x)

)
. (73)

The clipped surrogate is then applied to this combined head:

JRLHF(θ) = Ey∼πθk

[
min

(
ρk(θ)Acombined, clip(ρk(θ), 1− ϵ, 1 + ϵ)Acombined

)]
. (74)

This is the most robust and straightforward approach, as IS and clipping are consistently applied
to both components. For correct PPO semantics, form Acombined prior to any baseline subtraction
or normalization. This preserves the trade-off set by β, which would be distorted by shifting or
rescaling the KL component.

2. Decoupled Form (Two Clipped Heads). Maintain separate reward and KL objectives, each
with its own IS correction and clipping scheme:

Jreward(θ) = Ey∼πθk

[
min

(
ρk(θ) r(x, y), clip

(
ρk(θ), 1− ϵ1, 1 + ϵ2

)
r(x, y)

)]
, (75)

JKL(θ) = Ey∼πθk

[
min

(
ρk(θ) kn′

(
πθ(y|x), πref(y|x)

)
,

clip
(
ρk(θ), 1− ϵ, 1 + ϵ

)
kn′
(
πθ(y|x), πref(y|x)

))] . (76)

The final objective to maximize is:
JRLHF(θ) := Jreward(θ) − β JKL(θ). (77)

This decoupled design affords greater flexibility, such as using asymmetric clipping for the reward
head (e.g., ϵ2 > ϵ1) to accelerate learning, while retaining conservative, symmetric clipping for
the KL head to ensure stable regularization. Baselines or normalization should be applied only to
Areward, not to kn′(x, y), to avoid implicitly altering the regularization strength β.

Implementation Notes.

• Token vs. Sequence Level: Our derivations use sequence-level probabilities. In token-
level PPO, it is often more stable to compute the ratio as ρk = exp

(∑
t log πθ(yt | ·) −∑

t log πθk(yt | ·)
)

and apply clipping at the sequence level; per-token clipping can be
overly conservative.

• Masking Consistency: Sum log-probabilities only over action tokens that contribute to the
reward/KL (exclude prompt, padding, or masked tokens) to keep ρk aligned with the heads
being optimized.

• Numerical Stability and Support: Ensure πθk(y | x) > 0 for all sampled (x, y) and
consider numerically capping ρk to prevent overflows under extreme ratios.

• Adaptive β: If targeting a desired KL via an adaptive schedule, update β outside the
gradient path (detached) and avoid mixing it with advantage normalization; adaptation is
orthogonal to IS/clipping and works for both combined and decoupled forms.
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Sign Convention. We present objectives for maximization. Implementations that minimize a loss
should negate these expressions, e.g., by minimizing −Jcombined or −(Jreward − β JKL).

H VISUALIZATION OF KL REGULARIZATION GRADIENT COEFFICIENTS

To visualize the theoretical arguments discussed in Section 5, this section presents the Python code
used to generate Figure 1. The plot compares the behavior of the different scalar coefficients that
multiply the policy’s score function ∇θ log πθ(y|x), as a function of the actor’s log-probability for
a given token. These coefficients are derived from the respective KL regularization Loss: k1 in
reward, k2 as loss, k3 as loss, and the MiniMax-01 loss.

The visualization clearly contrasts the stable, linear behavior of the principled coefficients derived
from ‘k1 in reward’ / ‘k2 as loss’ with the asymmetric behavior of the first-order approximate ‘k3

as loss’. The k3 proxy’s tendency to saturate for over-sampled tokens and explode for under-sampled
ones, as argued in the main text. The following code, using ‘matplotlib‘ and ‘torch‘, generates the
figure.

1 import torch
2 import matplotlib.pyplot as plt
3

4 # --- Plotting Style ---
5 plt.style.use(’seaborn-v0_8-whitegrid’)
6 plt.rcParams.update({
7 "text.usetex": False, # Disable LaTeX rendering
8 "font.family": "serif", # Use a generic serif font
9 "font.serif": ["Times New Roman"], # Specify Times New Roman as the

serif font
10 "font.size": 14,
11 "axes.labelsize": 16,
12 "legend.fontsize": 12,
13 "xtick.labelsize": 12,
14 "ytick.labelsize": 12,
15 })
16

17 # --- Data Generation ---
18 log_pi_actor = torch.linspace(-5, 0, steps=400)
19 pi_actor = torch.exp(log_pi_actor)
20

