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Abstract

Motivated by interpretability and reliability, we investigate whether large language1

models (LLMs) deploy universal geometric structures to encode discrete, graph-2

structured knowledge. To this end, we present two complementary experimental3

evidence that might support universality of graph representations. First, on an4

in-context genealogy Q&A task, we train a cone probe to isolate a “tree-like”5

subspace in residual stream activations and use activation patching to verify its6

causal effect in answering related questions. We validate our findings across five7

different models. Second, we conduct model stitching experiments across models8

of diverse architectures and parameter counts (OPT, Pythia, Mistral, and LLaMA,9

410 million to 8 billion parameters), quantifying representational alignment via10

relative degradation in the next-token prediction loss. Generally, we conclude that11

the lack of ground truth representations of graphs makes it challenging to study12

how LLMs represent them. Ultimately, improving our understanding of LLM13

representations could facilitate the development of more interpretable, robust, and14

controllable AI systems.15

1 Introduction16

Large Language Models (LLMs), despite being primarily trained for next-token predictions, have17

shown surprisingly robust reasoning capabilities (Bubeck et al., 2023; Anthropic, 2024; Team et al.,18

2023). However, despite recent progress, we still lack a clear understanding of how these models19

internally encode different kinds of knowledge. Improving such understanding could enable valuable20

progress relevant to transparency, interpretability, and safety; For example, (a) discovering and21

correcting inaccuracies to improve model reliability (Zhang et al., 2024a), (b) discovering and22

correcting biases (Chen et al., 2024), (c) revealing and removing dangerous knowledge (Zhang23

et al., 2024b), and (d) detecting deceptive behavior where models deliberately output information24

inconsistent with its knowledge (Marks and Tegmark, 2023).25

Prior works have identified geometric structures of specific kinds of knowledge in LLMs and shown26

that these structures recur across many different models – evidence of representation universality.27

For example, Gurnee and Tegmark (2023) identified a linear subspace that captures spatio-temporal28

coordinates; Engels et al. (2024) discovered a circular manifold of calendar days and months’29

representations; and Kantamneni and Tegmark (2025) demonstrated a helical subspace of number30

representations. However, the question of how LLMs represent discrete, relational structures – such31

as nodes and edges in a knowledge graph – remains largely unexplored. In this paper, we ask:32

Do LLMs exhibit representation universality when encoding graph-structured knowledge?33

To investigate representation universality for discrete, graph-structured knowledge, we present two34

complementary experimental evidence:35
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Figure 1: Visualization of the top two principal components of an MLP trained to learn the descendant-
of relationship across nine different random seeds – for models trained on either (left) a fully balanced
binary tree or a (right) randomly generated general tree consisting of 15 nodes. For clarity, we add
arrows connecting direct parent–child pairs. Each plot is rotated so that the root node appears at the
top of the panel. Across different seeds and tree structures, the learned representations consistently
exhibit a geometric pattern that resembles a tree in discrete mathematics – a structure we define as
cone embedding in the main text. Note that the models do not separate two sibling leaf nodes under
the same parent. This is because all embeddings are initialized to zero, and the model receives no
gradient signals to separate two sibling leaf nodes – they are equivalent nodes when it comes to
determining the descendant-of relationship.

1. Tree-structured subspace of Genealogy representations: When representing descendant-of36

relationship, we identify that the optimal representation is a tree-like embedding that could be37

identified via cone probe. On an in-context genealogy Q&A task, we use a cone probe to isolate a38

tree-like subspace within the residual stream activations. We then use activation patching to verify39

the causality of this subspace. We validate our findings across five different models.40

2. Cross-model alignment via Model Stitching: Since we lack a ground-truth representation for41

arbitrary graphs, we adopt a black-box model stitching approach to compare representations across42

different LLMs. We splice the early layers of one model onto the late layers of another via trainable43

linear adapter. Our experiments cover a diverse set of models – from OPT and Pythia to Mistral and44

LLaMA – ranging in size from 410 million to 8 billion parameters. By measuring the increase in45

next-token prediction loss relative to each model’s baseline, we quantify representation alignment46

between different models.47

Together, these experiments provide supporting evidence that LLMs may employ universal geometric48

structures to represent graphs. The rest of this paper is organized as follows: In Section 2, we49

formally describe the problem setting and introduce our hypothesis for the optimal representation50

of genealogical relationships. In Section 3, we investigate whether LLM representations exhibit51

geometric structure similar to the optimal representation we propose. Section 4 presents additional52

evidence for representational universality via LLM stitching experiments. We relate our approach to53

prior work in Section 5, and conclude our paper in Section 6.54

2 Setup55

Consider a general knowledge graph (KG) consisting of m binary relations R(1), R(2), · · ·R(m)56

between n objects (nodes) x1, ..., xn. Our task is to understand the representation that enables link57

prediction, the task of predicting the probability pijk that R(i)(xj , xk) = 1. While most KG-learning58

algorithms in the literature embed both objects and relations (Cao et al., 2024), we instead embed59

only objects (xi 7→ Ei ≡ E(xi) ∈ Rd) and train a link predictor network p(Ej ,Ek), which takes60
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two embedding vectors Ej ,Ek as an input, and outputs an m-dimensional vector p that represents61

link probability. This is to emulate the behavior of modern large language models, where only objects62

are embedded and relations are implicitly defined via weights. Our ultimate goal is to improve our63

understanding of representations that enable knowledge graph learning tasks in LLMs.64

