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ABSTRACT

The goal of dynamic scene deblurring is to remove the motion blur in a given im-
age. Typical learning-based approaches implement their solutions by minimizing
the L1 or L2 distance between the output and the reference sharp image. Recent
attempts adopt visual recognition features in training to improve the perceptual
quality. However, those features are primarily designed to capture high-level con-
texts rather than low-level structures such as blurriness. Instead, we propose a
more direct way to make images sharper by exploiting the inverse task of deblur-
ring, namely, reblurring. Reblurring amplifies the remaining blur to rebuild the
original blur, however, a well-deblurred clean image with zero-magnitude blur is
hard to reblur. Thus, we design two types of reblurring loss functions for better de-
blurring. The supervised reblurring loss at training stage compares the amplified
blur between the deblurred and the sharp images. The self-supervised reblurring
loss at inference stage inspects if there noticeable blur remains in the deblurred.
Our experimental results on large-scale benchmarks and real images demonstrate
the effectiveness of the reblurring losses in improving the perceptual quality of the
deblurred images in terms of NIQE and LPIPS scores as well as visual sharpness.

1 INTRODUCTION

Motion blur commonly arises when the cameras move or scene changes during the exposure in
dynamic environments. Dynamic scene deblurring is a challenging ill-posed task finding both
the locally-varying blur and the latent sharp image from a large solution space. Traditional ap-
proaches (Hirsch et al., 2011; Whyte et al., 2012; Kim et al., 2013; Kim & Lee, 2014) tried to
alleviate the ill-posedness by using statistical prior on sharp images such as gradient sparsity.

Instead of using such handcrafted knowledge, recent methods take advantage of large-scale datasets
as well as deep neural networks (Nah et al., 2017; Su et al., 2017; Noroozi et al., 2017; Nah et al.,
2019; Shen et al., 2019). Usually, the learning is driven by minimizing the pixel-wise distance to the
ground truth, e.g., L1 or L2, so that the PSNR between the deblurred and the sharp reference can
be maximized. By utilizing modern ConvNet architectures and training techniques, state-of-the-art
approaches (Nah et al., 2017; Tao et al., 2017; Gao et al., 2019; Yuan et al., 2020; Park et al., 2020;
Chi et al., 2021) have been developed toward higher capacity and deblurring accuracy. Still, most
methods tend to suffer from the blurry predictions due to the regression-to-mean behavior often
witnessed in ill-posed problems with large solution space (Ledig et al., 2017; Menon et al., 2020).

To overcome limitations of the conventional objectives, concepts of perceptual (Johnson et al., 2016)
and adversarial (Ledig et al., 2017; Nah et al., 2017; Kupyn et al., 2018) loss terms from high-
level semantic tasks have been introduced to improve the visual quality of the deblurred results.
Nevertheless, such high-level losses may not serve as optimal goals for blur removal as low-level
structural properties, e.g., blurriness, are not the primary features considered in their formulations.
As illustrated in Figure 1, results from the previous deblurring methods are still blurry to a degree
and the VGG and the adversarial losses are not sufficient to obtain perceptually pleasing and sharp
images across different architectures (Tao et al., 2018; Gao et al., 2019; Kupyn et al., 2019).
∗Most work was done at SNU
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(a) True Sharp (b) SRN (c) SE-Sharing (d) DeblurGANv2 (e) Ours (Deblurred)
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Figure 1: Comparison of the deblurred images and their reblurred counterparts. For each
image, we visualize the remaining blur kernel (Cho & Lee, 2009) at the center pixel visualized
on the right bottom side. Upper: The kernels from the previous deblurring methods implicate the
direction of the original blur. Lower: When the proposed reblurring module is applied, our result
does not lose sharpness as we reconstruct the output that is hard to be reblurred.

While the deblurred images look less blurry compared with the original input, it is still possible to
find nontrivial blur kernels with directional motion information. From the observation, we introduce
the concept of reblurring which amplifies the unremoved blur in the given image and reconstructs
the original blur. We note that our reblurring operation aims to recover the original motion trajectory
in the blurry input, rather than to synthesize arbitrary, e.g., Gaussian, blurs. Therefore, an ideally
deblurred clean image is hard to reblur as no noticeable blur can be found to be amplified, making
reblurring an ill-posed task. In contrast, it is straightforward to predict the original shape of blur
from insufficiently deblurred images as shown in Figure 1. We propose to use the difference between
non-ideally deblurred image and the ideal sharp image in terms of reblurring feasibility as the new
optimization objective, reblurring loss for the image deblurring problem.

The reblurring loss is realized by jointly training a pair of deblurring and reblurring modules. The
reblurring module performs the inverse operation of deblurring, trying to reconstruct the original
blurry image from a deblurred output. Using the property that the blurriness of a reblurred image
depends on the sharpness quality of the deblurred result, we construct two types of loss functions.
During the joint training, supervised reblurring loss compares the amplified blurs between the de-
blurred and the sharp image. Complementing L1 intensity loss, the supervised reblurring loss guides
the deblurring module to focus on and eliminate the remaining blur. While our training strategy is
similar to the adversarial training of GANs (Goodfellow et al., 2014) in a sense that our deblurring
and reblurring modules play the opposite roles, the purposes and effects of the adversary are differ-
ent. The reblurring loss concentrates on image blurriness regardless of image realism. Furthermore,
in contrast to the GAN discriminators that are not often used at test time, our reblurring module can
be used to facilitate self-supervised reblurring loss. By making the deblurred image harder to reblur,
the deblurring module can adaptively optimize itself without referring to the ground truth.