21 pi_ref_val = 0.25
22 log_pi_ref = torch.log(torch.tensor(pi_ref_val))
23

24 # --- Coefficients Calculation ---
25 coeff_k1_loss = torch.ones_like(log_pi_actor)
26 coeff_k1_reward = log_pi_actor - log_pi_ref
27 coeff_k3_loss = 1 - pi_ref_val / pi_actor
28 coeff_minimax = pi_actor - pi_ref_val
29

30 # --- Plotting ---
31 plt.figure(figsize=(10, 6.5))
32

33 plt.plot(log_pi_actor, coeff_k1_reward,
34 label=r’$\log\pi_{\theta} - \log\pi_{\text{ref}}$ ($k_1$ in

reward / $k_2$ as loss) - Principled’,
35 color=’#808000’, linewidth=3, zorder=10)
36

37 plt.plot(log_pi_actor, coeff_k3_loss,
38 label=r’$1 - \pi_{\text{ref}}/\pi_{\theta}$ ($k_{3ˆ{\prime}}$ in

reward / $k_3$ as loss) - Biased Approximation’,
39 color=’Firebrick’, linestyle=’--’, linewidth=2)
40

41 plt.plot(log_pi_actor, coeff_minimax,
42 label=r’$\pi_{\theta} - \pi_{\text{ref}}$ (MiniMax-01)’,
43 color=’RoyalBlue’, linestyle=’-.’, linewidth=2)
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44

45 plt.plot(log_pi_actor, coeff_k1_loss,
46 label=r’$1$ ($k_1$ as loss) - Zero Expected Gradient’,
47 color=’Gray’, linestyle=’:’, linewidth=2)
48

49 plt.axvline(x=log_pi_ref.item(), color=’black’, linestyle=’--’, linewidth
=1,

50 label=r’$\log\pi_{\theta} = \log\pi_{\text{ref}}$’)
51

52 plt.xlabel(r’Actor Log-Probability: $\log \pi_{\theta}(y|x)$’)
53 plt.ylabel(r’Coefficient of Score Function’)
54 plt.title(r’Comparison of KL Regularization Coefficients ($\pi_{\text{ref

}}=0.25$)’, fontsize=18)
55 plt.legend(loc=’upper left’)
56

57 plt.ylim(-4, 4)
58 plt.xlim(-5, 0)
59

60 plt.tight_layout()
61 plt.savefig(’comparison_kl_regularization_coefficients.png’, dpi=300,

bbox_inches=’tight’)
62 plt.show()

Listing 1: Python code to generate the comparison plot of KL gradient coefficients.

I ON THE STATISTICAL INSTABILITY OF THE k3 VALUE ESTIMATOR

I.1 THE STRICT PRECONDITION FOR UNBIASEDNESS

An estimator is unbiased if its expectation equals the true value. For k3, the expectation is:

Eq[k3] = Eq[δ(x)− 1− log δ(x)] = (Eq[δ(x)]− 1) +DKL(q ∥ p) (78)

For k3 to be unbiased, it is necessary that Eq[δ(x)] = 1. This condition is met if p is absolutely
continuous with respect to q (p ≪ q), which means that the support of p must be contained within
the support of q.

The condition of a finite KL divergence (DKL(q ∥ p) < ∞) is not sufficient to guarantee unbi-
asedness. For example, let q be the uniform distribution in [0, 1] and p be the uniform distribution
on [0, 2].

• The KL divergence DKL(q ∥ p) =
∫ 1

0
1 · log( 1

0.5 )dx = log 2, which is finite.

• However, Eq[r(x)] =
∫ 1

0
1 · p(x)

q(x)dx =
∫ 1

0
0.5
1 dx = 0.5.

• The estimator expectation is therefore Eq[k3] = (0.5− 1) + log 2 = log 2− 0.5, which is
biased.

I.2 INFINITE VARIANCE AND THE CHI-SQUARED DIVERGENCE

The variance of k3 is dominated by the second moment of the importance ratio, Eq[δ(x)
2]. This

term is directly related to the Chi-squared divergence.

When p≪ q, the identity holds: χ2(p ∥ q) = Eq[(δ(x)−1)2] = Eq[δ(x)
2]−1. If p is not absolutely

continuous with respect to q (p ̸≪ q), χ2(p ∥ q) is defined to be infinite.

