
Under review as submission to TMLR

Double Descent and Other Interpolation
Phenomena in GANs

Anonymous authors
Paper under double-blind review

Abstract

We study overparameterization in generative adversarial networks (GANs) that can inter-
polate the training data. We show that overparameterization can improve generalization
performance and accelerate the training process. We study the generalization error as a
function of latent space dimension and identify two main behaviors, depending on the learn-
ing setting. First, we show that overparameterized generative models that learn distribu-
tions by minimizing a metric or f -divergence do not exhibit double descent in generalization
errors; specifically, all the interpolating solutions achieve the same generalization error. Sec-
ond, we develop a novel pseudo-supervised learning approach for GANs where the training
utilizes pairs of fabricated (noise) inputs in conjunction with real output samples. Our
pseudo-supervised setting exhibits double descent (and in some cases, triple descent) of gen-
eralization errors. We combine pseudo-supervision with overparameterization (i.e., overly
large latent space dimension) to accelerate training while matching or even surpassing gen-
eralization performance without pseudo-supervision. While our analysis focuses mostly on
linear models, we also apply important insights for improving generalization of nonlinear,
multilayer GANs.

1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a prominent concept for addressing
data generation tasks in contemporary machine learning. GANs learn a data generator model that produces
new instances from a data class represented by a set of training examples. A GAN’s generator network
is trained in conjunction with a discriminator network that evaluates the generator’s ability and directs
it towards better performance. GANs have an intricate design and training philosophy whose theory and
practice are still far from being sufficiently understood.

A key aspect that complicates the understanding of GANs is that, like many other deep learning architectures,
they are highly complex models with typically many more parameters than the number of training data
samples. Therefore, GANs are overparameterized models that can be trained to interpolate (i.e., memorize)
their training examples. Yet, overparameterized GANs are capable of generating high quality data beyond
their training datasets. The analysis of overparameterized machine learning is a highly active research area
that is mainly focused on supervised learning problems such as regression (Belkin et al., 2019b; Bartlett
et al., 2020; Muthukumar et al., 2020b; dAscoli et al., 2020) and classification (Muthukumar et al., 2020a;
Deng et al., 2019; Kini & Thrampoulidis, 2020). The study of overparameterization in the unsupervised
learning and data generation problems relevant to GANs is uncharted territory that we are first to explore
in this paper.

This paper develops a new framework for the study of generalization and overparameterization in GANs
and PCA. We examine the generalization of linear GANs at different parameterization levels by varying the
latent space dimension, which in a GAN is the dimension of the input (random noise) vectors to the data
generator. This is a practical way of controlling the parameterization of our models, since we do not need to
consider modifying the width or depth of the generator network. Our framework leads us to the following

1

Under review as submission to TMLR

key insights on how the generalization performance of overparameterized linear GANs is affected by the
training approach.

First, GAN training via minimization of a distribution metric or f-divergence results in unsatisfactory
generalization performance when the generator model is overparameterized and interpolates its noisy training
data. Specifically, we prove that under such a training process all overparameterized solutions have the same
generalization performance. Moreover, the best generalization is obtained by an underparameterized solution
with the same dimension as the true latent space dimension of the data, which is usually unknown. This
set of interpolating solutions which have constant test error establishes a new generalization behavior of
generative models.

Second, our theoretical studies inspire a new pseudo-supervised training regime for GANs and show
that it can improve generalization performance in overparameterized settings where interpolation of noisy
training data occurs. Our pseudo-supervised approach selects a subset (or all) of the training data examples
and individually associates them with random (noise) vectors that act as their latent representations (i.e.,
the inputs given to the generator to yield the respective training data). Pseudo-supervision accelerates
the training process and improves generalization by reducing the number of effective degrees of freedom in
overparameterized GAN learning (although in many cases the learned GAN can still interpolate the training
data). We develop several implementations for the pseudo-supervised optimization objective and examine
their respective generalization behaviors, which we show to include double descent and also triple descent of
generalization errors as a function of the latent space dimension of the learned GAN.

Third, encouraged by our new insights into linear GANs, we explore their implications for nonlinear, mul-
tilayer GANs. Specifically, we implement and study our pseudo-supervised learning scheme for a gradient-
penalized Wasserstein GAN (Gulrajani et al., 2017) on the MNIST digit dataset of binary images. Our
results demonstrate that pseudo-supervised learning significantly improves generalization performance and
accelerates training when compared to training the same GAN without pseudo-supervision.

2 Related work

GANs (Goodfellow et al., 2014) have been very successful in modeling complex data distributions, such as
distributions of images (Brock et al., 2018; Karras et al., 2019a;b). These models are usually trained by
having two competing networks: a generator network which attempts to approximate the data distribution
and a discriminator network which attempts to classify between data from the training set and generated
data. The objective function can either be an f -divergence (Goodfellow et al., 2014; Nowozin et al., 2016;
Sarraf & Nie, 2021) or a metric (Arjovsky et al., 2017; Gulrajani et al., 2017) and is typically minimized
by the generator while simultaneously being maximized by the discriminator. This minmax game can be
unstable (Salimans et al., 2016; Mescheder et al., 2018) and is hard to analyze in full generality; therefore
we turn to linear GANs.

Feizi et al. (2020) have studied GANs with linear generators, quadratic discriminators, and Gaussian data
(this has been named the LQG setting).

In this setting, the objective loss is the 2-Wasserstein distance between two Gaussian distributions N (µ1, Σ1)
and N (µ2, Σ2):

W2
2 (N (µ1, Σ1), N (µ2, Σ2)) = ‖µ1 − µ2‖2

2 (1)

+ Tr(Σ1) + Tr(Σ2) − 2Tr
((

Σ
1
2
1 Σ2Σ

1
2
1

) 1
2
)

.

This distance is well known (Givens et al., 1984; Olkin & Pukelsheim, 1982) and is even used in the calculation
of the well known evaluation metric FID (Heusel et al., 2017) in the GAN literature. One result in the LQG
setting (Feizi et al., 2020) is that the principal component analysis (PCA) solution is an optimal solution for
the generator in the minmax optimization.

In supervised problems, it was widely believed that the generalization error behavior as a function of the
learned model complexity is completely characterized by the bias-variance tradeoff, i.e., in a supervised
setting, the test error goes down and then back up as the learned model is more complex (e.g., has more

2

Under review as submission to TMLR

parameters). Relatively recently, it has been shown that test errors can have a double descent shape (Spigler
et al., 2018; Belkin et al., 2019a) as a function of the learned model complexity. Specifically, in the double
descent shape the test error goes back down when the learned model is sufficiently complex (i.e., overparam-
eterized) to interpolate the training data (i.e., achieve zero training error). Remarkably, the double descent
shape implies that the best generalization performance can be achieved despite perfect fitting of noisy train-
ing data. Typically, when models have many more parameters than training data, many mappings can
be learned to perfectly fit (i.e., interpolate) the supervised pairs of examples. Therefore, a mapping with
small norm is a natural (parsimonious) choice and tends to yield low test error even when the number of
parameters is large. The research on overparameterized learning and double descent phenomena has been
mostly focused on regression (Belkin et al., 2019b; Bartlett et al., 2020; Muthukumar et al., 2020b; dAscoli
et al., 2020) and classification (Muthukumar et al., 2020a; Deng et al., 2019; Kini & Thrampoulidis, 2020)
problems. Some work has been done in overparameterized GANs (Balaji et al., 2021) to understand how
training stability is affected by increasing the width and depth of networks. By contrast, we are the first to
study generalization performance and double descent behavior in GANs.

Since linear GANs are associated with PCA, this study relates to work on overparameterization in PCA (Dar
et al., 2020) showing that, as one relaxes the orthonormal constraints and adds supervision to PCA, double
descent emerges. Moreover, if the learning is fully supervised and has no orthonormal constraints, then the
problem becomes linear regression that estimates a linear subspace. Hence, one can solve learning problems
that are partly supervised and partly orthonormally constrained to obtain solutions to problems that are
in-between PCA and linear regression. We will leverage this powerful idea to study overparameterization in
linear GANs.

3 Bad generalization: Test errors are constant in the overparameterized regime

3.1 No double descent in generative models that minimize a metric or f-divergence

The goal of training GANs and generative models in general is to learn the distribution of the data. This is
typically done by minimizing a distance between a fixed (i.e., given) distribution pf , such as the empirical
distribution of the training data, and the generated distribution pθ with parameters θ. The training dataset
D includes n examples {xi}n

i=1 ∈ Rd. The next observation characterizes interpolating solutions for these
kinds of problems.
Observation 1. Let P be the set of all probability distributions defined on the measurable space (Ω, F)
equipped with any metric or f-Divergence denoted q. We let our training loss be Ltrain ({xi}n

i=1, θ) = q(pf , pθ)
for pf , pθ ∈ P and the test error is given by Ltest(θ) = q(pt, pθ) for the true distribution pt ∈ P . Then, for
any interpolating solution θ, i.e., any θ so that Ltrain({xi}n

i=1, θ) = 0, we have that

Ltest(θ) = Ltest
interpolate

where Ltest
interpolate is a non-negative constant that depends on q and pf . Moreover, pθ is unique.

Proof. Let θ∗ and θ be two interpolating solutions. Since q is a metric or f -divergence, the zero training
errors of the interpolating solutions θ∗ and θ imply that pθ∗ = pf and pθ = pf , implying uniqueness since
pθ = pθ∗ . Additionally,

Ltest(θ) = q(pt, pθ) = q(pt, pf) = q(pt, pθ∗) = Ltest(θ∗).

By letting Ltest
interpolate , q(pt, pf) ≥ 0, we get the desired result.

Corollary 1. There is no double descent in generative models that minimize a metric or f -divergence, e.g.,
PCA for subspace learning, Jensen-Shannon GANs, WGANs, etc.

In other words, there is no double descent behavior because the test error is constant in the overparameterized
regime of interpolating solutions. This differs from the widely studied regression setup in that here we
are trying to minimize the distance between two distributions rather than data points drawn from those

3

Under review as submission to TMLR

0 20 40 600

5

10

15 n

Latent dimensionality k

Tr
ai

n
er

ro
r

Interpolation at k ≥ n

0 20 40 60

6

8

nm

Latent dimensionality k

Te
st

er
ro

r

Constant for k ≥ n

Figure 1: PCA and linear GAN’s test error becomes constant when the model interpolates, i.e., when the latent
dimensionality k equals the number of training samples n. Therefore, the overparameterized regime does not exhibit
double descent but rather a constant error. The test error achieves its minimum when the latent dimensionality
k is near the true model’s dimensionality m. The train errors (left subfigure) and test errors (right subfigure) are
calculated with the 2-Wasserstein metric.

distributions. In other words, generative modeling treats the data itself as a distribution and not as a set
of data points. As a consequence, although there may exist more than one interpolating solution θ, there
is only one unique interpolating distribution pθ. Importantly, this result is not specific to GANs but to any
generative model that is trained to minimize the distance between the generated distribution and a fixed
distribution.

