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ABSTRACT

Recent studies have shown that pre-trained classifiers are increasingly powerful
to improve the performance on different tasks, e.g, neural language processing,
image classification. However, adversarial examples from attackers can trick pre-
trained classifier to misclassify. To solve this challenge, a reconstruction network
is built before the public pre-trained classifiers to offer certified robustness and de-
fend against adversarial examples through input perturbation. On the other hand,
the reconstruction network requires training on the dataset, which incurs privacy
leakage of training data through inference attacks. To prevent this leakage, differ-
ential privacy (DP) is applied to offer a provable privacy guarantee on training data
through gradient perturbation. Most existing works employ certified robustness
and DP independently and fail to exploit the fact that input perturbation designed
to achieve certified robustness can achieve (partial) DP. In this paper, we propose
perturbation transformation to show how the input perturbation designed for certi-
fied robustness can be transformed into gradient perturbation during training. We
propose Multivariate Gaussian mechanism to analyze the privacy guarantee of this
transformed gradient perturbation and precisely quantify the level of DP achieved
by input perturbation. To satisfy the overall DP requirement, we add additional
gradient perturbation during training and propose Mixed Multivariate Gaussian
Analysis to analyze the privacy guarantee provided by the transformed gradient
perturbation and additional gradient perturbation. Moreover, we prove that Mixed
Multivariate Gaussian Analysis can work with moments accountant to provide a
tight DP estimation. Extensive experiments on benchmark datasets show that our
framework significantly outperforms state-of-the-art methods and achieves better
accuracy and robustness under the same privacy guarantee.

1 INTRODUCTION

Deep learning with pre-trained classifiers are increasingly powerful for solving difficult machine-
learning tasks in the real-world, including image classification (Krizhevsky et al., 2012; Simon et al.,
2016) and natural language processing (Vaswani et al., 2017; Devlin et al., 2018). However, deep
learning models with pre-trained classifiers are subject to adversarial examples attacks (Szegedy
et al., 2013; Bruna et al., 2013; Goodfellow et al., 2014) which apply small perturbations on inputs
to cause the model to misclassify. To solve this challenge, certified robustness (Li et al., 2018) for
pre-trained classifiers is proposed by (Salman et al., 2020) as a provable defense approach, where
a denoiser, e.g., autoencoder (AE) (Hinton & Zemel, 1994), is trained on the data perturbed with
Gaussian noise and aims to reconstruct denoised data. Once denoiser finishes training, it takes
the Gaussian perturbed data for denoising reconstruction and feeds the denoised data to the pre-
trained classifier. Randomized smoothing is then applied and provides certified robustness without
retraining the large pre-trained model.

On the other hand, the training of denoiser requires training data that can include sensitive infor-
mation, e.g., clinical records, financial records, user profiles, etc. Several works have shown that
attackers can infer private information from training data through trained models (Fredrikson et al.,
2015; Wang et al., 2015; Shokri et al., 2017). A popular and powerful technique to address this issue
in deep learning is differential privacy (DP) (Dwork et al., 2006; Dwork, 2011; Dwork et al., 2014),
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Figure 1: Framework of TransDenoiser: given a clean image x, input perturbation is added to generate per-
turbed image z. z is then reconstructed by denoiser g to generate g(z), which is fed into the pre-trained
classifier h for classification. The input perturbation on x is utilized to achieve certified robustness during test-
ing. The denoiser is trained under DP by leveraging the input perturbation added on x and additional gradient
perturbation during training.

which has been adopted in a large volume of works to provide a rigorous protection from leaking
private information contained in training data. Gaussian Mechanism (GM) (Dwork et al., 2014) is a
basic technique to achieve DP by injecting isotropic Gaussian perturbations to a computation output.
Depending on where to inject the perturbations, existing works on machine learning with DP can be
mainly categorized into: input perturbation (Fukuchi et al., 2017; Kang et al., 2020a;b), output per-
turbation (Zhang et al., 2017), gradient perturbation (Song et al., 2013; Bassily et al., 2014; Shokri
& Shmatikov, 2015; Abadi et al., 2016; 2017; Wang et al., 2017; Lee & Kifer, 2018; Yu et al., 2019),
objective perturbation (Kifer et al., 2012; Zhang et al., 2012; Phan et al., 2016; 2017; Iyengar et al.,
2019), and noisy labelling (Papernot et al., 2016; 2018).

