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Abstract

Metaphor as an advanced cognitive modality001
works by extracting familiar concepts in the002
target domain in order to understand vague and003
abstract concepts in the source domain. This004
helps humans to quickly understand and master005
new domains and thus adapt to changing envi-006
ronments. With the continuous development007
of metaphor research in the natural language008
community, many studies using knowledge-009
assisted models to detect textual metaphors010
have emerged in recent years. Compared to011
not using knowledge, systems that introduce012
various kinds of knowledge achieve greater per-013
formance gains and reach SOTA in a recent014
study. Based on this, the goal of this paper is015
to provide a comprehensive review of research016
advances in the application of deep learning017
for knowledge injection in metaphor detection018
tasks. We will first systematically summa-019
rize and generalize the mainstream knowledge020
and knowledge injection principles. Then, the021
datasets, evaluation metrics, and benchmark022
models used in metaphor detection tasks are ex-023
amined. Finally, we explore the current issues024
facing knowledge injection methods and pro-025
vide an outlook on future research directions.026

1 Introduction027

Metaphors are essentially cognitive mechanisms028

present in the human mind used to construct con-029

ceptual frameworks (Lakoff and Wehling, 2012).030

This phenomenon works by extracting familiar con-031

cepts in the target domain to understand vague and032

abstract concepts in the source domain (Lakoff033

and Johnson, 2008). As an important linguistic034

phenomenon, automatic detection of metaphors035

is crucial for many practical language processing036

tasks, including information extraction (Tsvetkov037

et al., 2013), sentiment analysis (Cambria et al.,038

2017), machine translation (Babieno et al., 2022),039

and seamless human-computer interaction (Rai and040

Chakraverty, 2021). In the philosophical account041

articulated in (Maloney, 1983), metaphor compre- 042

hension involves three distinct phases: compre- 043

hension of the literal interpretation, discovery of 044

inconsistencies with the literal interpretation, and 045

reasoning to recover the intended non-literal in- 046

terpretation. This paper focuses on the metaphor 047

detection task, the first two stages of metaphor 048

comprehension in (Maloney, 1983). Consider a 049

metaphor detection task example: 050

He’s the miracle of the team. 051

The word "miracle" in the sentence is a metaphori- 052

cal usage, which conveys something extraordinary 053

about the person’s work or collaboration by asso- 054

ciating the word "miracle" with the person’s out- 055

standing performance in the team. In deep learn- 056

ing, metaphor detection is the process of deter- 057

mining whether a target word (e.g., "miracle") is 058

a metaphorical usage, given the target word and 059

context. 060

As the research on metaphor continues to deepen, 061

more and more types of knowledge and injection 062

methods have been actively explored. Mao et al. 063

(2019) used general corpus information as the con- 064

text of the words with detection. Le et al. (2020) 065

attempted to apply dependency tree knowledge to 066

metaphor detection by constructing a graph net- 067

work adjacency matrix to utilize the dependency 068

tree structural information. Su et al. (2020) used 069

a prompting approach to transform metaphor de- 070

tection to reading comprehension and introduced 071

local textual information. Choi et al. (2021) took 072

into account the basic and contextual meanings 073

of target words. Recently, Zhang and Liu (2023) 074

successfully reached the state-of-the-art of the cur- 075

rent metaphor detection task by introducing adver- 076

sarial learning and multi-task learning. The suc- 077

cess of these studies highlights the important role 078

of knowledge injection in systematic detection of 079

metaphors. Compared to not using knowledge, sys- 080

tems that introduced various kinds of knowledge 081

realized greater performance improvements. There- 082
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fore, we believe it is necessary to comprehensively083

