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Abstract—The rate-distortion-perception (RDP) framework
has attracted significant recent attention due to its application in
neural compression. It is important to understand the underlying
mechanism connecting procedures with common randomness and
those without. Different from previous efforts, we study this
problem from a quantizer design perspective. By analyzing an
idealized setting, we provide an interpretation of the advantage of
dithered quantization in the RDP setting, which further allows us
to make a conceptual connection between randomized (dithered)
quantizers and quantizers without common randomness. This
new understanding leads to a new procedure for RDP coding
based on staggered quantizers.

I. INTRODUCTION

Compression plays an important role in the efficient repre-
sentation of information content, particularly visual content.
Traditionally, the tradeoff between the compression rate and
the incurred distortion has been studied under two different
but related frameworks: the quantization framework [1] and the
rate-distortion theory [2] framework. In the former, the focus is
on the design of quantizers that compress data samples one at
a time (i.e., scalar quantization) or a few at a time (i.e., vector
quantization), while the latter focuses on the fundamental
limits of lossy compression by allowing an asymptotically
large number of samples to be encoded together.

Largely driven by the recent emergence of the neural com-
pression, the issue of perceptual quality has led to the study
of the problem of rate-distortion-perception (RDP) tradeoff
[3]–[10]. In this formulation, a new quality constraint, which
was introduced to capture the perceptual quality loss due to
compression, is further imposed in addition to the existing ob-
jective distortion constraint. Mathematically, this formulation
[3] requires the probability distribution of the content after
decompression to be close to that of the source content before
compression; the case when the two distributions are exactly
the same is often referred to as “perfect perceptual quality”,
which is our focus in this work.

The RDP problem has attracted significant recent research
attention, and several studies in this area revealed that common
randomness plays an important role in this setting [5], [6].
More precisely, the lack of common randomness can cause
significant performance loss compared to methods that have
such common randomness at their disposal, and this loss is par-
ticularly severe for scalar quantization. There are two known
prevailing methods of introducing common randomness for

RDP coding. The first is based on probabilistic sampling [11],
and the second is through universal dithered quantization [12],
[13]. The first approach requires the knowledge of a target
joint distribution between the samples and the compressed
version, and furthermore, involves a rather complex sampling
procedure. The dither-based approach, on the other hand,
is simpler to implement and thus more attractive, however,
its architecture places an inherent constraint on the eventual
probability distribution, and though widely used, it is not clear
what actually makes it suitable for the RDP setting.

One piece of the puzzle has thus far been missing between
the compression procedures without common randomness
(e.g., scalar quantization with deterministic encoder) and those
with a large amount of common randomness (dithered quan-
tizers), particularly from a quantizer design perspective. That
is, quantizers with deterministic encoders require no common
randomness, and the dither-based approach will utilize com-
mon randomness on an uncountable set in a less transparent
manner. What exactly is the underlying mechanism that lends
the dither-based approach the advantage, and is there an
effective procedure with an intermediate amount of common
randomness? Although these questions have previously been
studied under the rate-distortion framework with asymptotic
large sample block size [14], the asymptotic nature of such
analysis makes the mechanism rather opaque.

In this work, we develop a better understanding of these is-
sues under the quantization framework. Using a decomposition
perspective, we provide a new way to understand the mech-
anism from which procedures utilizing common randomness
obtain the advantage. We first focus on an idealized setting
on the unit circle, and provide a complete analysis of the
performance. Based on these understandings, we provide a
new approach to introduce common randomness using stag-
gered quantizers. We further discuss the application of such
an approach to other sources. It should be noted that staggered
quantizers have been previously used for multiple description
coding [15]–[17] which offered surprisingly competitive per-
formance compared to more sophisticated approaches.