Therefore, a straightforward way to prevent these two critical risks, i.e., adversarial examples and
privacy leakage, is independently applying certified robustness and DP to models with pre-trained
classifiers. A few works (Phan et al., 2019; 2020) follow this idea and simultaneously achieve both
DP and certified robustness. However, we observe that the randomized smoothing for certified ro-
bustness requires that the input data is perturbed with Gaussian noise during training. This Gaussian
perturbation brings randomization to the training process and could have been utilized to provide a
certain level of DP guarantee. Independently applying certified robustness and DP fails to exploit
this connection and incurs unnecessary additional randomization during training, which leads to the
degradation of model utility.

Directly analyzing the DP guarantee through input perturbation methods (Fukuchi et al., 2017; Kang
et al., 2020a;b) is nontrivial in deep learning, because these methods pose strict constraints on loss
function, which are not satisfied by deep learning models. An alternative way is to transform the
input perturbation into gradient perturbation and then analyze the DP guarantee it provides. How-
ever, existing work (Kang et al., 2020a) gives strong assumption and simply regards the transformed
gradient perturbation as isotropic Gaussian perturbation, and fails to recognize that in most deep
learning models, this transformed gradient perturbation follows multivariate Gaussian distribution.

In this paper, we propose a novel framework TransDenoiser (Figure 1) to simultaneously achieve
certified robustness and DP for models with pre-trained classifiers. TransDenoiser has a similar ar-
chitecture as (Salman et al., 2020) by adding a denoiser before pre-trained classifier. Compared with
(Salman et al., 2020), TransDenoiser can provide similar level of certified robustness without retrain-
ing the pre-trained model, as well as guarantee DP for the training data. Compared with existing
works that achieve both certified robustness and DP including SecureSGD (Phan et al., 2019) and
StoBatch (Phan et al., 2020), TransDenoiser 1) provides a tigher guarantee of DP by utilizing all the
randomization during training including input and gradient perturbations, and 2) achieves more ef-
fective certified robustness by leveraging randomized smoothing on the input instead of noisy layers
in the model.

Contributions. Our key contributions are:

1. We propose a novel framework TransDenoiser that trains a denoiser through both input and
gradient perturbation for achieving DP and certified robustness simultaneously on deep
learning models with pre-trained classifiers. The input perturbation for achieving certified
robustness is utilized to achieve partial DP and additional gradient perturbation is used as
necessary for the overall DP, ensuring an enhanced privacy and utility performance.
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2. We present an analytical tool that leverages Taylor expansion to transform input perturba-
tion into gradient perturbation so that it can be quantified and composed with the explicit
gradient perturbation for the DP guarantee. We propose a Multivariate Gaussian Mecha-
nism (MGM) to analyze DP of the multivariate Gaussian perturbation and prove that MGM

is a generalization of Heterogeneous Gaussian Mechanism (Phan et al., 2019).
3. Observing that the transformed gradient perturbation itself cannot satisfy the DP guarantee

requirement in some scenario, we add additional perturbation following isotropic Gaussian
distribution to the gradient, and propose Mixed Multivariate Gaussian Analysis (MMGA)
to analyze the DP guarantee provided by transformed gradient perturbation and additional
gradient perturbation. We also prove that MMGA can work with moments accountant
(Abadi et al., 2016) to provide a tight bound on the privacy cost.

4. We conduct extensive experiments on several benchmark datasets which demonstrate that
TransDenoiser can 1) provide a significantly tighter bound on privacy cost with same utility
performance, and 2) achieve similar level of certified robustness as other state-of-the-art
works.

2 TRANSDENOISER

In this section, we will present our proposed framework TransDenoiser, which can be applied before
any pre-trained classifier to guarantee certified robustness and DP without retraining the pre-trained
model. A denoiser is trained to guarantee certified robustness of the final model via randomized
smoothing or input perturbation on the input, where the training process introduces the input pertur-
bation for better accuracy of the randomized smoothed model. We transform the input perturbation
into equivalent gradient perturbation so that it can be quantified and composed with the explicit
gradient perturbation for the DP guarantee.