Therefore, the variance of k3 will be infinite if Eq[δ(x)
2] is infinite. This occurs if p ̸≪ q or if

p≪ q but the tails of q are sufficiently lighter than the tails of p. While the divergence of Eq[δ(x)
2]

is the primary cause of instability, the finiteness of Var(k3) also technically requires the finiteness of
Eq[(log δ(x))

2].
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I.3 THE GAUSSIAN CASE AND AN EMPIRICAL DEMONSTRATION

For two Gaussian distributions, p ∼ N (µp, σ
2
p) and q ∼ N (µq, σ

2
q ), the variance of k3 is finite if and

only if σ2
q > σ2

p/2. This condition illustrates that the sampling distribution q must be sufficiently
”wide” relative to the reference distribution p. This condition generalizes for multivariate Gaussians
with covariance matrices Σp and Σq . The expectation Eq[r(x)

2] is calculated via an integral
involving the ratio of two Gaussian probability densities. For this integral to converge (and
thus for the variance to be finite), it is required that the matrix 2Σq − Σp be positive definite.

This failure mode is empirically illustrated below, where a narrow Gaussian q(x) (σq = 0.2) is used
to estimate the KL divergence to a standard Gaussian p(x) (σp = 1). This configuration violates the
condition, since 0.22 ≯ 12/2.

1 import torch
2 import torch.distributions as dist
3

4 # p: reference distribution, q: sampling distribution
5 p = dist.Normal(loc=0, scale=1)
6 q = dist.Normal(loc=0.1, scale=0.2) # A narrow distribution where Var[k3]

is infinite
7

8 # Sample from the narrow distribution q
9 x = q.sample(sample_shape=(10_000,))

10

11 # Ground truth KL divergence D_KL(q || p)
12 true_kl = dist.kl_divergence(q, p)
13

14 # Compute the log-ratio log(p(x)/q(x))
15 log_r = p.log_prob(x) - q.log_prob(x)
16 r = torch.exp(log_r)
17

18 # Define estimators
19 k1 = -log_r
20 k2 = log_r.pow(2) / 2
21 k3 = r - 1 - log_r
22

23 # --- Code to generate output ---
24 print(f"True KL Divergence: {true_kl:.4f}\n")
25 print("Estimator | Sample Mean | Sample Std. Dev.")
26 print("------------------|---------------|------------------")
27 estimators = {"k1": k1, "k2": k2, "k3": k3}
28

29 for name, k in estimators.items():
30 mean = k.mean()
31 std = k.std()
32 print(f"{name:<17} | {mean:>13.4f} | {std:>16.4f}")
33

34 # --- Actual Output 1 ---
35 True KL Divergence: 1.1344
36

37 Estimator | Sample Mean | Sample Std. Dev.
38 ------------------|---------------|------------------
39 k1 | 1.1272 | 0.6912
40 k2 | 0.8742 | 0.6006
41 k3 | 0.8136 | 8.8244
42 # --- Actual Output 2 ---
43 True KL Divergence: 1.1344
44

45 Estimator | Sample Mean | Sample Std. Dev.
46 ------------------|---------------|------------------
47 k1 | 1.1336 | 0.6611
48 k2 | 0.8611 | 0.5210
49 k3 | 0.6817 | 4.1082
50 # --- Actual Output 3 ---

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

51 True KL Divergence: 1.1344
52

53 Estimator | Sample Mean | Sample Std. Dev.
54 ------------------|---------------|------------------
55 k1 | 1.1348 | 0.6709
56 k2 | 0.8689 | 0.4968
57 k3 | 0.6595 | 1.4925
58 # --- Actual Output 4 ---
59 True KL Divergence: 1.1344
60

61 Estimator | Sample Mean | Sample Std. Dev.
62 ------------------|---------------|------------------
63 k1 | 1.1256 | 0.6962
64 k2 | 0.8758 | 0.6263
65 k3 | 0.9772 | 26.7379

Listing 2: Code illustrating the high variance of the k3 value estimator when the sampling
distribution q(x) is too narrow.

The results vividly illustrate the issue. The sample standard deviation of k3 is several times larger
than that of k1. And several repeated experiments show that the numerical instability of k3 is obvi-
ously more severe than k1 and k2. The large gap between the sample mean of k3 and the true KL
value is not estimator bias, but rather a large sampling error, which is characteristic of an estimator
with immense or infinite variance. This demonstrates that an impractically large number of sam-
ples would be required for the estimate to converge reliably, making k3 an unreliable choice in such
scenarios.

