
Purifying Shampoo: Investigating Shampoo’s
Heuristics by Decomposing its Preconditioner

Runa Eschenhagen∗∗,1 Aaron Defazio2 Tsung-Hsien Lee††
Richard E. Turner1,3 Hao-Jun Michael Shi4

1Department of Engineering, University of Cambridge
2Fundamental AI Research, Meta Superintelligence Labs, Meta Platforms, Inc.

3The Alan Turing Institute
4Infrastructure Optimizations, Meta Superintelligence Labs, Meta Platforms, Inc.

Abstract

The recent success of Shampoo in the AlgoPerf contest has sparked renewed inter-
est in Kronecker-factorization-based optimization algorithms for training neural
networks. Despite its success, Shampoo relies heavily on several heuristics such as
learning rate grafting and stale preconditioning to achieve performance at-scale.
These heuristics increase algorithmic complexity, necessitate further hyperparame-
ter tuning, and lack theoretical justification. This paper investigates these heuristics
from the angle of Frobenius norm approximation to full-matrix Adam and decou-
ples the preconditioner’s eigenvalues and eigenbasis updates. We show that grafting
from Adam mitigates the staleness and mis-scaling of the preconditioner’s eigen-
values and how correcting the eigenvalues directly eliminates the need for learning
rate grafting. To manage the error induced by infrequent eigenbasis computations,
we propose an adaptive criterion for determining the eigenbasis computation fre-
quency motivated by terminating a warm-started QR algorithm. This criterion
decouples the update frequency of different preconditioner matrices and enables us
to investigate the impact of approximation error on convergence. These practical
techniques offer a principled angle towards removing Shampoo’s heuristics and
developing improved Kronecker-factorization-based training algorithms.

1 Introduction

Structured non-diagonal, and especially Kronecker-factored, preconditioned stochastic gradient al-
gorithms have been extensively studied for neural network training (Heskes, 2000; Martens, 2010;
Martens & Grosse, 2015; Li, 2018; Gupta et al., 2018). Despite their promise, diagonally precondi-
tioned methods like Adam have remained the de facto methods for training neural networks over the
past decade (Duchi et al., 2011; Kingma & Ba, 2015). Recently, a distributed implementation of the
Shampoo algorithm (Gupta et al., 2018; Anil et al., 2020; Shi et al., 2023) won the external tuning
track of the AlgoPerf neural network training algorithm competition (Dahl et al., 2023; Kasimbeg
et al., 2025).1 This result has renewed interest in non-diagonally preconditioned training algorithms,
inspiring methods like Muon (Jordan et al., 2024; Bernstein, 2025) and SOAP (Vyas et al., 2025a).

Correspondence to: re393@cam.ac.uk and hjmshi@meta.com.
∗Work performed while an intern and external research collaborator at FAIR, Meta Platforms.
†Work performed while employed by AI and Systems Co-Design, Meta Platforms.
1The external tuning track requires a submission to specify a hyperparameter search space, in contrast to the

hyperparameter-tuning-free self-tuning track.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 1: Shampoo with stale preconditioner (updating the root inverse matrices every F = 100
steps) without grafting for different choices of the learning rate α and ϵ on Imagewoof. All tested hy-
perparameter combinations underperform AdamW and, by extension, Shampoo with Adam grafting.

However, the winning Shampoo submission to the AlgoPerf competition relied on several crucial
heuristics beyond Shampoo (Anil et al., 2020; Shi et al., 2023). Most notably, each layer’s update
is re-scaled by the update magnitude of a reference optimizer, a technique known as learning rate
grafting (Agarwal et al., 2020); see Figure 1 for an illustration of its importance. Additionally, to
reduce its computational overhead, the root-inverse of the preconditioner is only re-computed every
100 steps, resulting in the use of a stale preconditioner. Despite their empirical effectiveness, both
heuristics lack theoretical justification and remain poorly understood.

In this paper, we investigate the role of these two heuristics by decoupling the updates of the
preconditioner’s eigenvalues and eigenbasis. In Section 3, we empirically demonstrate that Shampoo
requires learning rate grafting in order to address the staleness and mis-scaling of the preconditioner’s
eigenvalues. Correcting Shampoo’s eigenvalues at every step like in SOAP (Vyas et al., 2025a)
removes the need for grafting. We further formalize this intuition by comparing bounds on the update
magnitude of Shampoo and full-matrix Adam.

Given the importance of controlling the approximation error of the eigenvalues, we next consider
the frequency of the eigenbasis updates in Section 4. Motivated by a termination criterion for the
QR algorithm that bounds the relative error of the Kronecker factor approximation induced by the
current eigenbasis (Golub & Van Loan, 2013), we propose an adaptive method for determining
the eigenbasis update frequency. Our empirical results show that the approximation error of the
Kronecker factors evolves during training and impacts convergence, depending on both the training
stage and parameter’s properties. Using an adaptive update frequency can improve Shampoo’s
training efficiency, especially when more frequent eigenbasis computations accelerate convergence.

2 Background

We consider neural network training as a standard stochastic optimization problem, where the goal is
to minimize the expected loss function

min
θ∈Rd

L(θ) = E(x,y)∼pD(x,y)

[
ℓ(fθ(x),y)

]
, (1)

where fθ : RN → Rc is the neural network prediction function with parameters θ ∈ Rd (flattened
and concatenated into a vector), pD(x,y) is the joint data distribution from which inputs x ∈ RN

and targets y ∈ Rc are sampled, and ℓ : Rc × Rc → R is the loss function. The neural network is
commonly trained using preconditioned stochastic gradient methods that update the parameters at
each iteration t by

θt = θt−1 − αtC
−p
t gt = θt − αtQCt

Λ−p
Ct

Q
⊺
Ct

gt, (2)

where gt = ∇θt
ℓ(fθt

(xt),yt) ∈ Rd is the stochastic (mini-batch) gradient with respect to the sample
(xt,yt) ∼ pD(x,y), αt > 0 is the step size, p > 0 is the exponent, and Ct ∈ Rd×d is a symmetric
positive-definite preconditioner or scaling matrix. The second equality in Equation (2) expresses the
update using the eigendecomposition of the preconditioner matrix Ct = QCtΛCtQ

⊺
Ct

, where the
eigenbasis matrix Qt ∈ Rd×d is orthogonal and eigenvalue matrix ΛCt

∈ Rd×d is diagonal.
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We primarily focus on Ct as an accumulation of gradient outer products, i.e., Āt =
∑t

s=1 gsg
⊺
s

or At = β2At−1 + (1 − β2)gtg
⊺
t with p = 1/2, which correspond to full-matrix AdaGrad and

RMSprop/Adam, respectively (Duchi et al., 2011; Kingma & Ba, 2015), although this can be
generalized to other alternatives, like the natural gradient method (Amari, 1998); see Appendix A.
When Ct is diagonal, this scaling recovers simplified versions of popular algorithms like AdaGrad
(Duchi et al., 2011) or Adam (Kingma & Ba, 2015), ignoring additional modifications like exponential
moving averages, momentum, bias corrections, etc. However, for non-diagonal Ct, these methods
require storing and possibly inverting dense d× d matrices, which is computationally prohibitive.

To address this, two structured approximations are commonly applied: (1) a layer-wise block-diagonal
approximation, where each block captures pairwise correlations within each layer; (2) a Kronecker-
factored approximation that takes a mn ×mn matrix block for each layer and approximates it as
a Kronecker product of two smaller matrices of size m ×m and n × n. The Kronecker product
approximation is particularly convenient for computing the inverse-root matrix-vector product, leading
to the design of algorithms like Kronecker-Factored Approximate Curvature (K-FAC) (Heskes, 2000;
Martens & Grosse, 2015; Grosse & Martens, 2016; Martens et al., 2018; Eschenhagen et al., 2023),
Shampoo (Gupta et al., 2018; Anil et al., 2020; Shi et al., 2023), and their variants (George et al.,
2018; Gao et al., 2020; Ren & Goldfarb, 2021; Feinberg et al., 2023; Duvvuri et al., 2024; Lin et al.,
2024b,a). Alternative approaches, such as Hessian-free or inexact Newton methods, avoid explicitly
storing the preconditioner matrix, e.g., by leveraging Hessian-vector products (Martens, 2010; Li,
2018; Pooladzandi & Li, 2024).