2.1 DENOISER AND CERTIFIED ROBUSTNESS

As can be seen in Figure1, TransDenoiser is a denoising AE trained on input data with Gaussian
perturbation. Similar to (Salman et al., 2020), this input Gaussian perturbation is used as random-
ized smoothing for certified robustness. Naively applying randomized smoothing on a pre-trained
classifier without the denoiser gives very loose certification bounds because the pre-trained classifier
is not trained to be robust to Gaussian perturbations of their input. The denoiser serves to “remove”
this Gaussian perturbation and effectively reconstruct the input data like a pre-processing step before
feeding input data into the pre-trained classifier while maintaining the benefit of certified robustness.
The detailed proof of randomized smoothing can be found in (Cohen et al., 2019), and we provide a
brief proof in Appendix B.

Different from (Salman et al., 2020), given input data x(i) and perturbed data z(i) = x(i) + b(i)

with b(i) ⇠ N (0,�2I), the objective function we use to optimize the denoiser contains the standard
reconstruction MSE:

l(z(i), ✓) = kg(z(i))� x(i)k
2
2, (1)

where l is the loss function, g denotes the denoiser, and ✓ is the parameter of the denoiser. The
stability objective of (Salman et al., 2020) is not included in our objective function, because it
requires both x(i) and g(z(i)) to pass the pre-trained classifier h, which both incurs additional privacy
cost and additional computation overhead when we calculate the transformation matrix. In this work,
we assume l(z(i), ✓) is C-Lipschitz continuous, which is a mild and common assumption in existing
works (Bassily et al., 2019; Feldman et al., 2020).

2.2 PERTURBATION TRANSFORMATION AND MULTIVARIATE GAUSSIAN MECHANISM

In this section, we will introduce perturbation transformation and Multivariate Gaussian Mechanism
(MGM) to analyze the DP guarantees of the input perturbation.

Perturbation transformation. As we introduced in 2.1, input Gaussian perturbation is utilized
to achieve certified robustness for TransDenoiser. Although theoretically this perturbation is only
required at the testing phase, almost all existing approaches in practice demand the randomization
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during training to improve the performance. Our strategy is to transform input perturbation into
gradient perturbation during training and analyze the DP guarantee that input perturbation can offer.
The crucial step of this transformation is the Taylor expansion of MSE loss l(z(i), ✓) at the data point
x(i), which is formulated as follows,

l(z(i), ✓) = l(x(i), ✓) + (z(i) � x(i))
|
rx(i)

l(x(i), ✓) + o(z(i) � x(i)) (2)

Since the only mild constraint on l(z(i), ✓) is C-Lipschitz continuous, it is possible for the higher
order terms o(z(i) � x(i)) to be negative. We denote the examples with non-negative higher order
terms as “non-negative cases”, and the others as “negative cases”. In the rest of this section, we use
the superscript “non” and “neg” to denote samples of “non-negative cases” and “negative cases”,
respectively. For “non-negative cases”, we have the following lemma:

Lemma 1. Given perturbed example znon(i) = xnon
(i) + b(i) with b(k)

(i) ⇠ N (0,�2), and MSE loss
l(znon(i) , ✓) is C-Lipschitz continuous. The gradient r✓l(znon(i) , ✓) can be reformulated as the gradient
with respect to the original sample with a gradient perturbation:

r✓l(z
non
(i) , ✓) � r✓l(x

non
(i) , ✓) + p(i), (3)

where p(i) is the transformed perturbation with p(i) ⇠ N (0,⌃(i)), ⌃(i) = M(i)�
2, M(i) =

A(i)A
|
(i) and A(i) = J✓rxnon

(i)
l(xnon

(i) , ✓).

The detailed proof of Lemma 1 can be found in Appendix E. With Lemma 1, we find that the right-
hand side is the lower bound of left-hand side, which means DP guarantee provided by transformed
gradient perturbation p(i) is the lower bound of that provided by input perturbation b(i).

