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Abstract
We study dynamic decision-making problems in networks under stochastic uncertainty about

future payoffs. The network has a bounded degree, and each node takes a discrete decision at each
period, leading to a per-period payoff that is a sum of three parts: node rewards for individual node
decisions, temporal interactions between individual node decisions from the current and previous
periods, and spatial interactions between decisions from pairs of neighboring nodes. The objec-
tive is to maximize the expected total payoffs over a finite horizon. We propose a decentralized
algorithm whose computational requirement is linear in the graph size and planning horizon, and
characterize sufficient conditions under which our decentralized algorithm achieves near optimality
compared to the centralized global optimal. The class of decentralized algorithms is parameterized
by locality parameter L. An L-local algorithm makes its decision at each node v based on current
and (simulated) future payoffs only up to L periods ahead, and only in an L-radius neighborhood
around v. Given any permitted error ϵ > 0, with L = O(log(1/ϵ)), we show that L-local algorithm
has an average per-node-per-period optimality loss of up to ϵ when temporal and spatial interactions
are relatively small compared to the randomness in the node rewards and the graph degree.

1. Introduction

Many real-world contexts call for dynamic decision making in networks with uncertainty about
the future: At each period, a decision is made at each node in the network and a central planner
aims to maximize the total payoff across the network. Examples of such settings include influence
maximization in social networks [5, 34], multi-product pricing on product networks [8, 10], and
logistics planning on transportation networks [13, 17]. In all these settings, the resulting payoffs
arise from both individual decisions at each node and interactions among neighbors on the network.
Moreover, when the decisions are made repeatedly over time, the current decision at each node
influences the future payoff at the node.

Besides the goal of maximizing payoffs in such contexts, it is desirable to have decision rules
that are “simple” in various ways such as computational efficiency, potential to be computed in a
distributed manner, interpretability, and robustness to model misspecification. In a networked op-
timization setting, an attractive class of algorithms is decentralized algorithms which obtain the
decisions of individual nodes based solely on information from the “nearby” part of the network
[31]. Motivated by the ubiquitous setting of dynamic decision-making on networks and the practi-
cality of decentralized algorithms, we aim to answer the following research question:

Can decentralized algorithms be near-optimal in terms of maximizing collective rewards on
networks under stochastic uncertainty about the future?
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In this paper, we propose a benchmark model of dynamic decision-making on bounded de-
gree graphs with the global payoff consisting of: 1) per-period individual node rewards, which are
random functions over individual decisions; 2) per-period spatial interactions between neighboring
nodes, which are random functions of pairs of decisions; 3) temporal interactions for each individual
node between consecutive periods, which are also random functions of pairs of decisions.

Contribution. We show that when temporal and spatial interactions are small with respect to the
randomness in node rewards and the graph degree, we can construct a simple class of global near-
optimal decentralized algorithms, which has computation requirement linear in the network size
and the time horizon. For each focal node v, our algorithm simulates future reward realizations up
to L periods ahead for a L-radius local neighborhood of the focal node, where L is the locality pa-
rameter determined based on desired precision. Our algorithm then solve the network optimization
problem on the local graph and treats only the decision at the focal node as final. To the best of
our knowledge, this is the first result on establishing sufficient conditions for approximating global
optimal solutions via decentralized algorithms for network dynamic optimization problems under
stochastic uncertainty.

Our work is inspired by the literature on correlation decay for static networks [21, 23], which
studies how the effects of decisions at the boundary of a graph propagate towards the focal node.
The correlation decay property has only been previously studied in static settings where reward
functions consisting of node rewards and pairwise spatial interactions. However, when generalizing
to dynamic setting, the value-to-go functions contain interactions between groups of nodes which
are not neighbors of each other. Due to such interaction-at-a-distance, previous technical machinery
used to establish correlation decay in static networks does not generalize to our dynamic setting.
We develop a novel machinery to establish correlation decay in dynamic decision-making settings
(outlined in Appendix C), which handles the interaction-at-a-distance phenomenon.

Related work. Our paper contributes to the following related research areas: (1) Correlation decay
for decentralized algorithms; (2) Dynamic optimization in networks and (3) Multi-agent reinforce-
ment learning. We include a detailed section on related literature in the Appendix B.

Notation and terminology. We denote our underlying graph as G = (V,E) with node set V and
edge set E. For two nodes u, v ∈ G, we let distG(u, v) denote the length of a shortest path between
u and v. If uv ∈ E, we say u is a neighbor of v. For any node v ∈ V , we denote by Γ(v) its set of
neighbors: Γ(v) := {u ∈ V : uv ∈ E}; and denote by dG(v) := |Γ(v)| its degree in G. We let dG
denote the degree of graph G, which is the maximum degree of nodes in graph G. For a subgraph
M of G and a vector y := {yv}v∈V , we denote by yM the subvector {yv}v∈V (M). Let BG(v,R)
denote the subgraph induced by all vertices whose distance to v is at most R. Often times, when the
underlying graph is clear from context, we drop the subscript for the above notations.

Given a graph G = (V,E) and time horizon T , the spatial-temporal (ST) graph is constructed
by making a clone of G for each time t = 1, 2, · · · , T , and connecting copies of the same node
between consecutive times via edges. The ST graph distance is defined as follows: given two ST
nodes (v1, t1) and (v2, t2), distst((v1, t1), (v2, t2)) = dist(v1, v2) + |t1 − t2|.

For a given integer K ≥ 1, we use [K] as a short-hand notation for set {1, 2, · · · ,K}. For a
collection of random variables Y[k], σ(Y[k]) denotes the smallest sigma algebra generated by Y[k].

Given a random variable X , we write X̃
d
= X to define X̃ as an independent copy of X which

follows the same distribution.

2



NEAR-OPTIMAL DECENTRALIZED ALGORITHMS FOR NETWORK DYNAMIC OPTIMIZATION

2. Model

We consider a dynamic decision network (G = (V,E),Φ, T ,A, x0) with future stochastic uncer-
tainty. Here, G is the underlying undirected graph where individual decisions are made at each
node. Φ denotes the joint stochastic reward functions over the graph G during the planning horizon.
We consider a discrete-time model from time 0 to the planning horizon T . We denote by A the
discrete action set that the decision of each node must be chosen from. The initial decision vector
taken on the network is given and is denoted by x0 ∈ A|V |. The global objective is to maximize the
collective payoff from the entire graph over the time horizon. At time t, the single-period reward is
the sum of three types of (random) reward functions:

• Node reward: Each node v ∈ V earns a random reward Φv
t (x

v
t ) : A → R, which depends on its

decision xvt at time t.

• Temporal interaction reward: Each node v ∈ V at each time period t is associated with a
random reward function Φv

t−1,t(x
v
t−1, x

v
t ) : A×A → R, which capture how consecutive decisions

at node v interact with each other.

• Spatial interaction reward: Each edge uv ∈ E at each time period t is associated with a random
reward function Φu,v

t (xut , x
v
t ) : A×A → R, which capture how neighboring nodes interact with

each other at time t.

Collectively, we let Φ := {{Φv
t }t∈[T ],v∈V , {Φv

t−1,t}t∈[T ],v∈V , {Φ
u,v
t }uv∈E} denote joint random

reward functions. Given any subgraph M , let ΦM
t := {{Φv

t }v∈M , {Φv
t−1,t}v∈M , {Φu,v

t }uv∈M}. At
each time t ∈ [T ], node v ∈ V makes a decision xvt ∈ A := {0, 1, · · · , |A|−1}. These reward func-
tions are endowed with a probabilistic structure: their function values are assumed to follow known
distributions. The random functions Φnode

t := {Φv
t }v∈V and Φinter

t := {{Φu,v
t }uv∈E , {Φv

t−1,t}v∈V }
are realized only at the beginning of time period t. We denote the realized reward functions as
{ϕv

t }v∈V , {ϕu,v
t }uv∈E , and {ϕv

t−1,t}v∈V . Moreover, we denote the reward distribution and realiza-
tion at time t collectively by Φt and ϕt, respectively.

We call xt := {xvt }v∈V a decision vector at time period t. At each time period t, a decision
vector xt must be chosen after observing ϕt. We illustrate the dynamics under our model through
an example in Figure 2. Given realized reward functions ϕt at time t, and decision vectors xt−1, xt,
the single-period reward collected at period t is

ft(xt;xt−1, ϕt) :=
∑
v∈V

ϕv
t−1,t(x

v
t−1, x

v
t ) +

∑
v∈V

ϕv
t (x

v
t ) +

∑
uv∈E

ϕu,v
t (xut , x

v
t ) . (1)

The overall goal is to construct a dynamic decision-making policy xt, which is adapted to the avail-
able information up to time t, i.e., xt ∈ σ(x0, x[t−1],Φ[t]), that maximizes the expected collected
rewards over the time horizon: R := EΦ

[ ∑T
t=1 ft(xt;xt−1,Φt)

]
.