2.1 Shampoo

The Shampoo preconditioner was originally developed as a Kronecker-factorized upper bound to
full-matrix AdaGrad in its regret analysis (Gupta et al., 2018). For a weight matrix Wt ∈ Rm×n

with stochastic gradient Gt ∈ Rm×n where gt = vec(Gt), Shampoo stores symmetric positive
semi-definite matrices that approximate an idealized preconditioner with Lt ≈ E[GtG

⊺
t ] ∈ Rm×m

and Rt ≈ E[G⊺
tGt] ∈ Rn×n, and updates the preconditioner and weight matrix by

Lt = β2Lt−1 + (1− β2)GtG
⊺
t , (3)

Rt = β2Rt−1 + (1− β2)G
⊺
tGt, (4)

Wt+1 = Wt − αtL
− 1

4
t GtR

− 1
4

t (5)

given β2 ∈ [0, 1).23 The original Shampoo algorithm uses a sum to accumulate the gradient outer
products, although the exponential moving average is more commonly used in practice. Therefore,
we are interested in approximating the preconditioner of full-matrix Adam, given by At = β2At−1 +
(1− β2)gtg

⊺
t ≈ E[gtg⊺

t ].

The search direction or update in matrix form is given as UShampoo
t = −L− 1

4
t GtR

− 1
4 or, equiva-

lently, CShampoo
t = (Rt ⊗Lt)

1
2 with p = 1/2 in Equation (2). We also consider Shampoo2 defined

as CShampoo2

t = Rt ⊗Lt, which is a tighter approximation to full-matrix AdaGrad (Morwani et al.,
2025). Both updates can be generalized to higher-order tensors.

2.2 Eigenvalue-corrected Shampoo and SOAP

By leveraging a Kronecker product approximation, Shampoo’s preconditioner is restricted to a
Kronecker product structure for both its eigenvectors and eigenvalues. Specifically, if we have a pre-
conditioner Ct = Rt ⊗Lt with eigendecompositions Lt = QLt

ΛLt
Q⊺

Lt
and Rt = QRt

ΛRt
Q⊺

Rt
,

then Ct has eigendecomposition Ct = (QRt
⊗QLt

)(ΛRt
⊗ΛLt

)(QRt
⊗QLt

)⊺. Preconditioning
−gt with CShampoo

t and p = 1/2 in its matrix form is equivalent to the matrix transformation:

UShampoo
t = −L− 1

4
t GtR

− 1
4

t = −QLt
Λ

− 1
4

Lt
(Q

⊺
Lt
GtQRt

)Λ
− 1

4

Rt
Q

⊺
Rt

. (6)

2We drop the subscript in the expectation, taken with respect to (xt,yt) ∼ pD(x,y).
3A pseudo-inverse that ignores the null space of the matrix or perturbing the matrix by a regularization term

ϵI for ϵ > 0 can be used to handle the symmetric positive semi-definite case.
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This can be interpreted as applying a Kronecker-factored coordinate-wise scaling to a gradient with
changed basis, i.e., G̃t = Q⊺

Lt
GtQRt

, scaling the transformed gradient, and converting it back to its
original basis.

Instead of restricting the eigenvalues to be a Kronecker product, Liu et al. (2018) and George et al.
(2018) have proposed correcting the eigenvalues by decoupling the scaling from the basis in K-FAC.
This involves computing a separate scaling matrix Dt ≈ E

[
G̃⊙2

t

]
∈ Rm×n and using it in place of

the preconditioner’s original eigenvalues mat diag(ΛRt ⊗ΛLt).
45

Anil et al. (2020) noted that this correction can also be applied to Shampoo. Most recently, Vyas et al.
(2025a) presented promising empirical results for language models using an instance of eigenvalue-
corrected Shampoo called SOAP, which updates the scaling by Dt = β2Dt−1+(1−β2)G̃

⊙2
t . Since

then, SOAP has also been shown to perform well for physics-informed neural networks (Wang et al.,
2025) and to reduce outlier features in transformers, which potentially improves quantization (He
et al., 2024). We refer to our practical instantiation of eigenvalue-corrected Shampoo as EShampoo
(Appendix B, Algorithm 2), which uses the same Dt as SOAP. See Appendix D.1 for clarification on
the distinction between eigenvalue correction, EShampoo, and SOAP.

3 Learning rate grafting compensates for Shampoo’s eigenvalues

Originally motivated by decoupling an optimizer’s update magnitude from its direction to account for
different implicit learning rate schedules, Agarwal et al. (2020) proposed learning rate grafting, a
technique that combines the layer-wise update of one optimizer with the layer-wise update magnitude
of another. For Shampoo, this means taking Shampoo’s layer-wise update UShampoo

t and rescaling it
by the Frobenius norm of the grafting method’s update UGrafting

t (typically Adam):

Wt+1 = Wt + αt
||UGrafting

t ||F
||UShampoo

t ||F
UShampoo

t . (7)

A complete description of Shampoo with Adam grafting is given in Appendix B, Algorithm 3.

This approach has been critical to Shampoo’s empirical success (Anil et al., 2020; Shi et al., 2023;
Kasimbeg et al., 2025). As shown in Figure 1, Shampoo without grafting (and updating the root
inverse matrices every F = 100 steps) underperforms AdamW, with many hyperparameter settings
diverging. Anil et al. (2020) suggests that grafting is used to account for differences in magnitude of
the eigenspectrum of the Kronecker factors for different layers, as well as the infrequent updates of
the Kronecker factors and their inverse roots (see Anil et al. (2020), Appendix G). However, these
claims have not been thoroughly investigated.

To focus our empirical investigation, we study Shampoo with Adam grafting and F = 100, which
was the winning configuration that was used in the external tuning track of the AlgoPerf competition
(Kasimbeg et al., 2025). Since grafting re-scales the layer-wise update based on its magnitude,
we analyze the Frobenius norm of the updates of full-matrix and diagonal Adam, Shampoo, and
EShampoo. The magnitude of the eigendecomposed update in Equation (2) with Kronecker-factored
QCt

= QRt
⊗QLt

is determined by the norm of the stochastic gradient Gt and the eigenvalues of
Ct:
Lemma 1. Let U = QL(D

⊙−p ⊙ (Q⊺
LGQR))Q⊺

R ∈ Rm×n be the generalized eigendecomposed
Kronecker-factored update given by orthogonal matrices QL ∈ Rm×m, QR ∈ Rn×n, and dense
scaling matrix D ∈ Rm×n, with p > 0. Then we have:

(max
i,j

Di,j)
−p||G||F ≤ ||U ||F ≤ (min

i,j
Di,j)

−p||G||F . (8)

Lemma 1 covers multiple algorithms. We can recover the idealized Adam update by setting QL =
I ∈ Rm×m, QR = I ∈ Rn×n, and D = E

[
G⊙2] with p = 1/2. The idealized Shampoo update

can be recovered through the choice of D = mat diag(ΛR ⊗ΛL) with p = 1/4,L = E[GG⊺] =
QLΛLQ

⊺
L and R = E[G⊺G] = QRΛRQ⊺

R (or p = 1/2 for Shampoo2). Idealized EShampoo is
recovered with the choice of D = E

[
(Q⊺

LGQR)
⊙2
]

and p = 1/2 instead.

4X⊙2 denotes the element-wise square.
5mat diag(·) takes a mn×mn matrix and reshapes its diagonal into a m× n matrix.
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Figure 2: Training results with different Shampoo variants and eigendecomposition frequencies F on
the Imagewoof dataset. Shampoo with eigenvalue correction achieves a better training loss compared
to Shampoo with Adam grafting, and the optimal learning rate for Adam transfers to both variants.

Proposition 1. Assume that E[gg⊺] is symmetric positive definite. The magnitude of the idealized
updates for full-matrix Adam, diagonal Adam, and EShampoo are all bounded by the power of the
extreme eigenvalues of full-matrix Adam:

λmax(E[gg
⊺
])−p∥G∥F ≤ ∥U∥F ≤ λmin(E[gg

⊺
])−p∥G∥F , (9)

for all p > 0. However, under the simplifying assumption that E[G] = 0 and Gi,j is independent from
Gk,l for (i, j) ̸= (k, l) and has bounded second moment, λmin(E[gg⊺]) ≤ E[G2

i,j ] ≤ λmax(E[gg⊺])
and Shampoo has dimension-dependent bounds:

m−p/2n−p/2λmax(E[gg
⊺
])−p∥G∥F ≤ ∥U∥F ≤ m−p/2n−p/2λmin(E[gg

⊺
])−p∥G∥F . (10)

See Appendix C for the proofs of Lemma 1 and Proposition 1.

This highlights a key issue: Shampoo’s update magnitude can be mis-scaled relative to Adam and
EShampoo, especially due to dimension-dependent factors. The basis does not influence the update
magnitude – only the eigenvalues do. While this additional scaling can be absorbed into the learning
rate when only handling a single matrix, it is potentially problematic when one needs to handle
multiple parameters simultaneously. In addition, the use of stale eigenvalues can result in update
magnitudes that lie outside of the bounds of full-matrix Adam. This leads us to the following
hypothesis:

The role of learning rate grafting in Shampoo

Learning rate grafting compensates for the scaling and staleness of Shampoo’s eigenvalues.