Multivariate Gaussian Mechanism. Since the transformed gradient perturbation p(i) in equation
(3) follows a multivariate Gaussian distribution with correlated elements, which is in contrast to
the independent and isotropic Gaussian noise used in standard Gaussian mechanism for DP, we
introduce Multivariate Gaussian Mechanism (MGM) to analyze DP of this multivariate Gaussian
perturbation.
Theorem 1. Multivariate Gaussian Mechanism. Let G : Rv

! Rw be an arbitrary w-dimensional
function, and �G = maxD,D0 kG(D)� G(D0)k2. A Multivariate Gaussian Mechanism M with the
covariance ⌃ 2 Rw⇥w adds noise to each of the w elements of the output. The mechanism M is
(✏, �)-DP, with

✏ 2 (0, 1], Smin(M)
1
2� �

p
2 ln(1.25/�)�G/✏.

where Smin(M) is the minimum singular value of M and ⌃ , M�2.

The proof of this theorem is in Appendix D. With Theorem 1, multivariate Gaussian perturbation
can be leveraged to preserve (✏, �)-DP, and we have the following Corollary:
Corollary 1. Given a multivariate Gaussian perturbation p ⇠ N (0,⌃), ⌃ = M�2, the DP
guarantee of the MGM is equivalent to that of a GM with its perturbation following a Gaussian
distribution N (0, Smin(M)�2), where Smin(M) is the minimum singular value of M.

Because the DP guarantee of MGM is equivalent to the GM by applying a transformed perturbation,
the traditional DP analysis technique, e.g., moments accountant Abadi et al. (2016), can be leveraged
to analyze the privacy cost in the training process of denoiser. We also note a special case of MGM,
in which the covariance matrix of the multivariate Gaussian perturbation only contains the diagonal
values, and the perturbation on each elements is independent from each other but they can have
different scales. This mechanism is called Heterogeneous Gaussian Mechanism (HGM) Phan et al.
(2019). We re-define HGM in Appendix F and prove that MGM is a generalization of HGM.

2.3 TRANSDENOISER TRAINING ALGORITHM

As introduced in Section 2.2, the DP guarantee provided by transformed gradient perturbation de-
pends on the transformation matrix and the scale of input noise. In some scenarios, this transformed
gradient perturbation itself does not fully satisfy the DP requirement, because the scale of input noise
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to achieve randomized smoothing of certified robustness is relatively small. To address this, we add
additional gradient perturbation directly to the gradient in each iteration of the training process.

Algorithm 1 shows the details of our proposed TransDenoiser training algorithm to achieve both
certified robustness and DP. Each record is perturbed with input perturbation to achieve certified
robustness (line 7). We utilize both input perturbation and gradient perturbation to achieve DP
for “non-negative cases” (Line 12 - 18), and for the “negative cases”, we directly employ gradient
perturbation (Line 19 - 23). For non-negative cases, we transform input perturbation at each iteration
into gradient perturbation. We then add additional gradient perturbation with scale �̄ to r✓t l(zt, ✓t)
at each iteration given hyper-parameters ⇠low and ⇠up. In Algorithm 1, we use the commonly used
approach, mini-batch SGD, to train the denoiser, which is slightly different from our previous setting
(Lemma 1) where only a single sample is fed into the model per iteration. We will show that our DP
analysis works in both of these two settings.

Algorithm 1: TransDenoiser Training Algorithm
Input: pre-trained classifier h, total training epoch T , perturbation scale thresholds ⇠low and ⇠up, input

perturbation scale �, learning rate ⌘, training dataset Dtrain

1 t = 0;
2 load parameters of the pre-trained classifier h;
3 initialize parameters of the denoiser g;
4 while t < T do

5 get mini-batch data xt from Dtrain;
6 for each data x(i) in xt do

7 z(i) := x(i) +N (0,�2);
8 o(z(i) � x(i)) := l(z(i), ✓)� (l(x(i), ✓) + (z(i) � x(i))

|rx(i)
l(x(i), ✓));

9 end

10 “Non-negative cases” znon
t := {z(i)} with o(z(i) � x(i)) � 0;

11 “Negative cases” zneg
t := {z(i)} with o(z(i) � x(i)) < 0;

12 if “Non-negative cases” then

13 compute the gradient r✓t l(✓t, z
non
t );

14 calculate the input perturbation transformation matrix Mt;
15 calculate Smin(Mt);