Following the modeling convention on online stochastic optimization [6, 9], we assume that
Φt is independent of past reward functions {ϕ[t−1]}. At period t, we observe the previous decision
xt−1 and reward realization at time t, i.e., ϕt. By the principle of optimality, the optimal xt(xt−1, ϕt)
maximizes the realized value-to-go function: RVt−1(xt;xt−1, ϕt) := ft(xt;xt−1, ϕt) + Vt(xt;ϕt) ,
where the expected value-to-go function Vt(xt) is recursively defined as

Vt(xt;ϕt) := E
Φt+1

[
max
xt+1

RVt(xt+1;xt,Φt+1)
]
, (2)
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with VT (xT ) = 0 at the end of the horizon. We denote by x∗ := {x∗t }1≤t≤T the optimal solution

of (2) and denote the optimal expected global reward as R∗ := EΦ

[∑T
t=1 ft(x

∗
t ;x

∗
t−1,Φt)

]
. For

any adaptive algorithm which makes decisions Algt ∈ σ(x0, x[t−1],Φ[t]) at time t, we define the

expected total rewards under Alg as R(Alg) := EΦ

[∑T
t=1 ft(Algt;Algt−1,Φt)

]
, with Alg0 = x0.

3. Main Results and Algorithms

Assumption 1 For some constants Cnode, g, ctime, cedge ∈ (0,∞), the distributions of reward func-
tions {Φt}t∈T satisfy the following:

• For every v ∈ V and t ∈ [T ], supa∈A |Φv
t (a)| ≤ Cnode.

• For every v ∈ V and t ∈ [T ], Φt are independent of past decisions x[t−1] and past reward
realizations ϕ[t−1].

• There exists a constant g > 0 such that for any v ∈ V , t ∈ [T ], decisions a ̸= a′ ∈ A, given
Φinter
t and {Φu

t }u̸=v,

P(Φv
t (a)− Φv

t (a
′) ∈ [b1, b2) | Φinter

t , {Φu
t }u̸=v) ≤ g(b2 − b1), for any b1 < b2.

• With probability 1, for any v ∈ V , (u, v) ∈ E, t ∈ [T ] and decisions a ̸= a′ ∈ A, the temporal
interaction Φv

t−1,t(a, a
′) ∈ [−ctime, ctime], and the edge interaction Φu,v

t (a, a′) ∈ [−cedge, cedge].
Moreover, we require the constants to satisfy

ρ := 4g(dcedge + 2ctime) ≤
1

2(d+ 2)
.

3.1. Main theorem

Definition 1 An algorithm for the dynamic decision network (G,Φ, T ,A, x0) is said to be an
L-local algorithm if the decision of node v at time t only relies on the local information up to its L-
radius neighborhood in the ST graph, i.e., xvt ∈ σ(x

B(v,L)
t−1 ,Φ

B(v,L)
t , Φ̃

B(v,L)
t+1 · · · , Φ̃B(v,L)

t+L ) , where

each Φ̃
B(v,L)
t′

d
= Φ

B(v,L)
t′ for t+ 1 ≤ t′ ≤ t+ L is an independent copy of ΦB(v,L)

t′ .

Note that L is a parameter in both spatial and temporal dimension. In an L-local algorithm,
although the future realizations of reward functions are not revealed, L-step simulations are used to
approximate the future value-to-go functions in the corresponding local neighborhood.

Definition 2 Consider a dynamic decision network (G,Φ, T ,A, x0). An algorithm Alg is an ϵ(-
additive)-approximation algorithm if R∗ −R(Alg) ≤ |V |T ϵ, where R∗ is the optimal payoff, and
R(Alg) is the payoff collected by Alg.

Note that there is a |V |T factor in the loss permitted because the total reward scales up linearly
with the number of nodes |V | times the time horizon T ; in other words, we permit an average
per-node-per-period loss of up to ϵ.

We introduce a model parameter C which is the largest possible change in total rewards when
one node changes its decision at one time. For any a, a′ ∈ A, changing from xvt = a to xvt = a′ can
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cause at most 2 · Cnode difference in the node reward, d · 2cedge difference in the edge rewards, and
2 · 2ctime difference in the temporal rewards. Hence, we define the constant

C := 2Cnode + 2dcedge + 4ctime. (3)

Theorem 3 Consider a dynamic decision network (G,Φ, T ,A, x0) where underlying graph G has
degree d ≥ 2. Suppose the reward functions Φ satisfy Assumption 1. Then, given any ϵ > 0 and
L ≜ ⌊log2 4C

ϵ ⌋, we can construct an L-local algorithm for the dynamic decision network problem
that is an ϵ-approximation algorithm.

The main contribution of Theorem 3 is to establish the global near-optimality property of a
decentralized algorithm under Assumption 1. Our local algorithm (presented in Algorithm 1) has
the advantage of being computationally efficient: the computational requirement of Algorithm 1
is O(|V |T epoly( 1

ϵ
)), where the dependence on model parameters d, g, C and |A| is suppressed in

the O(·) notation. The proof of Theorem 3 and the details on the computational requirement are
presented in Appendix C and Appendix G, respectively.

3.2. Local Algorithm

In this section, we present our local algorithm. Given t ∈ [T ], the global decision problem is

max
xt

ft(xt;xt−1, ϕt) + Vt(xt). (4)

The algorithm, outlined in Algorithm 1, determines the decision of each node by solving a
decentralized version of (4). For each node v, the local algorithm utilizes all available reward in-
formation from its local neighborhood B(v, L) and fixes the decision of each boundary node u ∈
B(v, L)\B(v, L−1) as the default decision 0. We define fL

t (xt;xt−1, ϕt) :=
∑

u∈B(v,L)(ϕ
u
t (x

u
t )+

ϕu
t−1,t(x

u
t−1, x

u
t ))+

∑
uu′∈B(v,L) ϕ

u,u′

t (xut , x
u′
t ) as the single-period payoff on B(v, L) and V L

t (xt) :=

EΦt+1 [maxxt+1 f
L
t+1(xt+1;xt, ϕt+1) + V L

t+1(xt+1)] (with terminal condition V L
min{t+L,T } = 0) as

the expected value-to-go function up to L-step look-ahead on B(v, L). We omit the dependency on
v as the focal node for the decentralized algorithm is usually clear from context. In addition, we
denote by V̂ L,n

t (xt) the sample average estimate of V L
t (xt) by simulating independent samples of

Φt+1, Φt+2, · · · , Φmin(T ,t+L).

4. Numerical Experiments

To test the performance of our local algorithm and the presence (or absence) of correlation de-
cay while varying interaction strength, we conducted a simulation experiment. We summarize the
simulation environment and main findings here and defer the details to Appendix I.

In our experiment, we first generate multiple dynamic decision network, parameterized by in-
teraction strength c in both the temporal and spatial dimensions. These decision networks share
all other components (e.g., a random 3-regular graph as the underlying graph, binary action set
A = {0, 1}, uniform distribution on [−1, 1] as the node reward distribution when taking action 1)
so that the differences in performance can be solely attributed to the interaction strength. For each
decision network, multiple instances are generated by sampling the first period node rewards (allow-
ing us to compute confidence intervals for the performance). Then, for each instance, we compute
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Algorithm 1 Obtain a near-optimal solution to the decision problem (4) at time t.
Input: decision network (G,Φ, T ,A,Algt−1), realized reward function ϕt, precision level ϵ.
Output: a near-optimal solution Algt for the problem in (4).

1: set the locality parameter L = ⌊log2 4C
ϵ ⌋ and sample size n = O((1ϵ )

2 log2 d)
2: for all v ∈ V do
3: restrict to subgraph B(v, L)

4: let yt ∈ AB(v,L) be an optimal solution to the following problem

R̂V
L,n

t−1(xt−1;ϕt) := max
xt

fL
t (xt;xt−1, ϕt) + V̂ L,n

t (xt)

s.t. xut = 0, if dist(v, u) = L
(5)

where V̂ L,n
t (·) is an estimate of Vt(·) defined recursively in function V̂ L,n

τ (·) for t ≤ τ ≤
t+ L

5: set Algvt = yvt
6: end for

1: function V̂ L,n
τ (xτ ) ▷ Input: L, n, v, τ .

2: if τ = min{t+ L, T } then
3: set V̂ L,n

τ (xτ ) = 0 for any xτ ∈ AB(v,L)

4: else
5: sample {ϕ(s)

τ+1}s∈[n] independently from Φτ+1

6: for any xτ ∈ AB(v,L), compute V̂ L,n
τ (xτ ) := 1

n

∑n
s=1 R̂V

L,n

τ (xτ ;ϕ
(s)
τ+1) where the sum-

mand R̂V
L,n

τ (xτ ;ϕ
(s)
τ+1) is defined as in Equation (5) with t = τ + 1.