review and summarize the current metaphor detec-084

tion systems as well as the contents and approaches085

of knowledge injection, in order to provide theo-086

retical foundations and model references for fu-087

ture researchers engaged in the exploration of new088

knowledge.089

Although several research surveys on metaphor090

detection have existed in the past. Rai and091

Chakraverty (2021); Ptiček and Dobša (2023) pro-092

vided an overview of metaphor theory and compu-093

tational processing methods, Abulaish et al. (2020)094

surveyed six technical approaches to metaphori-095

cal language, and Tong et al. (2021) delved into096

metaphor processing methods and their applica-097

tions. However, none of these surveys has taken098

the principle of knowledge infusion as a primary099

research focus. Against this background, our sur-100

veys aim to fill the gap in this research area. First,101

we systematically sorted out the mainstream knowl-102

edge methods and knowledge injection principles,103

and used an innovative categorization method to104

organically integrate these studies. Second, we con-105

ducted an exhaustive review and analysis of the cur-106

rent major metaphor datasets, including their differ-107

ent variants, assessment metrics, and benchmarks.108

Finally, we provided insights into the strengths and109

limitations of different knowledge injection meth-110

ods, and offered suggestions and outlooks for fu-111

ture metaphor detection research.112

2 Knowledge113

In this section, we provide an introduction to the114

types of knowledge that are commonly used in115

metaphor detection task and how they are used.116

2.1 Syntactic Knowledge117

Part-of-Speech Tagging. Part-of-Speech (POS) is118

the tagging of each word in a sentence to indicate119

its grammatical role or lexical category in the120

context. Commonly used POS tag sets include121

Universal POS tag sets (Petrov et al., 2011), which122

defined a simplified set of lexical tokens with 17123

tokens, such as NOUN (noun), VERB (verb), and124

Treebank tag sets (Santorini, 1990), which had125

more detailed tokens, including JJ (adjective),126

JJS (adjective with a supreme ending -est), etc.127

In metaphor detection task, researchers usually128

combine POS knowledge directly into the input129

sequence (Song et al., 2021; Feng and Ma, 2022),130

or construct multitask learning with POS as an131

auxiliary task (Le et al., 2020). 132

Dependency Tree. A Dependency Tree (DT) 133

is a syntactic structural tree used to efficiently 134

represent dependency relationships between 135

words in a sentence. In a Dependency Tree, each 136

word is given a node and is connected by edges 137

to represent the directional relationship from 138

the dependent (subordinate) word to its main 139

dependent (head of the subordinate) word. In 140

metaphor detection task, researchers often utilize 141

dependency tree knowledge to improve the syntac- 142

tic comprehension of their models. Le et al. (2020) 143

employed Graph Convolutional Network (GCN), 144

which used the dependency tree knowledge as an 145

adjacency matrix to build a graphical structure 146

of dependency relationships between words. 147

Some studies (Song et al., 2021; Feng and Ma, 148

2022), on the other hand, focused on extracting 149

subject-verb-object relationships in dependency 150

trees to aid in metaphor detection. Song et al. 151

(2021) processed the output of subject-verb-object 152

correspondences in text by combining, averaging, 153

and maximizing to further capture the associations 154

between structural semantics, while Feng and Ma 155

(2022) used a BERT Decoder (Devlin et al., 2019) 156

to allow the model to generate the start and end 157

positions of subject-predicate-objects based on the 158

context. 159

160

2.2 Semantic Knowledge 161

VerbNet. VerbNet (Schuler, 2005) is a verb cat- 162

egorization database containing nearly 4,000 En- 163

glish verb lemmas, and its category design refers 164

to the study of Levin (Somers, 1994). In VerbNet, 165

each verb is attributed to one or more categories 166

that describe the semantic roles of the verb, syn- 167

tactic constraints, and semantic relations between 168

different categories, etc. VerbNet provides two 169

main categorization approaches: based on syntac- 170

tic structure and based on predicate meaning. In the 171

metaphor detection task, researchers (Gong et al., 172

2020; Beigman Klebanov et al., 2016) used Verb- 173

Net’s class information to convert each lexical unit 174

into a binary feature vector. 175

FrameNet. The main goal of FrameNet (Baker 176

et al., 1998; Lowe, 1997) is to provide sentences 177

with semantic and syntactic annotations for a 178

large part of the vocabulary in contemporary En- 179

glish. The corpus of this resource is built on The 180

British National Corpus (Consortium et al., 2007). 181
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FrameNet employs a semantic description based182