We now narrow our focus to a specific data model to help understand the constant regime of generalization
errors. Recall from Section 2 that in the LQG setting, PCA is a solution for the optimal linear generator.
Hence, we can study PCA solutions and evaluate them using the 2-Wasserstein metric (Equation (1)) to see
the generalization error of the linear generator in the LQG setting. We assume that our training data {xi}n

i=1
are realizations of a random vector x ∈ Rd that satisfies the noisy linear model x = Γz + ε. Here Γ ∈ Rd×m

is a deterministic rank m matrix (for m < d), z ∈ Rm is a latent random vector of a zero-mean isotropic
Gaussian distribution, and ε ∼ N (0, σ2Id) is a noise vector. The true latent dimension m is unknown to the
learner; hence, we will pick k > 0 and learn a generator matrix G ∈ Rd×k. The true, noiseless distribution
is Gaussian: xtrue = Γz ∼ N (0, ΓΓ>). Thus, if the learned latent dimension k equals the true latent
dimension m, then G = Γ is an optimal solution. We assume that m < d, hence the covariance matrix of
x ∼ N (0, ΓΓ> + σ2Id) is the sum of a low rank covariance matrix ΓΓ> and a full rank noise covariance
matrix, our choice of k will affect how much we overfit to the noise distribution.

We consider m < n < d, i.e., the number of training examples n is higher than the true latent space dimension
m, and lower than the data dimension d, for several reasons. Most importantly, data is often assumed to lie
on a low dimensional manifold in a higher dimensional space. Thus if m ≥ d, then ΓΓ> will have rank d
and the noiseless data xtrue will have a non-zero probability of being in any open set in Rd, which is clearly
not true for many types of data, such as natural images. We also choose to study m < d because it will
allow our model to overfit (when the learned latent dimension k > m). Now we turn to our choice of n and
note that if n ≥ d, we get the typical U-shaped curve of the bias-variance tradeoff for generalization error as
a function of the learned latent dimension k. If n ≤ m, then the generalization error is just monotonically
decreasing in k and is of little interest because it is unlikely that we overfit to our data. For these reasons,
we consider only m < n < d, which permits study of the double descent phenomenon.

We train a linear GAN by picking the top k principal components (k ≤ d), namely, minimizing the training
loss

Ltrain(G, X) = ‖(Id − GG>)X‖2
F (2)

under the constraint that the d × k matrix G has orthonormal columns. Moreover, X ∈ Rd×n denotes the
data matrix with n training examples as its columns. If k > n, we run out of nonzero eigenvalues and cannot
add any more; the learned generator interpolates by producing zero training error. However, the test error

4

Under review as submission to TMLR

will increase if we learn noise, i.e., if the eigenvalues and eigenvectors of ΓΓ> + σ2Id are corrupted by the
noise covariance σ2Id. Figure 1 shows the train and test errors for the learned model as a function of the
learned latent dimension k. We obtain generalization behavior in two stages. First, there is a U-shape with
a minimum around k = m; then, as the solutions start to interpolate in the overparameterized regime of
k > n, we observe a constant test error.

To relate this back to Observation 1 and Corollary 1, here the training data distribution pf is N (µ̂x, Σ̂x),
where µ̂x ∈ Rd and Σ̂x ∈ Rd×d are the empirical mean vector and covariance matrix of the training data,
respectively. Roughly speaking, we can think of the generator as learning the true distribution with some
noise for the first m components and then just learning noise in the subspace orthogonal to the data;
technically, we learn wrong directions in the data for small k if the noise variance σ2 is very large. In this
setting, where the number of training samples n allows us to interpolate, the best that one can do is to
try to guess m by using prior knowledge or training multiple models using cross-validation. These solutions
are not satisfactory in many scenarios, so we delve deeper into understanding why the test error in the
overparameterized regime is constant. Specifically, we study the overparameterized regime to see if it can be
modified in a beneficial way.

3.2 Double descent: Getting double descent through actual supervision

Since PCA gives us a solution to GANs trained in the LQG setting, we turn to studying overparameterization
in PCA to understand overparameterization in GANs. It was shown that PCA (with soft orthonormality
constraints) does exhibit double descent if supervision was added to the training (Dar et al., 2020). This
is consistent with our understanding, since supervision will cause the learned map to have fewer degrees
of freedom and fit the data exactly. The work in (Dar et al., 2020) focuses on learning a linear subspace
for the purpose of dimensionality reduction, therefore we extend that idea to work for the purpose of data
generation.

For a start, consider an ideal setting where nsup out of the n training examples are given with their true
latent vectors. Namely, the training dataset D includes nsup ∈ {0, . . . , n} supervised examples {(xi, zi)}

nsup
i=1

and nunsup = n − nsup unsupervised examples {xi}n
i=nsup+1. The training data vectors are organized as the

columns of the matrices Xsup ∈ Rd×nsup , Zsup ∈ Rm×nsup , and Xunsup ∈ Rd×nunsup , respectively.

Since in the ideal setting of this subsection we have true samples of the latent vectors z that correspond
to data points x, this means that we know the true latent space dimension m. Hence, we can control the
parameterization of the learned model by choosing a latent dimension k ≤ m via subsampling of coordinates
in z (it turns out that subsampling allows us to optimize over a pseudometric; see Appendix A). Namely,
for a set of k ≤ m unique coordinate indices S ⊂ {1, . . . , m}, we define {zi,S}nsup

i=1 as the corresponding
subvectors of the training data {zi}

nsup
i=1 . The matrix Zsup

S ∈ Rk×nsup has the subsampled vectors {zi,S}nsup
i=1

as its columns.

To train our model, we use a PCA loss term from (2) on the unsupervised portion of the data Xunsup mixed
with a supervised loss term on the supervised portion of the data Zsup, Xsup:

Ltrain(G, D) = 1
nsup

‖GZsup
S − Xsup‖2

F + 1
nunsup

‖(Id − GG>)Xunsup‖2
F (3)

for a generator matrix G ∈ Rd×k (that is not explicitly constrained to have orthonormal columns). Unlike
the PCA optimization in (2), the optimizations in the current and following subsections do not include any
explicit orthonormal constraints on the columns of the learned matrix G. Here, the supervised portion of
the data gives us specific information about Γ, which we can use to train a better model. This model is
trained by minimizing the loss in Equation (3) with gradient descent.

Figure 2 shows that our model does indeed exhibit double descent. However, there are a few limitations with
the setup which we will now enumerate.

L1 This setup requires supervised pairs: We may not have access to the true latent vectors in
practice.

5

Under review as submission to TMLR

0 10 20 30 400

20

40

60

Latent dimensionality k

2-
W

as
se

rs
te

in
di

st
an

ce

Train error

0 10 20 30 400

50

100

150

200

Latent dimensionality k

2-
W

as
se

rs
te

in
di

st
an

ce

Test error

supervised
semi-supervised

unsupervised

Figure 2: The fully supervised model achieves a peak when the latent dimensionality k is equal to the number of
training samples n. The unsupervised model stops changing as soon as it interpolates at k = n. The semi-supervised
model with nsup = 12 behaves in a way that is somewhat in-between the other two. For other values of nsup and
implementation details, see Appendix D.

L2 This setup requires us to throw away data: We can only vary k from 1 to m because we
are subsampling coordinates from the true latent vectors in Rm. In practice, we would not want to
subsample as this throws away potentially useful data information.

L3 This setup is not typical: Because k < m, we must have n < m to get a peak in the test error
at k = n which is not the interesting/typical setting where m < n < d (see Section 3.1). Thus, we
are not overfitting, which happens when we learn eigenvectors in the noise directions orthogonal to
the data directions, for which k > m.

L4 This setup is supervised, unlike most generative models: We would like to study generative
models, which are typically unsupervised. By adding supervision, we are not actually studying an
unsupervised setting but rather a setting which is semi-supervised.

L5 This setup is not beneficial: The double descent here actually does not improve performance.

Recall that we want to investigate the overparameterization of generative models to find settings that are
realistic and beneficial. We resolve all these problems with pseudo-supervision, defined in the next section.

4 Pseudo-supervision: A practical alternative to adding supervision

4.1 Definition of pseudo-supervision

Input-output pairs of points are not realistically available in GAN training, which is unsupervised. Therefore,
we will make up latent vectors that correspond to true data points in our training set. We call these vectors
pseudo-supervised latent vectors. Although it may seem odd to partially fabricate training data, there are
many advantages to it, starting with not needing access to supervised data (solving L1). Because we have full
control over the generation of latent vectors, we can make them of any dimension (solving L2). Consequently,
we do not need to know the true latent dimensionality m and can study when k > m (solving L3). Since
the pseudo-supervised latent vectors are artificial, this is still an unsupervised problem because we have no
supervised data (solving L4). The obvious question is of course “is this beneficial?” The rest of the paper
will show that there are generalization and convergence benefits to pseudo-supervision (solving
L5).

To understand why pseudo-supervision works, consider the supervised scenario discussed in Section 3.2
except with only one supervised sample: (z1, x1). Now suppose that zps ∈ Rm is a completely fabricated
sample, independent of x1, drawn from the same distribution as z1. We know that if Gunsup is a solution to
the unsupervised optimization, then so is GunsupU where Uzps = z1 and U is an orthonormal matrix (see

6

Under review as submission to TMLR

Theorem 7.3.11 in (Horn & Johnson, 2012)). This is because (GunsupU)(GunsupU)> = Gunsup(Gunsup)>

since positive definite matrices are unique up to a orthonormal transformation. Such a matrix exists if
‖zps‖2 = ‖z1‖2 because U is a norm-preserving operator. In other words, it doesn’t matter if we use z1
or zps as long as ‖zps‖2 = ‖z1‖2. Miraculously, by the curse of dimensionality, ‖zps‖2 = ‖z1‖2 with high
probability if k is large enough! This line of reasoning can be extended past one pseudo-supervised example
nps = 1 to nps = k (see Appendix B), after which we incur a penalty for learning a bad representation
(because we cannot find an orthonormal matrix which will satisfy the conditions above). Therefore, because
of positive definite matrix symmetries and the curse of dimensionality, we can use pseudo-supervision in a
very similar way to supervision without actually knowing any additional information.

In the following subsections we will define several pseudo-supervised settings, in all of which nps out of the n
given training examples {xi}n

i=1 are associated with pseudo (i.e., artificial) latent vectors of dimension k > 0
(because the true latent dimension is unknown in general). Specifically, the training dataset D includes
nps ∈ {0, . . . , n} pseudo-supervised examples {(xi, zi)}

nps
i=1, where {zi}

nps
i=1 are i.i.d. samples of N (0, Ik), and

nunsup = n−nps unsupervised examples {xi}n
i=nps+1. The training data vectors are organized as the columns

of Xps ∈ Rd×nps , Zps ∈ Rk×nps , and Xunsup ∈ Rd×nunsup .

4.2 Double descent and superior performance with pseudo-supervision

Our first pseudo-supervised experiment is a straightforward modification of the experiment in Section 3.2.
We modify Equation (3) to get the new pseudo-supervised loss

Ltrain(G, D) = 1
nps

‖GZps
S − Xps‖2

F + 1
nunsup

‖(Id − GG>)Xunsup‖2
F , (4)

where Xps ∈ Rd×nps and Zps ∈ Rk×nps are the pseudo-supervised matrices. For nunsup = 0 or nps = 0, we
only use the first or second term in the loss, respectively. We provide a detailed explanation of the gradient
calculations and optimization procedure in Appendix D. Note that since the pseudo-supervised latent vectors
are completely fabricated, we do not have to subsample their coordinates (i.e., as in the supervised setting
of Section 3.2) and we can choose k to be any natural number. As shown in the first column of Figure 3,
we achieve beneficial double descent behavior of test error. To the best of our knowledge, this is the first
time that double descent has been used beneficially in an unsupervised setting.