7: end if
8: end function

several solutions: one being the solution to the global optimization problem, and the others obtained
by our local algorithms with different choices of the locality parameter. We formulate each global or
local network optimization problem as a Mixed Integer Program (MIP) and solve it through Gurobi
[22]. Lastly, for each solution, we compute its relative payoff, which is the ratio between the total
payoff under the local solution to that under the global optimal solution.

We summarize the results in Figure 1, with one plot showing simply the relative payoffs (the
higher, the better) and the other showing the relative payoff gaps (1 − relative payoff) in log scale
(the lower, the better). Our experimental results corroborate our theoretical finding in Theorem 3;
when the interaction strength is small (or even medium-sized), the error in payoffs is seen to decay
exponentially in the locality parameter. This is especially prominent on the second plot in Figure 1.
In addition, we observe that when the interaction strength is large c ≥ 0.4, the optimality gap ceases
to improve (and remains non-trivial) for locality parameter values larger than 4.

5. Concluding Remarks

We introduced a benchmark model of a dynamic optimization problem in networks where the global
payoff includes spatial interactions and temporal interactions as well as node rewards. At each time
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Figure 1: Compare payoffs from solutions under local algorithms and the global optimal solution.
The experiment controls the sampling loss and thus, the loss in total reward is solely due
to the locality loss. The vertical line on each data point represents its 95% confidence
interval. The global optimal solutions correspond to the local solutions when the locality
parameter equals 12, which is the diameter of the underlying graph.

step, a decision vector has to be chosen before observing the realizations of future rewards. We pro-
pose a class of (computationally efficient) decentralized algorithms – which make decisions only
using information about the nearby part of the network. We showed that if spatial and temporal in-
teractions are relatively weak, then the decision maker can employ decentralized algorithms, which
essentially optimize on small subgraphs of the network, to first estimate the value-to-go and then to
obtain near-optimal decisions.
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Appendix A. Figures

t = 0 ...

t = 1 ...

t = 2 ...

t = 3 ...

v1 v2 v3 v4 v5 ... vm

k

Figure 2: Decision dynamics. An example of a dynamic decision network (G =
(V,E),Φ, T ,A, x0) with G being a line graph, V = {v1, v2, · · · , vm}, E = {vi−1vi :
i ∈ {2, 3, · · · ,m}}, and T = 3. At time t = 2, with the previous decision vector x1,
realized rewards ϕ1, ϕ2 (represented by solid lines and circles), and unrealized reward Φ3

(represented by dotted lines and circles), decision vector x2 needs to be chosen.

t− 1 ...

t ...

t+ 1 ...

t+ 2 ...

v1 v2 v3 v4 v5 ... vm

Figure 3: L-local algorithm. Illustration of Algorithm 1 for focal node v3 at time t with L = 1, for
the same underlying line graph G.

Appendix B. Related Literature

Correlation decay for decentralized algorithms. Correlation decay is the cornerstone for the success
of numerous decentralized algorithms for static network optimization in the literature. It was first
studied in the domain of statistical physics. The seminal work of Dobrushin [15] studied graphical
models (e.g., a Markov chain is a graphical model on a line graph) on infinite graphs via correla-
tion decay methods, investigating whether the joint distribution –the Gibbs measure– is uniquely
determined by the distribution of each random variable conditional on its neighbors. Since then, the
concept of correlation decay has expanded to applications beyond statistical physics [11, 14, 28, 36],
including wireless communication [4, 20, 36], combinatorial optimization [19, 21], marginal infer-
ence on graphical models [33], etc. The typical regime for static decision problems under which the
correlation decay property holds is when the underlying graph has a bounded degree (i.e., each node
interacts with a constant number of other nodes) [19, 21, 36]. However, in our multi-period network
model involving uncertainty about the future, there exists an implicit interaction between any pair
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of nodes due to the fact that their decisions for future time periods could be correlated, resulting in
new challenges.

Dynamic optimization in networks. Dynamic decision making in networks under uncertainty about
the future has been studied in a variety of contexts including network revenue management [32],
network diffusion models [1, 24, 27], online matching under stochastic arrivals [2, 3, 12, 30], and
choosing lockdown policies in a commuting network [16], to name a few. In most of these works
the ideas used (e.g., shadow prices) are very different from ours. Some of these previous work
[3, 7] make use of local decompositions that rely on their specific settings, or requires convexity
in the reward functions [26]. We adopt a general framework, towards developing a foundational
understanding regarding the sufficiency of decentralized algorithms for obtaining near optimality
in dynamic stochastic optimization problems. Our paper contributes to this literature by providing
an important theoretical foundation for decision-making problems on large networks: that is, even
though the network interactions may be complicated and evolve over time, considering only the local
neighborhood around the focal node already gives near-optimal performance when the strength of
interactions are relatively weak.

Multi-agent reinforcement learning. In the setting of multi-agent reinforcement learning (MARL),
computational issues are central due to large global state and decision spaces (exponential in the
number of agents). A promising approach is to exploit local dependency structures (i.e., agents
only interact with neighboring agents in the network). Lin et al. [25], Qu et al. [29] consider a
class of MARL problems where the evolution of the state has only local dependencies, and propose
a localized policy that converges to an approximately stationary point. In general, multi-agent
reinforcement learning is a hard problem and most results focus on convergence to a stationary
point if interactions are not too strong. We contribute to this literature by showing, in a special case
where the state transitions are deterministic (i.e., the current state is the previous decision), global
near optimality of a local policy under weak interactions. Our work may serve as a starting point for
developing an understanding of sufficient conditions for achieving global near optimality in network
MDP settings.

Appendix C. Proof Outline of Theorem 3

We first provide some explanation and justification for Assumption 1. 1) The first assumption
gives us a uniform bound for the change in the global reward when any single node switches its
single-period decision. This assumption ensures that there is no single node whose decision at
a certain period has a dominant impact on the global reward. 2) The second assumption demands
independence of the rewards across time. E.g., considering the following the reward functions where
A = {0, 1}, Φv

t (0) = 0, Φv
t (1) = 1 + ϵvt where ϵvt ∼ N(0, 1), Φv

t−1,t(0, 0) = Φv
t−1,t(1, 1) = c,

Φv
t−1,t(0, 1) = Φv

t−1,t(1, 0) = 0, Φu,v
t (0, 0) = Φu,v

t (1, 1) = c, and Φu,v
t (0, 1) = Φu,v

t (1, 0) = 0,
this assumption requires the joint distributions of {ϵvt : v ∈ V }t are independent across time periods.
3) The third assumption guarantees sufficient randomness in the single node reward function at each
period. E.g., considering the same reward functions, this assumption does not restrict (ϵvt )v∈V to be
independent across nodes as long as there exists a g > 0 such that for any node v ∈ V , t ∈ [T ] and
b1 < b2, P(ϵvt ∈ [b1, b2) | ϵut : u ̸= v) ≤ g(b2−b1). 4) The last assumption requires that interactions
are small compared to the graph degree, which is crucial for the correlation decay property to
emerge. In Appendix H, we explicitly construct (static) decision networks with cedge = Θ(1/d)
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which exhibit long-range correlations and show that local algorithms can perform poorly on such
networks.

To establish the ϵ-approximation results in Theorem 3, we show that with high probability,
Algorithm 1 takes optimal decisions in two steps. The main technical contribution is the first step,
where we construct a sequence of local dynamic optimization problems with increasing local radius.
We use the term locality loss to refer to the probability of making a suboptimal decision due to fixing
the boundary nodes of the local neighborhood to the default decision 0. The second step is to bound
the probability, termed the sampling loss, of making a suboptimal decision at the focal node as
a result of using approximate (local) value-to-go functions estimated from sample averages. The
second step relies on standard techniques such as Hoeffding’s inequality, and we defer the details to
Appendix E.1.

C.1. Bounding the Locality Loss

In this subsection, we bound the loss that is unavoidable from local decision making, even if one
is able to perfectly estimate the local value-to-go functions. We define a sequence of decentralized
policies {π(H)}H≥L, indexed by the locality parameter H . Note that a policy defines a mapping
from available information so far to decisions. We use πv

t (H) to denote the decision of node v at
time t under policy π(H), and collectively, we use πt(H) to denote the decision vector at time t.

When solving for the decision at a focal node v ∈ V and time t ∈ [T ], the policy π(H) focuses
on the subgraph B(v,H). It makes nodes outside of B(v,H) taking the default decision 0 at any
time. Along the temporal dimension, the policy π(H) computes V H

t (·), an estimate of the value-to-
go function, via an H-step look-ahead with the terminal expected value-to-go V H

min(T ,t+H)(x) = 0

for all decision vectors x. Formally, for a given focal node v at time t, π(H) solves the following:

RVH
t−1(πt−1(H);ϕt) := max

xt∈AB(v,H)
fH
t (xt;πt−1(H), ϕt) + V H

t (xt)

s.t. xut = 0 if dist(v, u) = H .
(6)

where the H-step look-ahead value-to-go V H
t (xt;ϕt) in the objective is defined recursively via

V H
τ (xτ ;ϕτ ) := E

Φτ+1

[RVH
τ (xτ ; Φτ+1)], (7)

for t ≤ τ ≤ min{t+H, T } with terminal condition V H
min(t+H,T )(x) = 0 for any x.

