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Abstract

Motivated by interpretability and reliability, we investigate whether large language
models (LLMs) deploy universal geometric structures to encode discrete, graph-
structured knowledge. To this end, we present two complementary experimental
evidence that might support universality of graph representations. First, on an
in-context genealogy Q&A task, we train a cone probe to isolate a “tree-like”
subspace in residual stream activations and use activation patching to verify its
causal effect in answering related questions. We validate our findings across five
different models. Second, we conduct model stitching experiments across models
of diverse architectures and parameter counts (OPT, Pythia, Mistral, and LLaMA,
410 million to 8 billion parameters), quantifying representational alignment via
relative degradation in the next-token prediction loss. Generally, we conclude that
the lack of ground truth representations of graphs makes it challenging to study
how LLMs represent them. Ultimately, improving our understanding of LLM
representations could facilitate the development of more interpretable, robust, and
controllable Al systems.

1 Introduction

Large Language Models (LLMs), despite being primarily trained for next-token predictions, have
shown surprisingly robust reasoning capabilities (Bubeck et al., 2023; Anthropic, 2024; Team et al.,
2023). However, despite recent progress, we still lack a clear understanding of how these models
internally encode different kinds of knowledge. Improving such understanding could enable valuable
progress relevant to transparency, interpretability, and safety; For example, (a) discovering and
correcting inaccuracies to improve model reliability (Zhang et al., 2024a), (b) discovering and
correcting biases (Chen et al., 2024), (c) revealing and removing dangerous knowledge (Zhang
et al., 2024b), and (d) detecting deceptive behavior where models deliberately output information
inconsistent with its knowledge (Marks and Tegmark, 2023).

Prior works have identified geometric structures of specific kinds of knowledge in LLMs and shown
that these structures recur across many different models — evidence of representation universality.
For example, Gurnee and Tegmark (2023) identified a linear subspace that captures spatio-temporal
coordinates; Engels et al. (2024) discovered a circular manifold of calendar days and months’
representations; and Kantamneni and Tegmark (2025) demonstrated a helical subspace of number
representations. However, the question of how LLMs represent discrete, relational structures — such
as nodes and edges in a knowledge graph — remains largely unexplored. In this paper, we ask:

Do LLMs exhibit representation universality when encoding graph-structured knowledge?

To investigate representation universality for discrete, graph-structured knowledge, we present two
complementary experimental evidence:
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Figure 1: Visualization of the top two principal components of an MLP trained to learn the descendant-
of relationship across nine different random seeds — for models trained on either (left) a fully balanced
binary tree or a (right) randomly generated general tree consisting of 15 nodes. For clarity, we add
arrows connecting direct parent—child pairs. Each plot is rotated so that the root node appears at the
top of the panel. Across different seeds and tree structures, the learned representations consistently
exhibit a geometric pattern that resembles a tree in discrete mathematics — a structure we define as
cone embedding in the main text. Note that the models do not separate two sibling leaf nodes under
the same parent. This is because all embeddings are initialized to zero, and the model receives no
gradient signals to separate two sibling leaf nodes — they are equivalent nodes when it comes to
determining the descendant-of relationship.
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1. Tree-structured subspace of Genealogy representations: When representing descendant-of
relationship, we identify that the optimal representation is a tree-like embedding that could be
identified via cone probe. On an in-context genealogy Q&A task, we use a cone probe to isolate a
tree-like subspace within the residual stream activations. We then use activation patching to verify
the causality of this subspace. We validate our findings across five different models.

2. Cross-model alignment via Model Stitching: Since we lack a ground-truth representation for
arbitrary graphs, we adopt a black-box model stitching approach to compare representations across
different LLMs. We splice the early layers of one model onto the late layers of another via trainable
linear adapter. Our experiments cover a diverse set of models — from OPT and Pythia to Mistral and
LLaMA - ranging in size from 410 million to 8 billion parameters. By measuring the increase in
next-token prediction loss relative to each model’s baseline, we quantify representation alignment
between different models.

Together, these experiments provide supporting evidence that LLMs may employ universal geometric
structures to represent graphs. The rest of this paper is organized as follows: In Section 2, we
formally describe the problem setting and introduce our hypothesis for the optimal representation
of genealogical relationships. In Section 3, we investigate whether LLM representations exhibit
geometric structure similar to the optimal representation we propose. Section 4 presents additional
evidence for representational universality via LLM stitching experiments. We relate our approach to
prior work in Section 5, and conclude our paper in Section 6.

2 Setup

Consider a general knowledge graph (KG) consisting of m binary relations R, R ... R("™)
between n objects (nodes) x1, ..., T,. Our task is to understand the representation that enables link
prediction, the task of predicting the probability p; ;. that R®)(z;, z;) = 1. While most KG-learning
algorithms in the literature embed both objects and relations (Cao et al., 2024), we instead embed
only objects (z; — E; = E(z;) € RY) and train a link predictor network p(E;, E;), which takes
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two embedding vectors E;, E; as an input, and outputs an m-dimensional vector p that represents
link probability. This is to emulate the behavior of modern large language models, where only objects
are embedded and relations are implicitly defined via weights. Our ultimate goal is to improve our
understanding of representations that enable knowledge graph learning tasks in LLMs.