From the Frobenius norm approximation perspective, using Shampoo2 (via CShampoo2
t ) yields a tighter

approximation to full-matrix Adam compared to CShampoo
t (Morwani et al., 2025), which addresses the

mismatch of the eigenvalues’ exponent in Equation (10). Additionally, rescaling the preconditioner
by S−1 = Tr(Rt)

−1 = Tr(Lt)
−1 ensures exactness when full-matrix Adam At is a Kronecker

product (Morwani et al., 2025). The scaling S−1 has also been previously introduced for Tensor
Normal Training (Ren & Goldfarb, 2021, TNT) to approximate the Fisher information matrix.

Based on our observations, we can make several predictions:

1. With F = 1, Shampoo without grafting should perform well when layer scalings are similar,
but may struggle with highly variable parameter shapes.

2. Using S−1CShampoo2
t with F = 1 should address scaling and staleness and match Shampoo

with grafting. This is exact when full-matrix Adam decomposes into a Kronecker product.
3. Updating an eigenvalue correction at every iteration (e.g. like in SOAP) should also address

scaling and staleness, matching Shampoo with grafting.
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Empirical validation. We ablate different variants of Shampoo on the Imagewoof dataset with
vision transformer (ViT) and ConvNeXt V2 models. We plot the final training loss after 100 epochs
against the learning rate. Following the specification of the AlgoPerf Shampoo submission, we update
the preconditioner every 100 steps when grafting the learning rate from Adam, and the eigenbasis
when using eigenvalue correction. Our results are presented in Figure 2. We observe that all three
predictions are confirmed: Shampoo2 scaled by S−1 or eigenvalue correction is able to match or
even surpass Shampoo with grafting on both problems, and Shampoo without grafting can match the
final loss for the Imagewoof ViT workload, but not for the ConvNeXt V2 model.

Hyperparameter transfer. The optimal learning rate of Adam transfers to Shampoo with grafting
and EShampoo. However, it is not apparent whether the optimal learning rate transfers to Shampoo2
scaled by S−1. Learning rate transfer is only sensible when jointly transferring ϵ since it affects
the effective step size, but Shampoo does not directly add ϵ to the root of the eigenvalues, as done
in Adam and other diagonal-scaling-based optimizers. While we have not tested this, the optimal
learning rate may potentially transfer when matching the effective ϵ.

Computational and memory costs. While updating Shampoo every iteration incurs a prohibitive
computational overhead, the eigenvalue correction is only slightly more expensive than Adam grafting
since it requires more matrix products. EShampoo adds the same memory overhead to Shampoo
as Adam grafting, specifically requiring an additional d-dimensional buffer for the second moment
accumulation. One could reduce this overhead by adopting techniques such as Adam-mini, which
only requires a single scalar per parameter block, defined according to the Hessian structure (Zhang
et al., 2025b), and could be applied to both grafting and the eigenvalue correction. Alternatively, Liu
et al. (2025) propose to scale Muon to approximately match the RMS norm of Adam’s update to
enable the re-use of Adam’s hyperparameters, which may provide a practical heuristic that removes
grafting without any memory overhead. Finally, an eigenvalue correction for the individual Kronecker
factors can also correct for the staleness of their eigenvalues and has, in fact, been shown to also
remove the need for grafting, while reducing the necessary buffer size from mn to m+ n for each
m× n weight matrix (Lin et al., 2025).

Applicability to other methods. The issue of stale eigenvalues extends to all sparsely-updated
Kronecker-factored preconditioners such as K-FAC variants and TNT. Although we are unaware of
any work that combines K-FAC or TNT with grafting, it is common practice to apply the Adam update
to gradients preconditioned with K-FAC (Pauloski et al., 2021; Osawa et al., 2023a,b; Eschenhagen
et al., 2023), which we hypothesize could serve a similar function as grafting.

4 Controlling the approximation error induced by stale eigenbases

While frequent updates to the preconditioner’s eigenvalues are important, the impact of periodically
computing the eigenbasis remains less clear. The optimal frequency of the eigenbasis computation
should be chosen to balance the time of each iteration against the method’s per-iteration convergence
rate, and may depend on the stage of training, layer type, and the specific Kronecker factors (Lt, Rt)
involved. Shampoo currently uses a fixed update frequency for all matrices, which ignores these
distinctions and the computational cost associated with different parameter shapes.

4.1 Can we adaptively control the approximation error induced by the stale eigenbasis?

In SOAP, the initial eigenbasis is computed via an eigendecomposition during the first iteration,
then is refined by a single power iteration and QR decomposition at all subsequent iterations, c.f.
Algorithm 4 in Vyas et al. (2025a), attributed to Wang et al. (2024).6 The method corresponds to
a single iteration of a warm-started simultaneous iteration, an extension of the power iteration for
iteratively computing eigendecompositions (Golub & Van Loan, 2013). However, this approach may
still yield a poor approximation to the true eigenbasis, especially when the eigenbasis changes rapidly
due to the choice of β2 or the dynamics of the stochastic gradient.

To address this, we propose controlling the error induced by the eigenbasis using a warm-started
QR algorithm that iterates until a relative approximation error criterion is satisfied. This approach
offers three major benefits: (1) each Kronecker factor can be treated independently, allowing adaptive
frequency across different layers, factors, and stages of training; (2) evaluating the criterion with the

6This approach was referred to as randomized SVD in Wang et al. (2024), Appendix B.
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Figure 3: All configurations are for EShampoo. (left) On the Imagewoof ViT problem, setting the
maximum number of iterations I < 10 with threshold τ = 0.2 for the adaptive QR algorithm leads to
significant increase in wall-clock time compared to using adaptive eigh. Even with I = 10, adaptive
eigh is faster. The default SOAP setting achieves worse final loss and is also slightly slower. (right)
Using the adaptive criterion to determine when to skip the eigendecomposition (eigh) improves
efficiency by 20% in wall-clock time compared to updating every 100 iterations (AlgoPerf setting).

last computed eigenbasis prior to the first QR iteration enables us to skip eigenbasis updates; and (3)
the error in the eigenbasis can be controlled through a threshold τ ∈ [0, 1), quantifying inexactness.

Consider a single Kronecker factor Lt ∈ Rm×m without loss of generality. We want to solve inexactly
for an orthogonal matrix QLt

such that we obtain an approximation to the eigendecomposition Lt =
QLt

ΛLt
Q⊺

Lt
, with the diagonal eigenvalues matrix ΛLt

. If the previous approximate eigenbasis
Q̂Lt−1 is a good approximation to the current eigenbasis QLt , then the approximate eigenvalues
induced by the stale eigenbasis Λ̂Lt

= Q̂⊺
Lt−1

LtQ̂Lt−1
should be nearly diagonal.

We can leverage this observation to define a unified criterion for skipping the eigenbasis computation
and terminating the warm-started QR algorithm. Diagonalizing Λ̂Lt

gives an approximation of Lt,
specifically, L̂t = Q̂Lt−1

diag(Λ̂Lt
)Q̂⊺

Lt−1
.7 We can bound the relative error of this approximation

induced by the stale eigenbasis, or equivalently the relative error in the Frobenius norm of the
off-diagonal entries of Λ̂Lt

, which is cheaper to compute:

Adaptive eigenbasis computation frequency criterion

||Lt − L̂t||F
||Lt||F

=
||Q̂⊺

Lt−1
LtQ̂Lt−1

− diag(Λ̂Lt
)||F

||Q̂⊺
Lt−1

LtQ̂Lt−1
||F

=
||Λ̂Lt

− diag(Λ̂Lt
)||F

||Λ̂Lt
||F

≤ τ. (11)

This condition provides a guarantee of the quality of the eigendecomposition approximation. If the
condition is satisfied, we reuse the previous eigenbasis Q̂Lt

= Q̂Lt−1
; otherwise, we refine it through

the QR algorithm until the criterion is met. A complete pseudocode is provided in Appendix B,
Algorithm 4. Note that evaluating the approximate eigenvalues Λ̂Lt

at the first step requires two
matrix multiplications, which is significantly cheaper than computing a step of the QR algorithm.

7diag(·) takes a vector/matrix and returns a diagonal matrix with the vector/matrix’s diagonal on its diagonal.

7



Table 1: Results on a subset of the AlgoPerf workloads. We show the mean and standard error of the
steps/time to the targets across the runs that reach them. See Appendix E, Table 3 for more results.

