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Abstract

Motivated by interpretability and reliability, we investigate whether large language
models (LLMs) deploy universal geometric structures to encode discrete, graph-
structured knowledge. To this end, we present two complementary experimental
evidence that might support universality of graph representations. First, on an
in-context genealogy Q&A task, we train a cone probe to isolate a “tree-like”
subspace in residual stream activations and use activation patching to verify its
causal effect in answering related questions. We validate our findings across five
different models. Second, we conduct model stitching experiments across models
of diverse architectures and parameter counts (OPT, Pythia, Mistral, and LLaMA,
410 million to 8 billion parameters), quantifying representational alignment via
relative degradation in the next-token prediction loss. Generally, we conclude that
the lack of ground truth representations of graphs makes it challenging to study
how LLMs represent them. Ultimately, improving our understanding of LLM
representations could facilitate the development of more interpretable, robust, and
controllable Al systems.

1 Introduction

Large Language Models (LLMs), despite being primarily trained for next-token predictions, have
shown surprisingly robust reasoning capabilities (Bubeck et al., 2023; Anthropic, 2024; Team et al.,
2023). However, despite recent progress, we still lack a clear understanding of how these models
internally encode different kinds of knowledge. Improving such understanding could enable valuable
progress relevant to transparency, interpretability, and safety; For example, (a) discovering and
correcting inaccuracies to improve model reliability (Zhang et al., 2024a), (b) discovering and
correcting biases (Chen et al., 2024), (c) revealing and removing dangerous knowledge (Zhang
et al., 2024b), and (d) detecting deceptive behavior where models deliberately output information
inconsistent with its knowledge (Marks and Tegmark, 2023).

Prior works have identified geometric structures of specific kinds of knowledge in LLMs and shown
that these structures recur across many different models — evidence of representation universality.
For example, Gurnee and Tegmark (2023) identified a linear subspace that captures spatio-temporal
coordinates; Engels et al. (2024) discovered a circular manifold of calendar days and months’
representations; and Kantamneni and Tegmark (2025) demonstrated a helical subspace of number
representations. However, the question of how LLMs represent discrete, relational structures — such
as nodes and edges in a knowledge graph — remains largely unexplored. In this paper, we ask:

Do LLMs exhibit representation universality when encoding graph-structured knowledge?

To investigate representation universality for discrete, graph-structured knowledge, we present two
complementary experimental evidence:
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Figure 1: Visualization of the top two principal components of an MLP trained to learn the descendant-
of relationship across nine different random seeds — for models trained on either (left) a fully balanced
binary tree or a (right) randomly generated general tree consisting of 15 nodes. For clarity, we add
arrows connecting direct parent—child pairs. Each plot is rotated so that the root node appears at the
top of the panel. Across different seeds and tree structures, the learned representations consistently
exhibit a geometric pattern that resembles a tree in discrete mathematics — a structure we define as
cone embedding in the main text. Note that the models do not separate two sibling leaf nodes under
the same parent. This is because all embeddings are initialized to zero, and the model receives no
gradient signals to separate two sibling leaf nodes — they are equivalent nodes when it comes to
determining the descendant-of relationship.

1. Tree-structured subspace of Genealogy representations: When representing descendant-of
relationship, we identify that the optimal representation is a tree-like embedding that could be
identified via cone probe. On an in-context genealogy Q&A task, we use a cone probe to isolate a
tree-like subspace within the residual stream activations. We then use activation patching to verify
the causality of this subspace. We validate our findings across five different models.

2. Cross-model alignment via Model Stitching: Since we lack a ground-truth representation for
arbitrary graphs, we adopt a black-box model stitching approach to compare representations across
different LLMs. We splice the early layers of one model onto the late layers of another via trainable
linear adapter. Our experiments cover a diverse set of models — from OPT and Pythia to Mistral and
LLaMA - ranging in size from 410 million to 8 billion parameters. By measuring the increase in
next-token prediction loss relative to each model’s baseline, we quantify representation alignment
between different models.

Together, these experiments provide supporting evidence that LLMs may employ universal geometric
structures to represent graphs. The rest of this paper is organized as follows: In Section 2, we
formally describe the problem setting and introduce our hypothesis for the optimal representation
of genealogical relationships. In Section 3, we investigate whether LLM representations exhibit
geometric structure similar to the optimal representation we propose. Section 4 presents additional
evidence for representational universality via LLM stitching experiments. We relate our approach to
prior work in Section 5, and conclude our paper in Section 6.