We have extremely low generalization error when nps = n, even though the loss function does not try to
optimize any PCA-type loss. When nps = n, we have nunsup = 0 and the loss Ltrain(G, D) = ‖GZps

S −Xps‖2
F is

completely pseudo-supervised. One would expect this scenario to perform poorly since the pseudo-supervised
examples do not provide any information, and indeed it does – for small k. However, when k is large, we
perform well, even though the loss does not attempt to minimize the original PCA loss. Thus, instead
of guessing the true latent dimension m that is required for good performance in the standard setting of
Section 3.1, we can simply add pseudo-supervision and increase overparameterization to achieve
low generalization error!

As can be seen from the first column of Figure 3, we achieve better generalization performance via the double
descent phenomenon, and we also accelerate training convergence. Interestingly, convergence time actually
exhibits double descent as well. The accelerated convergence may be partly due to the unsupervised loss
dropping off when nps = n; however, we will address this in the next section by having a more regularized
loss function.

4.3 Regularized pseudo-supervision

In the previous section, as nps increases, the unsupervised term in the loss drops off. This term, in some
sense, regularizes the optimization by encouraging the solution to be orthonormal. This is because, if G
has orthonormal columns, then (Id − GG>)x = 0 for all x in the columnspace of G. We will then use the
full data matrix X (which is a horizontal concatenation of Xps and Xunsup) in the second term of the loss
function:

Ltrain(G, D) = 1
nps

‖GZps
S − Xps‖2

F + 1
n

‖(Id − GG>)X‖2
F . (5)

7

Under review as submission to TMLR

0 50 1000

5

10

15

20

Latent dimensionality k

Te
st

er
ro

r
Trained using Equation (4)

0 50 1000

5

10

15

20

Latent dimensionality k

Trained using Equation (5)

0 50 1000

5

10

15

20

Latent dimensionality k

Trained using Equation (7)

nps = 20
nps = 12
nps = 0

0 50 1000

0.5

1

1.5

2

Latent dimensionality k

Tr
ai

n
er

ro
r

Trained using Equation (4)

0 50 1000

0.5

1

1.5

2

Latent dimensionality k

Trained using Equation (5)

0 50 1000

0.5

1

1.5

2

Latent dimensionality k

Trained using Equation (7)

nps = 20
nps = 12
nps = 0

0 50 1000

200

400

Latent dimensionality k

#
It

er
at

io
ns

to
co

nv
er

ge
nc

e Trained using Equation (4)

0 50 1000

200

400

Latent dimensionality k

Trained using Equation (5)

0 50 1000

200

400

Latent dimensionality k

Trained using Equation (7)

nps = 20
nps = 12
nps = 0

Figure 3: Evaluation of test error and training convergence speed in learning of linear GANs using the three different
training loss formulations in (4),(5),(7). In the first column of subfigures, we use (4) and get double descent that
beats the unsupervised baseline in both generalization performance and convergence speed in the overparameterized
range of solutions (the baseline corresponds to the case of no pseudo-supervised training samples nps = 0). In the
second column of subfigures, we use (5) and squash the double descent to get lower generalization error for small
latent dimensionality k. In the third column of subfigures, we get triple descent (one peak at k = n and one peak
at k = d) as well as low generalization errors and extremely fast training speed for large k. In these experiments,
the true data is m = 10 dimensional, the data space is d = 64 dimensional, and we have n = 20 total training data
samples. The null estimator (G = 0d×k) achieves a test error of approximately 13, so all of these models perform
better for large enough k. For additional plots, see Appendix D.

The results for this optimization are shown in the second column of Figure 3.

This regularized setting with pseudo-supervision outperforms the completely unsupervised setting, but we do
not interpolate (i.e., we do not achieve zero train loss), and, consequently, do not see a double descent. This
is typical for more regularized problems, as regularization tends to attenuate the double descent phenomenon
(see, e.g., for orthonormality constraints in (Dar et al., 2020), or for ridge regularization in (Hastie et al., 2019;
Nakkiran et al., 2020)). However, this suggests that the relative importance between the first and second

8

Under review as submission to TMLR

term may significantly impact double descent behavior. More specifically, the only difference between this
optimization and the one discussed in Section 4.2 is that the second term uses all the data even when nps > 0.
Thus, we can think of the second term as a regularizer for the loss. On the other hand, we can view the first
term as constraining the optimization to fit our pseudo-supervised pairs of points, and thus also a regularizer.
Therefore, depending on the point of view, each term can regularize the loss.

Since either of the terms in the training loss in (5) can be perceived as a regularizer, we augment (5) with
disproportionate weighting in order to see if this affects the generalization behavior (e.g., the existence of
double descent phenomena):

Ltrain(G, D) = α

nps
‖GZps

S − Xps‖2
F + 1 − α

n
‖(Id − GG>)X‖2

F , (6)

for α ∈ [0, 1]. A figure of the results is shown in Appendix D. Surprisingly, weighting the loss function in this
manner actually does achieve double descent, which leads to lower test error. We discuss this model here in
order to highlight that the relative importance between the pseudo-supervised and unsupervised loss terms
can induce double descent behavior.

Since we do not exhibit double descent using Equation (5), it is interesting to characterize how the pseudo-
supervision term affects the solution set of the problem. The next two theorems characterize the usual
unsupervised solutions and the pseudo-supervised solutions. Their proofs are included in Appendix C.

Theorem 1. Suppose that X ∈ Rd×n has full rank of min{d, n}. For the unsupervised loss L>
unsup(G, X) ∆=

‖(Id − GG>)X‖2
F , let S>

unsup(k) ∆= {G ∈ Rd×k : L>
unsup(G, X) = 0} be the set of interpolating solutions.

Then,

1. S>
unsup(k) = ∅ if n > k.

2. S>
unsup(k) is a smooth manifold of dimension n(n−1)

2 when n = k.

3. S>
unsup(k) is the union of

(
n
k

)
smooth manifolds of dimension n(n−1)

2 (k − n)(d − n) when k > n.

Theorem 2. Suppose that X ∈ Rd×n has full rank of min{d, n} and let λ > 0 be given. For the pseudo-
supervised loss L>

ps(G, X; λ) ∆= λ
nps

‖GZps
S − Xps‖2

F + 1
n ‖(Id − GG>)X‖2

F , let S>
ps(k) ∆= {G ∈ Rd×k :

L>
ps(G, X, λ) = 0} be the set of interpolating solutions. Then,

1. S>
ps(k) = ∅ if n > k and Z ∈ Rk×n is arbitrary.

2. S>
ps(k) has only one element if n = k and Z ∈ Rk×n is given so that Z>Z = X>X.

3. S>
ps(k) is the union of

(
n
k

)
smooth manifolds of dimension (k − n)(d − n) if k > n and Z =

[
Z1
0

]
∈

Rk×n is given so that Z>
1 Z1 = X>X.

Note that although there exists many unsupervised solutions (Theorem 1), the pseudo-supervised solutions
(Theorem 2) depend heavily on the condition that Z>Z = X>X. Indeed this condition does not happen in
practice with a Gaussian Z, resulting in no interpolation and a regularizing effect. This restrictive condition
comes from the transpose in the unsupervised term. In the next section we will relax this into a pseudo-inverse
in order to interpolate better.

4.4 Triple descent and huge latent spaces

The similar losses of Equations (4) to (6) indirectly encourage learning semi-orthogonal generator matrices.
We can relax this constraint and let our generator learn more complex linear functions by optimizing

Ltrain(G, D) = 1
nps

‖GZps
S − Xps‖2

F + 1
n

‖(Id − GG†)X‖2
F , (7)

9

Under review as submission to TMLR

where G† is the Moore-Penrose pseudo-inverse of the matrix G. Training this loss may seem similar to the
others, but the results are quite different.

With this new loss, we achieve triple descent and desirable generalization and convergence behavior when
the latent dimensionality k is larger than the data space dimensionality d (third column of Figure 3). This
scenario is most closely related to neural networks because the models that we learn are very general and
typically not constrained (e.g., to have orthonormal layers). Moreover, the pseudo-supervised optimization
converges to a solution which beats the unsupervised baseline with few iterations.

Just as we did in Section 4.4, we will characterize the solution sets for unsupervised pseudoinverse loss and
the pseudo-supervised pseudoinverse loss. The next two theorems do this and show that we no longer have
the restrictive Z>Z = X>X condition. Their proofs are located in Appendix C.

Theorem 3. Suppose that X ∈ Rd×n has full rank of min{d, n}. For the unsupervised loss L†
unsup(G, X) ∆=

‖(Id − GG†)X‖2
F , let S†

unsup(k) ∆= {G ∈ Rd×k : L†
unsup(G, X) = 0} be the set of interpolating solutions.

Then,

1. S†
unsup(k) = ∅ if n > k.

2. S†
unsup(k) is a smooth manifold of dimension n2 when n = k.

3. S†
unsup(k) is the union of

(
n
k

)
smooth manifolds of dimension n2(k − n)d when k > n.

Theorem 4. Suppose that X ∈ Rd×n has full rank of min{d, n} and let λ > 0 be given. L†
ps(G, X; λ) ∆=

λ
nps

‖GZps
S − Xps‖2

F + 1
n ‖(Id − GG†)X‖2

F , let S†
ps(k) ∆= {G ∈ Rd×k : L†

ps(G, X, λ) = 0} be the set of
interpolating solutions. Then,

1. S†
ps(k) = ∅ if n > k.

2. S†
ps(k) has only one element when n = k.

3. S†
ps(k) an affine space of dimension (k − n)d when k > n.

5 Nonlinear GANs: Double descent and faster training

In this section we show that double descent can occur in nonlinear, multilayer GANs trained with pseudo-
supervision. Finding the right experimental setting for double descent was difficult because the level of
parameterization is much harder to quantify in a multilayer network. We still determined the overparame-
terization solely by modifying the latent dimensionality k and not by making the networks wider or deeper.
The right side of Figure 4 shows double descent for our pseudo-supervised model. We trained a total of 430
GANs (with different latent dimensionalities and initializations) to make that figure, which is why a study
like this would be computationally prohibitive on models that take a significant amount of time to train.

We also found that these realistic GANs trained with pseudo-supervision converge to a good solution much
faster than they would have without the pseudo-supervision. Figures 4 to 7 show the test errors as training
progressed for different latent dimensionalities. The pseudo-supervised models converge much faster and
performed very well for models trained on both MNIST and CelebA. On the MNIST training, the pseudo-
supervised models converged to the lowest test error after only about 750 epochs compared to about 1,500
epochs in the baseline case. On the CelebA training, the pseudo-supervised models converged to the lowest
test error after only about 10,000 epochs compared to about 40,000 epochs in the baseline case.

The test error in Figure 4 for the MNIST baseline had an initial dip then continued up to high levels around
epoch 948, suggesting overfitting similar to what we saw in the linear models. We suspect that this overfitting
was reduced as we continued to train because of some internal regularization, such as the batch norm in the
model.