As a specific instance of this problem, consider a problem of learning descendant-of relationship
in a tree. We claim that the optimal representation of this problem is a cone embedding, where j
is a direct descendant of ¢ iff E; lies within a fixed cone emanating from E;." We show that cone
embedding is the optimal representation for this problem in Appendix A. Accordingly, we could
define a score function which measures the probability that j is a direct descendant of i:

P(E,.E;) =0(E;1 —E;1)0(E;o—E;o), (D

where o is a sigmoid function and E; ,, denotes the n—th component of embedding E;. Since
this score function is differentiable, we could also train a probe that measures how close a given
embedding is to the cone embedding, which we refer to as the cone probe.

To test this hypothesis, we train a multi-layer perceptron (MLP) with a single hidden layer of width
50 to learn the descendant-of relationship on a tree consisting of 15 nodes. We do not use a test split,
as our primary goal is to analyze the geometric structure of representations rather than to evaluate
their generalization performance. The model embeds each object into a two-dimensional space,
concatenates the resulting vectors, and passes them through the MLP to predict the probability that
node j is a direct descendant of node 7. We use the AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 103, and train for up to 10* epochs, while applying early stopping if the loss
does not improve for 30 consecutive epochs. We perform experiments on both a fully balanced binary
tree and a randomly generated general tree.

Fig. 1 visualizes the top two principal components of the learned embeddings across nine different
random seeds, both for the balanced tree and the general tree, with arrows added from each parent
to its child for clarity. We observe that the learned representations indeed form cone embeddings —
a geometric structure that closely resembles tree-like hierarchies in discrete mathematics. Another
notable observation is that the model organizes the representations into a meaningful geometric
structure, even though it could, in principle, simply memorize the training data and has no explicit
incentive to learn a structured embedding. We hypothesize that this emergent structure is driven by the
model’s dimensionality constraint — specifically, the requirement to encode all relevant information
within a two-dimensional space. This limitation effectively forces the model to arrange the objects
into a coherent tree-like layout.

In the following section, we investigate whether genealogical representations in LLMs exhibit similar
geometric structure. We will use the cone probe to identify relevant subspaces and perform causal
interventions on them.

3 Genealogy Representations in LLMs

In the previous section, we observed that small models often encode genealogical relationships in a
tree-like structure. This raises an interesting question: would LLMs represent genealogies in a similar
way? To investigate, we design an in-context genealogy task as follows. We generate a full binary
tree with 15 nodes and assign each node a name drawn at random (without replacement) from the
200 most popular male and female names from the birth year 2000, using the pybabynames package
in Python (Balamuta, 2024). In the prompt, we first describe the family tree by listing all the children
of every person on each line. We then ask questions of the form “Is X a direct descendant of Y?” to
the LLM. We show an example of the full prompt in Appendix B. We evaluate our results over five
different models, which are listed in Appendix C.

Fig. 2 shows the average F1 score on question-answering tasks about descendant-of relationships,
averaged over five different name assignments on a tree. First, we found that the models are only able
to answer these questions well when the lines, each of which lists the children of a specific person, are
ordered based on the person’s depth in the tree. When the orders are randomly shuffled, the model’s
performance significantly deteriorated. This is in accordance with the well-known reversal curse

'By optimal, we mean a representation that satisfies all the special properties of the relation, such as
symmetricity and transitivity. We discuss optimal representations in more detail in Appendix A.
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Figure 2: Top: Visualization of in-context genealogy-tree representations from LLaMA-3.1-8B-
Instruct across five different random name assignments on a full binary tree of 15 nodes. We show
the projection onto the first two principal components, and the Projection onto the cone-probe
subspace. Nodes and edges are colored by their depth in the tree. We added arrows connecting direct
parent-to-child links for visualization. Bottom: Average F1 score on question-answering tasks about
descendant-of relationships, averaged over five different name assignments on a tree. These results
suggest that the model may struggle with compositional generalization if the relevant facts are not
provided in order.

(Berglund et al., 2023), where LLMs trained on “A is B” fail to learn “B is A”. Hence, if we present
“C is a child of D” first, and then “B is a child of C,” the model may not be able to identify the reverse
compositional relationship that “B is a child of D.” Hence, we focus on studying the representations
of the family tree when the graph descriptions are ordered based on people’s depth in the tree.

To identify tree-like subspaces, we train a cone probe on the residual stream activations at the target
token. To prevent overfitting, we first reduce each activation vector to 10 dimensions via PCA and
then fit the cone probe in this lower dimensional space. We train a cone probe with AdamW optimizer
with a learning rate 10~ for 3000 epochs, while keeping the model that achieves the best F1 score
on the original dataset. Fig. 2 visualizes the resulting 2D embeddings from PCA projection and cone
projection across five different family trees (i.e. names are assigned to each node at random). We find
that the PCA representations tends to be more degenerate (nodes at the same depth cluster tightly),
whereas the cone probe yields a clearer, discrete “branching” structure that mirrors the underlying
tree topology.