2 Setup

Consider a general knowledge graph (KG) consisting of m binary relations R, R ... R("™)
between n objects (nodes) x1, ..., T,. Our task is to understand the representation that enables link
prediction, the task of predicting the probability p; ;. that R®)(z;, z;) = 1. While most KG-learning
algorithms in the literature embed both objects and relations (Cao et al., 2024), we instead embed
only objects (z; — E; = E(z;) € RY) and train a link predictor network p(E;, E;), which takes



two embedding vectors E;, E; as an input, and outputs an m-dimensional vector p that represents
link probability. This is to emulate the behavior of modern large language models, where only objects
are embedded and relations are implicitly defined via weights. Our ultimate goal is to improve our
understanding of representations that enable knowledge graph learning tasks in LLMs.

As a specific instance of this problem, consider a problem of learning descendant-of relationship
in a tree. We claim that the optimal representation of this problem is a cone embedding, where j
is a direct descendant of ¢ iff E; lies within a fixed cone emanating from E;." We show that cone
embedding is the optimal representation for this problem in Appendix A. Accordingly, we could
define a score function which measures the probability that j is a direct descendant of i:

P(E,.E;) =0(E;1 —E;1)0(E;o—E;o), (D

where o is a sigmoid function and E; ,, denotes the n—th component of embedding E;. Since
this score function is differentiable, we could also train a probe that measures how close a given
embedding is to the cone embedding, which we refer to as the cone probe.

To test this hypothesis, we train a multi-layer perceptron (MLP) with a single hidden layer of width
50 to learn the descendant-of relationship on a tree consisting of 15 nodes. We do not use a test split,
as our primary goal is to analyze the geometric structure of representations rather than to evaluate
their generalization performance. The model embeds each object into a two-dimensional space,
concatenates the resulting vectors, and passes them through the MLP to predict the probability that
node j is a direct descendant of node 7. We use the AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 103, and train for up to 10* epochs, while applying early stopping if the loss
does not improve for 30 consecutive epochs. We perform experiments on both a fully balanced binary
tree and a randomly generated general tree.

Fig. 1 visualizes the top two principal components of the learned embeddings across nine different
random seeds, both for the balanced tree and the general tree, with arrows added from each parent
to its child for clarity. We observe that the learned representations indeed form cone embeddings —
a geometric structure that closely resembles tree-like hierarchies in discrete mathematics. Another
notable observation is that the model organizes the representations into a meaningful geometric
structure, even though it could, in principle, simply memorize the training data and has no explicit
incentive to learn a structured embedding. We hypothesize that this emergent structure is driven by the
model’s dimensionality constraint — specifically, the requirement to encode all relevant information
within a two-dimensional space. This limitation effectively forces the model to arrange the objects
into a coherent tree-like layout.

In the following section, we investigate whether genealogical representations in LLMs exhibit similar
geometric structure. We will use the cone probe to identify relevant subspaces and perform causal
interventions on them.

3 Genealogy Representations in LLMs

In the previous section, we observed that small models often encode genealogical relationships in a
tree-like structure. This raises an interesting question: would LLMs represent genealogies in a similar
way? To investigate, we design an in-context genealogy task as follows. We generate a full binary
tree with 15 nodes and assign each node a name drawn at random (without replacement) from the
200 most popular male and female names from the birth year 2000, using the pybabynames package
in Python (Balamuta, 2024). In the prompt, we first describe the family tree by listing all the children
of every person on each line. We then ask questions of the form “Is X a direct descendant of Y?” to
the LLM. We show an example of the full prompt in Appendix B. We evaluate our results over five
different models, which are listed in Appendix C.

Fig. 2 shows the average F1 score on question-answering tasks about descendant-of relationships,
averaged over five different name assignments on a tree. First, we found that the models are only able
to answer these questions well when the lines, each of which lists the children of a specific person, are
ordered based on the person’s depth in the tree. When the orders are randomly shuffled, the model’s
performance significantly deteriorated. This is in accordance with the well-known reversal curse

'By optimal, we mean a representation that satisfies all the special properties of the relation, such as
symmetricity and transitivity. We discuss optimal representations in more detail in Appendix A.
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Figure 2: Top: Visualization of in-context genealogy-tree representations from LLaMA-3.1-8B-
Instruct across five different random name assignments on a full binary tree of 15 nodes. We show
the projection onto the first two principal components, and the Projection onto the cone-probe
subspace. Nodes and edges are colored by their depth in the tree. We added arrows connecting direct
parent-to-child links for visualization. Bottom: Average F1 score on question-answering tasks about
descendant-of relationships, averaged over five different name assignments on a tree. These results
suggest that the model may struggle with compositional generalization if the relevant facts are not
provided in order.