10

Under review as submission to TMLR

101 102 103
0

0.2

0.4

0.6

Latent dimensionality k

Te
st

er
ro

r

Epoch = 948

100 101 102 103
0

0.2

0.4

0.6

Latent dimensionality k

Epoch = 2052

100 101 102 103
0

0.2

0.4

0.6

Latent dimensionality k

Epoch = 3000

Pseudo-supervised
Baseline

Figure 4: Test errors for multilayer, nonlinear GANs trained on the MNIST digit dataset. On the left we see that
the baseline error resembles a noisy version of the test error in Figure 1, characterized by an initial dip and then
high levels of error. Our pseudo-supervision training beats the baseline here. As we continue to train (epoch 2052),
we see that the baseline error reduces, which may be due to some kind of implicit regularization. On the right, our
pseudo-supervised model achieves double descent at epoch 3000. Here the test error is measured by geometry score.

1 700160

3000

Latent dimensionality k

Ep
oc

h

Baseline

0.0

0.2

0.4

0.6

0.8

1.0
Test Error

1 700160

3000

Latent dimensionality k

Ep
oc

h
Pseudo-supervised

0.0

0.2

0.4

0.6

0.8

1.0
Test Error

Figure 5: These test error heatmaps for multilayer, nonlinear GANs trained on MNIST show that the pseudo-
supervised models converge faster than the baseline models. The baseline model has high test error until around
epoch 1500, unlike the pseudo-supervised models which have the test error drop off at around epoch 750. The baseline
model only beats the pseudo-supervised model later in the training (around epoch 2500), when the pseudo-supervised
loss increases and admits a double descent shape. The test error is measured by geometry score here. The k-axis
is plotted so that each column corresponds to the next entry for better visualization, even though the spacing is
k ∈ {1, 2, 4, 6, . . . , 70, 100, 200, 300, . . . , 700}.

We performed these experiments with some non-standard procedures to aid in our understanding of general-
ization and double descent phenomena in GANs. In this work, we are not concerned with training state-of-
the-art GANs. For this reason, our experiments are on MNIST (LeCun et al., 1998) and CelebA (Liu et al.,
2015). Since MNIST is not very complex, we only use a random subset of 4,096 training data points and
perform gradient descent using a gradient penalized Wasserstein GAN1 (for SGD results, see Appendix E).
Commonly used performance metrics such as FID (Heusel et al., 2017) and IS (Salimans et al., 2016) are
made for natural images since they use the Inception v3 (Szegedy et al., 2016) model trained on ILSVRC
2012 (Russakovsky et al., 2015). Therefore, we use the geometry score (Khrulkov & Oseledets, 2018), which
is better suited for MNIST2. The experiments on CelebA only uses a random subset of 128 training data
points for the same reasons. However, we use FID to evaluate the CelebA experiments with FID evaluated
using 128 images for computational efficiency. See Appendix E for more details on the training.

1The architecture implementation can be found here
2The geometry score implementation can be found here

11

https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/KhrulkovV/geometry-score

Under review as submission to TMLR

2 128 8192103

104

105

Latent dimensionality k

Ep
oc

h

Baseline

100

150

200

250

Test FID

2 128 8192103

104

105

Latent dimensionality k

Ep
oc

h

Pseudo-supervised

100

150

200

250

Test FID

Figure 6: These test error (measured via FID) heatmaps for multilayer, nonlinear GANs trained on CelebA show
that the pseudo-supervised models converge faster than the baseline models. The baseline model has high test error
until around epoch 40,000, unlike the pseudo-supervised models which have the test error drop off at around epoch
10,000. The baseline model only beats the pseudo-supervised model later in the training, however only in the lower
parameterized regime. The k-axis is plotted for k ∈ {2, 4, 8, . . . , 4096, 8192} and the epoch axis is plotted from 1000
to 100,000.

22 26 210

100

150

200

Latent dimensionality k

Te
st

FI
D

Epoch = 10k

22 26 210

100

150

200

Latent dimensionality k

Epoch = 25k

22 26 210

100

150

200

Latent dimensionality k

Epoch = 100k

Pseudo-supervised
Baseline

Figure 7: Test errors (measured via FID) for a multilayer, nonlinear GAN trained on the CelebA dataset. On the
left we see that the baseline error is quite high and our pseudo-supervision training has almost converged after only
10k epochs. As we continue to train (epoch 25k), we see that the baseline error reduces along with the pseudo-
supervised error. On the right, we see that although the baseline error can even beat the pseudo-supervised error for
certain model parameterizations, this is not the case for highly overparameterized models where pseudo-supervision
still outperforms the baseline.

6 Conclusion

We have demonstrated that pseudo-supervision can be used to achieve beneficial double descent phenomena
in unsupervised models, specifically in linear GANs and nonlinear, multilayer GANs. Pseudo-supervision
can help accelerate training and lower generalization error. This opens up areas of research in understanding
overparameterization and double descent behavior in unsupervised models. Moreover, our findings suggest
that an empirical study on ImageNet with more complex networks is beneficial to improve state-of-the-art
generalization error and convergence speed.

12

Under review as submission to TMLR

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In

International conference on machine learning, pp. 214–223. PMLR, 2017.

Sheldon Axler. Measure, Integration & Real Analysis. Springer Nature, 2020.

Sheldon Jay Axler. Linear algebra done right, volume 2. Springer, 1997.

Yogesh Balaji, Mohammadmahdi Sajedi, Neha Mukund Kalibhat, Mucong Ding, Dominik Stöger, Mahdi
Soltanolkotabi, and Soheil Feizi. Understanding overparameterization in generative adversarial networks.
arXiv preprint arXiv:2104.05605, 2021.

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 2020.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical
bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019a.

M. Belkin, D. Hsu, and J. Xu. Two models of double descent for weak features. arXiv preprint
arXiv:1903.07571, 2019b.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. arXiv preprint arXiv:1809.11096, 2018.

Y. Dar and R. G. Baraniuk. Double double descent: On generalization errors in transfer learning between
linear regression tasks. SIAM Journal on Mathematics of Data Science, 4(4):1447–1472, 2022.

Yehuda Dar, Paul Mayer, Lorenzo Luzi, and Richard Baraniuk. Subspace fitting meets regression: The effects
of supervision and orthonormality constraints on double descent of generalization errors. In International
Conference on Machine Learning, pp. 2366–2375. PMLR, 2020.

Z. Deng, A. Kammoun, and C. Thrampoulidis. A model of double descent for high-dimensional binary linear
classification. arXiv preprint arXiv:1911.05822, 2019.

Stéphane dAscoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in double descent:
Bias and variance(s) in the lazy regime. In International Conference on Machine Learning, pp. 2280–2290.
PMLR, 2020.

Soheil Feizi, Farzan Farnia, Tony Ginart, and David Tse. Understanding GANs in the LQG setting: Formu-
lation, generalization and stability. IEEE Journal on Selected Areas in Information Theory, 2020.

James E Gentle. Matrix algebra. Springer texts in statistics, Springer, New York, NY, doi, 10:978–0, 2007.

Clark R Givens, Rae Michael Shortt, et al. A class of Wasserstein metrics for probability distributions. The
Michigan Mathematical Journal, 31(2):231–240, 1984.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems (NIPS), pp. 2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
training of Wasserstein GANs. arXiv preprint arXiv:1704.00028, 2017.

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in high-dimensional ridgeless least squares
interpolation. arXiv preprint arXiv:1903.08560, 2019.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media, 2009.

13

Under review as submission to TMLR

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems (NIPS), pp. 6626–6637, 2017.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4401–4410, 2019a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of StyleGAN. arXiv preprint arXiv:1912.04958, 2019b.

Valentin Khrulkov and Ivan Oseledets. Geometry score: A method for comparing generative adversarial
networks. In International Conference on Machine Learning, pp. 2621–2629. PMLR, 2018.

Ganesh Ramachandra Kini and Christos Thrampoulidis. Analytic study of double descent in binary classi-
fication: The impact of loss. In 2020 IEEE International Symposium on Information Theory (ISIT), pp.
2527–2532, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

John M Lee. Smooth manifolds. In Introduction to Smooth Manifolds, pp. 1–29. Springer, 2003.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for GANs do actually
converge? In International conference on machine learning, pp. 3481–3490. PMLR, 2018.

V. Muthukumar, A. Narang, V. Subramanian, M. Belkin, D. Hsu, and A. Sahai. Classification vs regression
in overparameterized regimes: Does the loss function matter? arXiv preprint arXiv:2005.08054, 2020a.

V. Muthukumar, K. Vodrahalli, V. Subramanian, and A. Sahai. Harmless interpolation of noisy data in
regression. IEEE Journal on Selected Areas in Information Theory, 2020b.

P. Nakkiran, P. Venkat, S. Kakade, and T. Ma. Optimal regularization can mitigate double descent. arXiv
preprint arXiv:2003.01897, 2020.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using
variational divergence minimization. arXiv preprint arXiv:1606.00709, 2016.

Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with given dispersion
matrices. Linear Algebra and its Applications, 48:257–263, 1982.

KB Petersen and MS Pedersen. The matrix cookbook, version 20121115. Technical Univ. Denmark, Kongens
Lyngby, Denmark, Tech. Rep, 3274, 2012.

Alfréd Rényi et al. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The
Regents of the University of California, 1961.

Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis, volume 32. Macmillan New York, 1988.

Walter Rudin. Principles of mathematical analysis. McGraw-hill New York, third edition, 1964.

Walter Rudin. Real and complex analysis. 1987. Cited on, 156, 1987.

14

Under review as submission to TMLR

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANs. arXiv preprint arXiv:1606.03498, 2016.

Aydin Sarraf and Yimin Nie. RGAN: Rényi generative adversarial network. SN Computer Science, 2(1):1–8,
2021.

S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli, and M. Wyart. A jamming transition from under-to
over-parametrization affects loss landscape and generalization. arXiv preprint arXiv:1810.09665, 2018.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818–2826, 2016.

Cédric Villani. Topics in optimal transportation. American Mathematical Soc., 2003.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

15

Under review as submission to TMLR

Appendices

The appendices below support the main paper as follows. Appendix A provides additional details on how
subsampling (or zeroing) coordinates of the data is equivalent to training with a pseudometric as discussed in
Section 3.2 of the main paper. In Appendix B we expand on pseudo-supervision and explain when it can be
used to mimic supervision. Appendix D includes additional empirical results and details for the linear GAN
problems from Sections 3.2 and 4.2 to 4.4 of the main paper. Appendix E provides additional experimental
results and details for the multilayer, nonlinear GAN from Section 5 of the main paper; we also include
results for SGD-based training of GANs using the complete MNIST dataset.

A Training with pseudometric and subsampling data

The problem in Section 3.1 is that we are optimizing over a metric q, which has a definiteness property,
i.e., q(x, y) = 0 if and only if x = y. If we relax this property, we are left with a pseudometric; similarly,
we can relax this property to obtain a non-definite f -divergence. Interestingly, we found that subsampling
coordinates of the data is equivalent to using a pseudometric, and we will use subsampling in the next section
to control our level of parameterization. We provide a detailed discussion on the pseudometric formulation in
Appendix A since several papers on double descent use feature subsampling to control the parameterization
of the model (Belkin et al., 2019b; Dar et al., 2020; Dar & Baraniuk, 2022).
Proposition 1. Let qd be any metric on Rd and qk be any metric on Rk. Suppose that xd, yd ∈ Rd are
subsampled (in the same way) to xk, yk ∈ Rk, with k < d, i.e., the elements of xk and yk are a subset of the
elements of xd and yd, respectively. Then, the function q′ : Rd × Rd → R defined as q′(xd, yd) = qk(xk, yk)
is a pseudo-metric in Rd.

