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Abstract
LLM-as-a-judge, through comparative prompting, is a powerful ap-
proach for Natural Language Generation evaluation. However, its
quadratic computational cost makes iterative prompt optimization
expensive. Instead, we propose leveraging uncertainty to select and
re-evaluate only the most uncertain pairwise comparisons. Our
framework significantly reduces the computational costs of itera-
tive prompt optimization. Experiments on the SummEval dataset
demonstrate that this approach can achieve up to 80% reduction in
re-evaluation costs while maintaining or exceeding performance.

CCS Concepts
• Computing methodologies→ Discrete space search; Infor-
mation extraction; Natural language generation; • Mathematics of
computing → Probabilistic inference problems.
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1 Introduction
Instruction-tuned Large Language Models (LLMs) have shown im-
pressive zero-shot capabilities across a wide range of natural lan-
guage processing and generation tasks [1, 5, 9, 11, 24, 36]. This has
led to their increasing use as automated evaluators, or "LLM-as-a-
judge," for language tasks, offering a scalable alternative to costly
human judgments [6, 8, 20, 31, 35].

Within the LLM-as-a-judge paradigm, twomain approaches exist:
absolute scoring (assigning a numerical score to a single response)
and comparative scoring (pairwise comparison of two responses)
[18, 20, 35]. While absolute scoring is computationally efficient
(requiring O(𝑁 ) LLM calls for 𝑁 responses), its scores can be in-
consistent and sensitive to prompt wording [18, 35]. Comparative
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scoring, in contrast, has shown higher correlations with human
judgments and more reliable rankings. However, its primary draw-
back is the computational cost, which scales quadratically (O(𝑁 2))
with the number of responses, making it prohibitively expensive
when comparing many responses [21].

Furthermore, the efficacy of an LLM-as-a-judge, regardless of the
scoring method, relies on well-designed prompts. These prompts
typically include system-level instructions and task-specific instruc-
tions [7, 38]. Recent work like Optimization by PROmpting (OPRO)
has shown that LLMs can also be used to iteratively refine and dis-
cover more effective prompts by generating new prompt candidates
based on the performance of previous ones [33]. However, when
applying OPRO to the comparative assessment, the quadratic com-
plexity becomes a significant bottleneck. Each proposed prompt
generated during the OPRO optimization process would require a
full re-evaluation of all possible comparisons to determine its qual-
ity, making iterative optimization for comparative judges expensive
[13, 21]. We observe that for many prompts, a large fraction of
pairwise comparisons are made with high confidence by the LLM
judge, and their outcomes are unlikely to change significantly. Re-
evaluating these "easy" or stable pairs offers diminishing returns
for the computational cost incurred.

This paper introduces an efficientmethod for optimizing prompts
for comparative LLM-as-a-judge. By integrating uncertainty estima-
tion into OPRO, we selectively re-evaluate only the most uncertain
pairwise comparisons when assessing new candidate prompts. Our
experiments on the SummEval dataset demonstrate that this ap-
proach can reduce the computational cost of prompt re-evaluation
by up to 80% while maintaining performance.

2 Related Works
Our work builds upon recent advancements in ranking from pair-
wise comparisons [20], LLM-based evaluation [35] and automatic
prompt optimization [33].

Ranking from Pairwise Comparisons. The problem of ranking
a set of items based on pairwise comparisons has a long history,
particularly in fields like sports and psychometrics [3, 10, 22, 23].
Traditional methods typically operate on binary outcomes, such
as which candidate won a specific comparison. A foundational
approach in this area is the Bradley-Terry (BT) model which posits
that the probability of item 𝑥𝑖 beating item 𝑥 𝑗 depends on the
difference in their latent "skill" or "score" 𝑠𝑖 − 𝑠 𝑗 [4]. The probability
is typically modelled using the logistic function:

P(𝑥𝑖 ≻ 𝑥 𝑗 |𝑠𝑖 , 𝑠 𝑗 ) = 𝜎 (𝑠𝑖 − 𝑠 𝑗 ) =
1

1 + exp(𝑠 𝑗 − 𝑠𝑖 )
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Given a set of observed binary comparison outcomes, the scores
𝒔1:𝑁 = (𝑠1, . . . , 𝑠𝑁 ) of 𝑁 items can be estimated by maximizing the
likelihood of the observed data. Extensions like the TrueSkill model
further improve the modelling through a Bayesian framework [15].