on frames, each of which represents a semantic183

concept and describes the events, participants, at-184

tributes, relations, etc. associated with that concept.185

The project (Fillmore et al., 2002) is an extended186

version of FrameNet, which adds the US National187

Corpus resources. In the metaphor detection, Li188

et al. (2023b) used the FrameNet provided by (Fill-189

more et al., 2002) in the task for frame prediction190

of target and contextual lexical units, and the pre-191

diction results will aid in metaphorical analysis.192

WordNet. WordNet (Miller, 1995; Fellbaum,193

1998) is a hierarchically structured lexical database194

in which each word forms links with other related195

words to represent the semantic connections be-196

tween them. In the metaphor detection task, Gong197

et al. (2020); Beigman Klebanov et al. (2016) clas-198

sified words into fifteen categories based on the199

semantic links between words in WordNet and200

converted these categories into binary feature vec-201

tors. Such feature vectors can be used to assist the202

metaphor detection and improve the performance203

of the model. And Zhang and Liu (2023) consid-204

ered the first of the WordNet example sentences as205

literal meanings and used it for multi-task learning.206

Dictionary Knowledge. Dictionary example sen-207

tences or paraphrase knowledge are intended to208

provide the model with knowledge of the polyse-209

mous and metaphorical meanings of the words to210

be detected, and help the model better understand211

the semantic changes and metaphorical expressions212

of the words to be detected in different contexts. In213

metaphor detection, some researchers have utilized214

lexical examples to extract the context-based ba-215

sic meanings of the words to be detected (Zhang216

and Liu, 2023), instead of the traditional approach217

of directly using the words to be detected as the218

basic meanings. Su et al. (2021) combined the lexi-219

cal paraphrase information into the model input to220

achieve knowledge fusion.221

Concreteness. Concreteness is the degree to which222

a word is characterized by the meaning it expresses223

in a language. In metaphor detection, researchers224

often relyed on the word specificity rating dataset225

(Brysbaert et al., 2014). This dataset was based226

on the SUBTLEX-US corpus (Brysbaert and New,227

2009) and covers 37,058 token-level samples. This228

dataset was rated using a 5-point scale from ab-229

stract to concrete, and the data was collected with230

the help of Internet crowdsourcing. In previous231

studies (Klebanov et al., 2014; Gong et al., 2020;232

Beigman Klebanov et al., 2016), the lexical units 233

to be detected were transformed into binary feature 234

vectors depending on their specificity ratings. 235

Topic. Using the Latent Dirichlet Allocation (LDA) 236

model (Blei et al., 2003), research scholars ex- 237

tracted a model containing 100 topics from the 238

New York Times (NYT) corpus (Sandhaus, 2008) 239

to characterize general topics discussed by the pub- 240

lic. In the metaphor detection task, previous re- 241

search work (Klebanov et al., 2014; Gong et al., 242

2020; Beigman Klebanov et al., 2016) matched and 243

associated the words in each instance with these 244

100 topics, followed by the calculation of probabil- 245

ity scores for each word under each topic. 246

2.3 Emotional Knowledge 247

VAD Model. VAD (Mehrabian, 1996) is an affec- 248

tive classification system for describing and mea- 249

suring the three main dimensions of human affec- 250

tive experience: valence, arousal, and dominance. 251

EmoBank corpus (Buechel and Hahn, 2017) is a 252

VAD model-based and balanced multi-type 10k En- 253

glish corpus of sentences, each labeled with one to 254

five ratings on the three VAD dimensions. In the 255

metaphor detection task, Dankers et al. (2019) in- 256

troduced the EmoBank corpus (Buechel and Hahn, 257

2017) as an auxiliary task. Sentence-level senti- 258

ment regression was constructed based on each 259

dimension in EmoBank. In its training process, a 260

batch of metaphor or sentiment task data sampling 261

is randomly selected for training at each step. 262

Hyperbole Corpus. Exaggeration usually involves 263

over- or under-exaggeration of an emotion, senti- 264

ment or attitude. Combining a dataset for hyper- 265

bole detection with a metaphor detection task can 266

make the model more sensitive to capturing emo- 267

tions and sentiments in text. In a previous research, 268

Badathala et al. (2023) introduced two hyperbole 269

corpora, named HYPO and HYPO-L, and subse- 270

quently labeled them with metaphors. The results 271

showed that multitask learning based on hyperbole 272

and metaphor gains in both two-way performance. 273

3 Method 274

This section will comprehensively introduce the 275

current mainstream knowledge injection methods. 276

Table 1 demonstrates a summary of knowledge 277

injection-based metaphor detection systems. 278
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SK SYK EK Injection Method Core Structure Papers

Output Modulation VS,k = fb(S)[k], Vk = fb(wk), VS = fb(S)[0]
(Choi et al., 2021)
(Li et al., 2023b)
(Wang et al., 2023)
(Zhang and Liu)

✓
Determine whether the target word has a literal meaning shift in context. VS,k and Vk

are the contextual and underlying meanings, respectively, and Vs is the contextual.

Output Modulation h′
i = λi

∑
hi (Song et al., 2021)

(Wang et al., 2023)✓
Assign weight λi to the ith output token hi based on the knowledge of dependency tree.

Output Modulation h′
t = fd(w

′
x<t, H), t ∈ [1, 7]

(Feng and Ma, 2022)✓
Let the model generate the position h′

t of the corresponding subject and object of the
target word in the sentence, and w′

x<t for the already predicted results.

Additional Inputs S = [cls]s0 ⊕ s1 ⊕ ...⊕ sk[seq] (Gong et al., 2020)
(Su et al., 2020)
(Su et al., 2021)

✓ ✓
Combined text and knowledge input. ⊕ is the concat operation, si(0 ≤ i ≤ k) is the
context or knowledge.

Additional Inputs S = [cls]s0[seq], S′ = [cls]s1[seq] (Zhang and Liu)
(Babieno et al., 2022)
(Li et al., 2023a)

✓
Text and knowledge will be input to different Encoders. where s0 is the input text and s1
is the example sentence or word paraphrase.