Recall that C := 2Cnode + 2dcedge + 4ctime and x∗ is the optimal decision. In this subsection,
probability is over all reward distributions Φ = (Φ1, · · · ,ΦT ). We write P as a short hand for PΦ.

Proposition 4 Given any ϵ > 0, with L = ⌊log2 4C
ϵ ⌋, we have for any v ∈ V and t ∈ [T ],

P(πv
t (L) ̸= (xvt )

∗) ≤ ϵ/(2C).

Proposition 4 establishes that the probability of π(L) making a suboptimal decision at the focal
node v is exponentially small in the locality parameter L. In the remaining subsection, we outline
two important lemmas that prove Proposition 4. For the following, we consider a fixed t ∈ [T ]
and focal node v ∈ V . We also consider a fixed value of H and compare the node decisions we
obtain under policies πt(H) and πt(H + 1). That is, we compare the solutions of the optimization
problems in (6) when setting the locality parameter as H and H + 1. For t ≤ τ ≤ t + H , we let
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wτ denote the optimal solution of (6) at time τ when the locality parameter is H; and similarly, we
let zτ denote the optimal solution of (6) at time τ when the locality parameter is H + 1. Moreover,
we use wt−1 and zt−1 to denote the decision vectors πt−1(H) and πt−1(H + 1), respectively. Note
that {wτ}t+1≤τ≤t+H and {zτ}t+1≤τ≤t+H are the optimal “tentative” decisions from time t + 1 to
time t+H under πt(H) and πt(H + 1). That is, at time t, πt(H) (resp. πt(H + 1)) only executes
wt (resp. zt) and discards the other decision vectors {wt′ : t

′ > t} (resp. {zt′ : t′ > t}). Since we
restrict to adaptive policies, zτ and wτ are random variables which are measurable with respect to
σ(x0, x[τ−1],Φ[τ ]). For convenience, we extend the definition of zuτ (resp. wu

τ ) to the entire network
by setting zuτ = 0 for u ∈ V \B(v,H + 1) (resp. wu

τ = 0 for u ∈ V \B(v,H)), and this does not
change our original optimization problem in Equation (6). Recall that ρ := 4g(dcedge + 2ctime) and
Γ(v) denotes the neighbors of v.

Lemma 5 For time t ≤ τ ≤ t+H, and u ∈ V ,

P(wu
τ ̸= zuτ , w

Γ(u)
τ = zΓ(u)τ ) ≤ (P(wu

τ−1 ̸= zuτ−1) + P(wu
τ+1 ̸= zuτ+1))ρ.

We first look at a special case to get some intuitive understanding for the above lemma: if
both P(wu

τ−1 ̸= zuτ−1) and P(wu
τ+1 ̸= zuτ+1) are equal to zero, then Lemma 5 implies P(wu

τ ̸=
zuτ , w

Γ(u)
τ = z

Γ(u)
τ ) = 0. This reflects the fact given a ST node (τ, u) in the ST graph, if all

immediate neighbors (i.e., spatial neighbors Γ(u), temporal neighbors (τ−1, u) and (τ+1, u)) take
the same decisions under π(H) and π(H + 1), then by principle of optimality, ST node (τ, u) take
the same optimal decision under the above two policies. The lemma constitutes the key component
of our analysis where we circumvent the challenge of analyzing dynamics with uncertainty about
the future. Instead of bounding the probability of the focal node taking a suboptimal decision
when k-hop neighbors (2 ≤ k ≤ H) in the (static) spatial graph take suboptimal decisions, we
bound this probability in the ST graph since the interactions among nodes in the ST graph are
easier to track. In the ST graph, a node makes a suboptimal decision only if a spatial or temporal
neighbor is fixed suboptimally. The rigorous proof of Lemma 5 is quite involved. It argues that
the event (wu

τ ̸= zuτ , w
Γ(u)
τ = z

Γ(u)
τ ) happens only if the difference of node reward functions, i.e.,

Φu
τ (w

u
τ )−Φu

τ (z
u
τ ) falls in a small interval whose length is proportional to ctime(I{wu

τ−1 ̸= zuτ−1}+
EΦτ+1 [I{wu

τ+1 ̸= zuτ+1}]). By the third condition in Assumption 1, the probability of the event

(wu
τ ̸= zuτ , w

Γ(u)
τ = z

Γ(u)
τ ) is proportional to gctime(I{wu

τ−1 ̸= zuτ−1} + EΦτ+1 [I{wu
τ+1 ̸= zuτ+1}]),

which further leads to the inequality in Lemma 5. We present the details in Appendix D.1.
After obtaining Lemma 5, we use induction on the ST graph distance to node (v, t) to upper

bound the probability of making different node decisions under πt(H) and πt(H+1). We illustrate
our proof ideas in Figure 4 and defer the proof of Lemma 6 to Appendix D.2. Let ξ := (d+ 2)ρ.

Lemma 6 For t ≤ τ ≤ t+H and u ∈ B(v,H), we have

PΦ(w
u
τ ̸= zuτ ) ≤ ξH+1−distst((v,t),(u,τ))ρ. (8)

Then, Proposition 4 is straightforward from Lemma 6 combined with a union bound argument
(details in Appendix D.2).

Appendix D. Proof details in Section C

In this section, we present the proof details which are omitted in the proof outline.
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t ρ ξρ ξ2ρ ξ3ρ ξ4ρ ξ4ρ ξ4ρ

t+ 1 ρ ξρ ξ2ρ ξ3ρ ξ4ρ ξ4ρ

t+ 2 ρ ξρ ξ2ρ ξ3ρ ξ4ρ

t+ 3 ρ ξρ ξ2ρ ξ3ρ

H + 1 = 6 H 4 3 2 1 0 spatial distance to v

(v, t)

Figure 4: An example of the induction argument of Lemma 6: suppose we have proved Equation (8)
for ST nodes (q, t′) with distst((v, t), (q, t′)) ≥ 3 (drawn as circles) and then consider ST
nodes (u, τ) with distst((v, t), (u, τ)) ≤ 2 (drawn as diamonds). By induction hypothesis,
each of the ≤ d + 2 ST neighbors of (u, τ) has probability ≤ ξH+1−3ρ = ξ3ρ taking
different decisions under π(H) and π(H + 1). By Lemma 5, the probability of (u, τ)
taken different decisions under π(H) and π(H + 1) is ≤ d · ξ3ρ · P(zuτ ̸= wu

τ |z
Γ(u)
τ ̸=

w
Γ(u)
τ ) + (ξ3ρ+ ξ3ρ) · ρ ≤ ξ4ρ, where the last inequality is due to Assumption 1.

D.1. Proof of Lemma 5

When solving for (6), in order to compute the optimal decision vector under policy π(H) at time
step t, i.e., πt(H), it also needs to compute a “tentative decision rule” from time t + 1 to time
t + H , which we denote them together by wτ for t ≤ τ ≤ t + H . Similarly, we denote the
optimal decision vector at time t and “tentative decision rule” under policy π(H + 1) as zτ for
t ≤ τ ≤ t +H . In addition, we define zt−1 := πt−1(H + 1), wt−1 := πt−1(H). Note that zτ and
wτ are random variables, which are measurable with respect to σ(x0, x[τ−1],Φ[τ ]). For any node
u with dist(v, u) > H + 1, we have defined zuτ = wu

τ = 0. Thus, we consider node u such that
dist(v, u) ≤ H + 1. Define the local version of fτ (·) function concerning node u,

fu
τ (x

u;x
Γ(u)
t , xut−1,Φt) := Φu

t−1,t(x
u
t−1, x

u) + Φu
t (x

u) +
∑

q∈Γ(u)

Φu,q
t (xut , x

q
t ).

Let z−u
τ (resp., w−u

τ ) denote the actions at all nodes other than u under the vector zτ (resp., wτ ).
Since zuτ is the optimal solution at time τ when restricting to the subgraph B(v,H + 1) and using
H + 1-step look-ahead,

fH+1
τ (zuτ , z

−u
τ ; zτ−1,Φτ ) + V H+1

τ (zuτ , z
−u
τ ) ≥ fH+1

τ (wu
τ , z

−u
τ ; zτ−1,Φτ ) + V H+1

τ (wu
τ , z

−u
τ ).

After rearranging the terms in the above inequality,

fu
τ (w

u
τ ; z

Γ(u)
τ , zuτ−1,Φτ )− fu

τ (z
u
τ ; z

Γ(u)
τ , zuτ−1,Φτ ) ≤ V H+1

τ (zuτ , z
−u
τ )− V H+1

τ (wu
τ , z

−u
τ ). (9)

Similarly, by optimality of wu
τ ,

fH
τ (wu

τ , w
−u
τ ;wτ−1,Φτ ) + V H

τ (wu
τ , w

−u
τ ) ≥ fH

τ (zuτ , w
−u
τ ;wτ−1,Φτ ) + V H

τ (zuτ , w
−u
τ ).