To verify the causal role of these subspaces, we conduct an intervention experiment. For each family
tree, we sample 100 prompt pairs from five trees with different name assignments — a “clean” prompt
(X, Y) and a corresponding “corrupted” prompt (X', ¥) — constructed so their correct answers are
opposite. We balance the set so that half of the clean prompts yield a positive (Yes) answer and the
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Figure 3: Top: Illustration of our intervention methodology. Bottom: Intervention results across
five models. The histogram shows the causal effect of patching two subspaces of the residual stream
activations at one-third model depth: (a) the subspace spanned by the top two principal components
and (b) the cone subspace.

other half yield a negative (No) answer. For each pair, we run the model on the corrupt prompt, while
patching its residual stream activations at layer [ with those recorded from the clean run. We then
quantify the causal effect of patching by comparing logit differences:

Acausal = LDpatched - LDcorrupted7 (2)

where LD, is the logit difference between the correct and incorrect tokens in run . We compare
three activation patching scenarios: (a) Patching the full layer, (b) Patching the top two principal
components, and (c) Patching the cone subspace. More precisely, suppose B € R4** spans the
subspace of interest, and define the orthogonal projection matrix

P = B(B'"B)"'B".

For any representation x € R?, the patched representation is given by

Xpatched = Xcorrupted — PXcorrupted + chlean (3)

Intervention results are shown in Fig. 3 and Fig. 4. We find that representations in early to mid
layers exhibit a stronger causal effect than those in later layers. Moreover, patching the cone-probe
subspace alone produces a logit shift that is comparable to or larger than patching the top two principal
components. Although full-layer patching yields an even larger effect — implying additional causally
relevant directions beyond the cone subspace — our findings confirm that the cone subspace reliably
emerges when models are asked to answer a question about a tree of relatively small size, and is at
least as causally relevant as the subspace spanned by the top two principal components.

Limitations: First, we focus solely on the internal geometry and universality of LLM representations
— without examining how these subspaces are actually leveraged by the model for answering questions,
more well known as circuit analysis (Tigges et al., 2024). Second, our experiments use a relatively
small binary tree consisting of 15 nodes on which models achieve near-perfect accuracy in answering
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Figure 4: Intervention results for Llama-3.1-8B-Instruct across different layers. The plot shows the
causal effect of patching two subspaces of the residual stream activations: (a) the subspace spanned
by the top two principal components and (b) the cone subspace. Standard errors are indicated as a
shaded region. Full represents patching the full activation at a specific layer.

related questions. Consequently, it remains unclear whether similar causal, tree-like subspaces emerge
in larger or more complex genealogies, or if future, more capable models will encode genealogies in
a similar manner. For instance, for a particular task of answering descendant-of questions, the ratio
between positive and negative samples approaches zero as the tree size approaches infinity. Therefore,
the model might just learn to say No for all questions while still getting accuracy larger than 99%.
Hence, we would need a model that is good at what is known as the needle-in-a-haystack problem
(Liu et al., 2023).

4 LLM Stitching Experiments

4.1 Model Stitching

Model Stitching (Lenc and Vedaldi, 2015; Bansal et al., 2021) is a method for probing the representa-
tion similarity between two different models by constructing a hybrid model that stitches the bottom
layers of one model to the top layers of another model via trainable adapter layer. By measuring the
performance drop of the stitched model relative to the original model, one could infer the degree
of representation alignment between two different models. In this section, we apply this method to
LLMs to study representation alignment between different LLMs.

Formally, the process of stitching two LLMs could be described as follows: Consider two LLMs
n—1 m—1
A=U" (HH) E4, B=UB<H Kz-> E”, )
i=0 i=0

where H;, K; are decoder layers, E is the embedding layer, and U is the unembedding layer. The
stitched model is given by

m—1 k—1
BoA = UB H K; | S(A) <H Hi> E4, (5)
i=(m—I+1) 1=0

where we stitched the first k layers of A and the last [ layers of B. We then train a linear stitching
layer S(A) to minimize the next-token prediction cross-entropy loss:

L(A) = Zlog [P(v;|vi—1 -+ - vg, A)]. (6)

For stitching models with different tokenizers, v; is the first token of the string v;v;41V;iq2 -,
tokenized by B’s tokenizer. For our experiments, we stitch models from the OPT family (1.3B, 2.7B,
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Figure 5: Left: In-context learning accuracy for models stitched between OPT-2.7B and OPT-6.7B.
Base indicates OPT-6.7B, and 2% indicate the embedding layer and first % of the OPT-6.7B replaced
by those of OPT-2.7B. Right: Test loss as a function of stitched position between two different
models. The two models are cut at the same relative depth within each model. The black dashed line
on the right figure indicates the average test loss of original models.