Workload Shampoo Variant Hits Target Steps Time [min]

FastMRI
Adam grafting (F = 100) 4/5 4301± 109 13.96± 0.44
CEShampoo (F = 100) 5/5 2536± 66 10.44± 0.21
CEShampoo (τ = 0.1, F = 50) 5/5 2468± 145 10.81± 0.72

ImageNet
ViT

Adam grafting (F = 100) 1/1 79907 894.27
CEShampoo (F = 100) 1/1 76226 894.85
CEShampoo (τ = 0.1, F = 50) 1/1 77459 935.89

OGBG
Adam grafting (F = 100) 2/5 12574± 708 39.20± 1.88
CEShampoo (F = 100) 3/5 8320± 1203 33.02± 4.05
CEShampoo (τ = 0.1, F = 50) 5/5 7117± 328 27.55± 3.49

4.2 Does this adaptivity translate to efficiency gains?

The practical efficiency gains of adaptively controlling the approximation error depend on multiple
factors. First, the efficiency of the QR algorithm is determined by how its computational cost
compares to a standard eigendecomposition, which in turn depends on both the cost of each QR
iteration and the total number of iterations needed to satisfy the threshold τ . Second, evaluating the
criterion adds a small constant overhead independent of the actual frequency of eigendecompositions.

Interestingly, we found that setting a smaller maximum number of QR iterations (I < 10) per step
results in a significant slowdown in wall-clock time, as the total number of QR iterations accumulated
over all training steps is higher than when using a larger maximum (I ≥ 10). However, even with a
larger number of maximum iterations, the QR algorithm was slightly more expensive than computing
eigendecompositions with torch.linalg.eigh (shortened as eigh) whenever Equation (11) does
not hold. The default configuration of SOAP, which computes a single step of the warm-started
simultaneous iteration every 10 steps, was also slightly slower in wall-clock time compared to
adaptively computing eigendecompositions and reaches a worse final loss. This result conflicts with
the observation in Figure 7 in Vyas et al. (2025a), which may be due to differences in the types of
workloads considered; see Figure 3 (left).

Because of this result, we primarily leverage the criterion for determining the frequency of calling
eigh. To further bound the total possible number of eigendecompositions performed over the course
of training, we evaluate the criterion at a fixed frequency F as opposed to every step. We ablate
different choices of F and τ in Figure 3 (right). We compare against the baseline setting of the
winning AlgoPerf submission, which re-computes the eigendecomposition of all factor matrices every
100 steps on the Imagewoof ViT problem. We observe that this setting without adaptivity requires
20% more wall-clock time compared to an adaptive setting (τ = 0.1, F = 50).

To test whether the results generalize to other problems, we consider a subset of the AlgoPerf
workloads and compare the winning Shampoo submission with Adam grafting to: (1) EShampoo
with the same fixed eigenbasis computation frequency of F = 100; and (2) EShampoo with τ = 0.1
and F = 50; see Table 1. First, as predicted by Section 3, EShampoo with the fixed eigenbasis update
frequency matches or outperforms Shampoo with Adam grafting in steps and wall-clock time, using
the same hyperparameters. Second, using the adaptive criterion with τ = 0.1 and F = 50 matches
the fixed frequency F = 100 for the FastMRI and OGBG workloads, and does slightly worse for
ImageNet ViT. We also present results with other fixed and adaptive frequencies in Appendix E,
Table 3. Overall, we find that the performance on the considered problems is quite robust to the
eigenbasis computation frequency (c.f. Appendix E, Table 3). We expect that when Shampoo’s
convergence benefits from more frequent eigenbasis updates, adaptively determining the frequency
can result in higher efficiency.

4.3 What patterns of adaptivity emerge?

The criterion in Equation (11) also provides insight into how rapidly the eigenbasis changes for
different parameter types. On Imagewoof ViT, we set τ = 0.1 and check the criterion at every
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and layer normalization parameters are changing faster than for weight matrices and linear layers,
respectively.

step (F = 1); see Figure 4. We observe more frequent eigendecomposition computations early in
training that trend towards a constant update frequency at the end of training. When comparing
different parameter types, we find that the eigenbases of preconditioners for bias terms evolve more
rapidly than those for weights. Similarly, layer normalization parameters require almost 4× as many
eigenbasis updates as linear layer parameters.

We also compare the number of eigendecompositions across the two Kronecker factors Lt and Rt for
weight matrices, and At for biases and layer normalization parameters.8 The eigenbases of At are
updated most frequently, followed by Lt, then Rt. The same trend holds when removing learnable
layer norm parameters and for ConvNeXt V2 trained on the same dataset (c.f. Appendix E, Figure 7).
A similar analysis for a Llama 3 model with 324 million parameters trained on 3.2 billion tokens of
C4 data reveals a different trend, namely, Lt evolves faster than Rt and At, which correspond to
RMS normalization parameters (c.f. Appendix E, Figure 8).

4.4 How does the error induced by the eigenbasis affect convergence?

While we have focused on controlling the error induced by the preconditioner’s stale eigenbasis, our
primary concern is its effect on convergence, rather than the error itself. In the Imagewoof ViT setting,
we find that the approximation quality (determined by τ ) during early iterations is far more critical
than during later iterations; see Figure 5 (left). Specifically, setting τ = 0.8 for the first 90% and
τ = 0.01 for the last 10% of iterations yields a final loss nearly identical to using τ = 0.8 throughout
all of training (≈ 0.09 − 0.1). In contrast, setting τ = 0.01 for the first 10% and τ = 0.8 for the
remaining 90% of iterations leads to a significantly better final loss (≈ 0.04).

Remarkably, freezing the eigenbasis after the first iteration (by setting τ = 0.99 for all of training)
still significantly outperforms AdamW (≈ 0.12 vs. 0.3).9 This highlights that frequent eigenbasis
computations are most beneficial early in training, consistent with previous observations on Shampoo,
PSGD, and SOAP (Ishikawa & Yokota, 2024; Walters et al., 2025; Nestler, 2025; Vyas et al., 2025b).

To further investigate the discrepancy in the rate of change in the eigenbases corresponding to 1D
and 2D parameters (c.f. Figure 4, right), we compare an Imagewoof ViT run with τ = 0.01 for 2D
parameters and no change of basis, i.e. Adam, for 1D parameters and vice versa. Surprisingly, using
Adam for 1D parameters does not affect Shampoo’s convergence or final loss. Conversely, running
Adam for 2D parameters and changing the basis according to τ = 0.01 for 1D parameters closely
matches Adam’s convergence and final loss; see Figure 5 (right).

8Full-matrix Adam is also used for weight matrices Wt ∈ Rm×n with mn ≤ max_preconditioner_dim,
which is a hyperparameter to control the largest possible dimension of the preconditioner.

9For 5 out of 172 Kronecker factors, the eigenbasis is computed twice instead of just once.
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Given that 45% of the preconditioner matrices correspond to 1D parameters and their eigenbases
change more rapidly, this suggests that many eigendecompositions are not needed at all. For example,
using τ = 0.01 for all parameters increases runtime by 2.9× compared to only applying EShampoo
to 2D parameters and Adam to 1D parameters, with no improvement in final loss. In practice, SOAP
already uses Adam for 1D parameters in order to reduce its computational and memory overhead
(Vyas et al., 2025a).

5 Discussion and conclusion

In this paper, we demonstrate that frequently updating the eigenvalues while periodically updating
the eigenbasis of Shampoo’s preconditioner provides a principled and practical approach for elim-
inating grafting. It remains an open question whether the same correction applies directly to the
AdaGrad summation, or if a more sophisticated, basis-aware eigenvalue correction is needed (c.f.
Appendix D.2). We also show how controlling the approximation error induced by the stale eigen-
basis can improve efficiency. In order to determine the eigenbasis computation frequency in a truly
problem-agnostic manner, we must understand how approximation error impacts convergence, as
well as integrate systems-level considerations, such as batched kernel efficiency, into our algorithmic
design. Further exploration is needed to understand how these trade-offs and techniques scale to
larger models, such as large language models. While our work focuses on Shampoo, the ideas are not
limited to the AdaGrad family, and can be adapted to other methods such as K-FAC and TNT.

From a theoretical perspective, a major open question is how to incorporate approximation quality
into regret bounds for Shampoo (c.f. Appendix D.1). Finally, while we have implicitly treated
full-matrix Adam as the right algorithm to approximate, alternative interpretations of Shampoo may
better explain Shampoo’s effectiveness in practice (Carlson et al., 2015a,b; Benzing, 2022; Bernstein
& Newhouse, 2024; Maes et al., 2024; Pethick et al., 2025; Zhang et al., 2025a; Xie et al., 2025).
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Table 2: Shampoo variants and their properties.