Hence, we define the following positive random variable which is effectively the optimality gap
between switching from action wu

τ to zuτ under policy π(H),
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∆u
τ :=

[
fH
τ (wu

τ , w
−u
τ ;wτ−1,Φτ ) + V H

τ (wu
τ , w

−u
τ )

]
−
[
fH
τ (zuτ , w

−u
τ ;wτ−1,Φτ ) + V H

τ (zuτ , w
−u
τ )

]
=

[
fu
τ (w

u
τ ;w

Γ(u)
τ , wu

τ−1,Φτ )− fu
τ (z

u
τ , w

Γ(u)
τ ;wu

τ−1,Φτ )
]
+
[
V H
τ (wu

τ , w
−u
τ )− V H

τ (zuτ , w
−u
τ )

]

Let Aτ denote the event such that wu
τ ̸= zuτ and w

Γ(u)
τ = z

Γ(u)
τ . Then,

∆u
τ I{Aτ} =

(
fu
τ (w

u
τ ;w

Γ(u)
τ , wu

τ−1,Φτ )− fu
τ (z

u
τ , w

Γ(u)
τ ;wu

τ−1,Φτ ) + V H
τ (wu

τ , w
−u
τ )− V H

τ (zuτ , w
−u
τ )

)
I{Aτ}

=

(
fu
τ (w

u
τ ; z

Γ(u)
τ , zuτ−1,Φτ )− fu

τ (z
u
τ ; z

Γ(u)
τ , zuτ−1,Φτ )

+ Φu
τ−1,τ (w

u
τ−1, w

u
τ )− Φu

τ−1,τ (z
u
τ−1, w

u
τ )− Φu

τ−1,τ (w
u
τ−1, z

u
τ ) + Φu

τ−1,τ (z
u
τ−1, z

u
τ )

+ V H
τ (wu

τ , w
−u
τ )− V H

τ (zuτ , w
−u
τ )

)
I{Aτ}

≤ 4ctimeI{zuτ−1 ̸= wu
τ−1}+

(
fu
τ (w

u
τ ; z

Γ(u)
τ , zuτ−1,Φτ )− fu

τ (z
u
τ ; z

Γ(u)
τ , zuτ−1,Φτ )

+ V H
τ (wu

τ , w
−u
τ )− V H

τ (zuτ , w
−u
τ )

)
I{Aτ}.

Then, by (9), we further have

∆u
τ I{Aτ} ≤4ctimeI{zuτ−1 ̸= wu

τ−1}+(
V H+1
τ (zuτ , z

−u
τ )− V H+1

τ (wu
τ , z

−u
τ ) + V H

τ (wu
τ , w

−u
τ )− V H

τ (zuτ , w
−u
τ )

)
I{Aτ}︸ ︷︷ ︸

(♮)

(10)

Next we expand out the expressions for the approximate value-to-go functions in (♮).
Define the following functions over decision vectors at time τ + 1:

gτ (x) = gτ (x; Φτ+1) := fH+1
τ (x; zuτ , z

−u
τ ,Φτ+1) + V H+1

τ+1 (x),

hτ (x) = hτ (x; Φτ+1)) := fH
τ (x;wu

τ , w
−u
τ ,Φτ+1) + V H

τ+1(x),

δτ (x) = δτ (x; Φτ+1)) := Φu
τ,τ+1(w

u
τ , x

u)− Φu
τ,τ+1(z

u
τ , x

u).

where we omit their dependency on Φτ+1 to simplify the notations. Then, we have

RVH+1
τ (zuτ , z

−u
τ ; Φτ+1) = max

x∈AB(v,H+1)
gτ (x), RVH+1

τ (wu
τ , z

−u
τ ; Φτ+1)

= max
x∈AB(v,H+1)

gτ (x) + δτ (x)

and

RVH
τ (wu

τ , w
−u
τ ; Φτ+1) = max

x∈AB(v,H)
hτ (x), RVH

τ (zuτ , w
−u
τ ; Φτ+1)

= max
x∈AB(v,H)

hτ (x)− δτ (x).
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We again similarly omit the dependency on Φτ+1 to simplify the notations and note that zτ+1 is an
optimal solution for maxx∈AB(v,H+1) gτ (x) and wτ+1 is an optimal solution for maxx∈AB(v,H) hτ (x).
Hence,

(♮) = E
Φτ+1

[RVH+1
τ (zuτ , z

−u
τ )− RVH+1

τ (wu
τ , z

−u
τ ) + RVH

τ (wv
τ , w

−u
τ )− RVH

τ (zuτ , w
−u
τ )]I{Aτ}

≤ E
Φτ+1

[gτ (zτ+1)− (gτ (zτ+1) + δτ (zτ+1)) + hτ (wτ+1)− (hτ (wτ+1)− δτ (wτ+1))] I{Aτ}

= E
Φt+1

[δτ (wτ+1)− δτ (zτ+1)] I{Aτ}

= E
Φt+1

[
Φu
τ,τ+1(w

u
τ , w

u
τ+1)− Φu

τ,τ+1(z
u
τ , w

u
τ+1)− Φu

τ,τ+1(w
u
τ , z

u
τ+1) + Φu

τ,τ+1(z
u
τ , z

u
τ+1)

]
I{Aτ}

≤ 4ctime E
Φτ+1

[I{wu
τ+1 ̸= zuτ+1}]I{Aτ},

where the last inequality is since when zuτ+1 = wu
τ+1, the four terms on the RHS cancel out. Hence,

∆u
τ I{Aτ} ≤ 4ctime(I{zuτ−1 ̸= wu

τ−1}+ E
Φτ+1

[I{wu
τ+1 ̸= zuτ+1}]I{Aτ}).

Finally, we have

PΦ(w
u
τ ̸= zuτ , w

Γ(u)
τ = zΓ(u)τ ) ≤ P(0 ≤ ∆u

τ I{Aτ} ≤ 4ctime(I{zuτ−1 ̸= wu
τ−1}+ E

Φτ+1

[I{wu
τ+1 ̸= zuτ+1}]))

= P(wu
τ−1 ̸= zuτ−1)P(0 ≤ ∆u

τ I{Aτ} ≤ 4ctime(1 + P(wu
τ+1 ̸= zuτ+1|wu

τ−1 ̸= zuτ−1))|wτ−1 ̸= zτ−1)

+ P(wu
τ−1 = zuτ−1)P(0 ≤ ∆u

τ I{Aτ} ≤ 4ctimeP(wu
τ+1 ̸= zuτ+1|wu

τ−1 = zuτ−1)|wτ−1 = zτ−1)

≤ P(wu
τ−1 ̸= zuτ−1) · g · 4ctime(1 + P(wu

τ+1 ̸= zuτ+1|wu
τ−1 ̸= zuτ−1))

+ P(wu
τ−1 = zuτ−1) · g · 4ctime(P(wu

τ+1 ̸= zuτ+1|wu
τ−1 = zuτ−1))

= 4gctime(P(wu
τ−1 ̸= zuτ−1) + P(wu

τ+1 ̸= zuτ+1))

≤ (P(wu
τ−1 ̸= zuτ−1) + P(wu

τ+1 ̸= zuτ+1))ρ

where the second last inequality is based on the following observation: conditional on previous
decisions, previous reward functions, current interactions and node reward functions at other nodes
except u, ∆u

τ I{Aτ} ∈ [0, s] for any s ≥ 0 if and only if Φv
τ (w

u
τ )− Φv

τ (z
u
τ ) is within some length s

interval. Moreover, the probability of the above event is upper bounded by g multiplied by s due to
the third condition in Assumption 1: for any a ̸= a′ ∈ A, b1 < b2,

P(Φv
τ (a)− Φv

τ (a
′) ∈ [b1, b2) | Φinter

τ , {Φu
τ }u̸=v) ≤ g(b2 − b1).

D.2. Proof of Lemma 6

We define a new distance metric which is more suitable for the dynamic optimization problem we
are interested in. Denote node v ∈ V at time t ∈ [T ] as the pair (v, t), which we henceforth call a
ST node. Define the ST distance between two ST nodes (v1, t1) and (v2, t2) as

distst((v1, t1), (v2, t2)) = dist(v1, v2) + |t1 − t2|.

In particular, if t1 = t2, then distst((v1, t1), (v2, t2)) = dist(v1, v2). We also define another param-
eter:

ξ := (d+ 2)ρ. (11)
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Note that ξ ≤ 1
2 under our assumption that ρ := 4g(dcedge + 2ctime) ≤ 1

2(d+2) . Recall that Γ(u)
denotes the set of neighbors of u in G.