Multi-task learning H,Z = G(fb(s), fb(s
′)) (Le et al., 2020)

(Mao and Li, 2021)
(Mao et al., 2022)
(Li et al., 2023b)
(Zhang and Liu, 2023)

✓ ✓
Multiple task samples are used and models share parameters. H,Z correspond to the
main task and subtask sample outputs, respectively, and G(x) is the fully connected layer,
GCN, or gated network.

Multi-task learning Hj
0 = fb(g

j
k)[0] (Wan et al., 2021)✓

A WSD subtask is designed to predict the correct meaning of the target word on the
input text. gjk is the jth meaning of target word wk

Table 1: Abstract of metaphor detection system based on knowledge injection. SK: semantic knowledge. SYK:
syntactic knowledge. EK: emotional knowledge. core structure: subject model architecture.

3.1 Output Modulation279

Pre-defined knowledge can structure the tuning of280

model output to direct its attention to specific se-281

mantic content or syntactic structures. In many282

studies (Mao et al., 2019; Choi et al., 2021; Li et al.,283

2023b; Wang et al., 2023; Zhang and Liu), the main284

output modulation methods used are Metaphor285

Identification Program (MIP) and Selection Prefer-286

ence Violation (SPV).287

MIP (Metaphor Identification Program) was288

originally introduced by Group (2007). Its core289

logic consists in comparing the difference be-290

tween a lexical unit in its original meaning and291

its meaning in context. For the text input S =292

([cls]w0, ..., wk, ....wn[seq]) and the test word wk,293

the contextual and underlying meanings of the lexi-294

cal units are defined, respectively:295

VS,k = fb(S)[k]

Vk = fb(wk),
(1)296

where fb denotes the Encoder and VS,k is the corre-297

sponding output of the kth hidden layer in the text298

to be detected. 299

SPV (Selectional Preference Violation) was orig- 300

inally introduced to the field of metaphor detection 301

by Wilks et al. (2013), and its core logic lies in 302

comparing the semantic differences between the 303

contextual meaning of a word and its surrounding 304

words. The semantic information of surrounding 305

words can be defined as: 306

VS = fb(S)[0], (2) 307

where fb denotes the Encoder and VS denotes the 308

corresponding hidden layer output of cls in the text 309

to be detected. And the semantic information of 310

SPV lexical units is similar to MIP as VS,t. 311

In addition, Wang et al. (2023); Song et al. 312

(2021); Feng and Ma (2022) apply dependency 313

tree knowledge to adjust the outputs. In con- 314

trast, (Wang et al., 2023; Song et al., 2021) as- 315

signs different weights to the model’s outputs based 316

on the dependency tree. For the output feature 317

H = (h1, h2, . . . , hn): 318

h′i = λi

∑
hi, (3) 319
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where λi is the corresponding weight of the ith to-320