Shampoo
variant

Justified from
approximation

perspective

Matches grafting
in steps

Matches grafting
in compute & memory

Learning rate
transfer

grafting (Adam) ✗ ✓ ✓ ✓
CShampoo ✗ ✗ ✗ ✗

S−1CShampoo2 ✓ ✓ ✗ ?
CEShampoo ✓ ✓ ✓ ✓

A Connecting full-matrix AdaGrad to the Fisher

We can also consider a more general class of preconditioned stochastic gradient methods with other
choices of Ct and p > 0 that update the parameters at each iteration t by Equation (2). For example,
one could choose Ct as approximations of the Hessian∇2L(θ) via subsampling or secant approxima-
tion with p = 1, which yields the class of stochastic Newton or quasi-Newton methods (Keskar & Be-
rahas, 2016; Bollapragada et al., 2018; Berahas et al., 2020; Goldfarb et al., 2020). Another common
choice is the Fisher information matrix Ft = Eŷ∼fθ(x),x∼pD(x)

[
∇θℓ(fθ(x), ŷ)∇θℓ(fθ(x), ŷ)

⊺],
which yields the natural gradient or, for common loss functions, generalized Gauss-Newton method
with p = 1 (Amari, 1998; Martens, 2014). A summary of different methods is provided in Bottou
et al. (2018).

By instead summing over per-sample gradient outer products, Ât can be connected to the empirical
Fisher. In general, the empirical Fisher is not expected to be a good approximation of the Fisher
information matrix (Kunstner et al., 2019). However, by replacing the accumulation with an expec-
tation over the conditional distribution given by the model fθ, full-matrix AdaGrad can be made
equivalent to the Fisher. This equivalence reveals a natural extension of Shampoo to approximate the
Fisher, called Tensor Normal Training (Ren & Goldfarb, 2021, TNT), and is closely related to the
K-FAC preconditioner (Anil et al., 2020). In fact, both approximations are exactly equivalent to the
(block-diagonal) Fisher for simple cases such as deep linear networks (also with weight sharing) and
mean squared error loss (Bernacchia et al., 2018; Eschenhagen et al., 2023; Morwani et al., 2025).
The modifications in TNT deviate from the original Shampoo update (Gupta et al., 2018) because it
was motivated by upper bounds to full-matrix AdaGrad in its non-smooth, convex regret analysis,
rather than this Fisher approximation perspective.

B Algorithms pseudocode

In this section, we provide the pseudocode for all algorithms, including idealized (Algorithm 1) and
practical (Algorithm 2) eigenvalue-corrected Shampoo, Shampoo with Adam grafting (Algorithm 3),
and the adaptive warm-started QR algorithm (Algorithm 4). Algorithm 1 and Algorithm 3 present
simplified versions of the algorithm ignoring common modifications like momentum or an exponential
moving average over the stochastic gradient, bias corrections, and weight decay.

Note that different instances of eigenvalue-corrected Shampoo can be employed by changing the
exponential moving average in Equation (12), eigenbasis computation in Equation (13), or eigenvalue
correction update in Equation (14). SOAP delays the update of the eigenbasis until after the update
step, approximates the eigenvalue correction (Equation (14)) by

Dt = β2Dt−1 + (1− β2)G̃
⊙2
t , (19)

and uses a single iteration of the warm-started simultaneous iteration. Additionally, there is a
discrepancy between the SOAP algorithm presented in the paper and the official implementation:
in the paper, the exponential moving average of the gradient Gt is used (line 4 of Algorithm 3 in
Vyas et al. (2025a)), whereas the implementation computes the exponential moving average over the
rotated gradient G̃t.10 This can be interpreted as running Adam in Shampoo’s eigenspace, which
shares similarities to the GaLore algorithm (Zhao et al., 2024; Su et al., 2025).

10See https://github.com/nikhilvyas/SOAP/blob/f42d296cb4146a67fbe811371e6badb9a39cc54d/
soap.py#L167.
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Algorithm 1 Idealized eigenvalue-corrected Shampoo pseudocode

Require: Parameter W1 ∈ Rm×n, learning rate αt > 0, ϵ > 0.
1: Initialize L0 = 0 ∈ Rm×m, R0 = 0 ∈ Rn×n, and D = 0 ∈ Rm×n.
2: for t = 1, ..., T do
3: Compute (mini-batch) stochastic gradient: Gt = ∇θℓ(fθt

(x),y).
4: Update factor matrices:

Lt = β2Lt−1 + (1− β2)GtG
⊺
t , Rt = β2Rt−1 + (1− β2)G

⊺
tGt. (12)

5: Compute orthonormal eigenbasis of the factor matrices:

QLt
= eigvec(Lt), QRt

= eigvec(Rt). (13)

6: Transform gradient basis: G̃t = Q⊺
Lt
GtQRt .

7: Compute or update eigenvalue correction:

D∗
t = argmin

D∈Rm×n

∥At − (QRt ⊗QLt) diag(vec(D))(QRt ⊗QLt)∥F . (14)

8: Compute update: Wt+1 = Wt − αtQLt(G̃t ⊘ (
√

D∗
t + ϵ11⊺))QRt .

9: end for

Algorithm 2 EShampoo pseudocode (as implemented for the experiments)

Require: Parameter W1 ∈ Rm×n, learning rate αt > 0, ϵ > 0, β1, β2 ∈ [0, 1), weight decay
λ ≥ 0, eigenbasis computation frequency F ∈ N, and threshold τ ∈ [0, 1] for Equation (11) and
Algorithm 4.

1: Initialize M0 = 0 ∈ Rm×n,L0 = 0 ∈ Rm×m, R0 = 0 ∈ Rn×n,QL0
= Im,QR0

= In, and
D0 = 0 ∈ Rm×n.

2: for t = 1, ..., T do
3: Compute (mini-batch) stochastic gradient: Gt = ∇θℓ(fθt(x),y).
4: Compute exponential moving average of the gradient: Mt = β1Mt−1 + (1− β1)Gt.
5: Update factor matrices:

Lt = β2Lt−1 + (1− β2)GtG
⊺
t , Rt = β2Rt−1 + (1− β2)G

⊺
tGt. (15)

6: if t mod F = 0 and Equation (11) then
7: Compute eigenbasis of factor matrices (e.g. with torch.linalg.eigh or Algorithm 4):

QLt
= eigvec(Lt/(1− βt

2)), QRt
= eigvec(Rt/(1− βt

2)). (16)

8: else
QLt = QLt−1 , QRt = QRt−1 . (17)

9: end if
10: Transform gradient basis: G̃t = Q⊺

Lt
GtQRt

.
11: Compute or update eigenvalue correction: Dt = β2Dt−1 + (1− β2)G̃

⊙2
t .

12: Perform bias correction:

M̃t = Mt/(1− βt
1), D̃t = Dt/(1− βt

2).

13: Compute parameter update:

Wt+1 = Wt − αt

(
QLt

(
Q

⊺
Lt
M̃tQRt ⊘

(√
D̃t + ϵ11

⊺
))

Q
⊺
Rt

+ λWt

)
. (18)

14: end for
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Algorithm 3 Shampoo with Adam grafting pseudocode

Require: Parameter W1 ∈ Rm×n, learning rate αt > 0, exponential moving average constant
β2 ∈ (0, 1), ϵ > 0.

1: Initialize L0 = 0 ∈ Rm×m, R0 = 0 ∈ Rn×n, and D = 0 ∈ Rm×n.
2: for t = 1, ..., T do
3: Compute (mini-batch) stochastic gradient: Gt = ∇θℓ(fθt

(x),y).
4: Update factor matrices:

Lt = β2Lt−1 + (1− β2)GtG
⊺
t , Rt = β2Rt−1 + (1− β2)G

⊺
tGt.

5: Update Adam grafting state: Dt = β2Dt−1 + (1− β2)G
⊙2
t .

6: Compute matrix root inverse of the factor matrices:

L
−1/4
t = rootinv(Lt), R

−1/4
t = rootinv(Rt).

7: Compute update: Wt+1 = Wt − αt
∥−Gt⊘(

√
Dt+ϵ11T )∥F

∥−L
−1/4
t GR

−1/4
t ∥F

L
−1/4
t GtR

−1/4
t .

8: end for

Algorithm 4 Warm-started QR iteration with relative error termination criterion.