6.7B), Pythia family (410M, 1.4B, 2.8B), Mistral-7B-Instruct, and LLaMA-3.1-8B-Instruct. These
models were chosen to cover a wide spectrum of model families and parameter scales. We trained
the stitching layer for 10,000 steps with a linearly decaying learning rate starting at 10~ with 100
warmup steps, and a weight decay of 10~. We used open-source models available in Huggingface,
and used Huggingface datasets monology/pile-uncopyrighted and monology/pile-test-val for training
and evaluating test loss. Each sample is truncated to 2048 tokens, and we report average test loss
over 2000 randomly selected test samples.

4.2 Results

Fig. 5 presents the results of our LLM stitching experiments. Overall, we observe that representations
from different models align more closely in early to mid layers than in later layers. Correspondingly,
in-context learning performance declines as the stitching point moves to later relative depths.

We also evaluated stitching various layers of one model onto a fixed layer of another (Fig. 6 and
Fig. 7). Test loss remains relatively low when connecting the embedding layer of one model to
downstream layers of another, suggesting substantial representational transformations in the first few
layers as token-level embeddings are converted into higher-level semantic concepts. While mid-layer
representations between models are often compatible, stitching them into later layers yields higher
loss — likely because those layers prioritize next-token prediction over forming semantic concepts.
Interestingly, we can stitch a mid-layer of one model onto an early layer of another (e.g., layers
0-15 of Pythia-410M to layers 2-23 of Pythia-1.4B), implying that mid-layer activations still retain
sufficient token-level information which could be “reset” to token-level representations.

These results corroborate the Stages of Inferenece hypothesis of Lad et al. (2024), which argues that
LLMs process inputs through discrete phases — first constructing semantic representations in early-to-
mid layers, then shifting to next-token prediction in later layers. Consequently, representations at
equivalent relative depths across different models exhibit strong alignment, the concept known as
representation universality (Huh et al., 2024).

Limitations: Despite its utility in quantifying representational alignment, our experiment has a few
limitations. First, it assumes that representational alignment can be completely captured through
a simple linear mapping; therefore, more complex or nonlinear representations, such as circular
features in days of the month (Engels et al., 2024) or helical features in numbers (Kantamneni and
Tegmark, 2025), may be classified as not equivalent. In order to circumvent this problem, one could
consider adding a quadratic correction term to the adapter layer. Moreover, our experiments span
only a limited set of LLM architectures and scales; therefore, it may not generalize to other models,
such as multimodal models, that are not studied in this paper.
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Figure 6: Test loss as a function of the stitch point x. We stitch the first % of layers from the
second model onto the first model at two fixed depths: one-sixth of its total depth (left) and one-half
of its total depth (right). The vertical dashed line marks the relative depth where the first model is
cut (one-sixth and one-half, respectively). The horizontal dashed line indicates the original models’
average test loss.

5 Related Works

In light of the recent development of LLMs’ capabilities, understanding the inner workings of Large
Language Models have become increasingly important to ensure the safety and robustness of Al
systems (Tegmark and Omohundro, 2023; Dalrymple et al., 2024).

Mechanistic Interpretability Neural Networks have demonstrated a surprising ability to generalize
(Liu et al., 2021; Ye et al., 2021). Recently, there have been increasingly more efforts on trying to
reverse engineer and interpret neural networks’ internal operations (Zhang et al., 2021; Bereska and
Gavves, 2024; Baek et al., 2024). Such methods include using structural probes and interventions at
the level of entire representations (Hewitt and Manning, 2019; Pimentel et al., 2020), and studying
neuron activations at the individual neuron level (Dalvi et al., 2019; Mu and Andreas, 2020). Our
work is part of this broader effort in mechanistic interpretability; We aim to understand how large
language models represent different types of knowledge.

Knowledge Representations in Language Models Early word-embedding models, including
Word2Vec and GloVe, were found to encode semantic relationships as linear directions in their
vector spaces (Drozd et al., 2016; Pennington et al., 2014; Ma and Zhang, 2015). More recently, sev-
eral studies showed that LLMs are capable of forming conceptual representations in spatial, temporal,
and color domains (Gurnee and Tegmark, 2023; Abdou et al., 2021; Li et al., 2021). Some studies
focused primarily on examining the linearity of LLMs’ feature representations (Gurnee and Tegmark,
2023; Hernandez et al., 2023). Several works found multi-dimensional representations of inputs such
as lattices (Michaud et al., 2024) and circles (Liu et al., 2022; Engels et al., 2024), one-dimensional
representations of high-level concepts and quantities in large language models (Gurnee and Tegmark,
2023; Marks and Tegmark, 2023; Heinzerling and Inui, 2024; Park et al., 2024b).