J GROUP NORMALIZATION STABILITY ISSUES

GRPO performs per-prompt group normalization: for a prompt with G responses and rewards r =
{r1, . . . , rG}, the advantage is

Ai =
ri −meangroup(r)

stdgroup(r)
. (79)

Stability issue. When the within-group variance is very small (e.g., r =
[0.99999, 1.00001, 0.99999, 1.00001]), normalization can dramatically amplify tiny numer-
ical differences. For the above example, the resulting advantages become approximately
[−0.8660, 0.8660, −0.8660, 0.8660] (using the unbiased sample standard deviation), which
destabilizes optimization by turning near-constant rewards into large-magnitude updates.

Proposed solution. Clip the standard deviation to prevent pathological amplification:

Ai =
ri −meangroup(r)

clip stdgroup(r)
, clip stdgroup(r) = max

(
min(stdgroup(r), stdmax), stdmin

)
. (80)

Here, stdmin > 0 is a small floor that prevents exploding normalization when variance collapses,
and stdmax avoids under-normalization when variance is unusually large. In practice, setting stdmin

as a small constant relative to the reward scale (e.g., 10−1) may be effective.

Why this matters beyond binary rewards. Although binary 0/1 rewards in RLVR can some-
times mitigate extreme cases, more general regression reward models—such as those trained with
Bradley–Terry (BT) losses—often produce continuous scores that may become highly concentrated
(e.g., near 0 or 1) on easy or very hard prompts. In such regimes, within-group standard devia-
tions can be arbitrarily small even when rewards are bounded in [0, 1], and group normalization will
over-scale negligible differences unless a variance floor (or clipping) is used. Therefore, std clipping
is important not only for numerical stability but also to avoid over-amplifying noise when reward
predictions saturate.
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Remark. For reward scores bounded in [0, 1], std(r) < 1 always holds, but it can be orders
of magnitude smaller than 1 in practice; the smaller the variance, the stronger the amplification
effect from group normalization. Clipping stdgroup(r) preserves the intended scale-invariance when
variance is moderate, while guarding against instability when variance collapses.

K FORWARD KL VS. REVERSE KL: A GRADIENT-CENTRIC
REINTERPRETATION

While our analysis primarily centers on the Reverse KL (RKL) divergence—the standard regular-
ization objective in RLHF—recent perspectives, such as those by Tang & Munos (2025), point out
that the GRPO-style ‘k3 as loss’ formulation actually optimizes the KL divergence with swapped
arguments, DKL(πref∥π). While Tang & Munos (2025) refer to this as “reversed KL” relative to the
RKL target, in the broader variational inference literature, this objective is known as the Forward
KL (FKL).

In this section, we refine this insight using our unified gradient framework. We demonstrate that
‘k3 as loss’ is not merely an estimator for the FKL gradient, but specifically a variance-reduced
estimator with an implicit baseline. This perspective clarifies its local variance-reduction proper-
ties near the reference policy despite the objective mismatch, while highlighting the geometric risks
(mean-seeking behavior) in the tails.

Derivation of the FKL Gradient. The Forward KL objective is defined as:

JFKL(θ) = Ex∼D

[
DKL

(
πref(·|x) ∥πθ(·|x)

)]
= Ex∼D, y∼πref (·|x)

[
log πref(y|x)− log πθ(y|x)

]
.

(81)
Rewriting the gradient expectation using importance sampling over the current policy πθ (to allow
on-policy estimation) yields the standard FKL policy gradient:

∇θJFKL(θ) = Ex∼D, y∼πθ(·|x)

[
− πref(y|x)

πθ(y|x)︸ ︷︷ ︸
Standard FKL coeff. (−δ)

∇θ log πθ(y|x)
]
, where δ :=

πref(y|x)
πθ(y|x)

.

(82)

k3 as Loss: FKL with an Implicit Baseline. Recalling Equation (17), the gradient induced by the
‘k3 as loss’ formulation uses the coefficient 1−δ. Comparing this with the standard FKL coefficient
in Equation (82) reveals an implicit decomposition:

∇θJk3 as loss(θ) = Ex∼D, y∼πθ(·|x)

[(
(−δ)︸︷︷︸

Standard FKL

− (−1)︸︷︷︸
Implicit Baseline b

)
∇θ log πθ(y|x)

]
. (83)

Although mathematically equivalent in expectation (since E[∇ log π] = 0), the implicit baseline
b = −1 acts as a control variate:

• Variance Reduction at Convergence: Near the reference policy (πθ ≈ πref), we have
δ ≈ 1. The standard FKL estimator −δ fluctuates around −1 (high variance), whereas the
k3 coefficient (1 − δ) fluctuates around 0. This explains why k3 exhibits low variance
specifically in the low-KL regime: it is effectively a zero-variance estimator of the FKL
gradient at the optimum.