II. BACKGROUNDS

A. Rate-distortion function and quantizers

Let the data source X be a real-valued random variable,
with a distribution PX on the alphabet X . The reconstruction



alphabet is denoted as X̂ . Given a distortion measure d : X ×
X̂ → [0,∞), e.g., the squared error distortion d(x, x̂) = (x−
x̂)2 when X = X̂ = R, the (informational) rate-distortion
function under a distortion constraint D is defined as

R(D) = min
PX̂|X :Ed(X,X̂)≤D

I(X; X̂),

where I(·; ·) is the mutual information function.
Rate-distortion theory deals with the setting when an infinite

number of samples is allowed to be encoded together. In
practice, samples are usually encoded one or few at a time,
referred to as scalar quantization and vector quantization,
respectively. In particular, a scalar quantizer consists of an
encoding mapping f : X → Z which determines the
representation index to assign to a sample, and a decoding
function g : Z → X̂ which assigns a reconstruction point to
each representation index. Therefore, X̂ = g(f(X)). Indices
are allowed to be further entropy-coded, e.g., using Huffman
code. When entropy coding is allowed, it is usually referred
to as entropy-constrained scalar quantization (ECSQ), whereas
when the number of quantization levels is fixed, it is usually
referred to as fixed-rate quantization.

Universal dithered quantizer utilizes a uniform quantizer
with stepsize ∆ in the encoding and decoding process [18].
Different from classic deterministic quantizers, a random noise
Z, independent of the data samples and uniformly distributed
on the base interval (−∆/2,∆/2], is available at both the
encoder and the decoder. The noise Z is first added to the
sample as X + Z, which is then quantized to its nearest
neighbor using the deterministic uniform quantizer, and finally
the same dither noise Z is subtracted at the decoder. It was
shown [12], [13] that using this procedure X̂ = X+ Z̃, where
Z̃ has the same marginal probability distribution as Z and
is also independent of X , and conditioned on the common
randomness, the optimal entropy coding rate (of the lattice
index) is exactly H(f(X + Z)|Z) = I(X;X + Z). Note
that such a rate is impossible to achieve in practice, since it
requires one entropy code for a specific realization of the noise
Z = z: Firstly, the usual technique of universal compression
becomes unrealistic because it is unlikely (with zero probabil-
ity) to have identical noise realizations and therefore very few
samples to estimate the corresponding probability distribution;
secondly, unless the distribution is analytically simple, storing
the distribution or the entropy coding codewords for each noise
realization is also unrealistic. Entropy coding of f(X+Z) can
be considered instead, resulting in a rate of H(f(X + Z)).

B. Rate-distortion-perception function and RDP coding

The (informational) rate-distortion-perception function can
be viewed as a generalization of the rate-distortion function,
which under a given distortion constraint D and a given
perception constraint P , is defined as

R(D,P ) = min
PX̂|X :Ed(X,X̂)≤D,w(PX ,PX̂)≤P

I(X; X̂), (1)

where w(·, ·) is a measure quantifying the distance between
two probability distributions, e.g., KL divergence, total vari-

ation, or Wasserstein metric. We are mainly interested in the
case of perfect perception, i.e.,

R(D, 0) = min
PX̂|X :Ed(X,X̂)≤D,PX̂=PX

I(X; X̂), (2)

which is independent of the choice of w(·, ·) measure. Similar
to the rate-distortion setting, it was shown [19] that the
RDP function is also the fundamental limit of any encod-
ing and decoding function pairs in the RDP setting. It was
established in [20] that under the MSE distortion measure,
R(D, 0) = R(D2 ,∞). These results are again asymptotic
in nature, meaning the corresponding codes are allowed to
encode a large number of samples together.

For scalar quantization (also called one-shot coding), it is
possible to achieve the following coding rate [19] R(D,P )+
log(R(D,P ) + 1) + 4, using the sampling-based approach
mentioned earlier, which is at a higher rate than the RDP
function. The loss can be significant at the usual range of
practical compression applications, e.g., at a target rate of
4bits with a potential loss of more than 4bits. It is not known
whether this is the best rate possible for one-shot coding.

It has been shown that quantizers without common ran-
domness can suffer significantly in RDP coding, and common
randomness is important. Dithered quantizer appears to be a
natural match and can be utilized. However, the output of
the original dithered quantizer has a distribution the same as
X+Z̃, and therefore, there is a mismatch with the target RDP-
optimal distribution. Particularly, for the perfect perceptual
quality setting, the distribution of X + Z̃ may be different
from PX , and a distribution shaping procedure is needed at the
decoder, at the expense of increased distortion. This shaping
can be accomplished using a nonlinear function ϕ(·) operating
on the output of the dithered quantizer X + Z̃, and neural
networks can be used to fulfill this role.