In particular, Park et al. (2024b) studied representations of word hierarchies. We examine repre-
sentations of genealogical trees — another form of hierarchical data but are fundamentally different
from word hierarchies because individuals in different generations do not possess inherent semantic
relationships. Our findings suggest the existence of more multi-dimensional features, warranting
further investigation. Our work is closely related to Park et al. (2024a), who study representations
developed during in-context learning on a graph-tracing task. However, their analysis focuses on
lattice and ring structures, which are inherently one-dimensional. In contrast, we aim to study
in-context learning representations arising from data with more complex, hierarchical structures.

Our work is also closely related to traditional knowledge graph embedding models such as TransE
(Wang et al., 2014), ComplexE (Trouillon et al., 2016), and TransR (Lin et al., 2015), which embed
both entities and relations into a shared latent space and optimize a scoring function for link prediction.
In contrast, our approach embeds only entities (objects), most closely mirroring how LLMs represent
and process information.
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Figure 7: Test loss for different stitching configurations. Each point (7, j) indicates the loss of the
model obtained by taking the first j layers of the y-axis model and the last (L — j) layers of the
z-axis model, where L is the total number of layers of the z-axis model. The red diagonal line marks
the cases where both models are joined at the same relative depth.

Representation Alignment and Model Stitching There are active discussions in the literature about
strengths and weaknesses of different representation alignment measures (Huh et al., 2024; Bansal
et al., 2021; Sucholutsky et al., 2023). Several works have considered stitching to obtain better-
performing models, such as stitching vision and language models for image and video captioning
task (Li et al., 2019; Iashin and Rahtu, 2020; Shi et al., 2023), and stitching BERT and GPT for
improved performance in look ahead section identification task (Jiang and Li, 2024). Some works
have considered stitching toy transformers to understand the impact of activation functions on
model’s performance (Brown et al., 2023). Our work considers stitching LLLMs to examine the hints
of representation universality across different models.

6 Conclusion

We studied whether LL.Ms deploy universal geometric structures to encode graph-structured knowl-
edge. We presented two complementary experimental evidence that supports universality of graph
representations of LLMs. First, on an in-context genealogy Q&A task, we trained a cone probe to
isolate a “tree-like” subspace in residual stream activations and utilized activation patching to verify
its causal effect in answering related questions. Second, we conducted model stitching experiments
across diverse architectures and parameter counts, and quantified representational alignment via
relative degradation on next-token prediction loss. Generally, we conclude that the lack of ground
truth representations of graphs makes it challenging to study how LLMs represent them. Ultimately,
improving our understanding of LLM representations could facilitate the development of more
interpretable, robust, and controllable Al systems.

Future Works: One could systematically investigate the optimal representations of more complex
genealogical relationships — such as cousins, aunts, and uncles — and analyze whether LLMs encode
these relations in a similar geometric manner. It would also be interesting to explore whether
there exists a critical graph size beyond which such optimal representations begin to emerge. Our
current study is limited to relatively small graphs, since model performance on genealogical question-
answering tasks degrades significantly with increasing graph size. To address this, one could
fine-tune existing LLMs or employ larger, more capable models to better understand the emergence
of structured representations in larger graphs.

Another promising direction is to examine how LLMs estimate their uncertainty when reasoning
over graph-structured data. We observe that LLMs rarely express full confidence in their answers
to descendant-of questions, even for relatively small trees. Applying mechanistic interpretability
techniques to study how uncertainty is represented could provide valuable insights into how LLMs
process genealogical relationships in context.



269

270
271
272

273

274
275

276
277
278

279
280

281
282

283
284
285

286
287

289
290
291

292
293

294
295

296
297
298

299
300
301

302
303
304

305
306

308

309
310

311
312

314
315

References

Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella Frank, Ellie Pavlick, and Anders
S¢gaard. Can language models encode perceptual structure without grounding? a case study in
color. arXiv preprint arXiv:2109.06129, 2021.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Technical report, Anthropic, 2024.

David D Baek, Ziming Liu, and Max Tegmark. Geneft: Understanding statics and dynamics of model
generalization via effective theory. arXiv preprint arXiv:2402.05916, 2024.

James Joseph Balamuta. pybabynames: Python port of the r data package babynames. https:
//pypi.org/project/pybabynames/, September 2024. Version 1.0.0; MIT License; accessed
2025-05-13.

Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural
representations. Advances in neural information processing systems, 34:225-236, 2021.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety—a review. arXiv
preprint arXiv:2404.14082, 2024.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288, 2023.

Davis Brown, Charles Godfrey, Nicholas Konz, Jonathan Tu, and Henry Kvinge. Understanding
the inner workings of language models through representation dissimilarity. arXiv preprint
arXiv:2310.14993, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Jiahang Cao, Jinyuan Fang, Zaigiao Meng, and Shangsong Liang. Knowledge graph embedding: A
survey from the perspective of representation spaces. ACM Computing Surveys, 56(6):1-42, 2024.

Ruizhe Chen, Yichen Li, Zikai Xiao, and Zuozhu Liu. Large language model bias mitigation from
the perspective of knowledge editing. arXiv preprint arXiv:2405.09341, 2024.