Our reblurring loss functions provide additional optimization directives to the deblurring module
and can be generally applied to any learning-based image deblurring methods. With the proposed
approach, we can derive sharper predictions from existing deblurring methods without modifying
their architectures. We summarize our contributions as follows:

• Based on the observation that clean images are hard to reblur, we propose novel loss functions for
image deblurring. Our reblurring loss reflects the preference for sharper images and contributes
to visually pleasing deblurring results.

• At test-time, the reblurring loss can be implemented without a ground-truth image. We perform
test-time adaptive inference via self-supervised optimization with each input.

• Our method is generally applicable to any learning-based methods and jointly with other loss
terms. Experiments show that the concept of reblurring loss consistently contributes to achieving
state-of-the-art visual sharpness as well as LPIPS and NIQE across different model architectures.
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2 RELATED WORKS

Image Deblurring. Classical energy optimization framework is formulated by likelihood and prior
terms. Due to the ill-posedness of dynamic scene deblurring problem, prior terms have been essential
in alleviating the optimization ambiguity, encoding the preference on the solutions. Sophisticated
prior terms were carefully designed with human knowledge on natural image statistics (Levin, 2006;
Cho & Lee, 2009; Hirsch et al., 2011; Whyte et al., 2012; Sun et al., 2013; Xu et al., 2013; Kim et al.,
2013; Kim & Lee, 2014; Pan et al., 2016). Recently in Li et al. (2018), learned prior from a classifier
discriminating blurry and clean images was also shown to be effective. Deep priors were also used
for image deconvolution problems (Ren et al., 2020; Nan & Ji, 2020).

On the other hand, deep learning methods have benefited from learning on large-scale datasets. The
datasets consisting of realistic blur (Nah et al., 2017; Su et al., 2017; Noroozi et al., 2017; Nah et al.,
2019; Gao et al., 2019; Jin et al., 2019; Shen et al., 2019) align the temporal center of the blurry and
the sharp image pairs with high-speed cameras. Learning from such temporally aligned data relieve
the ill-posedness of deblurring compared with difficult energy optimization framework. Thus, more
attention has been paid to designing CNN architectures and datasets than designing loss terms.

In the early work of Schuler et al. (2015), the alternating estimation of blur kernel and restored
image (Cho & Lee, 2009) was adopted in CNN architecture. In Sun et al. (2015); Gong et al.
(2017), the spatially varying blur kernels are estimated by assuming locally linear blur followed
by non-blind deconvolution. Later, end-to-end learning without explicit kernel estimation became
popular. Motivated from the coarse-to-fine approach, multi-scale CNN was proposed (Nah et al.,
2017) to expand the receptive field efficiently, followed by scale-recurrent architectures (Tao et al.,
2018; Gao et al., 2019). On the other hand, Zhang et al. (2019); Suin et al. (2020) sequentially
stacked network modules. Recently, Park et al. (2020) proposed a multi-temporal model that deblurs
an image recursively. To handle spatially varying blur kernels efficiently, spatially non-uniform
operations were embedded in neural networks (Zhang et al., 2018a; Yuan et al., 2020).

Perceptual Image Restoration. Often, L1 or L2 losses are used at training to achieve higher PSNR.
However, such approaches suffer from blurry and over-smoothed outputs (Johnson et al., 2016;
Zhang et al., 2018b; Menon et al., 2020) as the learned models predict an average of all possible
solutions under the ill-posedness (Ledig et al., 2017). To deal with the issue, several studies utilize
deep features of the pretrained VGG (Simonyan & Zisserman, 2014) and other networks that are
more related to human perception (Johnson et al., 2016; Zhang et al., 2018b) and with analysis
on frequency space (Tariq et al., 2020; Czolbe et al., 2020). Recent methods introduce adversarial
training (Goodfellow et al., 2014) so that outputs of the restoration models be indistinguishable from
real samples (Nah et al., 2017; Nimisha et al., 2017; Ledig et al., 2017; Kupyn et al., 2018; 2019).
Also, there were attempts to exploit statistical properties of images and features with contextual
loss (Mechrez et al., 2018) and projected distribution loss (Delbracio et al., 2021).

Nevertheless, an inherent limitation of existing perceptual objectives is that they are not task-
specialized for image restoration. For example, the VGG features are learned for high-level visual
recognition while the adversarial loss only contributes to reconstructing realistic images without
considering the existence of motion blur. Therefore, blindly optimizing those terms may not yield
an optimal solution in terms of image deblurring. In practice, we observed that those objectives
still tend to leave blur footprints unremoved, making it possible to estimate the original blur. Our
reblurring loss is explicitly designed to improve the perceptual sharpness of deblurred images by
reducing remaining blurriness and thus more suitable for deblurring, acting as a learned prior.