Require: Matrix L = Lt, previous eigenbasis Q̂ = Q̂Lt−1
, relative tolerance τ ∈ [0, 1), maximum

number of iterations I .
1: i← 0
2: Λ̂← Q̂⊺LQ̂
3: while ∥Λ̂− diag(Λ̂)∥F ≤ τ∥Λ̂∥F and i < I do
4: Q,R← QR(Λ̂)

5: Λ̂← RQ
6: Q̂← Q̂Q
7: i← i+ 1
8: end while
9: return Q̂, Λ̂

In contrast, our implementation of EShampoo does not delay the update of the preconditioner, uses
the same approximation of the eigenvalue correction as SOAP, uses torch.linalg.eigh for the
eigendecomposition (unless indicated otherwise), and computes the exponential moving average over
the gradient Gt. Both algorithms use bias corrections and (decoupled) weight decay. We provide the
pseudocode for EShampoo as it was implemented for our experiments in Algorithm 2. If F ̸= 1, the
algorithm reduces to AdamW until iteration t = F .

While we do not present experimental results here, Algorithm 4 or Equation (11) for eigh can also
be used in Shampoo without an eigenvalue correction. This implementation stores the previous
eigendecomposition of the Kronecker factors instead of the previous root-inverse Kronecker fac-
tors. When we skip an eigendecomposition, we maintain the previous eigenbasis and replace the
previous eigenvalues with the estimated eigenvalues diag(Λ̂Lt

) = diag(Q⊺
Lt−1

LtQLt−1
) used in

Equation (11). Alternatively, one can compute an exponential moving average over these estimated
eigenvalues as done in KL-Shampoo (Lin et al., 2025), which also removes the need for grafting like
the eigenvalue correction in SOAP and EShampoo (c.f. Section 3).

C Proofs

Lemma 1. Let U = QL(D
⊙−p ⊙ (Q⊺

LGQR))Q⊺
R ∈ Rm×n be the generalized eigendecomposed

Kronecker-factored update given by orthogonal matrices QL ∈ Rm×m, QR ∈ Rn×n, and dense
scaling matrix D ∈ Rm×n. Then we have:

(max
i,j

Di,j)
−p||G||F ≤ ||U ||F ≤ (min

i,j
Di,j)

−p||G||F . (20)
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Proof. Since the Frobenius norm of a matrix is invariant to orthogonal transformations and the entries
of D are bounded, i.e., mini,j Di,j ≤Di,j ≤ maxi,j Di,j , we can show that

∥U∥F = ∥QL(D
⊙−p ⊙ (Q

⊺
LGQR))Q

⊺
R∥F

= ∥D⊙−p ⊙ (Q
⊺
LGQR))∥F

∈ [(max
i,j

Di,j)
−p, (min

i,j
Di,j)

−p] · ∥Q⊺
LGQR∥F

∈ [(max
i,j

Di,j)
−p, (min

i,j
Di,j)

−p] · ∥G∥F .

Proposition 1. Assume that E[gg⊺] is symmetric positive definite. The magnitude of the updates for
full-matrix Adam, diagonal Adam, and eigenvalue-corrected Shampoo are all bounded by the power
of the extreme eigenvalues of full-matrix Adam:

λmax(E[gg
⊺
])−p∥G∥F ≤ ∥U∥F ≤ λmin(E[gg

⊺
])−p∥G∥F , (21)

for all p > 0. However, under the simplifying assumption that E[G] = 0 and Gi,j is independent from
Gk,l for (i, j) ̸= (k, l) and has bounded second moment, λmin(E[gg⊺]) ≤ E[G2

i,j ] ≤ λmax(E[gg⊺])
and Shampoo has dimension-dependent bounds:

m−p/2n−p/2λmax(E[gg
⊺
])−p∥G∥F ≤ ∥U∥F ≤ m−p/2n−p/2λmin(E[gg

⊺
])−p∥G∥F . (22)

Proof. Note that Equation (21) holds for full-matrix Adam since ∥U∥F = ∥u∥2 = ∥E[gg⊺]−pg∥2 ∈
[λmax(E[gg⊺])−p, λmin(E[gg⊺])−p] · ∥g∥2, where u = vec(U) and g = vec(G).

For diagonal Adam and eigenvalue-corrected Shampoo, it is sufficient to show that λmin(E[gg⊺]) ≤
Di,j ≤ λmax(E[gg⊺]) for all i, j and apply Lemma 1. To see this, note that Di,j can be represented
by a Rayleigh quotient, i.e.,

Di,j = E[G2
i,j ] = e

⊺
i,jE[gg

⊺
]ei,j (Adam)

Di,j = E[(Q⊺
LGQR)

2
i,j ] = e

⊺
i,j(QR ⊗QL)

⊺E[ggT ](QR ⊗QL)ei,j (EShampoo)

where ei,j = vecEi,j ∈ Rmn and Ei,j ∈ Rm×n with

(Ei,j)k,l =

{
1 if (k, l) = (i, j)

0 otherwise.

Since ∥ei,j∥2 = ∥(QR ⊗QL)ei,j∥2 = 1, the desired bound by the extreme eigenvalues follows
from the Courant–Fischer–Weyl min-max theorem.

To prove Equation (22), observe that under independence between components of the gradient Gi,j ,
the preconditioner for full-matrix Adam E[gg⊺] is a diagonal matrix whose diagonal entries consist
of E[G2

i,j ] for all i, j. Hence, E[G2
i,j ] is bounded by the minimum and maximum eigenvalues, i.e.,

E[G2
i,j ] ∈

[
λmin(E[gg⊺]), λmax(E[gg⊺])

]
.

Due to independence, E[GG⊺] and E[G⊺G] are also diagonal. Expanding their diagonal entries
gives

(E[GG
⊺
])i,i =

n∑
j=1

E[G2
i,j ] ∈ n ·

[
λmin(E[gg

⊺
]), λmax(E[gg

⊺
])
]

∀ i = 1, ...,m,

(E[G⊺
G])j,j =

m∑
i=1

E[G2
i,j ] ∈ m ·

[
λmin(E[gg

⊺
]), λmax(E[gg

⊺
])
]

∀ j = 1, ..., n.

Therefore, the Shampoo preconditioner (E[GG⊺]⊗ E[G⊺G])1/2 is also diagonal with eigenvalues
lying in the interval

[
m1/2n1/2λmin(E[gg⊺]),m1/2n1/2λmax(E[gg⊺])

]
. The desired result follows.

Note that more general bounds can be derived by relaxing the assumption E[G] = 0, although the
bounds are more complex and are not more conceptually informative.
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D On the gap between the optimal and practical eigenvalue correction

Eigenvalue-corrected Shampoo shares similarities with memory-efficient optimizers such as GaLore,
which apply Adam in a low-dimensional subspace spanned by the largest singular vectors of the
gradient matrix (Zhao et al., 2024; Su et al., 2025). However, GaLore relies on the assumption that
the gradient resides in a low-rank subspace that evolves gradually, allowing the same optimizer state
to be used even as the subspace is updated. A recent method called LDAdam proposed by Robert
et al. (2024) describes a projection-aware method that corrects the scaling matrix through both a
projection-aware update and generalized error feedback mechanism when transitioning between
subspaces to address this issue. We will see that the naive eigenvalue correction as used in SOAP
suffers from similar limitations.

D.1 Optimal eigenvalue correction in Frobenius norm

Note that we can determine the optimal eigenvalue correction by minimizing its Frobenius norm
approximation to full-matrix AdaGrad or Adam:
Proposition 2. Given symmetric matrix C ∈ Rd×d and orthogonal matrix Q ∈ Rd×d, the optimal
eigenvalue correction D∗ that minimizes the Frobenius norm distance is given by:

D∗ := diag(Q
⊺
CQ) ∈ arg min

D∈Dd
||C −QDQ

⊺||F.11 (23)

The exact expression for D∗ depends on the form of accumulation used for computing C; note that
the damping term is omitted here since it does not change the optimal solution. T denotes the current
iteration.

1. (Idealized) If C = E [gg⊺], then D∗ = E
[
diag(Q⊺g)⊙2

]
(George et al., 2018).

2. (AdaGrad) If C =
∑T

t=1 gtg
⊺
t , then D∗

T =
∑T

t=1 diag(Q
⊺
Tgt)

⊙2.

3. (Adam) If C = (1−β2)
∑T

t=1 β
T−t
2 gtg

⊺
t , then D∗

T = (1−β2)
∑T

t=1 β
T−t
2 diag(Q⊺

Tgt)
⊙2.

Note that C can be generated recursively via an exponential moving average CT =
β2CT−1 + (1− β2)gTg

⊺
T with C0 = 0 ∈ Rmn×mn.

Proof. (Informal.) Since Q is orthogonal, ∥C −QDQ⊺∥F = ∥Q⊺CQ−D∥F , with D diagonal.
Therefore, the optimal solution has the form D∗ = diag(Q⊺CQ). Each case then follows by
observing that C is the expectation or weighted sum of gg⊺, and passing Q into the sum or expectation.