Before proving Lemma 6, we present the following claim.
Claim 1. Under the same setting as in Lemma 6, for t ≤ τ ≤ t+H and u ∈ B(v,H +1), we have

PΦ(w
u
τ ̸= zuτ |wΓ(u)

τ , zΓ(u)τ ) ≤ ρ.

Proof of Claim 1. Let Eτ denote the event wu
τ ̸= zuτ given w

Γ(u)
τ , z

Γ(u)
τ . Then, we define the

following positive random variable as in the proof of Lemma 5 which is effectively the optimality
gap between switching from action wu

τ to zuτ under policy π(H),

∆u
τ I{Eτ} :=

[
fH
τ (wu

τ , w
−u
τ ;wτ−1,Φτ ) + V H

τ (wu
τ , w

−u
τ )

]
−
[
fH
τ (zuτ , w

−u
τ ;wτ−1,Φτ ) + V H

τ (zuτ , w
−u
τ )

]
≤ Φu

τ (w
u
τ )− Φu

τ (z
u
τ ) + d · 2cedge + 2 · 2ctime,

where the last inequality is because changing node action at u at time τ affects at most d spatial
edges and 2 temporal edges.

Since ∆u
τ I{Eτ} ≥ 0, we have the following bound under Eτ ,

Φu
τ (w

u
τ )− Φu

τ (z
u
τ ) ≥ −(d · 2cedge + 2 · 2ctime).

Moreover, since zuτ is optimal under π(H + 1),

0 ≤
[
fH+1
τ (zuτ , z

−u
τ ; zτ−1,Φτ ) + V H+1

τ (zuτ , z
−u
τ )

]
−

[
fH+1
τ (wu

τ , z
−u
τ ; zτ−1,Φτ ) + V H+1

τ (wu
τ , z

−u
τ )

]
≤ Φu

τ (z
u
τ )− Φu

τ (w
u
τ ) + d · 2cedge + 2 · 2ctime,

which leads to
Φu
τ (w

u
τ )− Φu

τ (z
u
τ ) ≤ (d · 2cedge + 2 · 2ctime).

Combining these two bounds above, we have

P(wu
τ ̸= zuτ |wΓ(u)

τ , zΓ(u)τ ) ≤ P(−(2dcedge + 4ctime) ≤ Φu
τ (w

u
τ )− Φu

τ (z
u
τ ) ≤

(2dcedge + 4ctime)|wΓ(u)
τ , zΓ(u)τ )

≤ g · 2(2dcedge + 4ctime) = ρ.

□
Proof of Lemma 6. We prove the lemma by induction on the ST distance. By Claim 1 above, for
0 ≤ τ < H and u ∈ B(v,H + 1),

PΦ(w
u
τ ̸= zuτ ) ≤ ρ.

This serves as the base case for proof of Lemma 6: when (u, τ) satisfies distst((v, t), (u, τ)) ≥
H + 1, Lemma 6 holds. Suppose that for all k′ > k for some 0 ≤ k ≤ H , we have that if a node
(u, τ) satisfies distst((v, t), (u, τ)) ≤ k′, then PΦ(w

u
τ ̸= zuτ ) ≤ ξH+1−k′ρ.
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For the inductive step, we consider nodes (u, τ) with distst((v, t), (u, τ)) ≤ k for 0 ≤ k ≤ H .
For the following, to simply the notations, we write PΦ as P.

P(wu
τ ̸= zuτ ) = P(wu

τ ̸= zuτ , w
Γ(u)
τ ̸= zΓ(u)τ ) + P(wu

τ ̸= zuτ , w
Γ(u)
τ = zΓ(u)τ )

= P(wu
τ ̸= zuτ | wΓ(u)

τ ̸= zΓ(u)τ )P(wΓ(u)
τ ̸= zΓ(u)τ ) + P(wu

τ ̸= zuτ , w
Γ(u)
τ = zΓ(u)τ )

≤ ρ(d · ξH−kρ) + P(wu
τ ̸= zuτ , w

Γ(u)
τ = zΓ(u)τ )

≤ ρ(d · ξH−kρ) + P(wu
τ−1 ̸= zuτ−1)ρ+ P(wu

τ+1 ̸= zuτ+1)ρ

≤ ρ(d · ξH−kρ) + 2(ξH−kρ)ρ

= (dρ+ 2ρ)ξH−kρ

≤ ξH+1−kρ

where the first inequality is by induction hypothesis since the spatial neighbors of u has ST distance
to (v, t) at most k+ 1 as well as Claim 1; the second inequality is by Lemma 5; the third inequality
is again by the induction hypothesis. Hence we complete the induction step. □
Proof [Proof of Proposition 4] We first use Lemma 6 for (u, τ) = (v, t) and obtain

P(πv
t (H) ̸= πv

t (H + 1)) ≤ ξH+1ρ.

Then, observe that when the locality parameter H = +∞, we obtain the optimal node decision
(xvt )

∗. Then we use a union bound over all locality parameters H which is greater than or equal to
L.

P(πv
t (L) ̸= πv

t (+∞)) ≤
∑
H≥L

P(πv
t (H) ̸= πv

t (H + 1)) ≤
∑
H≥L

ξH+1ρ ≤ 2ξL+1ρ ≤ ϵ/(2C)

since ξ ≤ 1/2 and L = ⌊log2 4C
ϵ ⌋.

Appendix E. Proof details for sample approximation

E.1. Bounding the Sampling Loss

In this section, we aim to bound the loss in rewards due to approximating the expected value-to-go
function using simulation. The main result of the subsection is given in Proposition 7, which states
that Algorithm 1 obtains the same solution as the local policy π(L) with high probability.

Proposition 7 Under the conditions in the Theorem 3, given any ϵ > 0, there exists a function
N = N(ϵ, d, g, C) = O((4Cϵ )2 log2 dg2C4) < ∞ such that if sample size n ≥ N , then for any
v ∈ V , t ≥ 0,

P(πv
t (L) ̸= Algvt ) ≤ ϵ/(2C).

Proof [Proof of Proposition 7] Suppose Algvt ̸= πv
t (L). By optimality,

ϕv
t (π

v
t (L))− ϕv

t (Algvt ) + ∆−v
t := max

x
B(v,L)
t :xv

t=πv
t (L)

(
fL
t (xt) + V L

t (xt)
)
− max

x
B(v,L)
t :xv

t=Algvt

(
fL
t (xt) + V L

t (xt)
)
≥ 0.
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Similarly,

ϕv
t (Algvt )− ϕv

t (π
v
t (L)) + ∆−v,n := max

x
B(v,L)
t :xv

t=Algvt

(
fL
t (xt) + V̂ L

t (xt)
)
− max

x
B(v,L)
t :xv

t=πv
t (L)

(
fL
t (xt) + V̂ L

t (xt)
)
≥ 0.

Therefore,
−∆−v

t ≤ ϕv
t (π

v
t (L))− ϕv

t (Algvt ) ≤ ∆−v,n.

By the third condition in the Assumption 1, we have that

P (Algvt (L) ̸= πv
t (L)) ≤ P

(
−∆−v

t ≤ Φv
t (π

v
t (L))− Φv

t (Algvt ) ≤ ∆−v,n
)

≤ g E
[
∆−v,n +∆−v

t

]
.

By definitions of ∆−v
t and ∆−v,n above, we have

∆−v,n +∆−v
t ≤ max

x
B(v,L)
t :xv

t=πv
t (L)

∣∣∣∣∣V L
t (xt)− V̂ L

t (xt)

∣∣∣∣∣+ max
x
B(v,L)
t :xv

t=Algvt

∣∣∣∣∣V L
t (xt)− V̂ L

t (xt)

∣∣∣∣∣
≤ 2max

xt

∣∣∣∣∣V L
t (xt)− V̂ L

t (xt)

∣∣∣∣∣.
Therefore, it suffices to show that

E

[
max
x
B(v,L)
t

∣∣∣V L
t (xt)− V̂ L

t (xt)
∣∣∣] ≤ ϵ

4gC
.

Therefore, it suffices to show that

E

[
max
x
B(v,L)
t

(
V L
t (xt)− V̂ L,n

t (xt)
)]

≤ ϵ

4gC
and E

[
max
x
B(v,L)
t

(
V̂ L,n
t (xt)− V L

t (xt)
)]

≤ ϵ

4gC
.

By definition, given any xt+L ∈ AB(v,L), V̂ L,n
t+L(xt+L) = V L

t+L(xt+L) = 0. Hence,

E[maxxt+L(V̂
L,n
t+L(xt+L)− V L

t+L(xt+L))] = 0.