LLM-as-a-judge Comparative Assessment. Recent advances in
instruction-tuned LLMs have enabled their use as evaluators for
NLG outputs. Unlike traditional methods that rely on reference texts
or bespoke models, LLM-as-a-judge approaches leverage the LLM’s
understanding of natural language instructions to assess quality
zero-shot [20, 35]. Within this paradigm, comparative assessment
has emerged as a robust method, where an LLM is prompted to
compare two candidate texts 𝑥𝑖 and 𝑥 𝑗 and provide a judgment on
which is better according to a specified attribute [25, 27]. Crucially,
LLMs can provide not just a binary outcome but also a probability
𝑝𝑖 𝑗 that it thinks 𝑥𝑖 is better than 𝑥 𝑗 :

𝑝𝑖 𝑗 = PLLM (𝑥𝑖 ≻ 𝑥 𝑗 ), C = (𝑖, 𝑗, 𝑝𝑖 𝑗 )
where the indices of the texts and the outcome has been collated
into a comparison C. This probabilistic output distinguishes LLM
comparative assessment from traditional binary comparison set-
tings and allows for richer modelling. The Product-of-Experts (PoE)
framework provides a flexible way to combine information from
multiple independent "experts" (in this case, individual pairwise
comparisons) [16]. As shown by Liusie et al. [21], the PoE frame-
work can be applied to LLM comparative assessment to estimate
the scores 𝒔1:𝑁 from 𝐾 comparisons C1:𝐾 where the probability
density of the scores given the comparisons is modelled as:

p(𝒔1:𝑁 |C1:𝐾 ) ∝
∏

𝑖, 𝑗∈C1:𝐾
p(𝑠𝑖 − 𝑠 𝑗 |C𝑘 ) (1)

∝
∏

𝑖, 𝑗∈C1:𝐾
𝜎 (𝑠𝑖 − 𝑠 𝑗 )𝑝𝑖 𝑗 (1 − 𝜎 (𝑠𝑖 − 𝑠 𝑗 ))1−𝑝𝑖 𝑗 (2)

Each expert p(𝑠𝑖 − 𝑠 𝑗 |C𝑘 ) helps incorporate information in order to
build up a density over the collection of scores 𝒔1:𝑁 . This framework,
a soft extension to the Bradley-Terry [4], allows for estimating
scores:

𝒔1:𝑁 = argmax
𝒔

ln p(𝒔1:𝑁 |C1:𝐾 ) (3)

even when only a subset of all possible 𝑁 (𝑁 − 1) comparisons is
available.

Uncertainty in Comparative LLM-as-a-judge. Given that estimat-
ing scores from a partial set of comparisons inherently involves
uncertainty, quantifying this uncertainty is valuable. The goal of
uncertainty estimation in this context is to guide the selection of
additional comparisons from the set of untested pairs, aiming to
extract maximal information and efficiently improve the overall
ranking accuracy [13]. Intuitively, some comparisons are less in-
formative (e.g., comparing a clearly superior text against a clearly
inferior one), while others are more likely to refine the ranking
(e.g., comparing texts with similar estimated quality). Therefore,
the aim is to quantify the uncertainty in untested comparisons and
find the most informative pair to compare next. One metric is based
on maximum variance:

argmax
𝑖, 𝑗

V[𝑠𝑖 − 𝑠 𝑗 |C1:𝐾 ] (4)

which would compare the pair with highest variance in their score
difference. An alternative is identifying the pair that has the highest
probability of reordering (assuming 𝑠𝑖 > 𝑠 𝑗 ):

argmax
𝑖, 𝑗

P(𝑠𝑖 < 𝑠 𝑗 |C1:𝐾 ) (5)

Both of these metrics allow one to iteratively find the most infor-
mative comparisons and reduce the number needed to robustly
estimate the scores 𝒔1:𝑁 and therefore the overall ranking. Since
p(𝒔1:𝑁 |C1:𝐾 ) is algebraically intractable, these metrics can be esti-
mated through several approaches including Laplace’s Approxima-
tion or Markov chain Monte Carlo sampling.