While D∗ is optimal in this sense, it does not guarantee anything regarding the similarity of the (root)
inverse of the approximation. Using Proposition 2, we can establish the following corollary.
Corollary 1. The optimal eigenvalue correction yields a tighter Frobenius norm approximation than
Shampoo and CASPR, i.e.,

||C −QD∗Q⊺||F ≤ min{||C −CShampoo||F, ||C −CCASPR||F},
where CCASPR is the preconditioner used by the CASPR algorithm (Duvvuri et al., 2024).

Proof. (Informal.) The first inequality trivially follows from Proposition 2 since by definition the
eigenvectors of Shampoo are equal to Q = (QR ⊗ QL)

⊺. The second inequality follows from
Proposition 2 together with Lemma 3.4 in Duvvuri et al. (2024), which states that the eigenvectors of
CShampoo and CCASPR are identical.

This means that using the optimal eigenvalue correction (with respect to Frobenius norm approxima-
tion) yields a tighter approximation to the full-matrix quantity compared to Shampoo or CASPR. A
remaining open theoretical question is whether a tighter Frobenius norm approximation can yield
a tighter regret bound compared to Shampoo and CASPR. For example, one can obtain a tighter
regret bound than Shampoo by only considering one-sided Shampoo, which is not generally a better
approximation to full-matrix AdaGrad (Xie et al., 2025; An et al., 2025).

11Dd denotes the set of d× d diagonal matrices.
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Figure 6: Decoupling the exponential moving average for the eigenbasis (β2) and eigenvalues (β3)
for different eigendecomposition frequencies (F ). We can observe a remarkable invariance to the
choice of β2 and β3. Interestingly, the correction for the change of bases seems to hurt performance
overall and especially for low β2, high β3, and low F values – a pattern that we might expect without
the correction.

D.2 Basis-aware eigenvalue correction

Despite its optimality, computing D∗ for cases 2 and 3 in Proposition 2 is not feasible in practice
since we would have to store and transform prior gradients from all previous iterations with QT , or
have access to the full-matrix quantity CT . For simplicity, we will focus on case 3, although the
results generalize without loss of generality.12 In contrast to the optimal eigenvalue correction, which
uses a fixed basis matrix QT based on the most recent statistics LT and RT , SOAP uses potentially
different basis matrices Qt based on previous statistics Lt and Rt available at every step t = 1, ..., T :

D∗ = (1− β2)

T∑
t=1

βT−t
2 diag

(
Q

⊺
Tgt
)⊙2 ≈ (1− β2)

T∑
t=1

βT−t
2 diag

(
Q

⊺
t gt
)⊙2

=: D̂T . (24)

Intuitively, this means that the eigenvalue correction is accumulated inconsistently across different
coordinate systems. This can lead to a mismatch when preconditioning GT , which is only transformed
to the current coordinate system determined by QT . When the basis remains approximately constant,
i.e., QT ≈ Qt for all t, Equation (24) can be a tight approximation and D∗ ≈DT .

The naive eigenvalue correction may be approximately correct when the basis is updated infrequently,
but this can be a poor approximation if Q does not approximate the changing eigenbasis of C, thereby
increasing the approximation error. For case 3, the approximation becomes potentially milder because
the terms in the sum in Equation (24) are down-weighted by βT−t

2 through the exponential moving
average. Therefore, depending on β2, the contribution from the eigenvalue correction statistic in
previous coordinate systems might be negligible. However, this is not the case for case 2, where all
terms are weighted equally.

12To address case 2, simply drop 1− β2 and βT−t
2 .
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In order to address the theory-practice gap between the naive eigenvalue correction (used in SOAP
and EShampoo) and the optimal correction in Frobenius norm, we first observe that

D∗ = (1− β2)

T∑
t=1

βT−t
2 diag

(
Q

⊺
gt
)⊙2

= (1− β2)

T∑
t=1

βT−t
2 diag

(
Q

⊺
Tgtg

⊺
t QT

)
= diag

(
Q

⊺
T

(
(1− β2)

T∑
t=1

βT−t
2 gtg

⊺
t

)
QT

)
= diag

(
Q

⊺
TCTQT

)
=: diag

(
ĈT

)
.

(25)

Since QT is orthogonal, we can recursively write

D∗ = diag
(
ĈT

)
= diag

(
Q

⊺
T

(
β2CT−1 + (1− β2)gTg

⊺
T

)
QT

)
= diag

(
β2Q

⊺
TCT−1QT + (1− β2)Q

⊺
Tgtg

⊺
t QT

)
= diag

(
β2Q

⊺
TQT−1ĈT−1Q

⊺
T−1QT + (1− β2)Q

⊺
TgTg

⊺
TQT

)
= β2 diag

(
RT,T−1ĈT−1R

⊺
T,T−1

)
+ (1− β2) diag

(
Q

⊺
TgT

)⊙2
,

(26)

where RT,T−1 := Q⊺
TQT−1 is the transition matrix between different bases.

While this is the exact expression for our desired quantity, it requires keeping track of the full
matrix ĈT−1 to compute diag(RT,T−1ĈT−1R

⊺
T,T−1), which is not tractable. Since we explicitly

construct QT−1 to be close to the best Kronecker-factored basis for CT−1 through the choice of the
Shampoo preconditioner with LT−1 and RT−1, we make the additional assumption that ĈT−1 is
approximately diagonal, i.e., ĈT−1 ≈ diag(ĈT−1) = diag(vcorrected

T−1 ).

Substituting this back into the recursive equation above, we have that

D∗ = diag
(
ĈT

)
≈ β2 diag

(
RT,T−1 diag

(
vcorrected
T−1

)
R

⊺
T,T−1

)
+ (1− β2) diag

(
Q

⊺
TgT

)⊙2

= β2 diag
(
R⊙2

T,T−1v
corrected
T−1

)
+ (1− β2) diag

(
Q

⊺
TgT

)⊙2

= diag
(
vcorrected
T

)
.

(27)

This gives a recursive update rule that, in contrast to the naive solution, accounts for the changes
of bases between iterations. This also recovers the exact solution when QT = Qt for all t since
Rt,t−1 = I. This correction for the changing basis has a similar motivation to and resembles parts of
the LDAdam algorithm (Robert et al., 2024).

We design an experiment to empirically test whether the implicit approximation in Equation (24)
helps in practice, and find that interestingly, the correction appears to hurt performance in the settings
where we would expect it to help, see Figure 6. A satisfying explanation of this phenomenon remains
an open question.

E Additional experimental details and results

For all experiments we used 1× NVIDIA A100 80GB GPU per run, with the exception of the
ImageNet ViT experiments, for which we used 4× NVIDIA A100 80GB GPUs per run. All of the
experiments were conducted on an internal compute cluster and we estimate that the total required
compute was around 1440 GPU hours or 60 days. We ran additional exploratory experiments not
reported in this paper which increases the total compute cost of the project. The implementation of
EShampoo and all other Shampoo variants considered here including Algorithm 4 and Equation (11)
for eigh is available at https://github.com/facebookresearch/optimizers.
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Figure 7: Same setting as in Figure 4. (left) When removing all learnable layer norm parameters
from the ViT, the number of eigendecompositions for Lt and Rt remain approximately unchanged
and no compensation appears to be happening. (right) With a ConvNeXt V2 architecture instead of
the ViT, the overall pattern is similar, but with a more pronounced discrepancy between Lt and Rt.

E.1 Imagewoof experimental details

We use the Imagewoof dataset.13 All models are trained with cross entropy loss for 100 epochs, using
a learning rate schedule consisting of a linear warmup for 353 steps followed by cosine decay. We use
a batch size of 128, randomized cropping and horizontal flips as data augmentation, and the default
settings for β1 = 0.9 and β2 = 0.999. For EShampoo in Figure 3, Figure 4, and Figure 5 we use the
learning rate α = 6 · 10−4 and ϵ = 10−10.

For the vision transformer (ViT) model, we use SimpleViT (Beyer et al., 2022) with patch size 16, 6
heads, a depth of 12 layers, an MLP dimension of 1536, dimension of 384, gradient clipping with
threshold 1, and weight decay of 10−4. For the ConvNeXt V2 architecture (Woo et al., 2023) we use
weight decay of 0.05 and drop paths with rate 0.1.