As a specific instance of this problem, consider a problem of learning descendant-of relationship65

in a tree. We claim that the optimal representation of this problem is a cone embedding, where j66

is a direct descendant of i iff Ej lies within a fixed cone emanating from Ei.1 We show that cone67

embedding is the optimal representation for this problem in Appendix A. Accordingly, we could68

define a score function which measures the probability that j is a direct descendant of i:69

p(Ei,Ej) = σ(Ei,1 −Ej,1)σ(Ei,0 −Ej,0), (1)

where σ is a sigmoid function and Ei,n denotes the n−th component of embedding Ei. Since70

this score function is differentiable, we could also train a probe that measures how close a given71

embedding is to the cone embedding, which we refer to as the cone probe.72

To test this hypothesis, we train a multi-layer perceptron (MLP) with a single hidden layer of width73

50 to learn the descendant-of relationship on a tree consisting of 15 nodes. We do not use a test split,74

as our primary goal is to analyze the geometric structure of representations rather than to evaluate75

their generalization performance. The model embeds each object into a two-dimensional space,76

concatenates the resulting vectors, and passes them through the MLP to predict the probability that77

node j is a direct descendant of node i. We use the AdamW optimizer (Loshchilov and Hutter, 2017)78

with a learning rate of 10−3, and train for up to 104 epochs, while applying early stopping if the loss79

does not improve for 30 consecutive epochs. We perform experiments on both a fully balanced binary80

tree and a randomly generated general tree.81

Fig. 1 visualizes the top two principal components of the learned embeddings across nine different82

random seeds, both for the balanced tree and the general tree, with arrows added from each parent83

to its child for clarity. We observe that the learned representations indeed form cone embeddings –84

a geometric structure that closely resembles tree-like hierarchies in discrete mathematics. Another85

notable observation is that the model organizes the representations into a meaningful geometric86

structure, even though it could, in principle, simply memorize the training data and has no explicit87

incentive to learn a structured embedding. We hypothesize that this emergent structure is driven by the88

model’s dimensionality constraint – specifically, the requirement to encode all relevant information89

within a two-dimensional space. This limitation effectively forces the model to arrange the objects90

into a coherent tree-like layout.91

In the following section, we investigate whether genealogical representations in LLMs exhibit similar92

geometric structure. We will use the cone probe to identify relevant subspaces and perform causal93

interventions on them.94

3 Genealogy Representations in LLMs95

In the previous section, we observed that small models often encode genealogical relationships in a96

tree-like structure. This raises an interesting question: would LLMs represent genealogies in a similar97

way? To investigate, we design an in-context genealogy task as follows. We generate a full binary98

tree with 15 nodes and assign each node a name drawn at random (without replacement) from the99

200 most popular male and female names from the birth year 2000, using the pybabynames package100

in Python (Balamuta, 2024). In the prompt, we first describe the family tree by listing all the children101

of every person on each line. We then ask questions of the form “Is X a direct descendant of Y?” to102

the LLM. We show an example of the full prompt in Appendix B. We evaluate our results over five103

different models, which are listed in Appendix C.104

Fig. 2 shows the average F1 score on question-answering tasks about descendant-of relationships,105

averaged over five different name assignments on a tree. First, we found that the models are only able106

to answer these questions well when the lines, each of which lists the children of a specific person, are107

ordered based on the person’s depth in the tree. When the orders are randomly shuffled, the model’s108

performance significantly deteriorated. This is in accordance with the well-known reversal curse109

1By optimal, we mean a representation that satisfies all the special properties of the relation, such as
symmetricity and transitivity. We discuss optimal representations in more detail in Appendix A.
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Figure 2: Top: Visualization of in-context genealogy-tree representations from LLaMA-3.1-8B-
Instruct across five different random name assignments on a full binary tree of 15 nodes. We show
the projection onto the first two principal components, and the Projection onto the cone-probe
subspace. Nodes and edges are colored by their depth in the tree. We added arrows connecting direct
parent-to-child links for visualization. Bottom: Average F1 score on question-answering tasks about
descendant-of relationships, averaged over five different name assignments on a tree. These results
suggest that the model may struggle with compositional generalization if the relevant facts are not
provided in order.

(Berglund et al., 2023), where LLMs trained on “A is B” fail to learn “B is A”. Hence, if we present110

“C is a child of D” first, and then “B is a child of C,” the model may not be able to identify the reverse111

compositional relationship that “B is a child of D.” Hence, we focus on studying the representations112

of the family tree when the graph descriptions are ordered based on people’s depth in the tree.113

To identify tree-like subspaces, we train a cone probe on the residual stream activations at the target114

token. To prevent overfitting, we first reduce each activation vector to 10 dimensions via PCA and115

then fit the cone probe in this lower dimensional space. We train a cone probe with AdamW optimizer116

with a learning rate 10−3 for 3000 epochs, while keeping the model that achieves the best F1 score117

on the original dataset. Fig. 2 visualizes the resulting 2D embeddings from PCA projection and cone118

projection across five different family trees (i.e. names are assigned to each node at random). We find119

that the PCA representations tends to be more degenerate (nodes at the same depth cluster tightly),120

whereas the cone probe yields a clearer, discrete “branching” structure that mirrors the underlying121

tree topology.122

To verify the causal role of these subspaces, we conduct an intervention experiment. For each family123

tree, we sample 100 prompt pairs from five trees with different name assignments – a “clean” prompt124

(X, Y) and a corresponding “corrupted” prompt (X’, Y) – constructed so their correct answers are125

opposite. We balance the set so that half of the clean prompts yield a positive (Yes) answer and the126
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<Graph Description>

Clean Prompt
Corrupted Prompt

Sean's children: [Grant, Adam]
Grant's children: [Brian, Jack]
Adam's children: [Jonathan, William]
Brian's children: [Marcus, Jennifer]
Jack's children: [Connor, Mary]
Jonathan's children: [Andre, Paul]
William's children: [Patrick, Austin]

Is Marcus a direct descendant of Grant?
Is Sean a direct descendant of Grant?