Image Blurring. As an image could be blurred in various directions and strength, image blurring
is another ill-posed problem without additional information. Thus, intrinsic or extrinsic information
is often incorporated. With a non-ideally sharp image, Bae & Durand (2007) detected the small
local blur kernel in the image to magnify the defocus blur for bokeh effect. On the other hand,
Chen et al. (2018) estimated the kernel by computing the optical flow from the neighboring video
frames. Similarly, Brooks & Barron (2019) used multiple video frames to synthesize blur. Without
such external information, Zhang et al. (2020) used a generative model to synthesize many blurry
images. In contrast, Bahat et al. (2017) deliberately blurred an already blurry image in many ways
to find the local blur kernel. Our image reblurring concept is similar to Bae & Durand (2007) in the
sense that intrinsic cue in an image is used to amplify blur. Nonetheless, our main goal is to use
reblurring to provide a guide to deblurring model so that such blur cues would be better removed.
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Figure 2: Overviews of the proposed reblurring and deblurring framework. Reblurring module
MR tries to reconstruct blurry image B from a deblurred image L while preserving the sharpness of
a pseudo-sharp image Ŝ =MD(S). Meanwhile, the deblurring moduleMD tries to make L sharper
by comparing the amplified blur from L and the sharp image S.

#ResBlocks in deblurring moduleMD 4 8 16 32

Deblur PSNR wrt sharp GT 28.17 29.67 30.78 31.48
Reblur PSNR wrt blur GT 34.29 32.66 31.90 31.48

Table 1: Deblurring and reblurring PSNR (dB) by deblurring model capacity. Both tasks are
trained independently with L1 loss on the GOPRO dataset. The number of ResBlocks inMR is 2.

3 PROPOSED METHOD

In this section, we describe a detailed concept of image reblurring and how the operation can be
learned. Then, we demonstrate that the operation can support the deblurring module to reconstruct
perceptually favorable and sharp images. We also propose a self-supervised test-time optimization
strategy by using the learned reblurring module. For simplicity, we refer to the blurry, the deblurred,
and the sharp image as B, L, and S, respectively.

3.1 CLEAN IMAGES ARE HARD TO REBLUR

As shown in Figure 1, outputs from the existing deblurring methods still contain undesired motion
trajectories that are not completely removed from the input. Ideally, a well-deblurred image should
not contain any motion cues, making reblurring ill-posed. We first validate our motivation by bu-
liding a reblurring moduleMR which amplifies the remaining blur from L. MR is trained with the
following blur reconstruction loss LBlur so that it would learn the inverse operation of deblurring.

LBlur = ‖MR(L)−B‖. (1)

We applyMR to the deblurred images from deblurring modules of varying capacities. Table 1 shows
that the higher the deblurring PSNR, the lower the reblurring PSNR becomes when both modules
are trained with conventional L1 loss, independently from each other. It demonstrates that the better
deblurred images are harder to reblur, consistent to our motivation.

In contrast to the non-ideally deblurred images, MR is not able to generate a motion blur from
a sharp image S as no motion information is found. For a high-quality clean image, MR should
preserve the sharpness. However, optimizing the blur reconstruction loss LBlur with S may fall
into learning the pixel average of all blur trajectories in the training dataset, i.e. Gaussian blur. In
such a case,MR will apply the single uniform blur on every image without considering the scene
information. To let the blur domain of MR confined to the motion-incurred blur, we use sharp
images to penalize such undesired operations. Specifically, we introduce a network-generated sharp
image Ŝ obtained by feeding a real sharp image S to the deblurring moduleMD as Ŝ =MD(S).
We define sharpness preservation loss LSharp as follows:

LSharp = ‖MR(Ŝ)− Ŝ‖. (2)

We use the pseudo-sharp image Ŝ instead of a real image S to make our reblurring module focus on
image sharpness and blurriness rather than the realism. While Ŝ differ from L only by the sharpness,
S also differ by the realism which can be easily detected by neural networks (Wang et al., 2020).

Combining both terms together, we train the reblurring moduleMR by optimizing the joint loss LR:

LR = LBlur + LSharp. (3)
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Figure 3: Image deblurring and reblurring illustrated from the perspective of sharpness and
realism. Training our modules withLReblur improves image sharpness without considering the image
realism. The image realism can be optionally handled by adversarial loss LAdv.

As zero-magnitude blur should remain unaltered fromMR, the sharpness preservation loss can be
considered a special case of the blur reconstruction loss. Figure 2a illustrates the way our reblurring
module is trained from LR.

3.2 SUPERVISION FROM REBLURRING LOSS

The blurriness of images can be more easily witnessed by amplifying the blur. Thus, we propose a
new optimization objective by processing the deblurred and the sharp image with the jointly trained
reblurring modelMR. To suppress the remaining blur in the output image L =MD(B) from the
deblurring moduleMD, the supervised reblurring loss LReblur for image deblurring is defined as

LReblur = ‖MR(L)−MR(S)‖. (4)

Unlike the sharpness preservation term in equation 2, we do not use the pseudo-sharp image Ŝ in
our reblurring loss, LReblur. As the quality of the pseudo-sharp image Ŝ depends on the state of
deblurring moduleMD, using Ŝ may make training unstable and difficult to optimize, especially at
the early stage. Thus we use a real sharp image S to stabilize the training. Nevertheless, asMR is
trained to focus on the sharpness from equation 3, so does the reblurring loss, LReblur.

Using our reblurring loss in equation 4, the deblurring moduleMD is trained to minimize the fol-
lowing objective LD:

LD = L1 + λLReblur, (5)

where L1 is a conventional L1 loss, and the hyperparameter λ is empirically set to 1. Figure 2b
illustrates how the deblurring model is trained with the guide fromMR.