Automatic Prompt Optimization. The performance of LLMs is
highly sensitive to the specific wording and structure of the input
prompt [7, 29, 33, 38]. Manually engineering effective prompts can
be time-consuming and requires significant expertise. Automatic
prompt optimization methods aim to automate this process [33, 37].
Approaches range from gradient-based methods on continuous
prompt representations to discrete search strategies [17, 32]. More
recently, LLMs themselves have been used as optimizers to gener-
ate and refine prompts. Optimization by PROmpting is a notable
example, where an LLM iteratively generates new prompts, evalu-
ates their performance (e.g., task accuracy), and uses the history of
prompts and their scores to guide the generation of better prompts
[33]. Other related work explores similar ideas of using LLMs for
prompt generation and refinement [14].

Positioning of Our Paper. While prior work has established the
effectiveness of comparative LLM-as-a-judge and OPRO for prompt
optimization, the integration of these concepts for efficient and
optimized comparative LLM-as-a-judge remains an open challenge.
The O(𝑁 2) cost of comparative assessment makes the iterative
evaluation required by OPRO prohibitively expensive for large 𝑁 .
Our work bridges this gap by combining the PoE framework and
uncertainty-based comparison selection to create an efficient OPRO
optimization process. This allows us to achieve significant compu-
tational savings while simultaneously improving the performance
of the LLM judge through prompt optimization, making scalable
and high-quality LLM-based comparative evaluation practical.

3 Efficient Prompt Optimization
Our methodology adapts the Optimization by PROmpting (OPRO)
framework to efficiently refine prompts for comparative LLM-as-a-
judge systems [33]. The core idea is to iteratively improve both the
system-level instructions and the task-specific prompts by using an
OPRO LLM, while significantly reducing the computational cost of
evaluating each new prompt candidate through uncertainty-guided
selective re-evaluation. Figure 1 illustrates this iterative process.

The primary objective for the prompt optimization is to maxi-
mize the agreement between the LLM judge’s predicted 𝒔1:𝑁 and
human-annotated ground truth 𝒔1:𝑁 scores. We quantify this us-
ing the Spearman Rank Correlation Coefficient. However, instead
of evaluating all 𝑁 (𝑁 − 1) possible comparisons we seek only to
re-evaluate the fraction of most uncertain comparisons. Building
on [13] we can re-run comparisons with the highest probability of
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Figure 1: The OPRO LLM iteratively optimizes the "System Instruction & Task Prompt" used by the LLM judge. Our proposed
method leverages uncertainty estimation to identify the most uncertain comparisons (highlighted in red). In each optimization
step, only these uncertain comparisons are reevaluated using the new prompt. The results from the best prompt found so far are
retained for the remaining comparisons, enabling significant computational savings while driving performance improvement.

having the wrong ordering:

argmax
𝑖, 𝑗

P(𝑠𝑖 < 𝑠 𝑗 |C1:𝐾 ) (6)

Alternatively, we introduce a different strategy of choosing the
most anomalous comparisons:

argmax
𝑖, 𝑗

KL
(
𝑝𝑖 𝑗 | |P(𝑥𝑖 ≻ 𝑥 𝑗 |𝑠𝑖 , 𝑠 𝑗 )

)
(7)

= argmax
𝑖, 𝑗

𝑝𝑖 𝑗 ln
𝑝𝑖 𝑗

𝜎 (𝑠𝑖 − 𝑠 𝑗 )
+ (1 − 𝑝𝑖 𝑗 ) ln

1 − 𝑝𝑖 𝑗
𝜎 (𝑠 𝑗 − 𝑠𝑖 )

(8)

based on the KL-divergence between the predicted LLM probabil-
ity 𝑝𝑖 𝑗 and the overall probability 𝜎 (𝑠𝑖 − 𝑠 𝑗 ) from the predicted
scores 𝒔1:𝑁 . The more the LLM prediction deviates from the overall
predicted scores, the more likely it is to be re-run.