X/X’ Y Answer
Yes
No

∆!"#$"%	= 	 𝐿𝐷&"'!()* − 𝐿𝐷!+,,#&')*
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Figure 3: Top: Illustration of our intervention methodology. Bottom: Intervention results across
five models. The histogram shows the causal effect of patching two subspaces of the residual stream
activations at one-third model depth: (a) the subspace spanned by the top two principal components
and (b) the cone subspace.

other half yield a negative (No) answer. For each pair, we run the model on the corrupt prompt, while127

patching its residual stream activations at layer l with those recorded from the clean run. We then128

quantify the causal effect of patching by comparing logit differences:129

∆causal = LDpatched − LDcorrupted, (2)

where LDx is the logit difference between the correct and incorrect tokens in run x. We compare130

three activation patching scenarios: (a) Patching the full layer, (b) Patching the top two principal131

components, and (c) Patching the cone subspace. More precisely, suppose B ∈ Rd×k spans the132

subspace of interest, and define the orthogonal projection matrix133

P = B (B⊤B)−1B⊤.

For any representation x ∈ Rd, the patched representation is given by134

xpatched = xcorrupted −Pxcorrupted +Pxclean (3)

Intervention results are shown in Fig. 3 and Fig. 4. We find that representations in early to mid135

layers exhibit a stronger causal effect than those in later layers. Moreover, patching the cone-probe136

subspace alone produces a logit shift that is comparable to or larger than patching the top two principal137

components. Although full-layer patching yields an even larger effect – implying additional causally138

relevant directions beyond the cone subspace – our findings confirm that the cone subspace reliably139

emerges when models are asked to answer a question about a tree of relatively small size, and is at140

least as causally relevant as the subspace spanned by the top two principal components.141

Limitations: First, we focus solely on the internal geometry and universality of LLM representations142

– without examining how these subspaces are actually leveraged by the model for answering questions,143

more well known as circuit analysis (Tigges et al., 2024). Second, our experiments use a relatively144

small binary tree consisting of 15 nodes on which models achieve near-perfect accuracy in answering145
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Figure 4: Intervention results for Llama-3.1-8B-Instruct across different layers. The plot shows the
causal effect of patching two subspaces of the residual stream activations: (a) the subspace spanned
by the top two principal components and (b) the cone subspace. Standard errors are indicated as a
shaded region. Full represents patching the full activation at a specific layer.

related questions. Consequently, it remains unclear whether similar causal, tree-like subspaces emerge146

in larger or more complex genealogies, or if future, more capable models will encode genealogies in147

a similar manner. For instance, for a particular task of answering descendant-of questions, the ratio148

between positive and negative samples approaches zero as the tree size approaches infinity. Therefore,149

the model might just learn to say No for all questions while still getting accuracy larger than 99%.150

Hence, we would need a model that is good at what is known as the needle-in-a-haystack problem151

(Liu et al., 2023).152

4 LLM Stitching Experiments153

4.1 Model Stitching154

Model Stitching (Lenc and Vedaldi, 2015; Bansal et al., 2021) is a method for probing the representa-155

tion similarity between two different models by constructing a hybrid model that stitches the bottom156

layers of one model to the top layers of another model via trainable adapter layer. By measuring the157

performance drop of the stitched model relative to the original model, one could infer the degree158

of representation alignment between two different models. In this section, we apply this method to159

LLMs to study representation alignment between different LLMs.160

Formally, the process of stitching two LLMs could be described as follows: Consider two LLMs161

A = UA

(
n−1∏
i=0

Hi

)
EA, B = UB

(
m−1∏
i=0

Ki

)
EB , (4)

where Hi,Ki are decoder layers, E is the embedding layer, and U is the unembedding layer. The162

stitched model is given by163

B ◦ A = UB

 m−1∏
i=(m−l+1)

Ki

S(Λ)

(
k−1∏
i=0

Hi

)
EA, (5)

where we stitched the first k layers of A and the last l layers of B. We then train a linear stitching164

layer S(Λ) to minimize the next-token prediction cross-entropy loss:165

L(Λ) =
∑

log [P(vi|vi−1 · · · v0,Λ)] . (6)

For stitching models with different tokenizers, vi is the first token of the string vivi+1vi+2 · · · ,166

tokenized by B’s tokenizer. For our experiments, we stitch models from the OPT family (1.3B, 2.7B,167
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Figure 5: Left: In-context learning accuracy for models stitched between OPT-2.7B and OPT-6.7B.
Base indicates OPT-6.7B, and x% indicate the embedding layer and first x% of the OPT-6.7B replaced
by those of OPT-2.7B. Right: Test loss as a function of stitched position between two different
models. The two models are cut at the same relative depth within each model. The black dashed line
on the right figure indicates the average test loss of original models.