C. Quantization on the unit circle

Consider the following idealized unit-circle setting: the data
signal X to be compressed is uniformly distributed over the
unit circle X = {x ∈ R2 : ∥x∥2 = 1}. The distortion is
measured using the square error function d(x, x̂) = ∥x− x̂∥22,
the coding rate is set at 1 bit per sample, and the reconstruction
X̂ is required to be of perfect perception quality, i.e., X̂ d

= X .
Since the signal has its domain is the unit circle, we can
represent any x ∈ X by its angle θ(x) ∈ Θ ≜ (−π, π]
such that x = (cos(θ(x)), sin(θ(x))). Fixed-rate quantization
at rate 1 on this data source was previously considered in [5]
to illustrate the advantage of stochastic (dithered) encoders.
Two types of quantizers were considered in [5]:

• Quantizer with a deterministic encoder: Since there is no
common randomness, to obtain perfect perception quality,
decoder side noise must be injected. It was shown that the
optimal quantization procedure in this case is as follows:

f(θ(x)) =

{
1 θ(x) ∈ [0, π)
−1 otherwise , g(i) =

i× π

2
− Z̄,

where Z̄ is a private random variable at the decoder side,
independent of X , distributed uniformly on [−π/2, π/2).



We here view g(i) as a random function, and therefore did
not include Z̄ as part of the function input. This procedure
gives a distortion 2− 8/π2.

• Dithered quantizer: Let Z be distributed uniformly over
[−π/2, π/2) independent of X , dithered quantization
operates as follows:

f(Y ) =

{
1 Y ∈ [0, π) mod 2π
−1 otherwise , g(i) =

i× π

2
− Z,

where Y = θ(x) + Z and θ(x̂) = g(f(θ(x) + Z)). By
the property of the dither quantizer, we have θ(X̂) =

θ(X)+ Z̃ mod 2π, where Z̃
d
= Z and is independent of

X . The distortion thus induced is 2−4/π, which is about
38.9% lower than that using the deterministic encoder.

The dithered quantizer performs better here for two reasons:
1) The distribution of θ(X) + Z̃ mod 2π is uniform on the
unit circle, and thus naturally matches the perceptual require-
ment; 2) If the perception consideration were not present, the
first approach could choose a single reconstruction point to
minimize the distortion, however now it is forced to utilize
private randomness at the decoder, over 1/2 of the unit circle,
to produce the desired distribution; this private randomness
thus induces additional distortion. Fig. 1 (a) and (b) illustrate
this effect of the two procedures.

III. QUANTIZATION ON THE UNIT CIRCLE

A. Noise realization and staggered quantizers

Consider again the unit circle setting at rate 1. An alternative
view of a quantizer with common randomness is to consider
the quantizer induced by fixing a realization of the common
randomness Z = z, which is illustrated in Fig. 1 (c). It is seen
that the partitions of these quantizers are in fact congruent
to that shown in Fig. 1 (a). Since Z is uniformly distributed
on [−π/2, π/2), the dithered quantization procedure is in fact
mixing an uncountably many such quantizers, one for each
z ∈ [−π/2, π/2). Due to the common randomness Z, there is
no need to inject decoder side randomness, which helps reduce
the resultant distortion.

The two types of quantizers considered in [5] can then be
viewed as two extremes of a class of quantizers: the former is a
single quantizer with a deterministic encoder that relies solely
on decoder side randomness for perception, while the latter
is mixing (randomly selected using the common randomness)
among uncountably many quantizers each with a deterministic
encoder that requires no decoder side randomness. In between
the two extremes, we can consider mixing staggered quantiz-
ers with deterministic encoders, which will need to rely on
decoder side randomness to some extent. One such example
with N = 4 quantizers is illustrated in Fig. 2. It can be seen
that each individual quantizer only requires the decoder side
randomness to be uniformly distributed on 1/8 of the unit
circle, instead of 1/2 of the unit circle. As discussed earlier,
decoder side randomness induces additional distortion, and
this reduction in its range helps to reduce the distortion. As
we increase the number of quantizers, the distortion is further
reduced, eventually approaching that of the dithered quantizer.