ken hidden layer output. In (Wang et al., 2023), the321

weight λi denotes the reciprocal of the distance be-322

tween the ith context word and the target word. In323

contrast, Song et al. (2021) only focuses on the sub-324

ject, object and underlying meaning of the target325

word, i.e., the subject and object of the target verb326

and the target word itself correspond to a weight of327

1, while the rest of the contexts have a weight of 0.328

Feng and Ma (2022) also considered the sub-329

ject and object of the target word, but allowed330

the model to predict the position of the subject-331

predicate-object in the sentence:332

h′t = fd(w
′
x<t, H), t ∈ [1, 7], (4)333

where w′
x<t is the already predicted result. h′t is the334

tth predicted output, t ∈ [1, 6] corresponds to the335

indexes of the beginning and the end of the subject-336

predicate-object in sentence H , respectively, and337

h′7 is the result of metaphorical classification.338

3.2 Additional Inputs339

This type of approach aims to enhance the model’s340

understanding of the context by feeding knowledge341

into the model along with the text to be detected.342

In the metaphor detection task, the researcher intro-343

duces example sentences (Zhang and Liu; Li et al.,344

2023a), word paraphrases (Su et al., 2021; Babieno345

et al., 2022), or other knowledge (Gong et al., 2020;346

Su et al., 2020) as additional inputs of knowledge.347

For input S, Su et al. (2021); Gong et al. (2020); Su348

et al. (2020) combines the knowledge to the input:349

S = [cls]s0 ⊕ s1 ⊕ ...⊕ sk[seq], (5)350

where s0 is the input text, ⊕ is the concat opera-351

tion, and si(0 < i ≤ k) is k paraphrases or other352

knowledge. And Zhang and Liu; Li et al. (2023a);353

Babieno et al. (2022) inputs the sentence to be de-354

tected separately from the knowledge:355

S = [cls]s0[seq], S′ = [cls]s1[seq], (6)356

where s0, s1 are the input text and knowledge, re-357

spectively.358

3.3 Multi-task Learning359

Introducing other associated tasks can effectively360

promote knowledge fusion between tasks, thus361

helping to improve metaphor detection perfor-362

mance. For any metaphor and subtask sample in-363

put s = (w0, ..., wn), s
′ = (w′

0, ..., w
′
n), Le et al.364

(2020); Zhang and Liu (2023); Mao and Li (2021); 365

Mao et al. (2022); Badathala et al. (2023); Li et al. 366

(2023b) attempts to fuse different task knowledge, 367

which has: 368

H,Z = G(fb(s), fb(s
′)), (7) 369

where G(x) denotes the layer transformation func- 370

tion, which can be a fully connected layer, a GCN, 371

or a gated network. fb is the Encoder, and H and 372

Z denote the corresponding hidden layer outputs 373

of the metaphorical task and other subtask sam- 374

ples, respectively. They are distinguished by the 375

fact that similarity is used in (Le et al., 2020) for 376

information alignment, with the loss defined as: 377

L = λ||H − Z||, (8) 378

the rest label the results directly: 379

L′
1 = LCE(ŷ1, d1) ŷ1 ∈ H

L′
2 = LCE(ŷ2, d2) ŷ2 ∈ Z,

(9) 380

where d1 and d2 are the true labels of the two tasks, 381

respectively. L′
1 is a metaphor labeling task, while 382

the definition of L′
2 subtasks varies across studies. 383

L′
2 can be defined as a WSD task (Zhang and Liu, 384

2023), a POS labeling task (Mao and Li, 2021; Mao 385

et al., 2022), an emotion labeling task (Dankers 386

et al., 2019), an exaggeration labeling task (Ba- 387

dathala et al., 2023) or a FrameNet labeling task 388

(Li et al., 2023b). 389

(Wan et al., 2021) fine-tunes another Encoder for 390

any metaphorical sample s = (w0, ..., wk, ..., wn) 391

and the target word wk, gjk is the jth meaning of 392

wk, with: 393

Hj
0 = fb(g

j
k)[0], (10) 394

where Hj
0 is the jth meaning of the target word wk 395

corresponding to the CLS hidden layer output. If 396

gjk is the contextual meaning of the target word wk, 397

it is labeled 1, and vice versa 0. 398

4 Metrics and Dataset 399

The purpose of this section is to provide an 400

overview of the currently dominant metaphor de- 401

tection datasets, about which detailed information 402

has been presented in Table 3. The datasets will 403

be presented in the following section. At the same 404

time, we will introduce commonly used evaluation 405

metrics in the field. In addition, we will summarize 406

the performance of metaphor detection tasks per- 407

formed on four datasets, namely, VUA ALL, VUA 408
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VUA ALL VUA Verb MOH-X (10 fold) TroFi (10 fold)
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

(Gao et al., 2018) 53.4 65.6 58.9 69.1 75.3 84.3 79.1 78.5 68.7 74.6 72 73.7
(Gao et al., 2018) 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2 70.1 71.6 71.1 74.6
(Gao et al., 2018) 71.5 71.9 71.7 92.9 66.7 71.5 69 80.7 75.1 81.8 78.2 78.1 70.3 67.1 68.7 73.4
(Mao et al., 2019) 71.8 76.3 74 93.6 69.3 72.3 70.8 82.1 79.7 79.8 79.8 79.7 67.4 77.8 72.2 74.9
(Mao et al., 2019) 73 75.7 74.3 93.8 66.3 75.2 70.5 81.8 77.5 83.1 80 79.8 68.6 76.8 72.4 75.2
(Gong et al., 2020) 74.6 71.5 73 76.7 77.2 77 72.6 67.5 69
(Le et al., 2020) 74.8 75.5 75.1 72.5 70.9 71.7 83.2 79.7 80.5 79.6 79.9 73.1 73.6 73.2 76.4
(Rohanian et al., 2020) 80 80.4 80.2 80.5 73.8 71.8 72.8 73.5
(Leong et al., 2020) 80.4 74.9 77.5 79.2 69.8 74.2
(Su et al., 2020) 82 71.3 76.3 79.5 70.8 74.9 79.9† 76.5† 77.9† 53.7† 72.9† 61.7†

(Song et al., 2021) 82.7 72.5 77.2 94.7 80.8 71.5 75.9 86.4 80 85.1 82.1 81.9 70.4 74.3 72.2 75.1
(Wan et al., 2021) 82.5 72.5 77.2 94.7 78.9 70.9 74.7 85.4
(Choi et al., 2021) 80.1 76.9 78.5 78.7 72.9 75.7 79.3† 79.7† 79.2† 53.4† 74.1† 62†