Furthermore, an ideal LLM judge should also be positionally
consistent [19, 34]. LLMs often unfairly favor the first or second
candidate presented, irrespective of their actual quality [26]. This
bias manifests as an inconsistency between the probability 𝑝𝑖 𝑗 =
PLLM (𝑥𝑖 ≻ 𝑥 𝑗 ) ≠ 1 − PLLM (𝑥 𝑗 ≻ 𝑥𝑖 ) = 1 − 𝑝 𝑗𝑖 . Therefore, we can
task the OPRO LLM to generate candidates that not only improve
the Spearman rank correlation but also minimize positional bias:

Bias =
∑︁
𝑖≠𝑗

KL
(
𝑝𝑖 𝑗 | |1 − 𝑝 𝑗𝑖

)
(9)

=
∑︁
𝑖≠𝑗

𝑝𝑖 𝑗 ln
𝑝𝑖 𝑗

1 − 𝑝 𝑗𝑖
+ (1 − 𝑝𝑖 𝑗 ) ln

1 − 𝑝𝑖 𝑗
𝑝 𝑗𝑖

(10)

By cutting down the number of re-evaluations and tasking the
OPRO LLMwith optimizing positional bias, we can obtain improved
prompts at a fraction of the cost needed in a standard OPRO setup.

4 Experimental Evaluation
We perform experiments on the summary evaluation SummEval
dataset [12] containing 100 articles, eachwith 16machine-generated
summaries evaluated on four different attributes: coherency (COH),
consistency (CON), fluency (FLU), and relevancy (REL). We opti-
mize on 30 training articles, validate the generated prompts on 10
articles and report the performance of the best found prompt on the
remaining 60 test articles. The OPRO LLM will be based on Gemini
2.5 Flash Preview 04-17 [2, 30], with structured outputs to ensure it
generates a system instruction and a task prompt, and temperature
set to 0 for deterministic outputs. Each OPRO run will consist of
𝑆 = 25 rounds and we generate an initial of 5 prompt pairs as a
starting point, see Appendix A for details. The LLM-as-a-judge will
be based on the Qwen2.5 family [28]. We will optimise the prompts
for the 3B model and benchmark it against the 7B and 14B models.
Furthermore, we will investigate using both probability of reorder-
ing (PoR, Eq. 6) and kl-divergence (PKL, Eq. 7) to perform efficient
selection. Finally, we will task the OPRO to optimise Spearman
rank (SRC) and additionally positional bias (PB).

Results. Table 1 shows baseline performance of Qwen2.5 models,
alongside performance after OPRO optimization using full evalua-
tion. The OPRO-optimized prompts for the 3B model consistently
improve SRC across all attributes, outperforming the 7B model and
reaching 14B level. Notably, when optimizing for both SRC and PB,
we observe a reduction in positional bias while largely maintaining
or even slightly improving Spearman correlation on some attributes.
This demonstrates the capability of the OPRO framework to handle
multi-objective prompt optimization effectively.

Table 2 investigates the core contribution of our work: efficient
prompt optimization. Here, ’All’ refers to full re-evaluation after 5
OPRO rounds. The subsequent rows show performance when only
re-evaluating the top 20% or 40% of uncertain comparisons selected
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Table 1: Baseline performance: Spearman rank performance (↑)/positional bias (↓).

Model Method Rounds COH CON FLU REL

Qwen2.5-3B-Instruct - 1.0 46.45 ± 2.43/1.95 ± 2.13 45.66 ± 3.72/1.28 ± 0.88 42.96 ± 2.18/2.27 ± 1.98 46.72 ± 2.10/2.40 ± 2.08

Qwen2.5-7B-Instruct - 1.0 49.34 ± 3.21/3.53 ± 2.31 50.50 ± 2.40/1.59 ± 1.20 39.30 ± 1.19/4.85 ± 5.46 49.56 ± 1.17/1.68 ± 1.01

Qwen2.5-14B-Instruct - 1.0 51.74 ± 1.03/3.31 ± 1.95 51.30 ± 1.57/2.31 ± 1.55 45.41 ± 0.91/6.30 ± 4.58 50.17 ± 0.82/2.72 ± 3.63

Qwen2.5-3B-Instruct SRC 5 + S 50.84/2.80 50.75/1.95 45.51/0.94 50.61/1.61
SRC + PB 5 + S 50.64/1.72 51.22/0.82 45.61/0.95 49.74/1.04

by either PoR or PKL. Using PoR to select just 20% of compar-
isons for re-evaluation achieves Spearman correlations remarkably
close to full re-evaluation across most attributes for both SRC and
SRC+PB optimization objectives. For instance, under SRC optimiza-
tion, COH drops only slightly from 50.84 to 50.51, while REL even
improves from 50.61 to 51.25. Increasing the re-evaluation to 40%
often further closes the gap or even surpasses the full re-evaluation
performance, particularly for COH and REL, suggesting that not all
comparisons need to be rerun. The PKL selection mechanism also
shows strong performance, often comparable to PoR, especially at
the 40% selection rate.