David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia, Steve
Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, et al. Towards guaranteed safe ai:
A framework for ensuring robust and reliable ai systems. arXiv preprint arXiv:2405.06624, 2024.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass. What
is one grain of sand in the desert? analyzing individual neurons in deep nlp models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 6309—6317, 2019.

Aleksandr Drozd, Anna Gladkova, and Satoshi Matsuoka. Word embeddings, analogies, and machine
learning: Beyond king-man+ woman= queen. In Proceedings of coling 2016, the 26th international
conference on computational linguistics: Technical papers, pages 3519-3530, 2016.

Joshua Engels, Isaac Liao, Eric J] Michaud, Wes Gurnee, and Max Tegmark. Not all language model
features are linear. arXiv preprint arXiv:2405.14860, 2024.

Google DeepMind. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024. URL https://arxiv.org/abs/2408.00118.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Benjamin Heinzerling and Kentaro Inui. Monotonic representation of numeric properties in language
models. arXiv preprint arXiv:2403.10381, 2024.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas,
Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer language models.
arXiv preprint arXiv:2308.09124, 2023.

10


https://pypi.org/project/pybabynames/
https://pypi.org/project/pybabynames/
https://pypi.org/project/pybabynames/
https://arxiv.org/abs/2408.00118

316
317
318
319

320
321

322
323

324
325

326
327

328
329

330
331
332

333
334

335
336

337
338
339

340
341

342
343
344

345
346
347

348
349

350
351

352
353

354
355
356

357
358

359
360
361

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4129-4138, 2019.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. arXiv preprint arXiv:2405.07987, 2024.

Vladimir Iashin and Esa Rahtu. Multi-modal dense video captioning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 958-959, 2020.

Junlin Julian Jiang and Xin Li. Look ahead text understanding and llm stitching. In Proceedings of
the International AAAI Conference on Web and Social Media, volume 18, pages 751-760, 2024.

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873, 2025.

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms: Stages of inference?
arXiv preprint arXiv:2406.19384, 2024.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivariance
and equivalence. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 991-999, 2015.

Belinda Z Li, Maxwell Nye, and Jacob Andreas. Implicit representations of meaning in neural
language models. arXiv preprint arXiv:2106.00737, 2021.

Sheng Li, Zhigiang Tao, Kang Li, and Yun Fu. Visual to text: Survey of image and video captioning.
IEEE Transactions on Emerging Topics in Computational Intelligence, 3(4):297-312, 2019.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Proceedings of the AAAI conference on artificial
intelligence, volume 29, 2015.

Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651-34663, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Long Ma and Yanqing Zhang. Using word2vec to process big text data. In 2015 IEEE International
Conference on Big Data (Big Data), pages 2895-2897. IEEE, 2015.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv preprint arXiv:2310.06824, 2023.

Eric J Michaud, Isaac Liao, Vedang Lad, Ziming Liu, Anish Mudide, Chloe Loughridge, Zifan Carl
Guo, Tara Rezaei Kheirkhah, Mateja Vukeli¢, and Max Tegmark. Opening the ai black box:
program synthesis via mechanistic interpretability. arXiv preprint arXiv:2402.05110, 2024.

Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Advances in Neural Information
Processing Systems, 33:17153-17163, 2020.

Core Francisco Park, Andrew Lee, Ekdeep Singh Lubana, Yongyi Yang, Maya Okawa, Kento Nishi,
Martin Wattenberg, and Hidenori Tanaka. Iclr: In-context learning of representations. arXiv
preprint arXiv:2501.00070, 2024a.

11



362
363

364
365
366

368
369

370
371
372

373
374
375

376
377
378

379
380

381
382

383

385
386
387

388
389
390

391
392
393

394
395
396

397
398
399

400
401

Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and
hierarchical concepts in large language models. arXiv preprint arXiv:2406.01506, 2024b.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532-1543, 2014.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan
Cotterell. Information-theoretic probing for linguistic structure. arXiv preprint arXiv:2004.03061,
2020.

Yaya Shi, Haiyang Xu, Chunfeng Yuan, Bing Li, Weiming Hu, and Zheng-Jun Zha. Learning video-
text aligned representations for video captioning. ACM Transactions on Multimedia Computing,
Communications and Applications, 19(2):1-21, 2023.

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim, Bradley C
Love, Erin Grant, Jascha Achterberg, Joshua B Tenenbaum, et al. Getting aligned on representa-
tional alignment. arXiv preprint arXiv:2310.13018, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Max Tegmark and Steve Omohundro. Provably safe systems: the only path to controllable agi. arXiv
preprint arXiv:2309.01933, 2023.

Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. Llm circuit analyses are consistent
across training and scale. arXiv preprint arXiv:2407.10827, 2024.

Hugo Touvron et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. URL
https://arxiv.org/abs/2407.21783.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International conference on machine learning, pages
2071-2080. PMLR, 2016.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence,
volume 28, 2014.

Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
theoretical framework of out-of-distribution generalization. Advances in Neural Information
Processing Systems, 34:23519-23531, 2021.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Lifeng Jin, Linfeng Song, Haitao Mi, and
Helen Meng. Self-alignment for factuality: Mitigating hallucinations in 1lms via self-evaluation.
arXiv preprint arXiv:2402.09267, 2024a.

Yihao Zhang, Zeming Wei, Jun Sun, and Meng Sun. Adversarial representation engineering: A
general model editing framework for large language models. arXiv preprint arXiv:2404.13752,
2024b.

Yu Zhang, Peter Tino, Ale§ Leonardis, and Ke Tang. A survey on neural network interpretability.
IEEE Transactions on Emerging Topics in Computational Intelligence, 5(5):726-742, 2021.

12


https://arxiv.org/abs/2407.21783

402

403
404

405
406

407

408

409
410

411
412
413

414

415

416

417

418
419

420
421
422
423
424
425
426
427
428
429
430
43%
432
438
434

436
437
438
439
440

443

443

A Optimal Representation in Knowledge Graph Learning

We define optimal representation as those that satisfiy all the special properties of the relation. Such
properties include

» Symmetricity: Vaq, zo : R(x1,22) = R(x1,22)

* Reflexivity: Va1 : R(z1,21) =1

e Transitivity: Vi, 7,k : R(z;, ;) A R(zj, 1) = R(z;,xk)

o Meta-transitivity: Vi, j, k : R (z;,2;) A RW (zj,2) = R® (2, 73)
As an example, we prove that cone embedding in the main text is an optimal representation of the
descendant-of relationship.

Proof. Our predictor function for cone probe is given by p(E;, E;) = H(E;o — Ejo)H(Ein — Ej1)
where H is the heaviside step function (H () = 1 if > 0, vanishing otherwise). We show that p
satisfies transitivity, i.e.if 7 is a descendant of j, and j is a descendant of k, then 7 is a descendant of k:

Suppose p(E;, E;) = p(E;, Ej) = 1. By definition of the cone probe,
p(Ei,Ej)=1 <= Ej0>EjoANEj1 >Ej1, pE;,Ey)=1 <= Ejo>E N Ej1 > Ep.
Chaining these inequalities gives
Eijo> Ey and Ej > Ejq,
and hence p(E;, Ey) = H(E; — Exo) H(E;1 — Ex1) = 1. O

B Full Prompt Example

Below is an instruction that describes a task, paired with an input
<> that provides further context. Write a response that
< appropriately completes the request.

### Instruction:

Answer a question about the family tree relationship based on the
< given data. If it’s a yes/no question, answer with only one
<~ word: ’Yes’ or ’No.’ If it’s a ’who’ question, answer with the
< person’s name(s).

### Input:

Family Tree:

Emily’s children: [Scott, Jordan]
Scott’s children: [Marco, William]
Jordan’s children: [Charles, Hunter]
Marco’s children: [Luke, Josel
William’s children: [Jessica, Crystall
Charles’s children: [Alan, Josephl]
Hunter’s children: [Laura, Grace]

Question: Is Grace a direct descendant of Laura?

### Response:

C List of Models
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Model Name \ Citation

meta-llama/llama-3.1-8b-instruct Touvron et al. (2024)
meta-llama/Meta-Llama-3-8B-Instruct Touvron et al. (2024)
meta-llama/Llama-3.2-3B-Instruct Touvron et al. (2024)
google/gemma-2-2b-it Google DeepMind (2024)
google/gemma-2-9b-it Google DeepMind (2024)

Table 1: List of Models used in our experiments.

ss NeurIPS Paper Checklist

445 1. Claims

446 Question: Do the main claims made in the abstract and introduction accurately reflect the
447 paper’s contributions and scope?

448 Answer: [Yes]

449 Justification: All of our claims in the abstract and intro are reflected in the paper; we list out
450 the exact section where each contribution is shown in our list of contributions in the intro.
451 Guidelines:

452 * The answer NA means that the abstract and introduction do not include the claims
453 made in the paper.

454 * The abstract and/or introduction should clearly state the claims made, including the
455 contributions made in the paper and important assumptions and limitations. A No or
456 NA answer to this question will not be perceived well by the reviewers.

457 * The claims made should match theoretical and experimental results, and reflect how
458 much the results can be expected to generalize to other settings.

459 * It is fine to include aspirational goals as motivation as long as it is clear that these goals
460 are not attained by the paper.

461 2. Limitations

462 Question: Does the paper discuss the limitations of the work performed by the authors?
463 Answer: [Yes]

464 Justification: We discuss the limitations when we discuss results in each section, and we
465 discuss overall limitations in the conclusion.

466 Guidelines:

467 * The answer NA means that the paper has no limitation while the answer No means that
468 the paper has limitations, but those are not discussed in the paper.

469  The authors are encouraged to create a separate "Limitations" section in their paper.
470 * The paper should point out any strong assumptions and how robust the results are to
471 violations of these assumptions (e.g., independence assumptions, noiseless settings,
472 model well-specification, asymptotic approximations only holding locally). The authors
473 should reflect on how these assumptions might be violated in practice and what the
474 implications would be.