(Li et al., 2023b) 82.7 75.3 78.8 83.2† 84.4† 83.8† 70.7† 78.2† 74.2†

(Babieno et al., 2022) 79.3 78.5 78.9 60.9 77.7 68.3 81 80 80.2 53.2 72.8 61.4
(Lin et al., 2021) 79.3 78.8 79 94.8 78.1 73.2 75.6 85.8 85.7 84.6 84.7 85.2 74.4 74.8 74.5 77.7
(Wang et al., 2023) 80 78.2 79.1 77∗ 83.5∗ 80.1∗ 54.2∗ 76.2∗ 63.3∗

(Zhang and Liu) 80.4 78.4 79.4 94.9 78.3 73.6 75.9 86 84 84 83.4 83.6 67.5 77.6 71.9 73.6
(Feng and Ma, 2022) 81.6 77.4 79.4 95.2 81.6 71.1 76 86.4 89.5 85.2 87 87.5 72.5 77.5 74.8 77.7
(Su et al., 2021) 76 76 76 85.7 82.9 84 83.4 84.2 73.3 69.6 71.4 75.7
(Zhang and Liu, 2023) 78.4 79.5 79 94.7 78.5 78.1 78.3 87 87.4 88.8 87.9 88 70.5 79.8 74.7 76.5

Table 2: This table shows the performance of the metaphor detection system on four datasets, VUA ALL, VUA
verb, MOH-X and TroFi, in recent years. Among them, most of the results on the MOH-X and TroFi datasets are
based on ten-fold cross-validation, and also include some results derived from direct computation († labeling), as
well as some of the models are trained on the VUA20 dataset (∗ labeling).

verb, MOH-X, and TroFi, in recent years, and re-409

fer to Table 2 for more details, in order to provide410

a comprehensive picture of the state of the art of411

research in this area.412

4.1 Metrics413

Current mainstream metaphor detection systems414

typically use four evaluation metrics. Among them,415

accuracy indicates the number of correctly catego-416

rized samples as a proportion of the total number417

of samples; precision measures the extent to which418

the model correctly predicts, focusing on the pro-419

portion of samples that the model determines to be420

in the positive category that are truly in the positive421

category; and recall measures the model’s ability422

to correctly identify positively categorized samples423

(true instances). The F1-score is a metric that com-424

bines precision and recall and is used to balance425

the model’s accuracy and recall.426

4.2 Dataset427

VUA. The VU Amsterdam Metaphor Corpus428

(Steen et al., 2010) annotates each lexical unit429

(187,570 in total) in a subset of the British Na-430

tional Corpus (Consortium et al., 2007) metaphor-431

ically. The corpus was tagged using the MIPVU432

metaphor detection program, and VUAMC is the 433

largest publicly available annotated corpus of tag- 434

level metaphor detection, and the only one to study 435

the metaphorical nature of dummy words. 436

VUA SEQ. VUA SEQ is another dataset con- 437

structed based on VUAMC. Compared to VUA 438

ALL, VUA SEQ has the same number of samples 439

as reported (Gao et al., 2018; Neidlein et al., 2020). 440

However, VUA SEQ covers all tokens in a sen- 441

tence, even punctuation, in the classification task, 442

thus leading to a richer number of target tokens 443

used than VUA ALL. 444

VUA ALL POS. VUA ALL POS dataset has been 445

applied to the shared task of metaphor detection 446

(Leong et al., 2018, 2020), which consists of two 447

parts, VUA ALL POS and VUA Verb. In par- 448

ticular, VUA ALL POS annotates all real-sense 449

words (including adjectives, verbs, nouns, and ad- 450

jectives) in a sentence; while VUA Verb covers 451

only verbs. However, in the studies of (Song et al., 452

2021; Feng and Ma, 2022; Wan et al., 2021; Su 453

et al., 2020), the VUA ALL POS dataset also in- 454

cludes dummy words. To distinguish it from the 455

shared task (Leong et al., 2018, 2020), we named 456

the VUA ALL POS dataset that includes both real 457
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Dataset #Tok. #Sent. %Met.