At each training iterations, we alternately optimize two modulesMD andMR byLD andLR, respec-
tively. While such a strategy may look similar to the adversarial training scheme, the optimization
objectives are different. As the neural networks are well known to easily discriminate real and fake
images (Wang et al., 2020), the realism could be as a more obvious feature than image blurriness.
Thus, adversarial loss may overlook image blurriness as L and S can already be discriminated by
the difference in realism. On the other hand, our reblurring loss is explicitly designed to prefer sharp
images regardless of realism as we use Ŝ instead of S in LSharp to trainMR. Figure 3 conceptually
compares the actual role of the reblurring loss LReblur and the adversarial loss LAdv.

3.3 TEST-TIME ADAPTATION BY SELF-SUPERVISION

After the training is over, the models learned from supervised loss terms have fixed weights at
test time. When a new example that deviates from the distribution of training data is given, the
supervised methods may lack ability to generalize. Our reblurring module, however, can further
provide self-supervised guide so that the model could be further optimized for each image at test
time. While the supervised reblurring loss LReblur finds the blurriness of L by comparison with the
ground truth,MR can also inspect the blurriness of an image without reference.

AsMR is trained to magnify the blur in L, imperfectly deblurred image would be blurred. Thus,
the difference betweenMR(L) and L can serve as a feedback without having to reference S. Fur-
thermore, due to the sharpness preservation loss LSharp, a sufficiently sharp image would have little
difference when reblurred. Based on the property, we construct the self-supervised reblurring loss
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On GOPRO dataset On REDS dataset
Model Optimization LPIPS↓ NIQE↓ PSNR↑ SSIM↑ LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net

L1 0.1635 5.996 29.66 0.8874 0.1486 3.649 30.80 0.8772
L1 + LReblur, n1 0.1365 5.629 29.58 0.8869 0.1435 3.487 30.76 0.8776

+ TTA step 5 0.1327 5.599 29.52 0.8878 0.1403 3.476 30.64 0.8781
L1 + LReblur, n2 0.1238 5.124 29.44 0.8824 0.1252 2.918 30.46 0.8717

+ TTA step 5 0.1187 5.000 29.42 0.8831 0.1226 2.849 30.25 0.8701

SRN

L1 0.1246 5.252 30.62 0.9078 0.1148 3.392 31.89 0.8999
L1 + LReblur, n1 0.1140 5.136 30.74 0.9104 0.1071 3.305 32.01 0.9044

+ TTA step 5 0.1101 5.079 30.60 0.9100 0.1029 3.278 31.83 0.9040
L1 + LReblur, n2 0.1037 4.887 30.57 0.9074 0.0947 2.875 31.82 0.9026

+ TTA step 5 0.0983 4.730 30.44 0.9067 0.0909 2.798 31.50 0.9008

DHN

L1 0.1179 5.490 31.53 0.9207 0.0942 3.288 32.65 0.9152
L1 + LReblur, n1 0.0975 5.472 31.53 0.9217 0.0931 3.248 32.57 0.9143

+ TTA step 5 0.0940 5.343 31.32 0.9208 0.0887 3.220 32.38 0.9139
L1 + LReblur, n2 0.0837 5.076 31.34 0.9177 0.0805 2.830 32.44 0.9122

+ TTA step 5 0.0805 4.948 31.28 0.9174 0.0763 2.761 32.17 0.9110

Table 2: Quantitative analysis of the reblurring losses and test-time adaptation applied to var-
ious deblurring networks on GOPRO and REDS datasets.

that serves as a prior term embedding the preference on sharp images as

Lself
Reblur = ‖MR(L)− L∗‖, (6)

where L∗ denotes the image with the same value as L but the gradient does not backpropagate in the
optimization process. We minimize Lself

Reblur for each test data to obtain the sharper image. Allowing
gradient to flow through L∗ can let L to fall into undesired local minima where both the L and
MR(L) are blurry. We iteratively optimize the weights of MD with fixed MR. As Lself

Reblur only
considers the sharpness of an image, we keep the color consistency by matching the color histogram
between the test-time adapted image and the initially deblurred image. For the detailed optimization
process of test-time adaptation strategy, please refer to the Appendix Algorithm A. The effect of
test-time adaptation is conceptually visualized in Figure 5. More iterations make the deblurred
image sharper. We note that our loss functions and the test-time adaptation are applicable to general
learning-based approaches.

4 EXPERIMENTS

We verify the effectiveness of our reblurring loss and the generalization by applying it to multiple
deblurring model architectures. We show the experimental results with a baseline residual U-Net and
state-of-the-art image deblurring models, the sRGB version SRN (Tao et al., 2018) and DHN, our
modified version of DMPHN (Zhang et al., 2019). For the reblurring module, we use simple residual
networks with 1 or 2 ResBlock(s) with 5× 5 convolution kernels. The training and evaluation were
done with the widely used GOPRO (Nah et al., 2017) and REDS (Nah et al., 2019) datasets. The
GOPRO dataset consists of 2103 training and 1111 test images with various dynamic motion blur.
Similarly, the REDS dataset has 24000 training and 3000 validation data publicly available. For
each dataset, every experiment was done in the same training environment. We mainly compare
LPIPS (Zhang et al., 2018b) and NIQE (Mittal et al., 2012) perceptual metrics as our goal is to make
images sharper. For more implementation details, please refer to the Appendix.