B. Staggered quantizers on the unit circle
Generalizing the idea shown in Fig. 2, we can use N stag-

gered L-level quantizers, each of which uniformly partitions
the unit circle. The N quantizers are obtained by offsetting
sequentially by an amount of 2π/(LN) in terms of the angle
on the unit circle. The common randomness uniformly selects
one of N quantizers, and the decoder adds private random
noise uniformly distributed on 1/(2N) of the unit circle.

Theorem 1. In the unit-circle setting, at perfect perceptual
quality, N staggered quantizers each with L levels achieve
the following rate-distortion pair.

(R,D) =

(
logL, 2− 2

sin(π/(LN))

π/(LN)

sin(π/L)

π/L

)
.

The result subsumes the special case N = 1 and L = 2
given in [5].

Proof of Theorem 1. Since each of N quantifiers is uniform
with L levels, the rate for the corresponding quantization
procedure is logL. Due to symmetry, we analyze the distortion
with a fixed quantizer. The arc (in angle) that the samples
are quantized to the same index on has a length (2π)/L
since there are L levels, and the inserted decoder noise is
placed at the center of the arc uniformly distributed with a
length (2π)/(NL) since there are also N quantizers. Since
∥(cos(θ), sin(θ)) − (cos(α), sin(α))∥2 = 2(1 − cos(θ − α)),
the distortion can then be calculated as

=
L

2π

LN

2π

∫ π/L

−π/L

(∫ π/(NL)

−π/(NL)

2(1− cos(θ − α))dα

)
dθ

= 2 +
L2N

2π2

∫ π/L

−π/L

sin(θ − π/(NL))− sin(θ + π/(NL))dθ

= 2 +
L2N

π2

(
cos

(
π

L

N + 1

N

)
− cos

(
π

L

N − 1

N

))
= 2− 2

sin(π/(NL))

π/(NL)

sin(π/L)

π/L
,

which is the desired result.

The next two theorems provide the fundamental limits of
RDP coding and single-shot coding in the unit-circle setting.

Theorem 2. In the unit-circle setting, the information-
theoretic rate-distortion trade-off with perfect perceptual qual-
ity R(D, 0) is given by the pairs parametrized by λ > 0{

(R,D) =
(
log(2π)− h(Z),E[2− 2 cos(Z)]

)
:

Z ∼ p(z;λ) =
eλ cos(z)∫ π

−π
eλ cos(z′)dz′

, λ > 0
}
.

Note that this is the best that can be achieved using infinitely
large coding blocks, and it is in general impossible to achieve
using single-shot coding.

Proof of Theorem 2. We aim to minimize the rate-distortion
Lagrangian with perfect perceptual quality for any Lagrange
multiplier λ > 0, i.e,

min
pX̂|X :X̂

d
=X

I(X; X̂) + λE[∥X − X̂∥2]. (3)



(a) Quantizer - private randomness (b) Dithered quantization (c) Dissection of dithered quantization

Fig. 1: 1-bit quantizers on the unit-circle with perfect perceptual quality: “×” indicates a sample realization of X; “•” indicate the distribution
of reconstruction X̂; red and blue regions indicate the partition region associated with indices +1 and −1, respectively. In (a), the deterministic
encoder is used. The sample is encoded as +1 and its reconstruction is distributed uniformly over the red region. In (b), the dithered approach
is used, and the reconstruction would be distributed uniformly over the arc centered at the sample. There are no clear partitions in this case,
and thus purple is used as a mixture of red and blue regions. In (c), “◦” indicates realizations of negative common randomness −Z, and
the dithered quantization is viewed as a mixture of uncountably many deterministic quantizers, each associated with a realization of Z.

=

Fig. 2: Staggered quantizers with 1 bit coding rate and 2 bits common randomness.

Due to perfect perceptual quality, the reconstructed signal X̂
must lie on the unit circle, and we can represent X̂ by its angle
θ(X̂). The MSE distortion term ∥X − X̂∥22 can be written as
2(1 − cos

(
θ(X)− θ(X̂)

)
). The mutual information can be

lower bounded by
I(X; X̂) = h(X)− h(X|X̂) ≥ h(X)− h(X − X̂)

= h(θ(X))− h(θ(X)− θ(X̂)).
(4)

For simplicity, from here on we will write θ = θ(X) and
θ̂ = θ(X̂), and denote β := θ − θ̂.