16 �̄ :=

8
><

>:

⇠up, if
p

TSmin(Mt)� < ⇠low,p
⇠2up � TSmin(Mt)�2, else if

p
TSmin(Mt)� < ⇠up,

0, else,
;

17 add additional perturbation to the gradient r✓l(✓t, z
non
t ) := r✓l(✓t, z

non
t ) +N (0, �̄2);

18 end

19 else

20 compute the gradient r✓t l(✓t, z
neg
t );

21 �̄ := ⇠up;
22 add perturbation to the gradient r✓l(✓t, z

neg
t ) := r✓l(✓t, z

neg
t ) +N (0, �̄2);

23 end

24 r✓t l(✓t, zt) := r✓l(✓t, z
non
t ) +r✓l(✓t, z

neg
t ) ;

25 update parameter for next iteration ✓t+1 := ✓t � ⌘ 1
B

PB
i=1(r✓l(✓t, z

non
t ) +r✓l(✓t, z

neg
t ));

26 end

27 output ✓T and compute overall privacy cost through moments accountant.

Privacy Analysis. In order to compose the transformed gradient perturbation and the direct isotropic
gradient perturbation in each iteration for DP analysis, we introduce Mixed Multivariate Gaussian
Analysis below.
Theorem 2. Mixed Multivariate Gaussian Analysis. Let G : Rv

! Rw be an arbitrary w-
dimensional function, and �G = maxD,D0 kG(D) � G(D0)k2. Mixed Multivariate Gaussian Anal-
ysis is the mix of a Multivariate Gaussian Mechanism M1 with the covariance ⌃(i) 2 Rw⇥w and a
Gaussian Mechanism M2 with �̄ adding noise to each of the w elements of the output. This mixed
mechanism is (✏, �)-DP, with

✏ 2 (0, 1],
q
�̄2 + TSmin(M(i))�2 � ⇠up �

p
2 ln(1.25/�)�G/✏.

where �̄ is the isotropic gradient perturbation, T is the number of training steps, Smin(M(i)) is the
minimum singular value of M(i) and ⌃(i) , M(i)�

2.
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Mixed Multivariate Gaussian Analysis (MMGA) can be leveraged to analyze privacy guarantee
provided by transformed gradient perturbation and additional gradient perturbation. In the following
of this section, we will prove Theorem 2 and show that MMGA can work with moments accountant
to provide a tighter DP estimation and preserve (✏, �)-DP for deep learning models with pre-trained
classifiers.

Privacy Analysis for Vanilla SGD. In vanilla SGD, the algorithm randomly picks one sample at
each iteration and feeds it into the model for optimization. Given the initial parameters ✓0, iteration
t, the parameters are updated as: ✓t+1 = ✓t � ⌘ r✓t l(✓t, z

non
t ), where ⌘ denotes the learning rate

and znont denotes one perturbed sample randomly picked at iteration t. In optimization process, the
transformed perturbation pt is slightly different from the that in Equation (3).

Lemma 2. Given perturbed example znont = xnon
t + bt with b(k)

t ⇠ N (0,�2), the number of
training steps T , and C-Lipschitz continuous loss l. The gradient r✓t l(z

non
t , ✓t) at each step of

vanilla SGD can be reformulated as:

r✓t l(z
non
t , ✓t) = r✓t l(x

non
t , ✓t) + pt, (4)

where the transformed perturbation pt ⇠ N (0, TSmin(Mt)�2I), Mt = A(i)A
|
(i), A(i) =

J✓trxnon
(i)

l(xnon
(i) , ✓t).

The detailed proof of Lemma 2 can be found in Appendix G. Theorem 2 can be proved by Lemma 2,
the definition of �̄ and Theorem 1. Thus, we have the following corollary for “non-negative cases”:

Corollary 2. Given an input perturbation bt 2 Rv with b(k)
t ⇠ N (0,�2), the transformation

matrix At and additional gradient perturbation with scale �̄, the DP guarantee of the MMGA is
equivalent to that of a GM with its perturbation following a Gaussian distribution N (0, ⇠2up).