4.1 EFFECT OF SUPERVISED REBLURRING LOSS

We implement the reblurring loss in varying degrees of emphasis on sharpness by controlling the
reblurring module capacity. For a more balanced quality between PSNR and perceptual sharpness,
we use 1 ResBlock for MR. To put more weight on the perceptual quality, we allocate a larger
capacity onMR by using 2 ResBlocks. For notation simplicity, we denote the reblurring loss with
k ResBlock(s) in the reblurring module as LReblur, nk.

Table 2 shows how the deblurring performance varies by the use of reblurring loss functions. With
LReblur, n1, LPIPS and NIQE improves to a moderate degree while PSNR and SSIM metrics remain
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(a) B (b) L1 (c) LVGG (d) LAdv (e) LReblur, n1 (f) LReblur, n2

Figure 4: Visual comparison of deblurred results by training loss function on GOPRO dataset.
Upper: SRN, Lower: U-Net.

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (baseline) 0.1635 5.996 29.66 0.8874
U-Net (LBlur) 0.1301 5.132 29.47 0.8839
+LSharp with S 0.1410 5.307 29.15 0.8694
+LSharp with Ŝ 0.1238 5.124 29.44 0.8824

Table 3: The effect of the sharpness preservation in
training our reblurring module measured on GO-
PRO dataset.

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

SRN (L1) 0.1246 5.252 30.62 0.9078
+0.001LAdv 0.1141 4.960 30.53 0.9068
+0.3LVGG 0.1037 4.945 30.60 0.9074
+LReblur, n2 0.1037 4.887 30.57 0.9074

Table 4: Comparison of reblurring loss and other
perceptual losses on GOPRO dataset applied to
SRN.

at a similar level. Meanwhile, LReblur, n2 more aggressively optimizes the perceptual metrics. This is
analogous to the perception-distortion trade-off witnessed in the image restoration literature (Blau &
Michaeli, 2018; Blau et al., 2018). The perceptual metric improvements are consistently witnessed
with various architectures on both the GOPRO and the REDS dataset.

4.2 EFFECT OF SHARPNESS PRESERVATION LOSS

In trainingMR, we used both the blur reconstruction loss LBlur and the sharpness preservation loss
LSharp. The latter term LSharp plays an essential role in lettingMR concentrate only on the motion-
driven blur in the given image and keep sharp image remain sharp. Table 3 presents the performance
gains from using LSharp jointly with LBlur in terms of the perceptual quality.

Also, the use of the pseudo-sharp image Ŝ is justified by comparing it with the use case of real
sharp image S. We found the using S for LSharp with LBlur makes the training less stable than using
Ŝ. Using the pseudo-sharp image confines the input data distribution ofMR to the domain ofMD
outputs. For neural networks, it is very easy to discriminate real and fake images (Wang et al., 2020).
By using a fake image Ŝ instead of a real image S, we letMR focus on the sharpness of an image
and avoid being distracted by a more obvious difference between real and fake images. Furthermore,
it leads the two loss terms LBlur and LSharp to reside under the same objective, amplifying any
noticeable blur and keeping sharpness when motion blur is in zero-magnitude.

4.3 COMPARISON WITH OTHER PERCEPTUAL LOSSES

The reblurring loss provides a conceptually different learning objectives from the adversarial and
the perceptual losses and is designed to focus on the motion blur. Table 4 compares the effect of
LReblur with adversarial loss LAdv, and the VGG perceptual loss (Johnson et al., 2016) by applying
them to SRN (Tao et al., 2018) on GOPRO dataset. While our method provides quantitatively
better perceptual scores, the different perceptual losses are oriented to different goals. They do
not necessarily compete or conflict with each other and can be jointly applied at training to catch
the perceptual quality in varying aspects. In Figure 4, the effect of the reblurring loss is visually
compared with the previous perceptual loss functions.
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blurs to the current deblurred image.
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Figure 6: Test-time adaption (SRN) on
GOPRO dataset. Reblurring loss improves
the trade-off between the perception (LPIPS,
NIQE) and PSNR compared with the baseline.

(a) Blurry input B (b) SE-Sharing (c) DeblurGAN-v2 (d) Ours (TTA step 5)

Figure 7: Qualitative comparison between state-of-the-art deblurring methods on the GOPRO
dataset. We used the SRN model as a baseline architecture.

4.4 EFFECT OF TEST-TIME ADAPTATION

We conduct test-time adaptation with the proposed self-supervised reblurring loss, Lself
Reblur to make

the deblurred image even sharper. Figure 6 shows the test-time-adapted result with SRN. Compared
with the baseline trained with L1 loss, our results exhibit improved trade-off relations between
PSNR and the perceptual metrics, LPIPS and NIQE. Table 2 provides detailed quantitative test-
time adaptation results on GOPRO and REDS dataset, respectively with various deblurring module
architectures. The effect of test-time adaptation is visually shown in Figure 8.

4.5 COMPARISON WITH STATE-OF-THE-ART METHODS

We have improved the perceptual quality of the deblurred images by training several different model
architectures. We compare the perceptual quality with the other state-of-the-art methods in Figure 7.
Especially, DeblurGAN-v2 was trained with the VGG loss and the adversarial loss. Our results
achieve visually sharper texture from the reblurring loss and test-time adaptation.