6.7B), Pythia family (410M, 1.4B, 2.8B), Mistral-7B-Instruct, and LLaMA-3.1-8B-Instruct. These168

models were chosen to cover a wide spectrum of model families and parameter scales. We trained169

the stitching layer for 10,000 steps with a linearly decaying learning rate starting at 10−3 with 100170

warmup steps, and a weight decay of 10−4. We used open-source models available in Huggingface,171

and used Huggingface datasets monology/pile-uncopyrighted and monology/pile-test-val for training172

and evaluating test loss. Each sample is truncated to 2048 tokens, and we report average test loss173

over 2000 randomly selected test samples.174

4.2 Results175

Fig. 5 presents the results of our LLM stitching experiments. Overall, we observe that representations176

from different models align more closely in early to mid layers than in later layers. Correspondingly,177

in-context learning performance declines as the stitching point moves to later relative depths.178

We also evaluated stitching various layers of one model onto a fixed layer of another (Fig. 6 and179

Fig. 7). Test loss remains relatively low when connecting the embedding layer of one model to180

downstream layers of another, suggesting substantial representational transformations in the first few181

layers as token-level embeddings are converted into higher-level semantic concepts. While mid-layer182

representations between models are often compatible, stitching them into later layers yields higher183

loss – likely because those layers prioritize next-token prediction over forming semantic concepts.184

Interestingly, we can stitch a mid-layer of one model onto an early layer of another (e.g., layers185

0–15 of Pythia-410M to layers 2–23 of Pythia-1.4B), implying that mid-layer activations still retain186

sufficient token-level information which could be “reset” to token-level representations.187

These results corroborate the Stages of Inferenece hypothesis of Lad et al. (2024), which argues that188

LLMs process inputs through discrete phases – first constructing semantic representations in early-to-189

mid layers, then shifting to next-token prediction in later layers. Consequently, representations at190

equivalent relative depths across different models exhibit strong alignment, the concept known as191

representation universality (Huh et al., 2024).192

Limitations: Despite its utility in quantifying representational alignment, our experiment has a few193

limitations. First, it assumes that representational alignment can be completely captured through194

a simple linear mapping; therefore, more complex or nonlinear representations, such as circular195

features in days of the month (Engels et al., 2024) or helical features in numbers (Kantamneni and196

Tegmark, 2025), may be classified as not equivalent. In order to circumvent this problem, one could197

consider adding a quadratic correction term to the adapter layer. Moreover, our experiments span198

only a limited set of LLM architectures and scales; therefore, it may not generalize to other models,199

such as multimodal models, that are not studied in this paper.200
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Figure 6: Test loss as a function of the stitch point x. We stitch the first x% of layers from the
second model onto the first model at two fixed depths: one-sixth of its total depth (left) and one-half
of its total depth (right). The vertical dashed line marks the relative depth where the first model is
cut (one-sixth and one-half, respectively). The horizontal dashed line indicates the original models’
average test loss.

5 Related Works201

In light of the recent development of LLMs’ capabilities, understanding the inner workings of Large202

Language Models have become increasingly important to ensure the safety and robustness of AI203

systems (Tegmark and Omohundro, 2023; Dalrymple et al., 2024).204

Mechanistic Interpretability Neural Networks have demonstrated a surprising ability to generalize205

(Liu et al., 2021; Ye et al., 2021). Recently, there have been increasingly more efforts on trying to206

reverse engineer and interpret neural networks’ internal operations (Zhang et al., 2021; Bereska and207

Gavves, 2024; Baek et al., 2024). Such methods include using structural probes and interventions at208

the level of entire representations (Hewitt and Manning, 2019; Pimentel et al., 2020), and studying209

neuron activations at the individual neuron level (Dalvi et al., 2019; Mu and Andreas, 2020). Our210

work is part of this broader effort in mechanistic interpretability; We aim to understand how large211

language models represent different types of knowledge.212

Knowledge Representations in Language Models Early word-embedding models, including213

Word2Vec and GloVe, were found to encode semantic relationships as linear directions in their214

vector spaces (Drozd et al., 2016; Pennington et al., 2014; Ma and Zhang, 2015). More recently, sev-215

eral studies showed that LLMs are capable of forming conceptual representations in spatial, temporal,216

and color domains (Gurnee and Tegmark, 2023; Abdou et al., 2021; Li et al., 2021). Some studies217

focused primarily on examining the linearity of LLMs’ feature representations (Gurnee and Tegmark,218

2023; Hernandez et al., 2023). Several works found multi-dimensional representations of inputs such219

as lattices (Michaud et al., 2024) and circles (Liu et al., 2022; Engels et al., 2024), one-dimensional220

representations of high-level concepts and quantities in large language models (Gurnee and Tegmark,221

2023; Marks and Tegmark, 2023; Heinzerling and Inui, 2024; Park et al., 2024b).222

In particular, Park et al. (2024b) studied representations of word hierarchies. We examine repre-223

sentations of genealogical trees – another form of hierarchical data but are fundamentally different224

from word hierarchies because individuals in different generations do not possess inherent semantic225

relationships. Our findings suggest the existence of more multi-dimensional features, warranting226

further investigation. Our work is closely related to Park et al. (2024a), who study representations227

developed during in-context learning on a graph-tracing task. However, their analysis focuses on228

lattice and ring structures, which are inherently one-dimensional. In contrast, we aim to study229

in-context learning representations arising from data with more complex, hierarchical structures.230

Our work is also closely related to traditional knowledge graph embedding models such as TransE231

(Wang et al., 2014), ComplexE (Trouillon et al., 2016), and TransR (Lin et al., 2015), which embed232

both entities and relations into a shared latent space and optimize a scoring function for link prediction.233

In contrast, our approach embeds only entities (objects), most closely mirroring how LLMs represent234

and process information.235
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Figure 7: Test loss for different stitching configurations. Each point (i, j) indicates the loss of the
model obtained by taking the first j layers of the y-axis model and the last (L − j) layers of the
x-axis model, where L is the total number of layers of the x-axis model. The red diagonal line marks
the cases where both models are joined at the same relative depth.