Proof. We first show that q′ is strictly semi-definite. For all xd ∈ Rd we have that q′(xd, xd) = qk(xk, xk) = 0.
Note however, that if we modify an element of xd which is not present in xk to create x′

d 6= xd we will
still get q′(xd, x′

d) = qk(xk, xk) = 0, implying that q′ is not strictly definite and hence that q′ cannot
be a proper metric. Moreover, we see that q′ is symmetric because for all xd, yd ∈ Rd we have that
q′(xd, yd) = qk(xk, yk) = qk(yk, xk) = q′(yd, xd).

Now we must show that the triangle inequality holds for q′. Suppose that xd, yd, zd ∈ Rd are subsampled to
xk, yk, zk ∈ Rk. Then,

q′(xd, zd) = qk(xk, zk)
≤ qk(xk, yk) + qk(yk, zk) (triangle inequality on qk)
= q′(xd, yd) + q′(yd, zd),

as desired. Thus, q′ is a pseudo-metric.

A.1 Subsampling the data features

In Section 3.1 we saw that if we optimize an objective function which is a metric (Rudin, 1964) or an f -
divergence (Rényi et al., 1961; Nowozin et al., 2016), the resulting generalization error will be constant for
any interpolating solution. This is due to the definiteness of the metric or f -divergence. In this section we will
relax this property for the 2-Wasserstein metric (Villani, 2003; 2008); extensions to this relaxation can be done
for f -divergences and other metrics. The resulting mathematical object is called a pseudometric (Royden &
Fitzpatrick, 1988), which has been studied thoroughly in the context of Lp metrics in Banach spaces (Axler,
2020; Royden & Fitzpatrick, 1988).
Definition 1. We denote qd to be the standard Euclidean metric on Rd (Rudin, 1964). Let P (Rd) be the
set of all probability distributions defined on the measurable space (Rd, B(Rd)), where B(Rd) is the Borel
σ-algebra on Rd (Axler, 2020; Rudin, 1987). We denote Wd : P (Rd) × P (Rd) → R to be the 2-Wasserstein
metric:

Wd(P, P ′) =

√
inf

γ∈Π(P,P ′)

∫
Rd×Rd

q2
d(x, y)dγ(x, y),

16

Under review as submission to TMLR

where γ ∈ Π(P, P ′) is any joint distribution of P and P ′. For a set A ⊂ {1, . . . , d}, we define the pseudometric
Wd,A : Rd × Rd → R to be the 2-Wasserstein metric on Rd−|A| on the indices not in A. For example, if
P2,...,d, P ′

2,...,d are the marginals (after integrating out the first component) of P and P ′, respectively, then

Wd,{1}(P, P ′) := Wd−1(P2,...,d, P ′
2,...,d).

Clearly, Wd,A is a pseudometric as it derives all metric properties from Wd−|A| except the definiteness
property.

This pseudometric is constructed by integrating out certain coordinates of the distributions and using a
metric on the resulting marginal distributions. Therefore it is possible to have zero distance between two
distributions that differ along the coordinates which are integrated out. This is equivalent to subsampling
or zeroing out the desired coordinates, which we will shortly show. Thus, for the linear case, we can learn a
generator G which maps our latent space to Rd and which learns the training data distributions pf except
for the ignored coordinates. Of course, now we have a whole (affine) subspace of matrices G ∈ Rd×k that
we can learn. In other words, using a pseudometric, an interpolating solution G ∈ Rd×k forms an affine
subspace of Rd×k if modified along the ignored coordinates. As we will see in Appendix B, we can also
transform G by an orthonormal transformation to get more degrees of freedom than just this affine space.
In this setting, the min-norm solution will not project anything on the ignored coordinates.
Theorem 5. Let P and P ′ be two distributions defined on Rd. Let A ⊂ {1, . . . , d} be a subset of the axis
indices. We define a new distribution QA on Rd as the product of |A| univariate point masses at 0 and the
marginal distribution PAC . The point masses are located so that the univariate marginals of QA are point
masses along the coordinates in A. We define Q′

A similarly. Then,

Wd,A(P, P ′) := Wd−|A|(PAC , P ′
AC) = Wd(QA, Q′

A). (8)

Proof. An application of Tonelli’s Theorem (Axler, 2020) shows that

Wd(QA, Q′
A) =

√
inf
γ

∫
Rd×Rd

q2
d(x, y)dγ

=

√√√√inf
γ

d∑
i=1

∫
Rd×Rd

|xi − yi|2dγ

=
√

inf
γ

∑
i∈A

∫
Rd×Rd

|xi − yi|2dγ +
∑

i∈AC

∫
Rd×Rd

|xi − yi|2dγ

=
√

inf
γ

∫
R2|A|

∑
i∈A

|xi − yi|2dγA +
∫
R2(d−|A|)

∑
i∈AC

|xi − yi|2dγAC (Tonelli)

=
√

inf
γAC

∫
R2(d−|A|)

∑
i∈AC

|xi − yi|2dγAC (∗)

= Wd−|A|(PAC , P ′
AC)

= Wd,A(P, P ′),

where γA and γAC are the joints of the marginals over A and over AC , respectively. We also use independence
when using Tonelli’s Theorem, because QA and Q′

A are product measures by construction. In (∗), we pick
γA to be the independent joint distribution so that each random variable with index in A is independent.
Since each of these random variables is identical, the integral term on the left vanishes and is therefore the
minimizer of the infimum.

Theorem 5 shows that we can train with a pseudometric by simply zeroing the coordinates of the data that
we wish to ignore; alternatively, we can also subsample the features so that we keep the features with indices

17

Under review as submission to TMLR

in AC . This allows us to consider a pseudometric Wd,A which is invariant to the data features with indices
in A. Suppose that we instead want Wd,A to be invariant to a specific subspace. It turns out that these two
concepts are closely related.
Theorem 6. Let V ⊂ Rd be a subspace spanned by the orthonormal vectors v1, . . . , vm; the rest of Rd

is spanned by vm+1, . . . , vd so that {vi}d
i=1 is an orthonormal basis for Rd. We also have a data matrix

X ∈ Rd×n. Then, we can construct a pseudometric Wd,V to be invariant to the subspace V by replacing the
first m rows of U>X with zeros for U =

[
v1 . . . vd

]
∈ Rd×d.

Proof. Let v ∈ V be given. Then, we can write v =
∑m

i=1 civi. Clearly, we have that U>v =∑m
i=1 ciU>vi =

[
c1 . . . cm 0 . . . 0

]>. Similarly, if w ∈ V is arbitrary, then we have that U>w =[
a1 . . . am am+1 . . . ad

]> for some numbers ai ∈ R. Hence, by replacing the first m coordinates by 0
we project onto the subspace orthogonal to V . Applying U> to each column of X is equivalent to computing
U>X.

Thus, without loss of generality, we consider only subsampling feature indices. If we want to ignore a
subspace, we simply multiply our data matrix by the correct matrix U.

A.2 Subsampling the latent vector coordinates

In the previous section, we considered subsampling the data features. However, we know that supervision has
enabled double descent in PCA-type problems (Dar et al., 2020). Thus, we would like to study supervision
in the GAN context, as discussed in Section 3.2. In a supervised linear regression setting using the 2-norm
loss, we know that we must take a pseudoinverse of the input matrix (Hastie et al., 2009), which induces
double descent. In this setting, that is the latent space matrix Z. Therefore, we enable double descent by
subsampling the latent vector coordinates. Doing this is very similar to subsampling the features in the data
space. For example, if we zero out the first coordinate of the latent distribution, we are essentially zeroing
out the subspace corresponding to the first column of the matrix G. Since we learn G, this is a type of
adaptive pseudometric procedure, where we learn which subspaces to use and which subspaces to ignore.

B Pseudo-supervision and the curse of dimensionality

This appendix provides further detail regarding the scenario described in Section 4.1. Suppose that G ∈
Rd×m is a solution which provides zero test error. Now, let z ∈ Rm correspond to the true vector which
generates x ∈ Rd so that Gz = x. Now suppose that zps ∈ Rm is any vector so that ‖zps‖2 = ‖z‖2. Then,
we can find an orthonormal matrix U ∈ Rm×m so that Uzps = z. We see that GU is also a solution which
gives zero train error, because the isotropic covariance matrix of the generated distribution is not changed
if we right multiply G with an orthonormal matrix (Horn & Johnson, 2012). However, if we pick zps from
N (0, Im) where m is large, we see that ‖zps‖2 = ‖z‖2 with high probability because high dimensional
Gaussians concentrate on a thin shell in high-dimensional space (Bishop, 2006). This is typically considered
a bad thing, hence its name: the curse of dimensionality. However, here we use the curse of dimensionality
to allow fabricated latent vectors zps to mimic supervised latent vectors z. Moreover, we can come up with
linearly independent pseudo-supervised latent vectors up to m times, after which we can no longer find an
m × m orthonormal matrix U. The more pseudo-supervised samples we have, the fewer matrices G we can
learn, resulting in faster gradient descent convergence since the feasible set is smaller.

We will encounter a problem if k < m, i.e., if the latent dimension we pick is lower than the true latent
dimension, because we cannot learn a perfect representation (assuming that the linear operator Γ in the data
model is full rank). However, if we let k be larger than m, then we can learn a solution which gives us zero
test error. Although the true vectors are m-dimensional, we can always learn a generator matrix G which
ignores certain coordinates. For such solutions, we can also construct pseudo-supervised samples up to k
times. Therefore the overparameterized regime, where k is large, is very desirable from the pseudo-supervised
point of view.

18

Under review as submission to TMLR

If we fix nps to some value, note that by the above argument, we will incur a penalty if k < nps because we
will not be able to find a suitable U. However, if k is larger than m and larger than nps, we can mimic the
behavior of supervised samples because we will be able to find an orthonormal matrix which will transform
those pseudo-supervised latent vectors into vectors that equal the true vectors along m coordinates. For this
reason, we consider pseudo-supervision when k is large.

C The dimension of the solution sets

C.1 The unsupervised solutions

Theorem 1. Suppose that X ∈ Rd×n has full rank of min{d, n}. For the unsupervised loss L>
unsup(G, X) ∆=

‖(Id − GG>)X‖2
F , let S>

unsup(k) ∆= {G ∈ Rd×k : L>
unsup(G, X) = 0} be the set of interpolating solutions.

Then,

1. S>
unsup(k) = ∅ if n > k.

2. S>
unsup(k) is a smooth manifold of dimension n(n−1)

2 when n = k.

3. S>
unsup(k) is the union of

(
n
k

)
smooth manifolds of dimension n(n−1)

2 (k − n)(d − n) when k > n.