Next, for t ≤ τ ≤ t + L − 1, we derive a recursive relation between E[maxxτ (V̂
L,n
τ (xτ ) −

V L
τ (xτ ))] and E[maxxτ+1(V̂

L
τ+1(xτ+1)− V L

τ+1(xτ+1))]. Given any xτ ∈ AB(v,L)

V̂ L,n
τ (xτ )− V L

τ (xτ ) =
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V̂ L,n

τ+1(xτ+1))− E[max
xτ+1

(fL
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]

=
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V̂ L,n

τ+1(xτ+1))−
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1))

+
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1))− E[max
xτ+1

(fL
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]

≤ max
xτ+1

(V̂ L,n
τ+1(xτ+1)− V L

τ+1(xτ+1)) +
1

n

n∑
s=1

max
xτ+1

(fL
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1))

− E[max
xτ+1

(fL
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]
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We now bound the expectation of later two terms on the right-hand side of the above inequality.
Let Y (s) := maxxτ+1(f

L
τ+1(xτ+1;xτ , ϕ

(s)
τ+1) + V L

τ+1(xτ+1)). Then, {Y (s)}1≤s≤n are independent
random variables with expectation µ := E[maxxτ+1(f

L
τ+1(xτ+1;xτ ,Φτ+1) + V L

τ+1(xτ+1))]. Note
that

E[
1

n

n∑
s=1

Y (s) − µ] =
1

n
E[

n∑
s=1

Y (s) − nµ] ≤ 1

n
E |

n∑
s=1

Y (s) − nµ|

Let m̃ denote the number of nodes in B(v, L). m̃ = 1 + d+ · · ·+ dL ≤ dL+1

d−1 . Since m̃d/2 is
the maximum number of edges in B(v, L) by the handshaking lemma, we have that

Y (s) = RVL
τ (xτ ;ϕτ+1(s)) ≥ −Lm̃Cnode − Lm̃

d

2
cedge − Lm̃ctime =: lb,

where this lower bound is achieved when all nodes receives the worst possible individual reward
−Cnode, the temporal interactions are −ctime and the edge interactions are −cedge. Similarly we
obtain the upper bound,

Y (s) = RVL
τ (xτ ;ϕτ+1(s)) ≤ Lm̃Cnode + Lm̃

d

2
cedge + Lm̃ctime =: ub.

Since lb ≤ Y (s) ≤ ub,

1

n
E[|

n∑
s=1

Y (s) − nµ|] = 1

n

∫
t≥0

P(|
n∑

s=1

Y (s) − nµ| ≥ t)dt

≤ 2

n

∫
t≥0

e
− 2t2

n(ub−lb)2 dt

=
1√
n
(ub − lb)

∫
x≥0

e−
x2

2 dx

=

√
2π

2
√
n
(ub − lb)

where the first equality is by the property of expectation of non-negative random variables, the first
inequality is by Hoeffding’s inequality, the second equality is by change of variables, and the last

equality is since 1√
2π

∫
x∈R e−

x2

2 dx = 1.

Taking expectation of maxxτ (V̂
L,n
τ (xτ )− V L

τ (xτ )), we have

E[max
xτ

(V̂ L,n
τ (xτ )− V L

τ (xτ ))] ≤ E[max
xτ+1

(V̂ L
τ+1(xτ+1)− V L

τ+1(xτ+1))] +

√
2π

2
√
n
(ub − lb)

≤ E[max
xτ+1

(V̂ L
τ+1(xτ+1)− V L

τ+1(xτ+1))] +

√
2π

2
√
n
Lm̃C

(12)

where the last inequality is due to C := 2Cnode + 2dcedge + 4ctime ≥ 2Cnode + dcedge + 2ctime.
Applying Equation (12) L times for t ≤ τ ≤ t+ L− 1, we have

E[max
xt

(V̂ L
t (xt)− V L

t (xt))] ≤
√
2π

2
√
n
L2m̃C ≤ ϵ

4gC
,
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for n ≥ N(ϵ, d, g, C) = 8πg2C4L4m̃2

ϵ2
. Under the condition in the Theorem 3, let L = ⌊log2 4C

ϵ ⌋.
Then,

N(ϵ, d, g, C) =
8πg2C4

ϵ2
(log2

4C

ϵ
)4(

4C

ϵ
)2 log2 d(

d

d− 1
)2

= O((
4C

ϵ
)2 log2 dg2C4)

(13)

where O(·) notation omits logarithmic factors. Similarly, for such n ≥ N(ϵ, d, g, C), we have

E[max
xt

(V L
t (xt)− V̂ L

t (xt))] ≤
√
2π

2
√
n
L2m̃C ≤ ϵ

4gC
.

All together, we have

E

[
max
x
B(v,L)
t

(
V L
t (xt)− V̂ L,n

t (xt)
)]

≤ ϵ

4gC
and E

[
max
x
B(v,L)
t

(
V̂ L,n
t (xt)− V L

t (xt)
)]

≤ ϵ

4gC

as desired.

Appendix F. Bounding the total loss

We now show Algorithm 1 achieves a near-optimal total reward by establishing Theorem 3.
Proof [Proof of Theorem 3] As a result of Proposition 4 and Proposition 7, we have that for all
v ∈ V , and t ∈ [T ],

P(Algvt ̸= (xvt )
∗) ≤ P(πv

t (L) ̸= (xvt )
∗) + P(Algvt ̸= πv

t (L)) ≤ ϵ/C.

Recall the definition of C in Equation (3). Since the largest possible change in total rewards when
switching from one node action to another is upper bounded by C,

|R(ALG)−R∗| ≤
∑

v∈V,t∈[T ]

P(Algvt ̸= (xvt )
∗)C

≤ ϵ · |V |T .

Appendix G. Computation Efficiency

Next we look at the computation requirement of Algorithm 1. In terms of sampling, Algorithm 1
needs to simulate n = O((1ϵ )

2 log2 d) samples from each of the reward functions {Φt+1,Φt+2, · · · ,Φt+L}.
We illustrate these sample paths in Figure 5. The following proposition shows the computation re-
quirement of Algorithm 1 for deciding the action of node v at each time step t.

Proposition 8 The computational requirement of Algorithm 1 is O(|V |T epoly( 1
ϵ
)), where the model

parameters d, g, C and |A| are constants in the O(·) notation.
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To establish Proposition 8, we prove the following lemma on computation requirement for any
L-local (L ≥ 1) algorithm. Then, the computation needed in Proposition 8 is by letting L =
⌊log2 4C

ϵ ⌋ and n = N(ϵ, d, g, C) defined in Equation (13). We defer its proof after introducing the
following Lemma.

Lemma 9 The computation requirement for Algvt for v ∈ V and t ∈ [T ] under Algorithm 1 is
LK2n where n is the sample size and K = |A|dL is an upper bound on number of decision vectors
to enumerate over for the optimization problem in (5).

Proof [Proof of Lemma 9] We show this by induction. Let aτ denote the amount of computation
needed to compute V̂ L,n

τ (·). Since V̂ L,n
t+L(·) = 0, at+L = 0. Suppose now we obtain V̂ L,n

τ (·) function
with computational effort aτ . Given a decision vector xτ−1 and a realization ϕτ , the optimal xτ can
be solved by enumerating all possible decision vectors, whose cardinality is at most K. Under the
assumption that {Φt}t are independent, we can use the same estimation for V̂ L,n

τ (·) for different
realizations of Φτ−1. This implies:

aτ−1 = K · n ·K + aτ ,

where the first K is the number of possible decision vectors xτ−1, n is the number of samples,
and the second K is the computation needed for enumeration. Hence, we have at = LK2n =
L|A|2dLn.

Proof [Proof of Proposition 8] Let L = ⌊log2 4C
ϵ ⌋. Then, we have

|A|2dL ≤ e2 ln |A|·( 4C
ϵ
)log2 d

.

Moreover, we let the sample size n = N(ϵ, d, g, C) = O((4Cϵ )2 log2 dg2C4) defined in Equa-
tion (13). With d, g, C and |A| as constants, by Lemma 9, the computation needed for Algorithm 1
is upper bounded by

L|A|2dLn = O(e2 ln |A|·( 4C
ϵ
)log2 d

(
1

ϵ
)2 log2 d) = O(epoly( 1

ϵ
)).

Appendix H. Interactions must be small to have correlation decay

In this section, we construct a sequence of static (i.e., single period) decision networks indexed by
graph degree d with cedge = Θ(1/d) such that there is no near-optimal local algorithm for these
networks. The decision networks we construct satisfy all parts of Assumption 1 except the small-
interaction requirement 4g(dcedge + 2ctime) ≤ 1

2(d+2) . Thus, our construction justifies the need for
the upper bound on the strength of the interactions in Assumption 1. Admittedly, there is some gap
between our assumption cedge ≤ Θ(1/d2), and the scale cedge = Θ(1/d) at which we show here that
long-range correlations arise. In comparison, previous work [21] also assumed cedge ≤ Θ(1/d2) to
obtain correlation decay in a static random decision network. In our dynamic setting, we have the
same scaling to ensure no long-range correlation.