Furthermore, Figure 2 shows the performance of various prompts
when given a partial set of comparisons. It shows that efficient
OPRO generates prompts that perform similarly to the full OPRO
runs, again showcasing redundancies in having to perform full re-
evaluation. Furthermore, prompts that take into account positional
bias showcase much better performance when relying on a smaller
number of comparisons. This is since the lower positional bias
implies that once A vs B has been compared, B vs A provides
very little information. On the other hand, prompts with higher
positional bias still benefit from making both comparisons. This
efficiency makes iterative prompt optimization for comparative
LLM-as-a-judge a much more practical and scalable.

5 Conclusion
This work introduced an efficient method for optimizing prompts
(both system and task-level) for comparative LLM-as-a-judge. By
integrating uncertainty estimation–specifically using Probability of
Reordering and KL-divergence metrics–into OPRO, we selectively

Table 2: Efficient performance: Spearman rank performance (↑)/positional bias (↓). The selection mechanisms only pick the top
20% or 40% of uncertain comparisons instead of re-evaluating all.

Model Method Selection Rounds COH CON FLU REL

Qwen2.5-3B-Instruct SRC

All 5.0 + S 50.84/2.80 50.75/1.95 45.51/0.94 50.61/1.61

PoR (20%) 5.0 + 0.2S 50.51/2.94 50.74/2.14 45.54/1.06 51.25/2.30
PoR (40%) 5.0 + 0.4S 53.13/2.32 51.15/1.88 45.90/0.82 51.40/1.87

PKL (20%) 5.0 + 0.2S 50.37/2.39 50.97/1.73 45.93/1.02 50.37/2.09
PKL (40%) 5.0 + 0.4S 50.23/2.70 51.12/1.69 45.92/0.79 50.23/2.40

Qwen2.5-3B-Instruct SRC + PB

All 5.0 + S 50.64/1.72 51.22/0.82 45.61/0.95 49.74/1.04

PoR (20%) 5.0 + 0.2S 50.60/1.67 50.97/0.62 45.33/0.93 50.80/1.00
PoR (40%) 5.0 + 0.4S 52.58/1.68 50.94/0.50 45.71/0.68 50.96/1.14

PKL (20%) 5.0 + 0.2S 50.29/1.49 51.50/0.68 44.78/0.88 50.29/1.29
PKL (40%) 5.0 + 0.4S 50.77/1.30 51.60/0.97 45.49/0.57 50.77/1.03

Figure 2: Coherency: Spearman rank performance when se-
lecting a random set of comparisons.

re-evaluate only the most uncertain pairwise comparisons when as-
sessing new candidate prompts. Our experiments on the SummEval
dataset demonstrate that this approach can reduce the computa-
tional cost of prompt re-evaluation by up to 80% while achieving
Spearman rank correlations and positional bias levels comparable
to, and sometimes exceeding, those obtained with full re-evaluation.
This significant efficiency gain makes iterative prompt optimization
for comparative LLM-as-a-judge more practical and scalable.
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Figure 3: The meta prompt used to generate a collection of prompts. This is formulated for evaluating SummEval coherency.

We have a collection of summaries for a given article and want to prompt a large language model to compare each pair of summaries
against each other to determine which one is more coherent. From this, the plan is to obtain a full ranking of all the summaries using
for example Bradley-Terry. The performance of the overall predicted ranking from the language model will be compared with the
true ranking and be measured using Spearman Rank Correlation (higher is better).

However, the language model suffers from positional bias. The positional bias, as measured by KL-divergence (lower is better),
measures the discrepancy in the prediction by the language model when the two options are reversed. This information could be
relevant to the language and can be used in the prompt.