VUAall/SEQ 205,425 10,567 11.6%
VUAall/SEQ/tr 116,622 6,323 11.2%
VUAall/SEQ/val 38,628 1,550 11.6%
VUAall/SEQ/te 50,175 2,694 12.4%
VUAallpos 94,807 16,202 15.8%
VUAallpos_tr 72,611 12,122 15.2%
VUAallpos_te 22,196 4,080 17.9%
VUAverb_tr 15,516 7,479 27.9%
VUAverb_val 1,724 1,541 26.9%
VUAverb_te 5,873 2,694 29.9%
MOH-X 647 647 48.7%
TroFi 3,737 3,737 43.5%

Table 3: tr: training set. val: validation set. te: test
set. tokens: number of samples. sent.: total number of
sentences, %Met.: percentage of metaphorical samples

and dummy words as VUA ALL.458

VUA Verb. VUA Verb is a verb part extracted459

from VUA (Steen et al., 2010). The number of460

training, validation, and test sets for VUA Verb are461

15,516, 1,639, and 5,873, respectively, as reported462

in the metaphor detection shared task (Leong et al.,463

2018, 2020).464

VUA18. According to (Choi et al., 2021), VUA-465

18 is very similar to VUA-SEQ and VUA ALL as466

they use the same sentences in each subset, 6,323,467

1,550, and 2,694 sentences for the training, devel-468

opment, and test sets, respectively. VUA-18 does469

not consider abbreviations and punctuation as sep-470

arate tokens, and has the same labeling rules as471

VUA ALL same as VUA ALL’s labeling rules, so472

we group VUA-18 with VUA ALL.473

VUA20. In the literature (Choi et al., 2021),474

VUA20 labeled 1.2k sentences with real and imag-475

inary words. However, this does not match the476

description in the 20-year shared task (Leong et al.,477

2020). The text states that it uses the same VUA478

as the 18-year shared task (Leong et al., 2018) (see479

Section 3.1, lines 8-10) and that both report the480

same token count. Given this, we will not list VUA-481

18 and VUA-20 in the model performance table.482

TroFi. TroFi (Birke and Sarkar, 2005) is a dataset483

focused on detecting verb metaphors, which con-484

tains the literal and metaphorical usage of 50 En-485

glish verbs from the 1987-1989 Wall Street Journal486

corpus (Charniak et al., 2000). The dataset contains487

a total of 3717 samples and is not segmented.488

MOH. MOH (Mohammad et al., 2016), which489

also focuses on verb metaphors, consists of 1639490

sentences extracted from WordNet, containing491

1230 sentences with literal usage and 409 metaphor-492

ical usages, which were metaphorically labeled 493

through crowdsourcing. MOH-X (Shutova et al., 494

2016), on the other hand, is a subset of the MOH 495

dataset, excluding instances with pronouns and sub- 496

ordinate subjects or objects, and contains 647 verb 497

samples. 498

5 Future Direction 499

5.1 Refining the Criteria for Defining 500

Metaphors 501

When introducing external knowledge, researchers 502

often have vague criteria for defining metaphors. 503

For example, some studies consider the first para- 504

phrase in WordNet as the basic meaning (Zhang 505

and Liu, 2023), or use the first k example sentences 506

in the dictionary as the criterion for classifying non- 507

metaphorical expressions (Su et al., 2021; Zhang 508

and Liu). However, these approaches may intro- 509

duce knowledge noise that negatively affects the 510

performance of the model. 511

Precise Knowledge Annotation Methods. Fu- 512

ture research could be conducted through manual 513

annotation, detailed paraphrasing in specialized 514

field dictionaries, or the use of professional vetting 515

to ensure the accuracy and relevance of external 516

knowledge. 517

Applications of Large Pre-trained Models. Uti- 518

lizing large language models (e.g., GPT-3 (Brown 519

et al., 2020)) to mine the implicit knowledge 520

learned by the model itself. This approach 521

can provide more accurate external knowledge 522

for metaphor detection by analyzing the model- 523

generated text and extracting the metaphorical in- 524

formation in it. For example, (Wachowiak and 525

Gromann, 2023) guided GPT-3 to generate the tar- 526

get domain of metaphors. 527

Real-Time Knowledge Update Mechanism: 528

Most of the past studies use older knowledge bases 529

(Miller, 1995; Schuler, 2005; Baker et al., 1998), 530

and it is necessary to consider designing a real- 531

time knowledge update mechanism. By updating 532

the external knowledge base on a regular or real- 533

time basis to reflect changes in language usage and 534

context, the model is better adapted to evolving 535

contexts. 536

5.2 Enhancing the Knowledge Infusion 537

Methodology 538

Current research has used two main approaches 539

to inject knowledge into models: incorporating 540

knowledge directly into the input of the model (Li 541
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et al., 2023a; Babieno et al., 2022) or adapting the542