Since h(θ(X)) is a constant, we can consider the optimiza-
tion problem below, equivalent to lower-bounding (3)

minimizep(β) − h(β) + 2λE[(1− cos(β))]. (5)
Using simple calculus of variation, it can be verified that
the optimal distribution of β for the optimization above is
p(β) = e2λ cos(β)∫ π

−π
e2λ cos(β′)dβ′

. Since β is independent of θ, the

sum θ̂ = θ + β has a uniform distribution over [−π, π]. Thus
this distribution indeed provides a lower bound to (3).

To show that they are in fact equal, we only need to observe
that in (4), the only inequality can be written as

I(X; X̂) = h(X)− h(X|X̂) = h(θ)− h(θ|θ̂)
= h(θ)− h(β|θ̂) ≥ h(θ)− h(β). (6)

However, observe that we have

pβ|θ̂(β|θ̂) =
pβ,θ̂(β, θ̂)

pθ̂(θ̂)
=

pβ,θ(β, θ̂ − β)

pθ̂(θ̂)

=
pβ(β)pθ(θ̂ − β)

pθ̂(θ̂)
= pβ(β),

where the last step is because both θ and θ̂ are uniformly
distributed marginally. This implies β is in fact independent
of θ̂, and h(β|θ̂) = h(β), and therefore (6) becomes equality,

which establishes the overall equality. Thus the rate-distortion
pairs are indeed characterized by that given in Theorem 2.

It is not difficult to verify that the curve (or function) above
is continuous, and its epigraph is non-empty and closed lying
in the upper right quadrant. Each point on the curve naturally
has a supporting hyperplane, since it is a solution of optimizing
the corresponding Lagrangian. Thus by the partial converse of
supporting hyperplane theorem the curve is convex.

Theorem 3. In the unit-circle setting, the optimal scalar
quantization (single shot coding) trade-off between the coding
rate and the distortion with perfect perceptual quality is the
piece-wise linear function with the following extreme points{

(R,D) =

(
logL, 2− 2

sin(π/L)

π/L

)
: L = 1, 2, 3, . . .

}
,

which can be achieved by dithered quantizations.

As N → ∞, we see that sin(π/(LN))
π/(LN) → 1, therefore,

the performance of the staggered quantizer approaches that
of dithered quantization in this setting. Due to the uniform
data source distribution, dithered quantizers are optimal, and
N staggered quantizers each with L levels each does not offer
any advantage over dithered quantizers. However, as we will
discuss in the next section, this is not the case in general, since
the flexibility in entropy coding can lead to an additional edge.

Proof of Theorem 3. Any codecs (f, g) can be represented by
f : X × R → Z and g : Z × R → X . The signal X is
encoded by f(X,V ) to some integer and then reconstructed
by X̂ = g(f(X,V ), V ), where V is the common randomness.

Due to the perfect perceptual quality requirement, the
reconstructed signal X̂ must lie on the unit circle. Without
considering perceptual quality, we first characterize the scalar
optimal quantization under the condition that reconstruction
X̂ lies on the unit circle. Take any Lagrange multiplier λ > 0,



consider minimizing the following rate distortion Lagrangian
with decision variables (f, g, V )

H(f(X;V )|V ) + λEX,V [d(X, g(f(X;V );V ))]

= EV [EX [− log(P(f(X;V )|V )) + λd(X, g(f(X;V );V ))|V ]]

It suffices to study the deterministic quantizer, since for
any stochastic quantizer (f, g, V ), there exists a deterministic
quantizer (f(; v), g(; , v)) with some realization of V = v such
that its Lagrangian is at most that of the stochastic quantizer.

It is straightforward to verify that the optimal deterministic
quantizer in this setting must have contiguous regions (patho-
logical cases may exist for complex distributions [21]), i.e., the
region in X of the same index f(·, v) should be contiguous.
For such a quantizer with L levels, i.e., |f(·, v)| = L, it
can then be shown using calculus that it must be a uniform
quantizer. The optimal scalar quantization (single shot coding)
trade-off between the coding rate and the distortion is the
piece-wise linear function with the following extreme points{

(R,D) =

(
logL, 2− 2

sin(π/L)

π/L

)
: L = 1, 2, 3, . . .