(Berglund et al., 2023), where LLMs trained on “A is B” fail to learn “B is A”. Hence, if we present
“C is a child of D” first, and then “B is a child of C,” the model may not be able to identify the reverse
compositional relationship that “B is a child of D.” Hence, we focus on studying the representations
of the family tree when the graph descriptions are ordered based on people’s depth in the tree.

To identify tree-like subspaces, we train a cone probe on the residual stream activations at the target
token. To prevent overfitting, we first reduce each activation vector to 10 dimensions via PCA and
then fit the cone probe in this lower dimensional space. We train a cone probe with AdamW optimizer
with a learning rate 10~ for 3000 epochs, while keeping the model that achieves the best F1 score
on the original dataset. Fig. 2 visualizes the resulting 2D embeddings from PCA projection and cone
projection across five different family trees (i.e. names are assigned to each node at random). We find
that the PCA representations tends to be more degenerate (nodes at the same depth cluster tightly),
whereas the cone probe yields a clearer, discrete “branching” structure that mirrors the underlying
tree topology.

To verify the causal role of these subspaces, we conduct an intervention experiment. For each family
tree, we sample 100 prompt pairs from five trees with different name assignments — a “clean” prompt
(X, Y) and a corresponding “corrupted” prompt (X', ¥) — constructed so their correct answers are
opposite. We balance the set so that half of the clean prompts yield a positive (Yes) answer and the



<Graph Description> X/X’ Y Answer

Sean's children: [Grant, Adam] Clean Prompt Is Marcus a direct descendant of Grant? Yes
Grant's children: [Brian, Jack] Corrupted Prompt Is Sean a direct descendant of Grant? No
Adam's children: [Jonathan, William]

Brian's children: [Marcus, Jennifer] LDpatchea = l0gitspatchea(Yes) — logitspaicnea(NO)

Jack's children: [Connor, Mary] LD = logi i
= logits Yes) — logits No
Jonathan's children: [Andre, Paul] corrupted g corrupted( ) g corrupted( )

William's children: [Patrick, Austin] Acausal = LDpatched - LDcorrupted
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Figure 3: Top: Illustration of our intervention methodology. Bottom: Intervention results across
five models. The histogram shows the causal effect of patching two subspaces of the residual stream
activations at one-third model depth: (a) the subspace spanned by the top two principal components
and (b) the cone subspace.

other half yield a negative (No) answer. For each pair, we run the model on the corrupt prompt, while
patching its residual stream activations at layer [ with those recorded from the clean run. We then
quantify the causal effect of patching by comparing logit differences:

Acausal = LDpatched - LDcorrupted7 (2)

where LD, is the logit difference between the correct and incorrect tokens in run . We compare
three activation patching scenarios: (a) Patching the full layer, (b) Patching the top two principal
components, and (c) Patching the cone subspace. More precisely, suppose B € R4** spans the
subspace of interest, and define the orthogonal projection matrix

P = B(B'"B)"'B".

For any representation x € R?, the patched representation is given by

Xpatched = Xcorrupted — PXcorrupted + chlean (3)

Intervention results are shown in Fig. 3 and Fig. 4. We find that representations in early to mid
layers exhibit a stronger causal effect than those in later layers. Moreover, patching the cone-probe
subspace alone produces a logit shift that is comparable to or larger than patching the top two principal
components. Although full-layer patching yields an even larger effect — implying additional causally
relevant directions beyond the cone subspace — our findings confirm that the cone subspace reliably
emerges when models are asked to answer a question about a tree of relatively small size, and is at
least as causally relevant as the subspace spanned by the top two principal components.