output of the model (Wang et al., 2023; Feng and543

Ma, 2022). However, these traditional combination544

approaches may not fully utilize the rich contextual545

information embedded in the knowledge.546

Exploring More Effective Ways of Knowledge547

Fusion. Future research can further explore more548

effective ways of knowledge fusion to overcome549

the problem that traditional combining approaches550

cannot fully utilize contextual information. For ex-551

ample, Li et al. (2023b) introduced implicit knowl-552

edge in FrameNet by fine-tuning the model. Mao553

and Li (2021); Mao et al. (2022) used a gating554

mechanism for knowledge fusion.555

Deepening Applications of Adversarial Learn-556

ing. Adversarial learning Zhang and Liu (2023)557

has shown potential in knowledge fusion. Future558

research could deeply explore the use of adversarial559

learning to fuse other associative subtask knowl-560

edge, such as fine-grained sentiment information.561

Combining Multiple Sources of Knowledge for562

Injection. Current research has focused on sin-563

gle domain knowledge injection (Badathala et al.,564

2023; Dankers et al., 2019), and future research565

could consider how to better combine multiple566

sources of knowledge. For example, combining hy-567

perbole and emotion, or emotion with other rhetori-568

cal knowledge, to create more comprehensive mod-569

els that are better adapted to diverse textual expres-570

sions.571

5.3 Exploring Zero-shot Metaphor Detection572

Most metaphorical systems are trained using man-573

ually labeled data. However, data labeling requires574

significant labor costs and the quality of the data575

greatly depends on the education level of the la-576

beler. Zero-shot metaphor detection can alleviate577

the above problems to some extent.578

Improvement of Existing Zero-shot Methods.579

In the past research, (Mao et al., 2018) introduced580

the cosine similarity of words, and judged words581

larger than a certain threshold as metaphors. And582

(Mao et al., 2022) defined words with the high-583

est probability of occurrence in the BERT con-584

text as non-metaphors. The above methods have585

certain shortcomings in terms of detection scope586

and accuracy, and need to be further improved587

so that they can detect metaphorical expressions588

more accurately. For example, word-level similar-589

ity measures (e.g., cosine similarity) are extended590

to sentence-level or document-level similarity (e.g.,591

WMD (Kusner et al., 2015)) to better capture the 592

context of metaphors. 593

Generating Metaphor Datasets Using Large 594

Models. Data generation with large models has 595

been shown to be cost-effective and efficient (Wang 596

et al., 2021; Yoo et al., 2021). Therefore, using 597

large models to generate textual datasets containing 598

metaphors helps to scale up the training data and 599

reduce the reliance on manual annotation, while 600

increasing the diversity and coverage of the data. 601

Guiding the Big Model for Metaphor Detection 602

Via Prompt Learning. Prompt learning (Ye et al., 603

2022; Meng et al., 2022) aims to guide the LLM to 604

generate specific content in a non-fine-tuned man- 605

ner. In this task, the LLM plays the role of a few 606

or zero sample learner. How to guide the model to 607

deeply understand the features of metaphors and 608

design prompts that can evoke metaphorical ex- 609

pressions is a very worthwhile direction for future 610

research. 611

6 Conclusion 612

With the in-depth study of metaphor detection tasks, 613

most models improve the detection of metaphors by 614

injecting different knowledge. The role of knowl- 615

edge injection in metaphor detection is becoming 616

increasingly prominent. In this paper, we compre- 617

hensively review the knowledge contents and injec- 618

tion methods used by deep learning models on the 619

metaphor detection task. We categorize the knowl- 620

edge content into semantic, syntactic and affective 621

knowledge. Meanwhile, we classify the knowledge 622

injection methods as output moderation, additional 623

input, and multi-task learning. Next, we introduce 624

the commonly used datasets and evaluation metrics 625

for metaphor detection tasks, and show the perfor- 626

mance of the current metaphor detection system on 627

four classical datasets, VUA ALL, VUAverb, TroFi 628

and MOH-X. Finally, we discuss the problems of 629

current metaphor detection systems and provide 630

directions for future research. 631

7 Limitations 632

This paper provides a comprehensive description 633

of metaphor detection systems in deep learning, fo- 634

cusing on discussing and summarizing in detail the 635

different types and methods of model knowledge 636

injection. However, there exists a small amount 637

of research work in the area of metaphor detection 638

that does not use knowledge or employs unsuper- 639

vised methods, and these studies are not covered or 640

8



discussed in the paper. In future research, we plan641

to provide a comprehensive summary of most of642

the work in the area of metaphor detection, includ-643

ing both supervised and unsupervised approaches,644

to provide researchers with a more comprehensive645

understanding.646

8 Ethics Statement647

In this paper, we provide a detailed description648

of the supervised metaphor detection system and649

the different ways of knowledge injection. The650

datasets and research papers we have used have651

been obtained from publicly available sources and652

we have adhered to strict guidelines of academic653

and research ethics. In addition, we place special654

emphasis on transparency and openness of infor-655

mation, encourage other researchers to conduct656

responsible research, and uphold best practices in657

knowledge sharing. In the text, we explicitly cite658

the public data sources cited to express our full re-659

spect for the original authors and data providers of660

research related to the field of metaphor detection.661
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