Proof for Theorem 1. Suppose that n > k and, for the sake of a contradiction, that S>
unsup(k) 6= ∅. This

means that there exists a G ∈ S>
unsup(k) so that ‖(Id − GG>)X‖2

F = 0. Thus, for each column xi of X we
have that ‖(Id −GG>)xi‖2

2 = 0. In other words, we know that GG>xi = xi implies that GG> has at least n
eigenvalues of 1 corresponding to n eigenvectors since the samples are linearly independent. By the spectral
theorem (Theorem 2.5.6 in Horn & Johnson (2012)), GG> is diagonalizable and thus rank(GG>) ≥ n.
However, we know that rank(GG>) ≤ k by simple rank inequalities (0.4.5 (a) in Horn & Johnson (2012)),
a contradiction. Therefore, we know that S>

unsup(k) = ∅.

Now suppose that n = k. We take a singular value decomposition of X into X = USV>, where U ∈
Rd×d, V ∈ Rk×k are real orthogonal matrices and S ∈ Rd×k is zero except on the diagonal (Corollary 2.6.7
in Horn & Johnson (2012)). Then, we let G0 = Uk be the first k columns of U. We see that

G0G>
0 X = UkU>

k USV> = Uk

[
Ik 0k×d−k

]
SV> =

[
Uk 0k×d−k

]
SV> = USV> = X

means that G0 ∈ S>
unsup(k) is one interpolating solution, since (Id−G0G>

0)X = 0. We will use G0 to generate
more solutions. In fact, for each real orthogonal matrix U ∈ Rk×k, we see that G0U ∈ S>

unsup(k) because
(G0U)(G0U)> = G0UU>G>

0 = G0G>
0 . We can identify solutions of the form G0U with the orthogonal

group O(k) which is a smooth manifold (in particular, a real Lie group) of dimension k(k−1)
2 (Lee, 2003).

We define Sorth(G0) = {G ∈ Rd×k : G = G0U, U ∈ O(k)} and maintain that Sorth(G0) ⊂ S>
unsup(k).

Now, we consider interpolating solutions for when n = k and show that Sorth(G0) ⊃ S>
unsup(k) so

that S>
unsup(k) is a smooth manifold of dimension k(k−1)

2 . Let G ∈ S>
unsup(k) be given. For any

x ∈ span{x1, . . . , xn}, it is clear that GG>x = x. Moreover, since GG> has rank n = k, we see that
any y that is independent of our samples must be in the null space of GG> so that GG>y = 0. Thus,
GG> is an orthogonal projection matrix (Axler, 1997). Thus, range(GG>) = span(x1, . . . , xn) and the
eigenvalues of GG> are all either 0 or 1.

Let G = USV> be G0 = U0SV>
0 two singular value decompositions; note that the singular value matrix

S =
[

Ik

0d−k×k

]
is the same in these two because they have the same singular values. Then, we define

19

Under review as submission to TMLR

W = G>
0 G so that

G0W = G0G>
0 G

= GG>G
= GVS>U>USV>

= G. (Since S>S = In)

Note that WW> = G>
0 GG>G0 = G>

0 G0G>
0 G0 = Ik and W>W = G>G0G>

0 G = G>GG>G = Ik imply
that W ∈ O(k) is a real orthogonal matrix. Thus, any arbitrary interpolating solution G can be written as
G = G0U for U ∈ O(k). This means that Sorth(G0) ⊃ S>

unsup(k) implying that Sorth(G0) = S>
unsup(k), as

desired. Thus, S>
unsup(k) is a smooth manifold with dimension k(k−1)

2 = n(n−1)
2 when n = k.

Now we consider the k > n case. For any interpolating G ∈ S>
unsup(k), we must have that n columns of G

span the column space of X. That leaves k − n columns of G, each in Rd, free. Suppose that the first n
columns of G are the ones which span the column space of X and the next k − n columns are arbitrary;
we will write G =

[
GX Ga

]
. Thus, we have that GG> = GXG>

X + GaG>
a , meaning that we only

interpolate if range(Ga) ∩ span(x1, . . . , xn) = {0}. Of course, by the arguments made above, we see that
GXU will work instead of GX for any U ∈ O(n), this means that for an appropriate selection of Ga, we
have that {G ∈ Rd×k : L>

unsup(G, X) = 0, G =
[
GX Ga

]
, Ga fixed} has dimension n(n−1)

2 . Since Ga can
be arbitrary (outside of the column span of X), it is of dimension (k − n)(d − n). To see this, take k = n + 1.
Then, Ga is a single vector which can span a d − n dimensional subspace of Rd. If k = n + 2, both vectors
can span the d − n-dimensional subspace of Rd making them 2(d − n) = (k − n)(d − n)-dimensional. Thus,
we see that {G ∈ Rd×k : L>

unsup(G, X) = 0, G =
[
GX Ga

]
} must have dimension n(n−1)

2 (k − n)(d − n).
This doesn’t completely characterize S>

unsup(k) because we fixed the structure of G.

Suppose that G ∈ S>
unsup(k) is an interpolating solution. Then, any n columns of G can span the column

space of X and the remaining k − n columns are free. For each such combination of data-spanning and
free columns, we get a smooth manifold of dimension n(n−1)

2 (k − n)(d − n). Thus, S>
unsup(k) is the union

of
(

n
k

)
smooth manifolds of dimension n(n−1)

2 (k − n)(d − n). One can check that each of these manifolds
is disjoint, and hence this union results in another smooth manifold of the same dimension. For if this is
not true, the same G is in two combinations of data-spanning and free column configurations. Since the
data spanning vectors are non-zero and linearly independent of the free vectors, this is a contradiction. In
summary, S>

unsup(k) is a smooth manifold of dimension n(n−1)
2 (k − n)(d − n).

Theorem 3. Suppose that X ∈ Rd×n has full rank of min{d, n}. For the unsupervised loss L†
unsup(G, X) ∆=

‖(Id − GG†)X‖2
F , let S†

unsup(k) ∆= {G ∈ Rd×k : L†
unsup(G, X) = 0} be the set of interpolating solutions.

Then,

1. S†
unsup(k) = ∅ if n > k.

2. S†
unsup(k) is a smooth manifold of dimension n2 when n = k.

3. S†
unsup(k) is the union of

(
n
k

)
smooth manifolds of dimension n2(k − n)d when k > n.

Proof for Theorem 3. Suppose that n > k and, for the sake of a contradiction, that S†
unsup(k) 6= ∅. This

means that there exists a G ∈ S†
unsup(k) so that ‖(Id − GG†)X‖2

F = 0. Thus, for each column xi of X we
have that ‖(Id − GG†)xi‖2

2 = 0. In other words, we know that GG†xi = xi implies that GG† has at least n
eigenvalues of 1 corresponding to n eigenvectors since the samples are linearly independent. By the spectral
theorem (Theorem 2.5.6 in Horn & Johnson (2012)), GG† is diagonalizable and thus rank(GG†) ≥ n.
However, we know that rank(GG†) ≤ k by simple rank inequalities (0.4.5 (a) in Horn & Johnson (2012)), a
contradiction. Therefore, we know that S†

unsup(k) = ∅.

20

Under review as submission to TMLR

Now suppose that n = k. Let G0 = X. Clearly, G0 has full column rank and thus has an explicit pseudo-
inverse formulation. Then, we see that

G0G†
0X = G0(G>

0 G0)−1G>
0 X = X(X>X)−1X>X = X

means that G0 ∈ S†
unsup(k) is one interpolating solution, since (Id − G0G†

0)X = 0. We will use G0 to
generate more solutions. In fact, for each invertible matrix A ∈ Rk×k, we see that G0A ∈ S†

unsup(k) because
(G0A)(G0A)† = G0G†

0. We can identify solutions of the form G0A with the real general linear group
GL(k) which is a smooth manifold (in particular, a real Lie group) of dimension n2 Lee (2003). We define
SGL(G0) = {G ∈ Rd×k : G = G0A, A ∈ GL(k)} and maintain that SGL(G0) ⊂ S†

unsup(k).

Now, we consider interpolating solutions for when n = k and show that SGL(G0) ⊃ S†
unsup(k) so that

S†
unsup(k) is a smooth manifold of dimension n2. Let G ∈ S†

unsup(k) be given. For any x ∈ span{x1, . . . , xn},
it is clear that GG†x = x. Moreover, since GG† has rank n = k, we see that any y that is independent of
our samples must be in the null space of GG† so that GG†y = 0. Thus, GG† is an orthogonal projection
matrix Axler (1997). Thus, range(GG†) = span(x1, . . . , xn) and the eigenvalues of GG† are all either 0 or
1. Note that since GG† and G0G†

0 have rank n and are projection matrices onto the the column space of
X, we have that GG† = G0G†

0. Now we define A = G†
0G so that

G0A = G0G†
0G

= GG†G
= G

Note that A ∈ GL(k) is invertible, otherwise G would be rank deficient and not able to span the column
space of X. Thus, any arbitrary interpolating solution G can be written as G = G0A for A ∈ GL(k).
This means that SGL(G0) ⊃ S†

unsup(k) implying that SGL(G0) = S†
unsup(k), as desired. Thus, S†

unsup(k) is a
smooth manifold with dimension n2 when n = k.

Now we consider the k > n case. For any interpolating G ∈ S†
unsup(k), we must have that n columns

of G span the column space of X. That leaves k − n columns of G, each in Rd, free to be arbitrary.
Suppose that the first n columns of G are the ones which span the column space of X and the next k − n
columns are arbitrary; we will write G =

[
GX Ga

]
. In this case, Ga can be completely arbitrary and even

contain columns which span the data. To see this, let Ga be arbitrary and note that GG†G = G for any
pseudo-inverse (even if we don’t have full rank). Thus,

GG†G = GG† [
GX Ga

]
=

[
GG†GX GG†Ga

]
= G =

[
GX Ga

]
implies that GG†GX = GX. Since GX has the form GX = XA for A ∈ GL(k), we see that GG†XA = XA.
Finally, since A is invertible, we have that GG†X = X.

Since GXA will work instead of GX for any A ∈ GL(n), this means that for fixed Ga, we have that
{G ∈ Rd×k : ‖(Id − GG†)X‖ = 0, G =

[
GX Ga

]
, Ga fixed} has dimension n2. Since Ga can be arbitrary

and is of dimension (k − n)d, we see that {G ∈ Rd×k : ‖(Id − GG†)X‖ = 0, G =
[
GX Ga

]
} must have

dimension n2(k − n)d. This doesn’t completely characterize S†
unsup(k) because we fixed the structure of G.

Suppose that G ∈ S†
unsup(k) is an interpolating solution. Then, any n columns of G can span the column

space of X and the remaining k − n columns can be arbitrary. For each such combination of data-spanning
and arbitrary columns, we get a smooth manifold of dimension n2(k − n)d. Thus, S†

unsup(k) is the union
of

(
n
k

)
smooth manifolds of dimension n2(k − n)d. However, S†

unsup(k) need not be a manifold because
for one configuration the arbitrary columns of G can equal the data-spanning columns of G for another
configuration. This results in self-intersection. For a concrete example, let n = 1, k = 2. Then, for the two
configurations

[
Gx Ga

]
} and

[
Ga Gx

]
}, we can have the solution

[
Gx Gx

]
}. In summary, S†

unsup(k)
is the union of

(
n
k

)
smooth manifolds of dimension n2(k − n)d.