The above analysis for “non-negative cases” leverages perturbation transformation and MMGA to
analyze DP. For “negative cases”, because the perturbation transformation is no longer required and
the gradient perturbation with �̄ = ⇠up is directly added to r✓l(✓t, z

neg
t ), the MMGA is equivalent

to traditional GM with perturbation following N (0, ⇠2up). Therefore, we can conclude that Corollary
2 is applicable to both “non-negative cases” and “negative cases”.

Privacy Analysis for Mini-batch SGD. The above claims for Vanilla SGD can be adapted to Mini-
batch SGD by setting Mt = 1

B2

PB
i=1 A(i)A

|
(i) instead of Mt = A(i)A

|
(i) in Vanilla SGD. The

detailed proof can be found in Appendix H.

Tighter Composition via Moments accountant. While Corollary 2 is derived with simple compo-
sitions, moments accountant can be applied with MMGA to provide a tighter DP composition for
Algorithm 1.
Theorem 3. There exist constants c1 and c2 so that given sampling probability q = B

N and the
number of training steps T , for any ✏ < c1q2, Algorithm 1 is (✏, �)-differential private for any � > 0
if

⇠up � c2
q
p
T log(1/�)

✏
(5)

The proof of Theorem 8 can be found in Appendix I.

Discussion. We note that although the transformation matrix A(i) requires the clean example x(i),
the calculation of A(i) does not incur privacy cost for the denoiser. This is because the transforma-
tion process and the calculation of A(i) is only for analyzing the DP of the input perturbation, i.e.,
the clean example x(i) does not actually contribute to the gradient r✓l(znon(i) , ✓). Another potential
privacy concern is about the observations that “non-negative cases” and “negative cases” use dif-
ferent scales of additional gradient perturbation. Even for “non-negative cases”, different data will
be applied with different �̄. We claim that the different additional perturbation scales among “non-
negative cases” and “negative cases” will not incur privacy violation, because we have proven that
input perturbation also provides certain level of privacy guarantee, which is analyzed in a way that
we transform it into gradient perturbation. We first use perturbation transform matrix and MGM

to calculate how much gradient perturbation scale can be transformed from input perturbation for
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different data. Then we add additional gradient perturbation onto transformed gradient perturbation
to ensure that the overall gradient perturbation scale �̄2 + TSmin(Mt)�2

� ⇠2up for each data. On
the one hand, the calculation of �̄ is not visible to users or attackers. On the other hand, different �̄
can ensure the overall scale �̄2 + TSmin(Mt)�2 is a consistent lower bound for all training data.

3 EXPERIMENTS

In this section, we will show our experiments on two benchmark datasets, MNIST and CIFAR-
10. These experiments are conducted to prove that 1) TransDenoiser can provide high level of
certified robustness through randomized smoothing, 2) the input perturbation transformation can
save a considerable amount of DP budget and thus improve the model performance.

3.1 CONFIGURATIONS

Baseline and ablation studies. We employ SecureSGD (Phan et al., 2019) and StoBatch (Phan
et al., 2020) two architectures in baseline approaches, and compare the certified robustness and DP
performance on MNIST and CIFAR-10 datasets. We acquire two versions of SecureSGD through
different training strategies: SecureSGD sct is acquired by training an entire classifier from scratch,
and SecureSGD prt is acquired by training the denoiser and fixing the pre-trained classifier. For
StoBatch, we only acquire the one training from scratch, because the denoiser with pre-trainied
classifier can not fit to its architecture. We also conduct two ablation studies with two variants
of TransDenoiser: 1) TransDenoiser nodp which only contains input perturbation for certified ro-
bustness, without the perturbation transformation and additional gradient perturbation for DP; 2)
TransDenoiser sepdp which contains input perturbation for certified robustness and separate gradi-
ent perturbation for DP, without utilizing input perturbation via perturbation transformation.

Models. Pre-trained classifiers are trained on public datasets, and we use convolutional and trans-
posed convolutional layers to build the autoencoder based denoiser for both MNIST and CIFAR10
datasets. The details of pre-trained classifiers and denoiser can be found in Appendix M.