Geometric Implications: Mean-Seeking vs. Mode-Seeking. While the implicit baseline stabi-
lizes estimation, optimizing FKL fundamentally alters the regularization geometry compared to the
principled RKL:

• RKL (Mode-seeking): As derived in Section 5.2, RKL uses − log δ. As δ → 0 (policy
places mass where reference does not), − log δ → ∞. This creates a “barrier” that forces
the policy to stay within the reference’s support.

• FKL (Mean-seeking): The k3 coefficient 1 − δ saturates at 1 as δ → 0. This “mean-
seeking” behavior imposes only a finite penalty for generating out-of-distribution tokens.
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Consequently, under distribution shift, ‘k3 as loss’ fails to strongly penalize drift into re-
gions unsupported by the reference model, confirming our experimental findings of higher
variance and weaker constraint compliance.

In summary, ‘k3 as loss’ can be seen as a statistically coherent, baseline-corrected estimator of the
FKL gradient, with favorable variance properties near the reference policy. However, its underlying
geometry (mean-seeking and mode-covering) remains fundamentally different from that of RKL
(mode-seeking). For RLHF applications where keeping the policy tightly constrained within the
support of the reference model is a primary concern, the principled RKL implementations discussed
in Section 5.2 may offer stronger and more reliable regularization.

L LARGE SCALE EXPERIMENT
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Figure 4: Comparison of “k1 as loss’‘ versus no KL regularization. The training dynamics are
nearly indistinguishable, empirically confirming the theoretical prediction from Section 5: ‘k1 as
loss’ is ineffective as a KL regularizer due to its gradient’s independence from the reference model
and its zero-mean gradient expectation.

The empirical results on the larger 7B-scale model in Figure 4 further corroborate our theoretical
analysis of ‘k1 as loss’. As derived in Section 5, the gradient of this loss term is fundamentally
unsuitable for regularization: it is independent of the reference policy πref and has an expectation
of exactly zero under on-policy sampling. In practice, this is equivalent to injecting a scaled score
function, β·∇θ log πθ, which introduces zero mean but potentially high variance noise. Although the
expected update direction remains unchanged, increased gradient variance can occasionally produce
large deviations in a single update step. This phenomenon is clearly reflected in the experimental
curves. As shown in the KL Loss and Logprob Diff, the actor model under ‘k1 as loss’ not only fails
to stay closer to the reference model but, in fact, drifts further away at later stages. The trajectories
of both settings are initially aligned, but the ‘k1 as loss’ variant suddenly diverges, indicating a sharp
fluctuation induced by variance. Although the final task-level performance (e.g., reward/accuracy)
remains broadly similar, achieving such results requires substantially higher KL magnitudes, which
is ultimately inefficient and provides no meaningful regularization. In short, applying ‘k1 as a loss’
on a larger model scale is not only ineffective, but also counterproductive, as it destabilizes training
and weakens alignment with the reference model.

The empirical results on the 7B scale model in Figure 5 highlight the contrasting behaviors of ‘k2

as loss’ and ‘k3 as loss’. Under the same coefficient, ‘k2 as loss’ imposes a visibly stronger con-
straint: both the KL Loss and Logprob Diff curves remain consistently lower than those of ‘k3 as
loss’, indicating that the actor stays closer to the reference model. In contrast, ‘k3 as loss’ tends to
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diverge more during training, as seen from higher KL magnitudes and larger log-probability differ-
ences. This divergence is further reflected in the response length, where k3 produces shorter and
more variable outputs, suggesting weaker control over generation. Although ‘k3 as loss’ sometimes
achieves higher Reward and Accuracy in the early and middle phases, this advantage comes at the
cost of instability. The Reward Variance and Policy Loss under ‘k3 as loss’ are substantially higher,
showing that its weaker constraint allows for larger fluctuations during optimization. In comparison,
‘k2 as loss’ provides a more stable training trajectory, maintaining a lower variance and keeping the
policy tightly aligned with the reference. These results imply that, on larger model scales, ‘k2 as
loss’ is the more effective choice for consistent and controlled regularization, while ‘k3 as loss’ risks
greater drift and instability despite temporary performance gains.
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Figure 5: Comparison of the principled “k2 as loss’‘ against its first-order surrogate “k3 as loss’‘.
Both variants effectively constrain the policy, but ‘k2 as loss’ demonstrates superior regularization
properties, maintaining a tighter coupling to the reference policy and yielding a more stable opti-
mization path, evidenced by lower reward variance.