475 * The authors should reflect on the scope of the claims made, e.g., if the approach was
476 only tested on a few datasets or with a few runs. In general, empirical results often
477 depend on implicit assumptions, which should be articulated.

478 * The authors should reflect on the factors that influence the performance of the approach.
479 For example, a facial recognition algorithm may perform poorly when image resolution
480 is low or images are taken in low lighting. Or a speech-to-text system might not be
481 used reliably to provide closed captions for online lectures because it fails to handle
482 technical jargon.

483 * The authors should discuss the computational efficiency of the proposed algorithms
484 and how they scale with dataset size.
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485 * If applicable, the authors should discuss possible limitations of their approach to

486 address problems of privacy and fairness.

487 * While the authors might fear that complete honesty about limitations might be used by
488 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
489 limitations that aren’t acknowledged in the paper. The authors should use their best
490 judgment and recognize that individual actions in favor of transparency play an impor-
491 tant role in developing norms that preserve the integrity of the community. Reviewers
492 will be specifically instructed to not penalize honesty concerning limitations.

493 3. Theory assumptions and proofs

494 Question: For each theoretical result, does the paper provide the full set of assumptions and
495 a complete (and correct) proof?

496 Answer: [Yes]

497 Justification: We provide proofs that the cone representation is optimal for representing
498 descendant-of relationship in Appendix A.

499 Guidelines:

500 » The answer NA means that the paper does not include theoretical results.

501 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
502 referenced.

503 * All assumptions should be clearly stated or referenced in the statement of any theorems.
504 * The proofs can either appear in the main paper or the supplemental material, but if
505 they appear in the supplemental material, the authors are encouraged to provide a short
506 proof sketch to provide intuition.

507 ¢ Inversely, any informal proof provided in the core of the paper should be complemented
508 by formal proofs provided in appendix or supplemental material.

509 * Theorems and Lemmas that the proof relies upon should be properly referenced.

510 4. Experimental result reproducibility

511 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
512 perimental results of the paper to the extent that it affects the main claims and/or conclusions
513 of the paper (regardless of whether the code and data are provided or not)?

514 Answer: [Yes]

515 Justification: We include sufficient experiment details to reproduce our experiments, and we
516 include our code for the full details, and we include our code for the full details.

517 Guidelines:

518 * The answer NA means that the paper does not include experiments.

519 * If the paper includes experiments, a No answer to this question will not be perceived
520 well by the reviewers: Making the paper reproducible is important, regardless of
521 whether the code and data are provided or not.

522 * If the contribution is a dataset and/or model, the authors should describe the steps taken
523 to make their results reproducible or verifiable.

524 * Depending on the contribution, reproducibility can be accomplished in various ways.
525 For example, if the contribution is a novel architecture, describing the architecture fully
526 might suffice, or if the contribution is a specific model and empirical evaluation, it may
527 be necessary to either make it possible for others to replicate the model with the same
528 dataset, or provide access to the model. In general. releasing code and data is often
529 one good way to accomplish this, but reproducibility can also be provided via detailed
530 instructions for how to replicate the results, access to a hosted model (e.g., in the case
531 of a large language model), releasing of a model checkpoint, or other means that are
532 appropriate to the research performed.

533 * While NeurIPS does not require releasing code, the conference does require all submis-
534 sions to provide some reasonable avenue for reproducibility, which may depend on the
535 nature of the contribution. For example

536 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
537 to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our anonymous code is available at https://anonymous.4open.science/
r/1llm-tree-6351.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all experiment details for each of our experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: We report 1-sigma error bars for the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All of our experiments could be reproduced with one A100 GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential impacts of our work in the conclusion. We do not foresee
any negative implications of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any assets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All models are cited in Appendix C.

Guidelines:
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14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use crowdsourcing or human subjects.
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745 Guidelines:

746 * The answer NA means that the paper does not involve crowdsourcing nor research with
747 human subjects.

748 * Depending on the country in which research is conducted, IRB approval (or equivalent)
749 may be required for any human subjects research. If you obtained IRB approval, you
750 should clearly state this in the paper.

751 * We recognize that the procedures for this may vary significantly between institutions
752 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
753 guidelines for their institution.

754 * For initial submissions, do not include any information that would break anonymity (if
755 applicable), such as the institution conducting the review.

756 16. Declaration of LLM usage

757 Question: Does the paper describe the usage of LLMs if it is an important, original, or
758 non-standard component of the core methods in this research? Note that if the LLM is used
759 only for writing, editing, or formatting purposes and does not impact the core methodology,
760 scientific rigorousness, or originality of the research, declaration is not required.

761 Answer: [Yes]

762 Justification: We study how graph-structured knowledge is represented in various LLMs.
763 Guidelines:

764 * The answer NA means that the core method development in this research does not
765 involve LLMs as any important, original, or non-standard components.

766 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
767 for what should or should not be described.
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