Adversarial examples. We use four different attack algorithms, i.e., FGSM, I-FGSM (Kurakin
et al., 2016), Momentum Iterative Method (MIM) (Dong et al., 2017), and MadryEtAl (Madry et al.,
2017), to craft adversarial examples. These algorithms apply l2-norm attack on the pre-trained clas-
sifier under a white-box setting. Given a threshold Latk of perturbation norm, adversarial example
x0 can be represented as x0 = x+  s.t. 8 2 R

v, k k2  Latk.

Certification. We employ the randomized smoothing of Cohen et al. (Cohen et al., 2019) in our
work. A function robustRadius(x(i),�) is designed to return a certified radius  given the input
and its perturbation scale. This indicates that the randomized smoothed model is certified robust
around x(i) within the radius .

Evaluation metrics. We evaluate the performance in terms of certified accuracy (Cer-
tAcc) on clean examples and conventional accuracy (ConvAcc) on both clean and adversar-
ial examples. CertAcc = 1

N isCorrect(x(i))(robustRadius(x(i),�) � R), ConvAcc =
isCorrect(x0

(i))

N for adversarial example; isCorrect(x(i))
N for clean example, where N denotes the test

data size, x0
(i) denotes the adversarial example, isCorrect(x(i)) denotes the function returning 1

when the prediction on x(i) is correct and 0 otherwise, isCorrect(x0
(i)) works the same on x0

(i),
robustRadius(x(i),�) � R returns 1 when the certified radius  is equal or larger than the thresh-
old R and 0 otherwise.

Implementation details. The detailed implementation and code can be found in Appendix M.

3.2 EXPERIMENTAL RESULTS

We conduct our experiments on MNIST and CIFAR-10 to show that TransDenoiser can simultane-
ously achieve both differential privacy and certified robustness via input and gradient perturbation.

For the following experiments, we will compare with 1) SecureSGD sct, SecureSGD prt and Sto-
Batch to show that TransDenoiser achieves better performance than baselines on certified robustness
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(a) TransDenoiser and
baselines on CIFAR10

(b) TransDenoiser and ab-
lation cases on CIFAR10

(c) TransDenoiser and
baselines on MNIST

(d) TransDenoiser and ab-
lation cases on MNIST

Figure 2: Comparison among TransDenoiser, baselines and ablation cases for certified accuracy vs. l2 radii
on two datasets. The input perturbation scale = 0.25, the overall gradient perturbation scale = 2.0 (� 2.0 for
TransDenoiser), and guarantee (1.0, 1e�5)-DP for private models.

and DP, 2) compare with TransDenoiser nodp to show that TransDenoiser still achieves high level
of certified robustness after adding gradient perturbation for DP, and 3) compare with TransDe-
noiser sepdp to show that input perturbation transformation effectively saves a considerable amount
of DP budget and improves the utility performance.

Certified robustness. We demonstrate that TransDenoiser can achieve high level of certified ro-
bustness on both MNIST and CIFAR10. We conduct experiments to measure the CertAcc on clean
examples with different l2 radii of different methods on the two datasets, shown in Figure 2a and Fig-
ure 2c. TransDenoiser significantly outperforms the state-of-the-art SecureSGD prt, SecureSGD sct
and StoBatch algorithms on both datasets, thanks to the benefit of perturbation transformation and
randomized smoothing.

Figure 2b and Figure 2d show the comparison with ablation cases. Besides TransDenoiser nodp
and TransDenoiser sepdp that we already introduced in Sec 3.1, we add one more ablation case
TransDenoiser inp 0.1 denoting that the input perturbation scale for this TransDenoiser is 0.1 rather
than 0.25. Comparing these ablation cases, TransDenoiser achieves similar CertAcc as TransDe-
noiser nodp, which means that TransDenoiser needs to add very little additional perturbation for
ensuring DP thanks to the benefit of input perturbation that is being exploited. Compared with
TransDenoiser sepdp that uses separate gradient perturbation for DP, TransDenoiser saves signifi-
cant DP budget and thus requires less perturbation for DP, leading to significantly higher accuracy.
Comparing with TransDenoiser inp 0.1, we find that TransDenoiser inp 0.1 can achieve highest
CertAcc when l2 radius is small, but it drops quickly as radius increases. This is because 1) smaller
input perturbation scale will bring less randomization to the model, and thus improves performance;
2) smaller input perturbation scale can only defend against less “powerful” adversarial attacks, and
thus CertAcc drops when attack radius increases. Comparing the two datasets, they show similar
trend besides the fact that MNIST has higher accuracy for all methods in general due to its simplicity.