21

Under review as submission to TMLR

C.2 The pseudo-supervised solutions

Theorem 2. Suppose that X ∈ Rd×n has full rank of min{d, n} and let λ > 0 be given. For the pseudo-
supervised loss L>

ps(G, X; λ) ∆= λ
nps

‖GZps
S − Xps‖2

F + 1
n ‖(Id − GG>)X‖2

F , let S>
ps(k) ∆= {G ∈ Rd×k :

L>
ps(G, X, λ) = 0} be the set of interpolating solutions. Then,

1. S>
ps(k) = ∅ if n > k and Z ∈ Rk×n is arbitrary.

2. S>
ps(k) has only one element if n = k and Z ∈ Rk×n is given so that Z>Z = X>X.

3. S>
ps(k) is the union of

(
n
k

)
smooth manifolds of dimension (k − n)(d − n) if k > n and Z =

[
Z1
0

]
∈

Rk×n is given so that Z>
1 Z1 = X>X.

Proof for Theorem 2. Since S>
ps(k) ⊂ S>

unsup(k), this implies that S>
ps(k) = ∅ when n > k.

Suppose that n = k and from Theorem 1 we see that the solutions to L>
ps(G, X, λ) must have the form of

UkW for W ∈ O(k). From the condition Z>Z = X>X, we see that Z = ADV> with a unitary matrix A

and the other matrices from the SVD of X = U
[
D
0

]
V>; this joint decomposition can be derived from the

fact that our condition implies that the singular values and right singular vectors of Z and X are the same.
Thus, we see that

GZ − X = UkWZ − U
[
D
0

]
V>

= UkWADV> − U
[
D
0

]
V> (Z>Z = X>X)

= UkWADV> − UkDV>

= Uk

(
WA − Ik

)
DV>

= 0

if and only if W = A, which is permissible since both are unitary. Hence, we have only one solution.

Now suppose that k > n. Then, we have that our solution from Theorem 1 has the form of G =
[
UnW Ga

]
,

where W ∈ O(n) and Ga is arbitrary. Then,

GZ − X =
[
UnW Ga

] [
ADV>

0

]
− UnDV>

= UnWADV> − UnDV>

= 0

if and only if W = A>. So we have one solution in this case, but since Ga is arbitrary, we have (k−n)(d−n)
solutions. Moreover, since the columns of G were chosen in this convenient way, we actually have a union
of

(
n
k

)
solutions spaces of dimension (k − n)(d − n).

Theorem 4. Suppose that X ∈ Rd×n has full rank of min{d, n} and let λ > 0 be given. L†
ps(G, X; λ) ∆=

λ
nps

‖GZps
S − Xps‖2

F + 1
n ‖(Id − GG†)X‖2

F , let S†
ps(k) ∆= {G ∈ Rd×k : L†

ps(G, X, λ) = 0} be the set of
interpolating solutions. Then,

1. S†
ps(k) = ∅ if n > k.

2. S†
ps(k) has only one element when n = k.

22

Under review as submission to TMLR

S>
unsup S†

unsup S†
ps

n < k 0 0 0
n = k n(n−1)

2 n2 1
k > n n(n−1)

2 (k − n)(d − n) n2(k − n)d (k − n)d

Table 1: The size of the solution sets

3. S†
ps(k) an affine space of dimension (k − n)d when k > n.

Proof for Theorem 4. Clearly, S†
ps ⊂ S>

unsup, implying that S†
ps = ∅ when n > k.

When n = k, we see that the pseudo-supervised term reaches zero only when we have the unique solution of
G = XZ−1. Note that for this selction of G we have that

GG†X = XZ−1(Z−>X>XZ−1)−1Z−>X>X = X(X>X)−1X>X = X,

meaning that G = XZ−1 is the only unique solution to the problem when n = k.

Now suppose that k > n and let Z = USV> be decomposed via SVD, where S =
[

Σ
0k−n×n

]
with invertible

Σ ∈ Rn×n. For an arbitrary solution G we can write it as G =
[
G′ Ga

]
U> for G′ ∈ Rd×n, Ga ∈ Rd×k−n.

Note that since we are multiplying by U>, which is invertible, this does not change the solution set we are
interested in but merely rotates it. Hence, we have that

X = GZ =
[
G′ Ga

]
U>USV> =

[
G′ Ga

] [
Σ
0

]
V> = G′ΣV>.

Thus, G′ = XVΣ−1 uniquely since both Σ and V> are invertible. On the other hand, Ga can be anything.
Thus, {G ∈ Rd×k : ‖GZ − X‖2

F = 0} can be identified with the matrices Ga ∈ Rd×k−n. Moreover, note
that any solution of the form G =

[
XVΣ−1 Ga

]
U> must have that GG†XVΣ−1 = XVΣ−1 as shown

in the proof of Theorem 3. Thus, GG†X = X meaning that G ∈ S†
ps(k). Thus, S†

ps(k) is an affine space of
dimension d(k − n).

Recall that in the proof of Theorem 3 we have that the part of G which contributes has the form XA for any
invertible A. We see here that the pseudo-supervision forces A to be equal to VΣ−1 (which are completely
constructed from Z) and removes all the degrees of freedom in A. We summarize these results in the Table 1.

D Experiments on linear models and gradient details

D.1 Details regarding linear experiments

In the linear setting, we set Γ ∈ Rd×m to be the first m = 10 columns of a Hadamard matrix multiplied
by 1√

d
, where d = 64. Trails using random orthonormal columns for Γ yielded extremely similar results,

therefore we only show plots for the Hadamard Γ. Then, we create our data by drawing n = 20 samples
from Γz + ε, where z ∼ N (0, Im) and ε = N (0, 0.152Id). Our initial matrix G ∈ Rd×k is drawn from an
isotropic Gaussian with 0.03 standard deviation. We have k ∈ {1, 3, 5, . . . , 127} for the pseudo-supervised
experiments and k ∈ {1, 2, . . . , 40} for the supervised experiments. For all these experiments, we have nps
and nsup take values in {0, 2, 4, 12, 18, 20}.

We perform gradient descent with a maximum of 500 iterations. The initial step size
is 0.0001 after which we adaptively pick the current iteration’s step size which will reduce
the training loss most. We do this by multiplying the current step size by values in
{0.0000001, 0.000005, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and picking the value which will

23

Under review as submission to TMLR

0 5 10 15 20 25 30 35 400

20

40

60

80

Latent dimensionality k

2-
W

as
se

rs
te

in
di

st
an

ce

Train error
nsup = 2
nsup = 4
nsup = 12
nsup = 18
nsup = 20
nsup = 0

0 5 10 15 20 25 30 35 400

50

100

150

200

250

Latent dimensionality k

Test error
nsup = 20
nsup = 18
nsup = 12
nsup = 4
nsup = 2
nsup = 0

Figure 8: In this figure, we minimize the loss in Equation (3). The legends are displayed in the same order as the
curves appear on the plot for clarity. This figure is a more detailed version of Figure 2.

yield the lowest training loss. If the matrix G does not change more than 0.00001 in Frobenius norm for
more than 5 iterations, then the optimization also stops. If the Frobenius norm of the gradient is less than
0.05, then the optimization stops. The gradients are calculated in Appendix D.2.

We run all these experiments 200 times and average the results. For each experiment, we pick a new seed
and re-run the same script. Therefore, the pseudo-supervised examples are fixed for each experiment as we
vary k and nps. Hence, the errorbars in Figures 8 to 12 show one standard deviation of how the choice of
matrix initialization, pseudo-supervision samples, and data samples all affect the test error.

D.2 Gradient calculations

The losses introduced in Equations (4) to (6) all have similar forms, so we only show what is the gradient
for Equation (4) and the other ones are easily obtained. For completeness, we restate the loss:

Ltrain(G, D) = 1
nps

‖GZps
S − Xps‖2

F + 1
nunsup

‖(Id − GG>)Xunsup‖2
F .

The gradient of the first term is

∇G
1

nps
‖GZps

S − Xps‖2
F = 1

nps
∇G‖(Zps

S)>G> − (Xps)>‖2
F (Frobenius transpose invariance)

= 1
nps

(
∇G>‖(Zps

S)>G> − (Xps)>‖2
F

)>

(Section 4.2.3 of (Gentle, 2007))

= 1
nps

(
2Zps

S
(
(Zps

S)>G> − (Xps)>))>

= 2
nps

(GZps
S − Xps)(Zps

S)>.

24

Under review as submission to TMLR

0 50 1000

5

10

15

20

Latent dimensionality k

Te
st

er
ro

r

nps = 20
nps = 18

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 2
nps = 0

0 50 1000

200

400

600

Latent dimensionality k

#
It

er
at

io
ns

to
co

nv
er

ge
nc

e

nps = 20
nps = 18

0 50 1000

200

400

600

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

200

400

600

Latent dimensionality k

nps = 2
nps = 0

Figure 9: In this figure, we minimize the loss in Equation (4). This figure is a more detailed version of the first
column of Figure 3. We show results for six different pseudo-supervision levels (i.e., nps values). For visual clarity,
each subfigure includes results for only two nps values.

25

Under review as submission to TMLR

0 50 1000

5

10

15

20

Latent dimensionality k

Te
st

er
ro

r

nps = 20
nps = 18

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 2
nps = 0

0 50 1000

200

400

600

Latent dimensionality k

#
It

er
at

io
ns

to
co

nv
er

ge
nc

e

nps = 20
nps = 18

0 50 1000

200

400

600

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

200

400

600

Latent dimensionality k

nps = 2
nps = 0

Figure 10: In this figure, we minimize the loss in Equation (5). This figure is a more detailed version of the center
column of Figure 3. We show results for six different pseudo-supervision levels (i.e., nps values). For visual clarity,
each subfigure includes results for only two nps values.

26

Under review as submission to TMLR

0 50 1000

5

10

15

20

Latent dimensionality k

Te
st

er
ro

r

nps = 20
nps = 18

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 2
nps = 0

0 50 1000

200

400

600

Latent dimensionality k

#
It

er
at

io
ns

to
co

nv
er

ge
nc

e

nps = 20
nps = 18

0 50 1000

200

400

600

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

200

400

600

Latent dimensionality k

nps = 2
nps = 0

Figure 11: In this figure, we minimize the loss in Equation (6). This figure shows that you can achieve good
performance and double descent behavior if you weigh the pseudo-supervised and unsupervised terms in the loss
disproportionately. Note that in the nps = 0 case, we are effectively reducing the step size by making α large. In
these experiments, we picked α = 0.98. We show results for six different pseudo-supervision levels (i.e., nps values).
For visual clarity, each subfigure includes results for only two nps values.

27

Under review as submission to TMLR

0 50 1000

5

10

15

20

Latent dimensionality k

Te
st

er
ro

r

nps = 20
nps = 18

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

5

10

15

20

Latent dimensionality k

nps = 2
nps = 0

0 50 1000

200

400

600

Latent dimensionality k

#
It

er
at

io
ns

to
co

nv
er

ge
nc

e

nps = 20
nps = 18

0 50 1000

200

400

600

Latent dimensionality k

nps = 12
nps = 4

0 50 1000

200

400

600

Latent dimensionality k

nps = 2
nps = 0

Figure 12: In this figure, we minimize the loss in Equation (7). This figure is a more detailed version of the right
column of Figure 3. We show results for six different pseudo-supervision levels (i.e., nps values). For visual clarity,
each subfigure includes results for only two nps values.