Limitations: First, we focus solely on the internal geometry and universality of LLM representations
— without examining how these subspaces are actually leveraged by the model for answering questions,
more well known as circuit analysis (Tigges et al., 2024). Second, our experiments use a relatively
small binary tree consisting of 15 nodes on which models achieve near-perfect accuracy in answering
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Figure 4: Intervention results for Llama-3.1-8B-Instruct across different layers. The plot shows the
causal effect of patching two subspaces of the residual stream activations: (a) the subspace spanned
by the top two principal components and (b) the cone subspace. Standard errors are indicated as a
shaded region. Full represents patching the full activation at a specific layer.

related questions. Consequently, it remains unclear whether similar causal, tree-like subspaces emerge
in larger or more complex genealogies, or if future, more capable models will encode genealogies in
a similar manner. For instance, for a particular task of answering descendant-of questions, the ratio
between positive and negative samples approaches zero as the tree size approaches infinity. Therefore,
the model might just learn to say No for all questions while still getting accuracy larger than 99%.
Hence, we would need a model that is good at what is known as the needle-in-a-haystack problem
(Liu et al., 2023).

4 LLM Stitching Experiments

4.1 Model Stitching

Model Stitching (Lenc and Vedaldi, 2015; Bansal et al., 2021) is a method for probing the representa-
tion similarity between two different models by constructing a hybrid model that stitches the bottom
layers of one model to the top layers of another model via trainable adapter layer. By measuring the
performance drop of the stitched model relative to the original model, one could infer the degree
of representation alignment between two different models. In this section, we apply this method to
LLMs to study representation alignment between different LLMs.

Formally, the process of stitching two LLMs could be described as follows: Consider two LLMs
n—1 m—1
A=U" (HH) E4, B=UB<H Kz-> E”, )
i=0 i=0

where H;, K; are decoder layers, E is the embedding layer, and U is the unembedding layer. The
stitched model is given by

m—1 k—1
BoA = UB H K; | S(A) <H Hi> E4, (5)
i=(m—I+1) 1=0

where we stitched the first k layers of A and the last [ layers of B. We then train a linear stitching
layer S(A) to minimize the next-token prediction cross-entropy loss:

L(A) = Zlog [P(v;|vi—1 -+ - vg, A)]. (6)

For stitching models with different tokenizers, v; is the first token of the string v;v;41V;iq2 -,
tokenized by B’s tokenizer. For our experiments, we stitch models from the OPT family (1.3B, 2.7B,
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Figure 5: Left: In-context learning accuracy for models stitched between OPT-2.7B and OPT-6.7B.
Base indicates OPT-6.7B, and 2% indicate the embedding layer and first % of the OPT-6.7B replaced
by those of OPT-2.7B. Right: Test loss as a function of stitched position between two different
models. The two models are cut at the same relative depth within each model. The black dashed line
on the right figure indicates the average test loss of original models.

6.7B), Pythia family (410M, 1.4B, 2.8B), Mistral-7B-Instruct, and LLaMA-3.1-8B-Instruct. These
models were chosen to cover a wide spectrum of model families and parameter scales. We trained
the stitching layer for 10,000 steps with a linearly decaying learning rate starting at 10~ with 100
warmup steps, and a weight decay of 10~. We used open-source models available in Huggingface,
and used Huggingface datasets monology/pile-uncopyrighted and monology/pile-test-val for training
and evaluating test loss. Each sample is truncated to 2048 tokens, and we report average test loss
over 2000 randomly selected test samples.

4.2 Results

Fig. 5 presents the results of our LLM stitching experiments. Overall, we observe that representations
from different models align more closely in early to mid layers than in later layers. Correspondingly,
in-context learning performance declines as the stitching point moves to later relative depths.

We also evaluated stitching various layers of one model onto a fixed layer of another (Fig. 6 and
Fig. 7). Test loss remains relatively low when connecting the embedding layer of one model to
downstream layers of another, suggesting substantial representational transformations in the first few
layers as token-level embeddings are converted into higher-level semantic concepts. While mid-layer
representations between models are often compatible, stitching them into later layers yields higher
loss — likely because those layers prioritize next-token prediction over forming semantic concepts.
Interestingly, we can stitch a mid-layer of one model onto an early layer of another (e.g., layers
0-15 of Pythia-410M to layers 2-23 of Pythia-1.4B), implying that mid-layer activations still retain
sufficient token-level information which could be “reset” to token-level representations.

These results corroborate the Stages of Inferenece hypothesis of Lad et al. (2024), which argues that
LLMs process inputs through discrete phases — first constructing semantic representations in early-to-
mid layers, then shifting to next-token prediction in later layers. Consequently, representations at
equivalent relative depths across different models exhibit strong alignment, the concept known as
representation universality (Huh et al., 2024).