4.6 REAL WORLD IMAGE DEBLURRING

While our method uses synthetic datasets (Nah et al., 2017; 2019) for training, the trained models
generalize to real blurry images. In Figure 9, we show deblurred results from Lai et al. (2016) dataset
with DHN model. Compared with the baseline L1 loss, our reblurring loss LReblur, n2 provides an
improved deblurring quality. As the real test image could deviate from the training data distribution,
a single forward inference may not produce optimal results. With the self-supervised test-time
adaptation, our deblurred images reveal sharper and detailed textures.
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(a) B (b) L1 (c) LReblur, n2 (d) + TTA step 20

Figure 8: Qualitative comparison between different training objectives and the test-time adap-
tation. Patches are sampled from the REDS dataset validation set.

(a) Blurry input B (b) L1 (c) LReblur, n2 (Ours) (d) + TTA step 5 (Ours)

Figure 9: Qualitative comparison of deblurring results on the real-world images (Lai et al.,
2016) by different loss functions and test-time adaptation. The proposed test-time adaptation
greatly improves visual quality and sharpness of the deblurred images.

5 CONCLUSION

In this paper, we validate a new observation that clean sharp images are hard to reblur and develop
novel low-level perceptual objective terms, namely reblurring loss. The term is constructed to care
the image blurriness by jointly training a pair of deblurring and reblurring modules. The supervised
reblurring loss provides an amplified comparison on motion blur while the self-supervised loss in-
spects the blurriness in a single image with the learned reblurring module. The self-supervision lets
the deblurring module adapt to the new image at test time without ground truth. By applying the
loss terms to state-of-the-art deblurring methods, we demonstrate our method consistently improves
the the perceptual sharpness of the deblurred images visually as well as quantitatively.
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A APPENDIX

In this appendix, we provide the implementation details and additional experimental analysis. In
Section B, we explain the implementation details with the model architecture specifics, training de-
tails, and the evaluation metrics. Section C describes how the reblurring module design and the size
are determined. Then in Section D, we describe the different characteristics of the proposed reblur-
ring loss and the other perceptual losses. We combine our reblurring loss with the other perceptual
losses to take advantage in multiple perspectives. In Section B, the test-time adaptation algorithm is
described. In Section F, we show the quantitative effect of test-time adaptation and show the trade-
off relation between the conventional distortion quality metric (PSNR, SSIM) and the perceptual
metrics (LPIPS, NIQE) compared with the baselines.

B IMPLEMENTATION DETAILS

Model Architecture. In the main manuscript, we mainly performed the experiments with 3 different
model architectures. First, we set our baseline model as a light-weight residual U-Net architecture
that runs in a fast speed. The baseline model is used to design our reblurring loss with pseudo-sharp
images through ablation study in Table 3.

For reblurring operation, we use a simple residual networkMR without strides to avoid deconvolu-
tion artifacts. The baseline U-Net and the reblurring module architectures are shown in Figure A.
The detailed parameters for U-Net andMR are each specified in Table A and C.

Figure A: The baseline U-Net architecture and the reblurring module architecture We use the
same reblurring module for all experiments except the number of ResBlocks.
In addition to the U-Net, experiments were conducted with state-of-the-art deblurring models based
on SRN (Tao et al., 2017) and DMPHN (Zhang et al., 2019). SRN (Tao et al., 2018) was originally
designed to operate on grayscale images with a LSTM module. Later, the authors released the
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# Layer description Output shape

Input 3×H ×W

1 5× 5 conv 64×H ×W

2 3× 3 conv 128×H/2×W/2

3 3× 3 conv 192×H/4×W/4

4-19 8 ResBlocks (3× 3) 192×H/4×W/4

20 3× 3 conv 128×H/2×W/2

21 3× 3 conv 64×H ×W

22 5× 5 conv 3×H ×W

Table A: U-Net module specifics

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

DMPHN (L1 only) 0.1184 5.542 31.42 0.9191
DHN (L1 only) 0.1179 5.490 31.53 0.9207

Table B: DMPHN modification results on GOPRO dataset. DHN without patch-wise convolution
brings improved accuracy.

sRGB version code without LSTM, exhibiting an improved accuracy. We adopted the revised SRN
structure in our experiments.

The other model we chose is based on DMPHN (1-2-4-8) (Zhang et al., 2019). DMPHN performs
hierarchical residual refinement to produce the final output. The model consists of convolutional
layers with ReLU activations that are spatially shift-equivariant. In Zhang et al. (2019), each level
splits the given image and performs the convolutional operation on the divided patches. As the
convolutional weights do not differ by the input patches, the operations do not necessarily have to
be done patch-wise. Thus, we remove the multi-patch strategy and perform the convolution on the
whole given input without dividing the image into patches. We refer to the modified model as DHN.
As shown in Table B, convolution on the whole image compared with patch-wise convolution brings
higher accuracy.

Metrics. To quantitatively compare the deblurred images in the following sections, we use PSNR,
SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018b), and NIQE (Mittal et al., 2012). In
the image deblurring literature, SSIM has been measured by MATLAB ssim function on sRGB
images with H × W × C. SSIM was originally developed for grayscale images and MAT-
LAB ssim function for a 3-dimensional tensor considers an image to be a 3D grayscale vol-
ume image. Thus, most of the previous SSIM measures were not accurate, leading to higher
values. Instead, we measured all the SSIM for each channel separately and averaged them. We
used skimage.metrics.structural similarity function in the scikit-image package
for python to measure SSIM for multi-channel images.