Representation Alignment and Model Stitching There are active discussions in the literature about236

strengths and weaknesses of different representation alignment measures (Huh et al., 2024; Bansal237

et al., 2021; Sucholutsky et al., 2023). Several works have considered stitching to obtain better-238

performing models, such as stitching vision and language models for image and video captioning239

task (Li et al., 2019; Iashin and Rahtu, 2020; Shi et al., 2023), and stitching BERT and GPT for240

improved performance in look ahead section identification task (Jiang and Li, 2024). Some works241

have considered stitching toy transformers to understand the impact of activation functions on242

model’s performance (Brown et al., 2023). Our work considers stitching LLMs to examine the hints243

of representation universality across different models.244

6 Conclusion245

We studied whether LLMs deploy universal geometric structures to encode graph-structured knowl-246

edge. We presented two complementary experimental evidence that supports universality of graph247

representations of LLMs. First, on an in-context genealogy Q&A task, we trained a cone probe to248

isolate a “tree-like” subspace in residual stream activations and utilized activation patching to verify249

its causal effect in answering related questions. Second, we conducted model stitching experiments250

across diverse architectures and parameter counts, and quantified representational alignment via251

relative degradation on next-token prediction loss. Generally, we conclude that the lack of ground252

truth representations of graphs makes it challenging to study how LLMs represent them. Ultimately,253

improving our understanding of LLM representations could facilitate the development of more254

interpretable, robust, and controllable AI systems.255

Future Works: One could systematically investigate the optimal representations of more complex256

genealogical relationships – such as cousins, aunts, and uncles – and analyze whether LLMs encode257

these relations in a similar geometric manner. It would also be interesting to explore whether258

there exists a critical graph size beyond which such optimal representations begin to emerge. Our259

current study is limited to relatively small graphs, since model performance on genealogical question-260

answering tasks degrades significantly with increasing graph size. To address this, one could261

fine-tune existing LLMs or employ larger, more capable models to better understand the emergence262

of structured representations in larger graphs.263

Another promising direction is to examine how LLMs estimate their uncertainty when reasoning264

over graph-structured data. We observe that LLMs rarely express full confidence in their answers265

to descendant-of questions, even for relatively small trees. Applying mechanistic interpretability266

techniques to study how uncertainty is represented could provide valuable insights into how LLMs267

process genealogical relationships in context.268
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A Optimal Representation in Knowledge Graph Learning402

We define optimal representation as those that satisfiy all the special properties of the relation. Such403

properties include404

• Symmetricity: ∀x1, x2 : R(x1, x2) =⇒ R(x1, x2)405

• Reflexivity: ∀x1 : R(x1, x1) = 1406

• Transitivity: ∀i, j, k : R(xi, xj) ∧R(xj , xk) =⇒ R(xi, xk)407

• Meta-transitivity: ∀i, j, k : R(1)(xi, xj) ∧R(1)(xj , xk) =⇒ R(2)(xi, xk)408

As an example, we prove that cone embedding in the main text is an optimal representation of the409

descendant-of relationship.410

Proof. Our predictor function for cone probe is given by p(Ei, Ej) = H(Ei0 −Ej0)H(Ei1 −Ej1)411

where H is the heaviside step function (H(x) = 1 if x > 0, vanishing otherwise). We show that p412

satisfies transitivity, i.e.if i is a descendant of j, and j is a descendant of k, then i is a descendant of k:413

Suppose p(Ei, Ej) = p(Ej , Ek) = 1. By definition of the cone probe,414

p(Ei, Ej) = 1 ⇐⇒ Ei0 > Ej0 ∧ Ei1 > Ej1, p(Ej , Ek) = 1 ⇐⇒ Ej0 > Ek0 ∧ Ej1 > Ek1.

Chaining these inequalities gives415

Ei0 > Ek0 and Ei1 > Ek1,

and hence p(Ei, Ek) = H(Ei0 − Ek0)H(Ei1 − Ek1) = 1. □416

B Full Prompt Example417

418
1 Below is an instruction that describes a task , paired with an input419

↪→ that provides further context. Write a response that420

↪→ appropriately completes the request.421

2422

3 ### Instruction:423

4 Answer a question about the family tree relationship based on the424

↪→ given data. If it ’s a yes/no question , answer with only one425

↪→ word: ’Yes ’ or ’No.’ If it ’s a ’who ’ question , answer with the426

↪→ person ’s name(s).427

5428

6 ### Input:429

7 Family Tree:430

8 Emily ’s children: [Scott , Jordan]431

9 Scott ’s children: [Marco , William]432

10 Jordan ’s children: [Charles , Hunter]433

11 Marco ’s children: [Luke , Jose]434

12 William ’s children: [Jessica , Crystal]435

13 Charles ’s children: [Alan , Joseph]436

14 Hunter ’s children: [Laura , Grace]437

15438

16 Question: Is Grace a direct descendant of Laura?439

17440

18 ### Response:441442

C List of Models443
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Model Name Citation

meta-llama/llama-3.1-8b-instruct Touvron et al. (2024)
meta-llama/Meta-Llama-3-8B-Instruct Touvron et al. (2024)
meta-llama/Llama-3.2-3B-Instruct Touvron et al. (2024)
google/gemma-2-2b-it Google DeepMind (2024)
google/gemma-2-9b-it Google DeepMind (2024)

Table 1: List of Models used in our experiments.