Therefore, we need to write a well-designed prompt that can trigger the language model to produce a high Spearman Rank while
keeping the biases low. Furthermore, we can use the optional "System Instruction" to decide the tone and style instructions of the
model. As a starting point, write 5 different prompts (with associated system instructions) using the Summary 1/2 label set and the
fillers <context>, <A> and <B>, do not ask the language model to reason. Follow a similar format and style to the examples below:

System Instruction: "You are an expert summary assessment system."
Prompt: "Which Summary is more coherent, Summary 1 or Summary 2?\n\nArticle: <context>\n\nSummary 1: <A>\n\nSummary 2:
<B>"

System Instruction: ""
Prompt: "Article: <context>\n\nSummary 1: <A>\nSummary 2: <B>\n\nWhich summary is more coherent as a summary of the
article? Answer ’1’ or ’2’."

A Experimental Setup
In all SummEval experiments, we start with 5 prompts generated by
Gemini 2.5 Flash Preview 04-17 with a temperature of 0 to ensure
deterministic outputs, see Figure 3. This collection of prompts will
then be used as a starting point for the OPRO process. Once the
prompts have been evaluated, the meta prompt for OPRO then
incorporates the scores into the process, see Figure 4. To ensure
that the OPRO LLM generates new prompts in the correct format,
structured outputs are used to ensure a string field for both a sys-
tem instruction and a task prompt. Furthermore, note that we use
the fillers "<context>", "<A>" and "<B>" as fields that are used to
populate the prompt with articles and two different summaries
being compared against each other.

B Additional Results
Figure 5 shows additional results enforcing the observations made
in Figure 2. Two observations can be made: (1) efficient OPRO
can perform as well as standard OPRO even when more than 80%
of comparisons are saved from previous rounds; (2) additionally
optimising for positional bias yields prompts that perform well
under a limited number of randomly chosen comparisons. This is
consistently observed across all 4 attributes of summarisation in
SummEval.
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Figure 4: The meta prompt used for the OPRO process. This is formulated for evaluating SummEval coherency.

We have a collection of summaries for a given article and want to prompt a large language model to compare each pair of summaries
against each other to determine which one is more coherent. From this, the plan is to obtain a full ranking of all the summaries using
for example Bradley-Terry. The performance of the overall predicted ranking from the language model will be compared with the
true ranking and be measured using Spearman Rank Correlation (higher is better).

However, the language model suffers from positional bias. The positional bias, as measured by KL-divergence (lower is better),
measures the discrepancy in the prediction by the language model when the two options are reversed. This information could be
relevant to the language and can be used in the prompt.

Therefore, we need to write a well-designed prompt that can trigger the language model to produce a high Spearman Rank while
keeping the biases low. Furthermore, we can use the optional ’System Instruction’ to decide the tone and style instructions of the
model.

Example 1
System Instruction: "You are a detail-oriented text analyst."
Prompt: "Compare the following summaries for coherence:\n\nArticle: <context>\n\nSummary 1: <A>\n\nSummary 2:
<B>\n\nIndicate the number of the more coherent summary:"
Spearman Rank Correlation: 44.47
Positional Bias: 1.94

Example 2
System Instruction: "You are a neutral evaluator of text quality."
Prompt: "Evaluate the coherence of the following summaries relative to the article.\n\nArticle: <context>\n\nSummary 1:
<A>\n\nSummary 2: <B>\n\nSelect the more coherent summary: 1 or 2."
Spearman Rank Correlation: 46.04
Positional Bias: 3.05

. . .

The above is a list of different prompts and associated system instructions (ranked from worst to best Spearman Rank) used to
compare the summaries (in coherency) along with their associated performance score. First, analyze each and every prompt and
what makes a prompt perform well or badly with attention to the length of the prompt. Then, write a new prompt which has to
include the Summary 1/2 label set and the fillers <context>, <A> and <B>. The proposed prompt should primarily achieve higher
Spearman Rank Correlation and lower positional bias.
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Figure 5: Spearman rank performance when selecting a random set of comparisons.


	Abstract
	1 Introduction
	2 Related Works
	3 Efficient Prompt Optimization
	4 Experimental Evaluation
	5 Conclusion
	References
	A Experimental Setup
	B Additional Results