28

Under review as submission to TMLR

The gradient of the second term in the considered loss function is a bit more tricky. We simplify it first to
get

‖(Ip − GG>)Xunsup
S ‖2

F = Tr((Xunsup
S)>(Ip − GG>)(Ip − GG>)Xunsup

S)
= Tr((Xunsup

S)>(Ip − 2GG> + GG>GG>)Xunsup
S)

= ‖Xunsup
S ‖2

F − 2Tr((Xunsup
S)>GG>Xunsup

S) + Tr((Xunsup
S)>GG>GG>Xunsup

S)

which we separate into three terms:

f1(G) = ‖Xunsup
S ‖2

F

f2(G) = −2Tr((Xunsup
S)>GG>Xunsup

S)
f3(G) = Tr((Xunsup

S)>GG>GG>Xunsup
S).

Clearly, we have that ∇G‖(Ip − GG>)Xunsup
S ‖2

F = ∇Gf1 + ∇Gf2 + ∇Gf3 and that ∇Gf1 = 0. By using
some matrix identities, we get that

∇Gf2 = −2∇GTr((Xunsup
S)>GG>Xunsup

S)
= −4Xunsup

S (Xunsup
S)>G ((119) from (Petersen & Pedersen, 2012))

and

∇Gf3 = ∇GTr((Xunsup
S)>GG>GG>Xunsup

S)

=
(
∇G>Tr((Xunsup

S)>GG>GG>Xunsup
S)

)> (Section 4.2.3 of (Gentle, 2007))

=
(
2G>GG>Xunsup

S (Xunsup
S)> + 2G>Xunsup

S (Xunsup
S)>GG>)> ((123) of (Petersen & Pedersen, 2012))

= 2Xunsup
S (Xunsup

S)>GG>G + 2GG>Xunsup
S (Xunsup

S)>G

Hence, the gradient of the second term in the considered loss function becomes

∇G‖(Ip − GG>)Xunsup
S ‖2

F = ∇Gf1 + ∇Gf2 + ∇Gf3

= −4Xunsup
S (Xunsup

S)>G + 2Xunsup
S (Xunsup

S)>GG>G
+ 2GG>Xunsup

S (Xunsup
S)>G

Thus, the total gradient for Equation (4) becomes

∇G

(
1

nps
‖GZps

S − Xps‖2
F + 1

nunsup
‖(Id − GG>)Xunsup‖2

F

)
= 2

nps
(GZsup

S − Xsup)(Zsup
S)>

− 4
nunsup

Xunsup(Xunsup)>G

+ 2
nunsup

Xunsup(Xunsup)>GG>G

+ 2
nunsup

GG>Xunsup(Xunsup)>G.

The gradient for the loss in Equation (7) is similar. Again, we restate the loss for completeness:

Ltrain(G, D) = 1
nps

‖GZps
S − Xps‖2

F + 1
n

‖(Id − GG†)X‖2
F

The gradient of the first term of Equation (7) is the same as in the above result for the loss in Equation (4).
The gradient of the second term of Equation (7) requires more work. With B = XX> for shorthand and

29

Under review as submission to TMLR

assuming that G has full column rank, we see that

∇G‖(Id − GG†)X‖2
F = ∇GTr((Id − GG†)(Id − GG†)B)

= ∇GTr((Id − 2GG† + GG†GG†)B)
= ∇GTr((Id − 2GG† + GG†)B)
= ∇GTr((Id − GG†)B)
= ∇GTr(B) − ∇GTr(GG†B)
= −∇GTr(G(G>G)−1G>B)
= −∇GTr((G>G)−1G>BG)
= −∇GTr((G>G)−1G>BG)
= 2G(G>G)−1G>BG(G>G)−1 − 2BG(G>G)−1. ((126) in (Petersen & Pedersen, 2012))

Thus, the total gradient for Equation (7) becomes

∇G

(
1

nps
‖GZps

S − Xps‖2
F + 1

n
‖(Id − GG†)X‖2

F

)
= 2

nps
(GZps

S − Xps)(Zps
S)>

+ 2
n

G(G>G)−1G>XX>G(G>G)−1

− 2
n

XX>G(G>G)−1.

If G has full row rank instead, one gets a similar gradient expression. During the minimization of the loss
in Equation (7), the matrix G may become close to low rank and make the gradient calculation unstable.
For numerical stability of the gradient, we calculate (G†)> instead of G(G>G)†.

E Experiments on nonlinear, multilayer GANs on MNIST

In this section we provide details for the experiments on nonlinear, multilayer GANs. One of these exper-
iments is discussed in Section 5 and the other is an additional experiment which is not in the main paper.
The details here are relevant to both experiments.

We train a gradient penalized Wasserstein GAN (WGAN-GP) (Gulrajani et al., 2017) on MNIST (LeCun
et al., 1998). The architecture output directly from PyTorch is shown below with the latent dimensionality
changed to k, as it varies in our experiments:

Generator(
(model): Sequential(

(0): Linear(in_features=k, out_features=128, bias=True)
(1): LeakyReLU(negative_slope=0.2, inplace)
(2): Linear(in_features=128, out_features=256, bias=True)
(3): BatchNorm1d(256, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)
(4): LeakyReLU(negative_slope=0.2, inplace)
(5): Linear(in_features=256, out_features=512, bias=True)
(6): BatchNorm1d(512, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)
(7): LeakyReLU(negative_slope=0.2, inplace)
(8): Linear(in_features=512, out_features=1024, bias=True)
(9): BatchNorm1d(1024, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)
(10): LeakyReLU(negative_slope=0.2, inplace)
(11): Linear(in_features=1024, out_features=784, bias=True)
(12): Tanh()

)
)

30

Under review as submission to TMLR

Discriminator(
(model): Sequential(

(0): Linear(in_features=784, out_features=512, bias=True)
(1): LeakyReLU(negative_slope=0.2, inplace)
(2): Linear(in_features=512, out_features=256, bias=True)
(3): LeakyReLU(negative_slope=0.2, inplace)
(4): Linear(in_features=256, out_features=1, bias=True)

)
)

The networks are trained with a gradient penalty weight of λGP = 10. The pseudo-supervised sample pairs
were fixed as we varied k so that the plots were comparable. However, we ran both of these experiments
over 10 trials, with 10 sets of pseudo-supervised samples corresponding to 10 subsets of the training data.
Let us denote LGP as the WGAN-GP objective function. We trained the discriminator as usual, and trained
the generator with the following modified objective function:

LG(Xbatch, Xps, Zps) = LGP(Xbatch) + ‖G(Zps) − Xps‖2
F

with Xbatch ∈ Rd×nbatch size , X ∈ Rd×nps , and Zps ∈ Rk×nps for generator G. Additionally, one could weigh
this pseudo-supervised term more or less, however we found that a weight of 1 was adequate to get our
results.

For all of our experiments with nonlinear, multilayer GANs, we have a batch size of 4096, an ADAM
learning rate of 0.0002, ADAM hyperparameters β = (0.5, 0.999), and clip value of 0.01. We train the
discriminator 5 times per iteration. The optimizer values are used for both generator and discriminator. In
the main paper, we train for 3000 iterations and use 4096 total samples from the training data so that we
are performing gradient descent instead of stochastic gradient descent (SGD). We also do experiments for
SGD in Appendix E.1.

We measure test error with geometry score (Khrulkov & Oseledets, 2018) as it is better suited for MNIST
than other performance measures, such as Fréchet Inception Distance (Heusel et al., 2017) and Inception
Score (Salimans et al., 2016) which are better suited for natural images. For our calculation of the geometry
score, we pick L0 = 32, γ = 1

1000 , imax = 100, and n = 100 as done in the original paper when computing
scores for the MNIST dataset. Moreover, we generate 10,000 images and compare these generated images
to the MNIST test set, which also contains 10,000 images.

In Figure 13 we provide errorbars for Figure 4 to show that pseudo-supervision lowers variance.

E.1 Pseudo-supervision with stochastic gradient descent

In this section, we train a WGAN-GP just as above except for two changes: we train using all the training
data (60000 samples) for 200 iterations using SGD. We only train for 200 iterations because now each epoch
has about 15 batches instead of the single batch in the previous section.

Our results are shown in Figure 14 and Figure 15. We see that with SGD, we lose the double descent but
consistently beat the baseline. We also converge faster than the baseline, but not as fast as the pure gradient
descent setting. Moreover, we reduce the variance in the test error across experiments drastically compared
to the baseline.

31

Under review as submission to TMLR

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r
Epoch = 948 — baseline

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 948 — pseudo-supervised

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 2,052 — baseline

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r
Epoch = 2,052 — pseudo-supervised

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 3,000 — baseline

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 3,000 — pseudo-supervised

Figure 13: In this figure, we train a WGAN-GP on MNIST using gradient descent on a subset of 4096 training
images. This figure is a more detailed version of Figure 4.

32

Under review as submission to TMLR

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r
Epoch = 63 — baseline

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 63 — pseudo-supervised

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 137 — baseline

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r
Epoch = 137 — pseudo-supervised

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 200 — baseline

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Latent dimensionality k

Te
st

er
ro

r

Epoch = 200 — pseudo-supervised

Figure 14: In this figure, we train a WGAN-GP on the full MNIST dataset using SGD. The pseudo-supervised
GAN has much lower variance and outperforms the baseline later in training. Convergence speed is also faster for
the pseudo-supervised model.

33

Under review as submission to TMLR

1 70025

200

Latent dimensionality k

Ep
oc

h

Baseline

0.0

0.2

0.4

0.6

0.8

1.0
Test Error

1 70025

200

Latent dimensionality k

Ep
oc

h

Pseudo-supervised

0.0

0.2

0.4

0.6

0.8

1.0
Test Error

Figure 15: In this figure, we train a WGAN-GP on the full MNIST dataset using SGD. The pseudo-supervised
GAN converges to a low error much faster than the baseline. Just as in Figure 5, each point in the heatmap
is an average test error over 10 networks The test error is measured by geometry score here. The k-axis is
plotted so that each column corresponds to the next entry for better visualization, even though the spacing is
k ∈ {1, 2, 4, 6, . . . , 70, 100, 200, 300, . . . , 700}.

34

	Introduction
	Related work
	Bad generalization: Test errors are constant in the overparameterized regime
	No double descent in generative models that minimize a metric or f-divergence
	Double descent: Getting double descent through actual supervision

	Pseudo-supervision: A practical alternative to adding supervision
	Definition of pseudo-supervision
	Double descent and superior performance with pseudo-supervision
	Regularized pseudo-supervision
	Triple descent and huge latent spaces

	Nonlinear GANs: Double descent and faster training
	Conclusion
	Training with pseudometric and subsampling data
	Subsampling the data features
	Subsampling the latent vector coordinates

	Pseudo-supervision and the curse of dimensionality
	The dimension of the solution sets
	The unsupervised solutions
	The pseudo-supervised solutions

	Experiments on linear models and gradient details
	Details regarding linear experiments
	Gradient calculations

	Experiments on nonlinear, multilayer GANs on MNIST
	Pseudo-supervision with stochastic gradient descent