NeurIPS Paper Checklist444

1. Claims445

Question: Do the main claims made in the abstract and introduction accurately reflect the446

paper’s contributions and scope?447

Answer: [Yes]448

Justification: All of our claims in the abstract and intro are reflected in the paper; we list out449

the exact section where each contribution is shown in our list of contributions in the intro.450

Guidelines:451

• The answer NA means that the abstract and introduction do not include the claims452

made in the paper.453

• The abstract and/or introduction should clearly state the claims made, including the454

contributions made in the paper and important assumptions and limitations. A No or455

NA answer to this question will not be perceived well by the reviewers.456

• The claims made should match theoretical and experimental results, and reflect how457

much the results can be expected to generalize to other settings.458

• It is fine to include aspirational goals as motivation as long as it is clear that these goals459

are not attained by the paper.460

2. Limitations461

Question: Does the paper discuss the limitations of the work performed by the authors?462

Answer: [Yes]463

Justification: We discuss the limitations when we discuss results in each section, and we464

discuss overall limitations in the conclusion.465

Guidelines:466

• The answer NA means that the paper has no limitation while the answer No means that467

the paper has limitations, but those are not discussed in the paper.468

• The authors are encouraged to create a separate "Limitations" section in their paper.469

• The paper should point out any strong assumptions and how robust the results are to470

violations of these assumptions (e.g., independence assumptions, noiseless settings,471

model well-specification, asymptotic approximations only holding locally). The authors472

should reflect on how these assumptions might be violated in practice and what the473

implications would be.474

• The authors should reflect on the scope of the claims made, e.g., if the approach was475

only tested on a few datasets or with a few runs. In general, empirical results often476

depend on implicit assumptions, which should be articulated.477

• The authors should reflect on the factors that influence the performance of the approach.478

For example, a facial recognition algorithm may perform poorly when image resolution479

is low or images are taken in low lighting. Or a speech-to-text system might not be480

used reliably to provide closed captions for online lectures because it fails to handle481

technical jargon.482

• The authors should discuss the computational efficiency of the proposed algorithms483

and how they scale with dataset size.484
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• If applicable, the authors should discuss possible limitations of their approach to485

address problems of privacy and fairness.486

• While the authors might fear that complete honesty about limitations might be used by487

reviewers as grounds for rejection, a worse outcome might be that reviewers discover488

limitations that aren’t acknowledged in the paper. The authors should use their best489

judgment and recognize that individual actions in favor of transparency play an impor-490

tant role in developing norms that preserve the integrity of the community. Reviewers491

will be specifically instructed to not penalize honesty concerning limitations.492

3. Theory assumptions and proofs493

Question: For each theoretical result, does the paper provide the full set of assumptions and494

a complete (and correct) proof?495

Answer: [Yes]496

Justification: We provide proofs that the cone representation is optimal for representing497

descendant-of relationship in Appendix A.498

Guidelines:499

• The answer NA means that the paper does not include theoretical results.500

• All the theorems, formulas, and proofs in the paper should be numbered and cross-501

referenced.502

• All assumptions should be clearly stated or referenced in the statement of any theorems.503

• The proofs can either appear in the main paper or the supplemental material, but if504

they appear in the supplemental material, the authors are encouraged to provide a short505

proof sketch to provide intuition.506

• Inversely, any informal proof provided in the core of the paper should be complemented507

by formal proofs provided in appendix or supplemental material.508

• Theorems and Lemmas that the proof relies upon should be properly referenced.509

4. Experimental result reproducibility510

Question: Does the paper fully disclose all the information needed to reproduce the main ex-511

perimental results of the paper to the extent that it affects the main claims and/or conclusions512

of the paper (regardless of whether the code and data are provided or not)?513

Answer: [Yes]514

Justification: We include sufficient experiment details to reproduce our experiments, and we515

include our code for the full details, and we include our code for the full details.516

Guidelines:517

• The answer NA means that the paper does not include experiments.518

• If the paper includes experiments, a No answer to this question will not be perceived519

well by the reviewers: Making the paper reproducible is important, regardless of520

whether the code and data are provided or not.521

• If the contribution is a dataset and/or model, the authors should describe the steps taken522

to make their results reproducible or verifiable.523

• Depending on the contribution, reproducibility can be accomplished in various ways.524