Training. For all the experiments, we performed the same training process for a fair comparison.
On the GOPRO dataset (Nah et al., 2017), we trained each model for 4000 epochs. On the REDS
dataset (Nah et al., 2019), the models are trained for 200 epochs. Adam (Kingma & Ba, 2014)
optimizer is used in all cases. When calculating distance between images with Lp norm, we always
set p = 1, using L1 distance. Starting from the initial learning rate 1×10−4, the learning rate halves
when training reaches 50%, 75%, and 90% of the total epochs. We used PyTorch 1.8.1 with CUDA
11.1 to implement the deblurring methods. Mixed-precision training (Micikevicius et al., 2017) is
employed to accelerate operations on RTX 2080 Ti GPUs.

C DETERMINING THE REBLURRING MODULE SIZE

As our reblurring loss LR is realized byMR, the reblurring module design plays an essential role.
As shown in Figure A, theMR architecture is a simple ResNet. Table D shows the relation between
the deblurring performance andMR size by changing the number of ResBlocks.

For all deblurring moduleMD architectures, LPIPS was the best when the number of ResBlocks,
n = 2. NIQE showed good performance when 2 ≤ n ≤ 3. PSNR and SSIM had tendency to
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# Layer description Output shape

Input 3×H ×W

1 5× 5 conv 64×H ×W

2-5 2 ResBlocks (5× 5) 64×H ×W

6 5× 5 conv 3×H ×W

Table C: Reblurring module specifics

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (L1 only) 0.1635 5.996 29.66 0.8874
+LReblur, n1 0.1365 5.629 29.58 0.8869
+LReblur, n2 0.1238 5.124 29.44 0.8824
+LReblur, n3 0.1386 5.448 29.38 0.8819
+LReblur, n4 0.1415 5.513 29.25 0.8789

SRN (L1 only) 0.1246 5.252 30.62 0.9078
+LReblur, n1 0.1140 5.136 30.74 0.9104
+LReblur, n2 0.1037 4.887 30.57 0.9074
+LReblur, n3 0.1091 4.875 30.50 0.9060
+LReblur, n4 0.1155 5.041 30.53 0.9056

DHN (L1 only) 0.1179 5.490 31.53 0.9207
+LReblur, n1 0.0975 5.472 31.53 0.9217
+LReblur, n2 0.0837 5.076 31.34 0.9177
+LReblur, n3 0.0845 4.963 31.26 0.9159
+LReblur, n4 0.0861 5.041 31.19 0.9149

Table D: The effect of reblurring loss on GOPRO dataset by the reblurrimg module size. Re-
blurring module size varies by the number of ResBlocks.

decrease when n ≥ 1. For larger number of ResBlocks, we witnessed sharper edges could be
obtained but sometimes, cartoon artifacts with over-strong edges were witnessed.

Considering the trade-off between the PSNR and the perceptual metrics, we chose n ∈ {1, 2} in the
following experiments. n = 1 finds balance between the PSNR and LPIPS and n = 2 puts more
weight on the perceptual quality.

D COMBINING REBLURRING LOSS WITH OTHER PERCEPTUAL LOSSES

Our reblurring loss is a new perceptual loss that is sensitive to blurriness of an image, a type of
image structure-level information while other perceptual losses such as VGG loss (Johnson et al.,
2016) and adversarial loss (Ledig et al., 2017) are more related to the high-level contexts. As VGG
model (Simonyan & Zisserman, 2014) is trained to recognize image classes, optimizing with VGG
loss could make an image better recognizable. In the GAN frameworks (Goodfellow et al., 2014), it
is well known that discriminators can easily tell fake images from real images (Wang et al., 2020),
being robust against JPEG compression and blurring. In the adversarial loss from the discriminator,
the realism difference could be more salient than other features such as blurriness.

With the perceptual loss functions designed with different objectives, combining them could bring
visual quality improvements in various aspects. Tables E and F show the effect of applying our
reblurring loss jointly with other perceptual losses on GOPRO and REDS datasets. We omit the loss
coefficients for simplicity. We used weight 0.3 for the VGG loss LVGG and 0.001 for the adversarial
loss, LAdv. We witness LPIPS and NIQE further improves when our reblurring loss is combined
with LVGG or LAdv.
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Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

SRN (L1 only) 0.1246 5.252 30.62 0.9078
+LVGG 0.1037 4.945 30.60 0.9074

+LVGG + LReblur, n2 0.0928 4.671 30.64 0.9079
+LAdv 0.1141 4.960 30.53 0.9068

+LAdv + LReblur, n2 0.1014 4.811 30.56 0.9075

DHN (L1 only) 0.1179 5.490 31.53 0.9207
+LVGG 0.0994 5.022 31.48 0.9195

+LVGG + LReblur, n2 0.0773 4.897 31.28 0.9161
+LAdv 0.0969 5.026 31.46 0.9188

+LAdv + LReblur, n2 0.0835 4.799 31.28 0.9162

Table E: Results on GOPRO dataset by adding reblurring loss to the other preceptual losses.

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

SRN (L1 only) 0.1148 3.392 31.89 0.8999
+LVGG 0.1000 3.256 31.86 0.9001

+LVGG + LReblur, n2 0.0868 2.835 31.83 0.9015
+LAdv 0.1158 3.395 31.84 0.8993

+LAdv + LReblur, n2 0.0934 2.836 32.00 0.9061

DHN (L1 only) 0.0942 3.288 32.65 0.9152
+LVGG 0.0812 3.171 32.61 0.9146

+LVGG + LReblur, n2 0.0723 2.821 32.48 0.9133
+LAdv 0.0956 3.218 32.58 0.9128

+LAdv + LReblur, n2 0.0820 2.809 32.45 0.9121

Table F: Results on REDS dataset by adding reblurring loss to the other preceptual losses.