}
.

This piece-wise linear function is a lower bound, when consid-
ering perfect perceptual quality. However, it is straightforward
to verify that dithered quantization has the perfect perceptual
quality and can achieve the extreme points and thus match
the lower bound. Thus the optimal scalar quantization trade-
off between the coding rate and the distortion with perfect
perceptual quality is also the piece-wise linear function above
and can be achieved by time-sharing dithered quantizers.

IV. DESIGN OF STAGGERED QUANTIZERS FOR GENERAL
SCALAR SOURCES

Consider applying the staggered quantization approach to a
general scalar source. Assuming there are N uniform quantiz-
ers to be staggered, the encoding function fn(x) for the n-th
quantizer with stepsize ∆ is

fn(x) =
⌊ x
∆

− n

N

⌉
, n = 0, 1, 2, . . . , N − 1, (7)

where ⌊·⌉ is the operation that rounds to the nearest integer.
To achieve perfect perceptual quality, decoder side random-

ness must be used, yet due to the potential non-uniformity of
the distribution, it is more involved than simply subtracting
certain random values. To present the procedure, first denote
the density of the data source X as pX(x) and denote by
FX(x) = P(X ≤ x) its cumulative distribution function.
Denote its inverse as F−1

X (t) ≜ inf{x : FX(x) > t} for
any t ∈ [0, 1). Let us introduce a density function on [a, b] as
qa,b(x) ≜ pX(x)∫ b

a
pX(t)dt

. A random variable generated privately
at the decoder side according to this distribution is denoted as
Z̃a,b, which is independent of all the other random variables.

Define an indexing function m(x, n) = N · fn(x) + n,
which essentially specifies an order of all the quantization
cells in all these N quantizers. Define its inverse at input x as
m−1

X (j) ≜ inf{x : ∃n ∈ [0 : N−1],m(x, n) = j}. Intuitively,
for each quantizer and quantizer cell index pair (n, fn(x)),
the reconstruction at the decoder is a random variable that
follows a distribution that matches the data sample distribution

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
rate (bit)

0.00
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)

private randomness only
dithered q antization
Staggered q antizers with N=2
Staggered q antizers with N=4
Staggered q antizers with N=8

Fig. 3: Quantization of a uniformly distributed source on an interval

in an interval. Now to specify the specific interval, we define
a sequence of boundaries (a(j), b(j))j∈Z as

a(j) ≜ F−1
X

(
N∑

k=1

FX(m−1
x (j − k))

N

)
, b(j − 1) ≜ a(j).

The encoding and reconstruction process can now be de-
scribed as follows. Given data source X at the encoder side,
the encoding procedure uniformly at random selects one of the
N encoders {f0, f1, . . . , fN−1} with stepsize ∆. The index n
of the selected encoder is a common randomness shared by
the decoder, and the data sample is encoded as fn(X). At the
decoder, we compute the index j using fn(x) and n by the
indexing function m(·), and the reconstruction is a random
sample X̂ = Z̃a(j),b(j). More formally, the decoding function
upon receiving code fn(X) = i is

g(i) = Z̃a(j),b(j), with j = Ni+ n, (8)
where n is the common randomness of the offset quantizer in-
dex. We remark here that the offsets can be viewed as a random
dither which takes discrete values in {0, 1/N, 2/N, . . . , (N −
1)/N}. However, for each realization, the reconstruction is
sampled in an interval, unlike in classic deterministic quantiz-
ers or dithered quantizers.

Since the number of staggered quantizers is small, it is
possible to design tailored entropy code for each, whereas this
is impossible for dithered quantizers, resulting in a rate close
to H(f(X + Z)). Dithered quantization also suffers because
X + Z̃ induces loss of perception, and an additional shaping
step is required. As shown in Fig. 3, the proposed approach can
sometimes outperform both dithered quantizers and determin-
istic encoders. Particularly, even mixing 2 quantizers appears
to provide competitive performance.

V. CONCLUSION

We consider RDP coding from a quantizer design perspec-
tive. By decomposing dithered quantization, we obtain stag-
gered quantizers as intermediates between the two extremes
of dithered quantization and quantization without common
randomness. This new perspective provides a new way to
understand one-shot coding for RDP.
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