For example, if the contribution is a novel architecture, describing the architecture fully525

might suffice, or if the contribution is a specific model and empirical evaluation, it may526

be necessary to either make it possible for others to replicate the model with the same527

dataset, or provide access to the model. In general. releasing code and data is often528

one good way to accomplish this, but reproducibility can also be provided via detailed529

instructions for how to replicate the results, access to a hosted model (e.g., in the case530

of a large language model), releasing of a model checkpoint, or other means that are531

appropriate to the research performed.532

• While NeurIPS does not require releasing code, the conference does require all submis-533

sions to provide some reasonable avenue for reproducibility, which may depend on the534

nature of the contribution. For example535

(a) If the contribution is primarily a new algorithm, the paper should make it clear how536

to reproduce that algorithm.537
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(b) If the contribution is primarily a new model architecture, the paper should describe538

the architecture clearly and fully.539

(c) If the contribution is a new model (e.g., a large language model), then there should540

either be a way to access this model for reproducing the results or a way to reproduce541

the model (e.g., with an open-source dataset or instructions for how to construct542

the dataset).543

(d) We recognize that reproducibility may be tricky in some cases, in which case544

authors are welcome to describe the particular way they provide for reproducibility.545

In the case of closed-source models, it may be that access to the model is limited in546

some way (e.g., to registered users), but it should be possible for other researchers547

to have some path to reproducing or verifying the results.548

5. Open access to data and code549

Question: Does the paper provide open access to the data and code, with sufficient instruc-550

tions to faithfully reproduce the main experimental results, as described in supplemental551

material?552

Answer: [Yes]553

Justification: Our anonymous code is available at https://anonymous.4open.science/554

r/llm-tree-6351.555

Guidelines:556

• The answer NA means that paper does not include experiments requiring code.557

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/558

public/guides/CodeSubmissionPolicy) for more details.559

• While we encourage the release of code and data, we understand that this might not be560

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not561

including code, unless this is central to the contribution (e.g., for a new open-source562

benchmark).563

• The instructions should contain the exact command and environment needed to run to564

reproduce the results. See the NeurIPS code and data submission guidelines (https:565

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.566

• The authors should provide instructions on data access and preparation, including how567

to access the raw data, preprocessed data, intermediate data, and generated data, etc.568

• The authors should provide scripts to reproduce all experimental results for the new569

proposed method and baselines. If only a subset of experiments are reproducible, they570

should state which ones are omitted from the script and why.571

• At submission time, to preserve anonymity, the authors should release anonymized572

versions (if applicable).573

• Providing as much information as possible in supplemental material (appended to the574

paper) is recommended, but including URLs to data and code is permitted.575

6. Experimental setting/details576

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-577

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the578

results?579

Answer: [Yes]580

Justification: We specify all experiment details for each of our experiment.581

Guidelines:582

• The answer NA means that the paper does not include experiments.583

• The experimental setting should be presented in the core of the paper to a level of detail584

that is necessary to appreciate the results and make sense of them.585

• The full details can be provided either with the code, in appendix, or as supplemental586

material.587

7. Experiment statistical significance588

Question: Does the paper report error bars suitably and correctly defined or other appropriate589

information about the statistical significance of the experiments?590
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Answer: [Yes]591

Justification: We report 1-sigma error bars for the experiments.592

Guidelines:593

• The answer NA means that the paper does not include experiments.594

• The authors should answer "Yes" if the results are accompanied by error bars, confi-595

dence intervals, or statistical significance tests, at least for the experiments that support596

the main claims of the paper.597

• The factors of variability that the error bars are capturing should be clearly stated (for598

example, train/test split, initialization, random drawing of some parameter, or overall599

run with given experimental conditions).600

• The method for calculating the error bars should be explained (closed form formula,601

call to a library function, bootstrap, etc.)602

• The assumptions made should be given (e.g., Normally distributed errors).603

• It should be clear whether the error bar is the standard deviation or the standard error604

of the mean.605

• It is OK to report 1-sigma error bars, but one should state it. The authors should606

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis607

of Normality of errors is not verified.608

• For asymmetric distributions, the authors should be careful not to show in tables or609

figures symmetric error bars that would yield results that are out of range (e.g. negative610

error rates).611

• If error bars are reported in tables or plots, The authors should explain in the text how612

they were calculated and reference the corresponding figures or tables in the text.613

8. Experiments compute resources614

Question: For each experiment, does the paper provide sufficient information on the com-615

puter resources (type of compute workers, memory, time of execution) needed to reproduce616

the experiments?617

Answer: [Yes]618

Justification: All of our experiments could be reproduced with one A100 GPU.619

Guidelines:620

• The answer NA means that the paper does not include experiments.621

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,622

or cloud provider, including relevant memory and storage.623

• The paper should provide the amount of compute required for each of the individual624

experimental runs as well as estimate the total compute.625

• The paper should disclose whether the full research project required more compute626

than the experiments reported in the paper (e.g., preliminary or failed experiments that627

didn’t make it into the paper).628

9. Code of ethics629

Question: Does the research conducted in the paper conform, in every respect, with the630

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?631

Answer: [Yes]632

Justification: Our work follows the NeurIPS Code of Ethics.633

Guidelines:634

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.635

• If the authors answer No, they should explain the special circumstances that require a636

deviation from the Code of Ethics.637

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-638

eration due to laws or regulations in their jurisdiction).639

10. Broader impacts640
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Question: Does the paper discuss both potential positive societal impacts and negative641

societal impacts of the work performed?642

Answer: [Yes]643

Justification: We discuss potential impacts of our work in the conclusion. We do not foresee644

any negative implications of our work.645

Guidelines:646

• The answer NA means that there is no societal impact of the work performed.647

• If the authors answer NA or No, they should explain why their work has no societal648

impact or why the paper does not address societal impact.649

• Examples of negative societal impacts include potential malicious or unintended uses650