E TEST-TIME ADAPTATION DETAILS

We describe the detailed self-supervised test-time adaptation process. At test time, the learning
rate is set to µ = 3 × 10−6. From the initial deblurring result L0, the self-supervised loss is
iteratively minimized by updating the weights of MD. As the self-supervised loss in equation 6
only cares about image sharpness, the image may have color drifting issues. Thus, finally, we match
the histogram of the updated image LN to the histogram of L0. The overall process is shown in
Algorithm A.

Algorithm A Optimization process in test-time adaptation

1: procedure TEST-TIME ADAPTATION(B,MD,MR)
2: Test-time learning rate µ← 3× 10−6.
3: θD ←Weights ofMD.
4: L0 =MD(B).
5: for i = 0 . . . N − 1 do
6: Li∗ =MD (B).
7: Lself

reblur = ‖MR(MD(B))− Li∗‖.
8: Update θD by∇θDLself

Reblur and µ.
LN =MD (B).

9: LNAdapted =histogram matching(LN , L0
∗)

10: return LNAdapted

F PERCEPTION VS. DISTORTION TRADE-OFF

It is known in image restoration literature that the distortion error and the perceptual quality error
are in trade-off relation (Blau & Michaeli, 2018; Blau et al., 2018). The relation is often witnessed
by training a single model with different loss functions. In most cases, to obtain a better perceptual
quality from a single model architecture, retraining with another loss from scratch is necessary. Our
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test-time adaptation from self-supervised reblurring loss, in contrast, can provide the steps toward
perceptual quality without full retraining.

In Figure B and C, we present the perception-distortion trade-off from our test-time adaption. LPIPS
and NIQE scores consistently improve from each adaptation step in both SRN and DHN models.
While PSNR is moderately sacrificed from the adaptation, SSIM improves in the early steps as it
more reflects the structural information. Our results show improved trade-off between the distortion
and perception metrics over the baseline models trained with L1 loss.
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Figure B: Perception-distortion trade-off from test-time adaptation applied to SRN model on
GOPRO dataset.
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Figure C: Perception-distortion trade-off from test-time adaptation applied to DHN model on
GOPRO dataset.
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On GOPRO dataset On REDS dataset
Model Optimization LPIPS↓ NIQE↓ PSNR↑ SSIM↑ LPIPS↓ NIQE↓ PSNR↑ SSIM↑

SRN

L1 0.1246 5.252 30.62 0.9078 0.1148 3.392 31.89 0.8999
L1 + LReblur, n1 0.1140 5.136 30.74 0.9104 0.1071 3.305 32.01 0.9044
+ TTA step 5 0.1101 5.079 30.60 0.9100 0.1029 3.278 31.83 0.9040
+ TTA step 10 0.1103 5.036 30.11 0.9048 0.1025 3.261 31.29 0.8996
+ TTA step 20 0.1223 4.968 28.44 0.8806 0.1116 3.265 29.59 0.8807
+ TTA step 30 0.1470 4.924 26.42 0.8411 0.1306 3.301 27.73 0.8523
L1 + LReblur, n2 0.1037 4.887 30.57 0.9074 0.0947 2.875 31.82 0.9026
+ TTA step 5 0.0983 4.730 30.44 0.9067 0.0909 2.798 31.50 0.9008
+ TTA step 10 0.0962 4.569 30.07 0.9024 0.0913 2.741 30.87 0.8945
+ TTA step 20 0.1021 4.274 28.83 0.8836 0.1033 2.699 29.09 0.8697
+ TTA step 30 0.1199 4.045 27.26 0.8529 0.1259 2.729 27.20 0.8326

Table G: Quantitative analysis of the reblurring losses and test-time adaptation applied to SRN
on GOPRO and REDS datasets.

G TEST-TIME ADAPTATION EFFECTS

In Table G, we quantitatively compare the deblurred results from test-time adaptation in terms of a
no-reference metric, NIQE, and reference-based metrics, LPIPS, PSNR, and SSIMs. By performing
TTA up to 30 steps as described in Algorithm A, we show that LPIPS and NIQE could be improved
to a degree. On both GOPRO and REDS datasets, NIQE has a tendency to improve further after
LPIPS has stopped its improvement. This is due to the self-supervised nature of test-time adaptation
that considers image sharpness without reference.

In Figures D and E, we visually show the effect of test-time adaptation applied to SRN with a jointly
trained reblurring module. By test-time adaptation, our model further improves the sharp edges of
the images. In Figure D, the building structures and the horizontal lines are better witnessed. Also in
Figure E, the vehicle’s pole are better recovered and the text are clearer. While the PSNR and SSIM
have decreased by test-time adaptation in Table G, perceptually, the results from test-time adaptation
tend to be sharper.
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(a) Blur (b) Our deblurred image (TTA step 30)

(c) Blur B (d) L1 (e) L1 + LReblur, n1 (f) Ours (TTA step 30)

Figure D: Visual comparison of deblurred results by reblurring loss and test-time adaptation
on GOPRO dataset.

(a) Blur (b) Our deblurred image (TTA step 30)

(c) Blur B (d) L1 (e) L1 + LReblur, n1 (f) Ours (TTA step 30)

Figure E: Visual comparison of deblurred results by reblurring loss and test-time adaptation
on REDS dataset.
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