Definition 10 A d-regular graph G = (V,E) is an γ-edge expander for γ ∈ (0, 1) if for any S ⊆ V
such that |S| ≤ |V |/2, the number of edges between S and V \S (the “cut size”) is at least |S|dγ,
i.e.,

cut(S) := |{(i, j) ∈ E : i ∈ S, j ∈ V \S}| ≥ |S|dγ .
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Figure 5: Approximating for value-to-go estimation via sample averages. Each node in this tree is
a vector consisting of reward functions in B(v, L).

Construction. Fix degree d ≥ 35. It is well known that there exists m1 < ∞, such that for any
even integer m with m > m1, there is a d-regular graph with m nodes that is a 1

3 -edge expander
[18, 35]. In fact, a random d-regular graph has this property asymptotically almost surely (a.a.s.).1

That is, let G be uniformly drawn from random d-regular graphs with m nodes where m ≥ m1,
then G is a 1

3 -edge expander almost surely. We define a static random decision network (G,Φ) with
action set {0, 1} as follows:

• Node rewards: The node rewards Φv(1) are i.i.d. from Uniform[−1, 1]; and Φv(0) = 0.

• Edge rewards: The edge rewards are “ferromagnetic”:

Φu,v(xu, xv) :=

{
cedge if xu = xv

0 otherwise ,

where cedge := 6/d.

Since the constructed decision network is static, there are no temporal interactions in our construc-
tion and hence we omit x0.

The following claim shows that there does not exist near-optimal local algorithms when the
small interaction condition in Assumption 1 does not hold.
Claim 2. For the decision network (G,Φ) uniformly drawn from d−regular random graph with m
nodes, the optimal action vector is either all 1s or all 0s a.s. Each of these possibilities arises with
probability 1/2. In particular, the optimal solution has long-range correlations. In particular, any
L-local algorithm which treats the possible node actions 1 and 0 symmetrically achieves expected
payoff at least m/3 below the optimal.
Proof [Proof of Claim 2.] Consider any action vector x such that the majority of actions is 1. We
show that the payoff of x is less than the payoff of all 1s. Let S be the set of nodes where x
takes action 0. Since G is a 1

3 -edge expander a.s., cut(S) ≥ |S|d/3. It follows that the total edge

1. Random d-regular graphs are “almost Ramanujam”, i.e., the absolute value of the second largest eigenvalue of their
adjacency matrix is bounded above by 2

√
d− 1 + ϵ a.a.s. as proved in [18]. The claimed edge expansion property

then follows, e.g., using [35, Theorem 4.14].
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rewards under x is at least cedge|S|d/3 = 2|S| smaller than that under all 1s. On the other hand
the difference between the total node rewards under x and that under all 1s is

∑
v∈S Φv(1) ≥ −|S|

since Φv(1) ∈ [−1, 1], i.e., the total rewards under x is at least 2|S| − |S| = |S| smaller than the
total rewards under all 1s. Similarly, one can show that for any action vector x such that the majority
of actions is 0, the total reward under x is at least m− |S| smaller than the total reward under all 0s.
It follows that the optimal solution is either all 1s or 0s. Moreover, the optimal solution is all 1s if∑

v∈V ϕv(1) ≥ 0 and all 0s otherwise. Since the distribution of i.i.d Uniform distributiion [−1, 1]
is symmetric, each of these above possibilities arises with probability 1

2 .
Now consider any given L and any L-local algorithm which treats 1 and 0 symmetrically. By

symmetry, each node decision is a priori equally likely to be 1 or 0. By symmetry, each node
decision is a priori equally likely to be 1 or 0. It follows that in a large network, about half the
decisions will be 1 and the other half will be 0 under the L-local algorithm. Formally speaking,
the expected number of 1s is m/2, and the variance in the total number of 1s is Var[

∑
v∈V I{xv =

1}] =
∑

v∈V Var[I{xv = 1}] =
∑

v∈V (
1
2)

2 = 1
4m.

Hence for any m > 250, we know by Chebyshev’s inequality that with probability at least 0.9,
the number of 1s will be in the range |S| ∈ (0.4m, 0.6m), i.e., the payoff will be at least 0.4m
below the optimal (see the previous paragraph) Combining, the local algorithm suffers expected
payoff loss at least 0.9× 0.4m ≥ m/3.

Appendix I. Missing Details for Section 4

In the following, we explain in details the simulation environment of our experiment. There are
5 dynamic decision networks parameterized by interaction strength c for both the spatial and tem-
poral dimensions, with c = 0.1, 0.2, 0.3, 0.4, and 0.5. These decision networks share all other
components, which we list below.

• Graph G: Using the NetworkX package in Python, we randomly generate2 a 3-regular graph
with 500 vertices.

• Time horizon T : To simplify the simulation and reduce the computational effort, we set the
time horizon to be 2 for all decision networks.

• Interaction function: Both the spatial interaction and the temporal interaction are ferromag-
netic, meaning that agreeing actions incur a bonus of c, whereas disagreeing actions result in
no reward.

• Action set A: We assume a binary action set – that is, for all v ∈ V and t ∈ [T ], xvt ∈ {0, 1},
where action zero is viewed as the default action, meaning that Φv

t (0) = 0.

• Node reward: The random node rewards, for both time periods, when taking action 1 are
assumed to i.i.d. and follow the uniform distribution on [−1, 1].

2. statistics source: https://networkx.org/documentation/stable/reference/generated/
networkx.generators.random_graphs.random_regular_graph.html
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We sample n1 = 10 instances for each decision network, where these instances differ in terms of
the realized node rewards at the first time period. Having multiple realizations allow us to compute
the confidence intervals for the performance of our algorithm. We denote by {ϕv,(i)

1 }v∈V the realized
first-period node rewards (when taking action 1) in the i-th instance, where each ϕ

v,(i)
1 is sampled

according to the node reward distribution, i.e., uniformly from [−1, 1]. Note that the realized node
rewards {ϕv,(i)

1 }v∈V for each i ∈ [n1] are shared by all the i-th instances of all decision networks.
To remove the loss in rewards due to sampling, we control the variability in the second period

node rewards. That is, we pre-generate two independent sets of samples of node rewards for the
second time period. The first set contains n2,est = 100 samples, which are used to compute solutions
at the first time period; and the second set contains n2,eval = 30 samples, which are used to estimate
the total payoff under the solutions computed using the first set of samples. We denote the node
rewards when taking action 1 by {ϕv,(i)

2,est}v∈V for the i-th sample in the first set and by {ϕv,(i)
2,eval}v∈V

for the i-th sample in the second set.
For each instance, we compute several solutions, with one obtained by solving the global opti-

mization problem, and the others obtained by our local algorithms with different locality parame-
ters. To solve the network optimization problem, either globally or locally, we write a Mixed Integer
Program (MIP) and solve it through Gurobi [22]. The decision variables of the MIP are:

• node actions for the first time period: {xv1}v∈V ;

• disagreement indicator of neighboring nodes for t = 1: {ye1}e∈E ;

• node actions for the second time period for each sample j: {xv,(j)2 }v∈V,j∈[n2,est];

• disagreement indicator of neighboring nodes for t = 2 for each sample j: {ye,(j)2 }e∈E,j∈[n2,est];

• temporal disagreement indicator for each node for each sample j: {yv,(j)}v∈V,j∈[n2,est].

And the formulation of our MIP is given below.

max
∑
v∈V

ϕ
v,(i)
1 · xv1 +

∑
e=(u,v)∈E

c · (1− ye1)+

1

n2,est

∑
j∈[n2,est]

[∑
v∈V

ϕ
v,(j)
2,est · x

v,(j)
2 +

∑
e∈E

c · (1− y
e,(j)
2 ) +

∑
v∈V

c · (1− yv,(j))

]
s.t. ye1 ≥ xu1 − xv1 ∀ e = (u, v) ∈ E

ye1 ≥ xv1 − xu1 ∀ e = (u, v) ∈ E

y
e,(j)
2 ≥ x

u,(j)
2 − x

v,(j)
2 ∀ e = (u, v) ∈ E, j ∈ [n2,est]

y
e,(j)
2 ≥ x

v,(j)
2 − x

u,(j)
2 ∀ e = (u, v) ∈ E, j ∈ [n2,est]

yv,(j) ≥ xv1 − x
v,(j)
2 ∀ v ∈ V, j ∈ [n2,est]

yv,(j) ≥ x
v,(j)
2 − xv1 ∀ v ∈ V, j ∈ [n2,est]

xv1, y
e
1, x

v,(j)
2 , y

e,(j)
2 , yv,(j) ∈ {0, 1} ∀ v ∈ V, e ∈ E, j ∈ [n2,est]

Note that V and E are either nodes and edges of the entire graph when solving for the global
optimal solution, or nodes and edges of a local graph when solving for the solution using our local
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algorithm. Although the MIP is given for obtaining a first time period solution, a similar MIP can
be used to estimate the payoff of a given first time period solution, where we take {xv1}v∈V as given
and replace rewards {ϕv,(j)

2,est} with {ϕv,(j)
2,eval}.
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