For Figure 2, we fix ϵ = 10−10 and sweep the following learning rates α:14

• Vision transformer
– AdamW: α ∈ {10−4, 3 · 10−4, 6 · 10−4, 10−3, 3 · 10−3, 6 · 10−3, 10−2}
– Shampoo with grafting: α ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3}
– Shampoo: α ∈ {3 · 10−3, 6 · 10−3, 10−2, 3 · 10−3}
– Shampoo2 with trace scaling: α ∈ {10−4, 3 · 10−4, 6 · 10−4, 3 · 10−3}
– EShampoo: α ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3}

• ConvNeXt V2
– AdamW: α ∈ {10−4, 3 · 10−4, 6 · 10−4, 10−3, 3 · 10−3, 6 · 10−3, 10−2}
– Shampoo with grafting: α ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2}
– Shampoo: α ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3}
– Shampoo2 with trace scaling: α ∈ {10−4, 3 · 10−4, 10−3}
– EShampoo: α ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2}

13The Imagewoof dataset is available at https://github.com/fastai/imagenette.
14We fixed ϵ based on a wide sweep over α and ϵ for AdamW. We also use this ϵ when grafting from Adam.
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Figure 8: Llama 3 (324M) trained on 3.2B tokens of C4 data with EShampoo (F = 1, τ = 0.01).
The eigenbases for Lt are also in this setting consistently updated more frequently than for Rt, with
the exception of the embedding. The eigenbases of At are less frequently updated than of Lt, in
contrast to the Imagewoof experiments. There appears to be no difference in the pattern for weight
matrices within the attention mechanisms and the MLPs.

E.2 More patterns of adaptivity

To test the generality of the trends described in Section 4.3, we perform the same experiment under a
few additional settings.

In Figure 7, we remove all learnable layer norm parameters from the vision transformer and consider
the ConvNeXt V2 model trained on the same dataset (Imagewoof). The overall pattern is consistent
across all architectures. When removing the learnable layer norm parameters from the vision
transformer, the number of eigendecompositions for Lt and Rt stays roughly constant (compare
Figure 4 (right) with Figure 7 (left)). For the ConvNeXt V2 architecture, the discrepancy between the
required updates for Lt and Rt is even more pronounced: on average, the eigenbases of Lt has to be
updated significantly more frequently than for Rt.

To expand beyond the vision modality and cover class imbalance, we also train a Llama 3 model with
324 million parameters on 3.2 billion tokens of the C4 dataset and conduct a similar analysis (Raffel
et al., 2023; Grattafiori et al., 2024). We use EShampoo with F = 1 and τ = 0.01.

In Figure 8 (left), we compute mean and standard errors across all (single) Kronecker factors At for
RMS normalization parameters and all Kronecker factors Lt and Rt for linear layers and embedding
blocks at every iteration. There are no bias parameters in this particular model. Consistent with
the experiments in the vision setting, Lt is updated more frequently than Rt, with Lt updated at
almost every iteration, whereas Rt updated every other iteration. Unlike the vision setting, the
Kronecker factors for the normalization layers At are initially updated at a similar frequency to Lt,
but diminishes after the first 25% of iterations until it is closer to, but still higher than, the update
frequency for Rt. The standard error for At is also larger than for Lt and Rt.

In Figure 8 (middle), we consider two subsets of the hidden layers: the four weight matrices in the
attention mechanism in each transformer block and the three weight matrices in the MLP in each
transformer block. We compute the statistics across all weight matrices for each subset of the hidden
weight matrices. There appears to be no significant difference in the number of eigendecompositions
across steps between the two subsets of the weights.

In Figure 8 (right), we consider the input embedding layer and the last output layer. Due to the large
vocabulary size, the gradients for these two layers are blocked such that no block has a dimension
larger than 8192. Then we precondition each gradient block as usual with Lt and Rt. Here, we
compute the statistics across all of these blocks. The trend for the last layer is consistent with all
other linear layers in our experiments. However, the eigendecomposition frequency of Lt and Rt for
embeddings are almost identical.
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Table 3: Results for all considered settings on a subset of the AlgoPerf workloads. We show the mean
and standard error of the steps and time to the targets across the runs that actually hit the targets.

Workload Shampoo Variant Hits Targets Steps Time [min]

FastMRI

Adam grafting (F = 100) 4/5 4301± 109 13.96± 0.44
CEShampoo (F = 100) 5/5 2536± 66 10.44± 0.21
CEShampoo (F = 50) 5/5 2578± 86 10.86± 0.27
CEShampoo (F = 10) 5/5 2311± 73 14.93± 1.97
CEShampoo (F = 1) 5/5 2101± 31 35.34± 0.70
CEShampoo (τ = 0.1, F = 100) 5/5 2553± 154 16.33± 2.1017

CEShampoo (τ = 0.1, F = 50) 5/5 2468± 145 10.81± 0.72
CEShampoo (τ = 0.1, F = 10) 5/5 2420± 92 10.76± 0.73
CEShampoo (τ = 0.1, F = 1) 5/5 2367± 96 10.93± 0.42
CEShampoo (τ = 0.01, F = 1) 5/5 2208± 41 27.43± 0.49

ImageNet
ViT

Adam grafting (F = 100) 1/1 79907 894.27
CEShampoo (F = 100) 1/1 76226 894.85
CEShampoo (F = 10) 1/1 73237 1160.53
CEShampoo (τ = 0.1, F = 100) 1/1 74010 852.66
CEShampoo (τ = 0.1, F = 50) 1/1 77459 935.89
CEShampoo (τ = 0.01, F = 10) 1/1 75841 1188.76

OGBG

Adam grafting (F = 100) 2/5 12574± 708 39.20± 1.88
CEShampoo (F = 100) 3/5 8320± 1203 33.02± 4.05
CEShampoo (F = 50) 5/5 7173± 443 26.17± 1.31
CEShampoo (F = 10) 3/5 6645± 357 37.55± 1.74
CEShampoo (F = 1)18 − − −
CEShampoo (τ = 0.1, F = 100) 4/5 8047± 369 27.60± 1.15
CEShampoo (τ = 0.1, F = 50) 5/5 7117± 328 27.55± 3.49
CEShampoo (τ = 0.1, F = 10) 5/5 7151± 416 29.11± 1.98
CEShampoo (τ = 0.1, F = 1) 5/5 6758± 273 34.16± 1.65
CEShampoo (τ = 0.01, F = 10) 2/5 7234± 361 39.15± 2.01

E.3 AlgoPerf workloads

We follow the standard AlgoPerf setup and consider wall-clock time to pre-specified validation
metric targets. See Dahl et al. (2023) and Kasimbeg et al. (2025) for more details on the AlgoPerf
benchmark.15 The FastMRI dataset can be attributed to Knoll et al. (2020); Zbontar et al. (2019), the
ImageNet dataset to Krizhevsky et al. (2012), and the OGBG dataset to Hu et al. (2021).

We choose this specific subset of the workloads because (1) we want to include a larger scale vision
transformer (ImageNet ViT), an architecture we use in the small-scale experiments, (2) the FastMRI
and OGBG workloads share the same hyperparameter settings with the Imagenet ViT workload,
hence excluding them as a confounding factor, and (3) the β2 used for these workloads is the smallest
among all hyperparameter settings of the winning Shampoo submission, resulting in the fastest
moving average and thereby potentially faster changing eigenbases.

We run the winning Shampoo submission with Adam grafting, F = 100, and the best hyperparameter
setting for each workload.16 For EShampoo, we use the same best-performing hyperparameter setting
from Shampoo but turn off learning rate grafting from Adam, and modify F and τ .

15The benchmark code is available at https://github.com/mlcommons/algorithmic-efficiency/.
16The submission is available at https://github.com/mlcommons/submissions_algorithms/

tree/main/previous_leaderboards/algoperf_v05/submissions/external_tuning/shampoo_
submission.

17This wall-clock time statistic seems to be negatively impacted by either an issue with the AlgoPerf code or
the hardware setup.

18Runs failed due to https://github.com/mlcommons/algorithmic-efficiency/issues/866.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Every claim is supported by empirical and theoretical evidence in Section 3
and Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address limitations where appropriate and add a specific discussion of
some important limiations in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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external_tuning/shampoo_submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: The main section Section 3 and Section 4 provide all necessary details to
understand the presented results and claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do report standard errors of multiple runs for the AlgoPerf results in
Table 1 and Table 3, with exception of the ImageNet ViT workload due to the larger
computational cost. However, we do not report statistics over multiple runs for the sweeps
presented Figure 1, Figure 2, and Figure 3 due to the large number of runs and the associated
computation cost.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer:[Yes]
Justification: We do provide details on the cluster used for the experiments and an estimate
of the total amount of compute in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper covers fundamental algorithmic research and conforms with the all
points of the NeurIPC Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: The work here is of fundamental nature and does not directly impact society.
However, it might contribute to improved training algorithms which could potentially reduce
the cost or improve the performance of arbitrary deep learning problems, including problems
that impact society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work covers fundamental algorithmic research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We do credit the creators of the datasets, model architectures, and the AlgoPerf
benchmark in Appendix E.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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