Empirical defense. Certified robustness shows the theoretical defense against adversarial examples,
we also conduct experiments to show that TransDenoiser can empirically defend against adversarial
examples from different attacks. We only show the results against FGSM, I-FGSM attacks here, the
more detailed experiments can be found in Appendix M. Figure 7a and Figure 7c show the convAcc
of TransDenoiser and baselines with respect to varying attack norm bound for different attack meth-
ods on two datasets, respectively. Compared with these baselines, TransDenoiser achieves better
empirical performance with any attack norm bound of all attacks. Figure 7b and Figure 7d show
the comparison of TransDenoiser and ablation cases. Compared with TransDenoiser nodp, Trans-
Denoiser achieves similar ConvAcc, which proves that perturbation for DP in TransDenoiser does
not affect the ConvAcc too much. Compared with TransDenoiser sepdp, TransDenoiser effectively
saves DP budget and achieves better empirical performance against adversarial examples. In all
these figures, we add a curve named “Clean examples” to represent ConvAcc that clean examples
pass through TransDenoiser. As can be seen, ConvAcc for clean examples keep consistent as attack
norm bound increasing, and TransDenoisercan achieve similar ConAcc as “Clean examples” when
attack norm bound is small.

Observing the similar results between CertAcc and ConvAcc, we see that the certified accuracy on
clean examples provides a good estimation for the empirical robustness of the model. If a model
achieves relatively high CertAcc on clean examples, it can have a high probability to achieve high
ConvAcc on adversarial examples.
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(a) TransDenoiser and baselines on CIFAR10 (b) TransDenoiser and ablation cases on CIFAR10

(c) TransDenoiser and baselines on MNIST (d) TransDenoiser and ablation cases on MNIST

Figure 3: More comparison among TransDenoiser, baselines and ablation cases for conventional accuracy vs.
l2 radii on two datasets. The input perturbation scale on CIFAR10 = 0.1, on MNIST = 0.25, the overall gradient
perturbation scale = 2.0 (� 2.0 for TransDenoiser), and guarantee (1.0, 1e�5)-DP for private models.

(a) TransDenoiser, baselines and ablation cases on CIFAR10

(b) TransDenoiser, baselines and ablation cases on MNIST

Figure 4: Comparison among TransDenoiser, baselines and ablation cases for conventional Accuracy vs. ✏ on
two datasets. The input perturbation scale on CIFAR10 = 0.1, on MNIST = 0.25, attack norm bound = 2.0, the
overall gradient perturbation scale = 2.0 (� 2.0 for TransDenoiser), and � = 1e�5 for DP.

Differential privacy. We also evaluate the tradeoff between accuracy and privacy for different
methods. As can be seen from Figure 4a and Figure 4b, given the same ✏, TransDenoiser can always
achieve higher ConvAcc on different attacks similar to what we have observed so far. In addition,
with increasing epsilon, all methods achive a higher accuracy as expected. On MNIST dataset,
TransDenoiser sepdp achieves similar result with TransDenoiser.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed TransDenoiser to achieve both DP and certified robustness via in-
put perturbation. TransDenoiser stands as the first attempt to achieve both for the vastly existing,
yet under-studied, pre-trained model setting. We leverage input perturbation transformation to effi-
ciently transform input perturbation into gradient perturbation. We propose MGM and MMGA to
analyze DP of the transformed gradient perturbation and combine MMGA with moments accountant
to provide a tight bound on DP guarantee. Therefore, TransDenoiser effectively saves a considerable
DP budget and improves the utility performance compared to using gradient perturbation indepen-
dently to achieve DP. Our experiments on two benchmark datasets verify the performance advantage
of TransDenoiser w.r.t. both DP and certified robustness compared to state-of-the-art methods. In
future work, we plan to utilize more advanced DP analysis approach, e.g., analytical moments ac-
countant (Balle & Wang, 2018), to derive a tighter bound on DP and further improve the privacy and
utility tradeoff.
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