Limitations: Despite its utility in quantifying representational alignment, our experiment has a few
limitations. First, it assumes that representational alignment can be completely captured through
a simple linear mapping; therefore, more complex or nonlinear representations, such as circular
features in days of the month (Engels et al., 2024) or helical features in numbers (Kantamneni and
Tegmark, 2025), may be classified as not equivalent. In order to circumvent this problem, one could
consider adding a quadratic correction term to the adapter layer. Moreover, our experiments span
only a limited set of LLM architectures and scales; therefore, it may not generalize to other models,
such as multimodal models, that are not studied in this paper.
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Figure 6: Test loss as a function of the stitch point x. We stitch the first % of layers from the
second model onto the first model at two fixed depths: one-sixth of its total depth (left) and one-half
of its total depth (right). The vertical dashed line marks the relative depth where the first model is
cut (one-sixth and one-half, respectively). The horizontal dashed line indicates the original models’
average test loss.

5 Related Works

In light of the recent development of LLMs’ capabilities, understanding the inner workings of Large
Language Models have become increasingly important to ensure the safety and robustness of Al
systems (Tegmark and Omohundro, 2023; Dalrymple et al., 2024).

Mechanistic Interpretability Neural Networks have demonstrated a surprising ability to generalize
(Liu et al., 2021; Ye et al., 2021). Recently, there have been increasingly more efforts on trying to
reverse engineer and interpret neural networks’ internal operations (Zhang et al., 2021; Bereska and
Gavves, 2024; Baek et al., 2024). Such methods include using structural probes and interventions at
the level of entire representations (Hewitt and Manning, 2019; Pimentel et al., 2020), and studying
neuron activations at the individual neuron level (Dalvi et al., 2019; Mu and Andreas, 2020). Our
work is part of this broader effort in mechanistic interpretability; We aim to understand how large
language models represent different types of knowledge.

Knowledge Representations in Language Models Early word-embedding models, including
Word2Vec and GloVe, were found to encode semantic relationships as linear directions in their
vector spaces (Drozd et al., 2016; Pennington et al., 2014; Ma and Zhang, 2015). More recently, sev-
eral studies showed that LLMs are capable of forming conceptual representations in spatial, temporal,
and color domains (Gurnee and Tegmark, 2023; Abdou et al., 2021; Li et al., 2021). Some studies
focused primarily on examining the linearity of LLMs’ feature representations (Gurnee and Tegmark,
2023; Hernandez et al., 2023). Several works found multi-dimensional representations of inputs such
as lattices (Michaud et al., 2024) and circles (Liu et al., 2022; Engels et al., 2024), one-dimensional
representations of high-level concepts and quantities in large language models (Gurnee and Tegmark,
2023; Marks and Tegmark, 2023; Heinzerling and Inui, 2024; Park et al., 2024b).

In particular, Park et al. (2024b) studied representations of word hierarchies. We examine repre-
sentations of genealogical trees — another form of hierarchical data but are fundamentally different
from word hierarchies because individuals in different generations do not possess inherent semantic
relationships. Our findings suggest the existence of more multi-dimensional features, warranting
further investigation. Our work is closely related to Park et al. (2024a), who study representations
developed during in-context learning on a graph-tracing task. However, their analysis focuses on
lattice and ring structures, which are inherently one-dimensional. In contrast, we aim to study
in-context learning representations arising from data with more complex, hierarchical structures.

Our work is also closely related to traditional knowledge graph embedding models such as TransE
(Wang et al., 2014), ComplexE (Trouillon et al., 2016), and TransR (Lin et al., 2015), which embed
both entities and relations into a shared latent space and optimize a scoring function for link prediction.
In contrast, our approach embeds only entities (objects), most closely mirroring how LLMs represent
and process information.
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Figure 7: Test loss for different stitching configurations. Each point (7, j) indicates the loss of the
model obtained by taking the first j layers of the y-axis model and the last (L — j) layers of the
z-axis model, where L is the total number of layers of the z-axis model. The red diagonal line marks
the cases where both models are joined at the same relative depth.

Representation Alignment and Model Stitching There are active discussions in the literature about
strengths and weaknesses of different representation alignment measures (Huh et al., 2024; Bansal
et al., 2021; Sucholutsky et al., 2023). Several works have considered stitching to obtain better-
performing models, such as stitching vision and language models for image and video captioning
task (Li et al., 2019; Iashin and Rahtu, 2020; Shi et al., 2023), and stitching BERT and GPT for
improved performance in look ahead section identification task (Jiang and Li, 2024). Some works
have considered stitching toy transformers to understand the impact of activation functions on
model’s performance (Brown et al., 2023). Our work considers stitching LLLMs to examine the hints
of representation universality across different models.