M DOWNSTREAM BENCHMARK PERFORMANCE

The main results on the math and general reasoning benchmarks are summarized in table 2. Several
consistent patterns emerge across the 7B and 1.5B models.

First, the setting with ‘k1 as loss’ does not provide a significant benefit of regularization. This aligns
with our theoretical analysis, which suggests that the expected gradient vanishes, thereby failing to
constrain the actor with respect to the reference model. Empirically, its performance remains very
close to the baseline ‘RL without KL’ in both mathematical and general domain tasks, demonstrating
that ‘k1 as loss’ is ineffective as a regularizer.

Second, under the same coefficient, the behaviors of ‘k2 as loss’ and ‘k3 as loss’ diverge significantly.
The ‘k2 as loss enforces a much tighter constraint on the actor: the model remains closer to the
reference policy, but this tighter coupling comes at the cost of substantially degraded performance,
as reflected in both math reasoning (e.g., AIME (Li et al., 2024), AMC (Li et al., 2024), MATH-
500 (Hendrycks et al., 2021)) and general reasoning benchmarks (e.g., ARC-c (Clark et al., 2018),
GPQA∗ (Rein et al., 2024), MMLU-Pro (Wang et al., 2024)). In contrast, ‘k3 as loss’ imposes a
weaker constraint and allows the model to drift more, as also observed in training dynamics (higher
KL and log-prob differences). Although ‘k3 as loss’ appears slightly better than ‘k2 as loss’ in the
final benchmark scores, its more divergent behavior highlights the lack of effective regularization
and greater instability.
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Taken together, these results confirm our theoretical expectations: ‘k1 as loss’ does not act as a con-
straint; ‘k2 as loss’ imposes stronger and rigid regularization that suppresses overall performance;
and ‘k3 as loss’, though less restrictive, allows excessive divergence, may leads to unstable training.

Table 2: Main experiment results on math and general reasoning benchmarks based on Qwen2.5-
Math-7B and Qwen2.5-Math-1.5B.

Model Math Reasoning Performance General Domain Reasoning Performance

AIME 24/25 AMC MATH-500 Minerva Olympiad Avg. ARC-c GPQA∗ MMLU-Pro Avg.

Qwen2.5-Math-7B 11.5/4.9 31.3 43.6 7.4 15.6 19.0 18.2 11.1 16.9 15.4
RL w/o KL 20.5/14.4 55.6 78.6 36.8 42.4 41.4 81.7 33.8 46.9 54.1
RL w/. k1 as loss 19.1/11.6 56.0 80.6 40.8 43.0 41.8 79.7 29.8 45.1 51.5
RL w/. k2 as loss 15.4/7.5 48.5 64.2 16.9 24.9 29.6 31.3 15.2 27.1 24.5
RL w/. k3 as loss 19.0/7.3 48.9 65.4 18.8 29.0 31.4 29.6 19.2 27.7 25.5

Qwen2.5-Math-1.5B 7.2/3.6 26.4 28.0 9.6 21.2 16.0 3.5 4.0 2.5 3.3
RL w/o KL 12.5/4.8 43.7 66.8 28.3 31.9 31.3 43.7 19.2 23.1 28.7
RL w/. k1 as loss 13.8/4.7 41.5 68.0 25.7 31.9 30.9 36.6 18.2 21.0 25.3
RL w/. k2 as loss 7.0/5.5 35.2 52.8 14.7 29.0 24.0 7.8 7.6 4.9 6.8
RL w/. k3 as loss 7.7/3.8 34.9 54.2 15.8 28.0 24.1 11.3 8.1 5.5 8.3

N STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely for language polishing and editing. All retrieval of related work, algorithmic
design, and theoretical derivations are carried out by the authors.

O IMPACT

Our “k2 as loss” formulation has been merged into OpenRLHF and has been adopted and cited by
Reinforce++. Prorl also integrates it with periodic resetting of the reference model. By providing a
gradient-correct, off-policy–ready treatment of KL regularization, our work clarifies long-standing
ambiguities and offers practical guidance for building stable, effective, and reproducible RLHF
systems. We anticipate that these contributions will enable the community to design more reliable
training pipelines and make significant advances in the field.
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