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations651

(e.g., deployment of technologies that could make decisions that unfairly impact specific652

groups), privacy considerations, and security considerations.653

• The conference expects that many papers will be foundational research and not tied654

to particular applications, let alone deployments. However, if there is a direct path to655

any negative applications, the authors should point it out. For example, it is legitimate656

to point out that an improvement in the quality of generative models could be used to657

generate deepfakes for disinformation. On the other hand, it is not needed to point out658

that a generic algorithm for optimizing neural networks could enable people to train659

models that generate Deepfakes faster.660

• The authors should consider possible harms that could arise when the technology is661

being used as intended and functioning correctly, harms that could arise when the662

technology is being used as intended but gives incorrect results, and harms following663

from (intentional or unintentional) misuse of the technology.664

• If there are negative societal impacts, the authors could also discuss possible mitigation665

strategies (e.g., gated release of models, providing defenses in addition to attacks,666

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from667

feedback over time, improving the efficiency and accessibility of ML).668

11. Safeguards669

Question: Does the paper describe safeguards that have been put in place for responsible670

release of data or models that have a high risk for misuse (e.g., pretrained language models,671

image generators, or scraped datasets)?672

Answer: [NA]673

Justification: We do not release any assets.674

Guidelines:675

• The answer NA means that the paper poses no such risks.676

• Released models that have a high risk for misuse or dual-use should be released with677

necessary safeguards to allow for controlled use of the model, for example by requiring678

that users adhere to usage guidelines or restrictions to access the model or implementing679

safety filters.680

• Datasets that have been scraped from the Internet could pose safety risks. The authors681

should describe how they avoided releasing unsafe images.682

• We recognize that providing effective safeguards is challenging, and many papers do683

not require this, but we encourage authors to take this into account and make a best684

faith effort.685

12. Licenses for existing assets686

Question: Are the creators or original owners of assets (e.g., code, data, models), used in687

the paper, properly credited and are the license and terms of use explicitly mentioned and688

properly respected?689

Answer: [Yes]690

Justification: All models are cited in Appendix C.691

Guidelines:692
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• The answer NA means that the paper does not use existing assets.693

• The authors should cite the original paper that produced the code package or dataset.694

• The authors should state which version of the asset is used and, if possible, include a695

URL.696

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.697

• For scraped data from a particular source (e.g., website), the copyright and terms of698

service of that source should be provided.699

• If assets are released, the license, copyright information, and terms of use in the700

package should be provided. For popular datasets, paperswithcode.com/datasets701

has curated licenses for some datasets. Their licensing guide can help determine the702

license of a dataset.703

• For existing datasets that are re-packaged, both the original license and the license of704

the derived asset (if it has changed) should be provided.705

• If this information is not available online, the authors are encouraged to reach out to706

the asset’s creators.707

13. New assets708

Question: Are new assets introduced in the paper well documented and is the documentation709

provided alongside the assets?710

Answer: [NA]711

Justification: We do not release new assets.712

Guidelines:713

• The answer NA means that the paper does not release new assets.714

• Researchers should communicate the details of the dataset/code/model as part of their715

submissions via structured templates. This includes details about training, license,716

limitations, etc.717

• The paper should discuss whether and how consent was obtained from people whose718

asset is used.719

• At submission time, remember to anonymize your assets (if applicable). You can either720

create an anonymized URL or include an anonymized zip file.721

14. Crowdsourcing and research with human subjects722

Question: For crowdsourcing experiments and research with human subjects, does the paper723

include the full text of instructions given to participants and screenshots, if applicable, as724

well as details about compensation (if any)?725

Answer: [NA]726

Justification: We do not use crowdsourcing or human subjects.727

Guidelines:728

• The answer NA means that the paper does not involve crowdsourcing nor research with729

human subjects.730

• Including this information in the supplemental material is fine, but if the main contribu-731

tion of the paper involves human subjects, then as much detail as possible should be732

included in the main paper.733

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,734

or other labor should be paid at least the minimum wage in the country of the data735

collector.736

15. Institutional review board (IRB) approvals or equivalent for research with human737

subjects738

Question: Does the paper describe potential risks incurred by study participants, whether739

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)740

approvals (or an equivalent approval/review based on the requirements of your country or741

institution) were obtained?742

Answer: [NA]743

Justification: We do not use crowdsourcing or human subjects.744
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Guidelines:745

• The answer NA means that the paper does not involve crowdsourcing nor research with746

human subjects.747

• Depending on the country in which research is conducted, IRB approval (or equivalent)748

may be required for any human subjects research. If you obtained IRB approval, you749

should clearly state this in the paper.750

• We recognize that the procedures for this may vary significantly between institutions751

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the752

guidelines for their institution.753

• For initial submissions, do not include any information that would break anonymity (if754

applicable), such as the institution conducting the review.755

16. Declaration of LLM usage756

Question: Does the paper describe the usage of LLMs if it is an important, original, or757

non-standard component of the core methods in this research? Note that if the LLM is used758

only for writing, editing, or formatting purposes and does not impact the core methodology,759

scientific rigorousness, or originality of the research, declaration is not required.760

Answer: [Yes]761

Justification: We study how graph-structured knowledge is represented in various LLMs.762

Guidelines:763

• The answer NA means that the core method development in this research does not764

involve LLMs as any important, original, or non-standard components.765

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)766

for what should or should not be described.767
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