6 Conclusion

We studied whether LL.Ms deploy universal geometric structures to encode graph-structured knowl-
edge. We presented two complementary experimental evidence that supports universality of graph
representations of LLMs. First, on an in-context genealogy Q&A task, we trained a cone probe to
isolate a “tree-like” subspace in residual stream activations and utilized activation patching to verify
its causal effect in answering related questions. Second, we conducted model stitching experiments
across diverse architectures and parameter counts, and quantified representational alignment via
relative degradation on next-token prediction loss. Generally, we conclude that the lack of ground
truth representations of graphs makes it challenging to study how LLMs represent them. Ultimately,
improving our understanding of LLM representations could facilitate the development of more
interpretable, robust, and controllable Al systems.

Future Works: One could systematically investigate the optimal representations of more complex
genealogical relationships — such as cousins, aunts, and uncles — and analyze whether LLMs encode
these relations in a similar geometric manner. It would also be interesting to explore whether
there exists a critical graph size beyond which such optimal representations begin to emerge. Our
current study is limited to relatively small graphs, since model performance on genealogical question-
answering tasks degrades significantly with increasing graph size. To address this, one could
fine-tune existing LLMs or employ larger, more capable models to better understand the emergence
of structured representations in larger graphs.

Another promising direction is to examine how LLMs estimate their uncertainty when reasoning
over graph-structured data. We observe that LLMs rarely express full confidence in their answers
to descendant-of questions, even for relatively small trees. Applying mechanistic interpretability
techniques to study how uncertainty is represented could provide valuable insights into how LLMs
process genealogical relationships in context.
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A Optimal Representation in Knowledge Graph Learning

We define optimal representation as those that satisfiy all the special properties of the relation. Such
properties include

» Symmetricity: Vaq, zo : R(x1,22) = R(x1,22)

* Reflexivity: Va1 : R(z1,21) =1

e Transitivity: Vi, 7,k : R(z;, ;) A R(zj,z1) = R(z;, xk)

* Meta-transitivity: Vi, j, k : R (z;,2;) A RW (zj,2) = R® (2, 73)
As an example, we prove that cone embedding in the main text is an optimal representation of the
descendant-of relationship.

Proof. Our predictor function for cone probe is given by p(E;, E;) = H(E;o — Ejo)H(Ein — Ej1)
where H is the heaviside step function (H () = 1 if > 0, vanishing otherwise). We show that p
satisfies transitivity, i.e.if 7 is a descendant of j, and j is a descendant of k, then 7 is a descendant of k:

Suppose p(E;, E;) = p(E;, Ej) = 1. By definition of the cone probe,
p(Ei,Ej)=1 <= Ej0>EjoANEj1 >Ej;, pE;,Ey)=1 <= Ejo>Ex A Ej1 > Ep.
Chaining these inequalities gives
Eijo> Ey and Ej > Ejq,
and hence p(E;, Ey) = H(E; — Exo) H(E;1 — Ex1) = 1. O

B Full Prompt Example

Below is an instruction that describes a task, paired with an input
<> that provides further context. Write a response that
< appropriately completes the request.

### Instruction:

Answer a question about the family tree relationship based on the
< given data. If it’s a yes/no question, answer with only one
<~ word: ’Yes’ or ’No.’ If it’s a ’who’ question, answer with the
< person’s name(s).

### Input:

Family Tree:

Emily’s children: [Scott, Jordan]
Scott’s children: [Marco, William]
Jordan’s children: [Charles, Hunter]
Marco’s children: [Luke, Josel
William’s children: [Jessica, Crystall
Charles’s children: [Alan, Josephl]
Hunter’s children: [Laura, Grace]

Question: Is Grace a direct descendant of Laura?

### Response:

13




C List of Models

Model Name \ Citation
meta-1lama/llama-3.1-8b-instruct Touvron et al. (2024)
meta-llama/Meta-Llama-3-8B-Instruct Touvron et al. (2024)
meta-llama/LLlama-3.2-3B-Instruct Touvron et al. (2024)
google/gemma-2-2b-it Google DeepMind (2024)
google/gemma-2-9b-it Google DeepMind (2024)

Table 1: List of Models used in our experiments.
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