
PROMPT-BASED LENGTH CONTROLLED GENERATION
WITH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) like ChatGPT and GPT-4 have attracted great at-
tention given their surprising performance on a wide range of NLP tasks. Length
controlled generation of LLMs emerges as an important topic, which enables users
to fully leverage the capability of LLMs in more real-world scenarios like gener-
ating a proper answer or essay of a desired length. In addition, the autoregressive
generation in LLMs is extremely time-consuming, while the ability of controlling
this generated length can reduce the inference cost by limiting the length. There-
fore, we propose a prompt-based length control method to achieve high-accuracy
length controlled generation. In particular, we adopt reinforcement learning with
the reward signal given by either trainable or rule-based reward models, which fur-
ther enhances the length-control ability of LLMs by rewarding outputs that follows
pre-defined control instruction. To enable rule-based inference, we also introduce
standard prompt extractor to collect the standard control information from users’
input. Experiments show that our method significantly improves the accuracy of
prompt-based length control for summarization task on popular datasets like CN-
NDM and NYT. Both the standard prompt extractor and the RL-tuned model have
show strong generalization ability to unseen control prompt templates.

1 INTRODUCTION

For recent popular GPT-style LLMs like ChatGPT and GPT-4 (Radford et al., 2018; 2019; Liu et al.,
2023b; OpenAI, 2023), various studies have been conducted on them, and the inference efficiency
and computational cost often draw concerns from the community (Zhang et al., 2023; Zhao et al.,
2023; Bubeck et al., 2023). Since its generation is in an autoregressive manner, the inference cost
increases continually with the growing of decoding steps. Meanwhile, users of LLMs usually have
an expected length of generated texts, no matter for writing an essay or summary, knowledge QA or
dialogue generation (Fan et al., 2018; Liu et al., 2020; 2022; Mirshekari et al., 2021; Gupta et al.,
2021). Both of these two facts require the length of generation in LLMs can be effectively controlled.

For LLMs, the most widely applied technique for length control is prompt-based fine-tuning (Raffel
et al., 2020; Goyal et al., 2022; Zhang et al., 2022; Liu et al., 2023a). Taking an example of length-
controlled summarization (LCS), we can prepend a prompt “summarize with length li:”
to the article to be summarized in training, where li is the number of words or tokens of the reference
summary. However, this process is usually performed in supervised fine-tuning (SFT), where this
length controllable ability has to compromise with the goodness of downstream tasks. For very
large LMs like GPT-3, the length controlled generation can be somewhat activated by in-context
learning without updating the model parameters (Brown et al., 2020; Chowdhery et al., 2022; Dong
et al., 2022), but this relies on the size and power of the pre-trained fundation models to achieve
high control accuracy. For methods like RLHF (Reinforcement Learning from Human Feedback)
(Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022), it is expensive to use human for
labelling whether the length of generated texts meets the requirement given in instructing prompts.

In general, there are many other length control methods such as GOLC, LenAtten and LAAM (Liu
et al., 2018; Takase and Okazaki, 2019; Makino et al., 2019; Yu et al., 2021; Liu et al., 2022). How-
ever, these methods are not designed for pretrained LLMs, thus pre-training or different architectural
designs are usually needed. Moreover, it is hard for existing length control methods to adapt to var-
ious precise control instructions such as greater than a target value, smaller than a target value, or

1

between two target values, etc. Therefore, how to effectively connect diverse control instructions
from users to the final length of generated text for pretrained LLMs is still an issue to be tackled.

In this study, we introduce a novel method that applies prompt-based fine-tuning with reinforcement
learning to improve the accuracy of length controlled generation. The main contributions are:

• We design a rule-based reward model for multiple control types other than traditional
“equal to” control type, which can provide accurate and fast implementation for both rein-
forcement fine-tuning and inference of LLMs.

• We introduce an independent standard prompt extractors (SPE) to parse the length control
instructions from diverse user inputs to standard control prompts (SCP), which is necessary
for rule-based reward and show strong generalization power for new control prompts.

• We apply a Proximal Policy Optimization (PPO) algorithm with a modified state space to
fine-tune LLMs for enhancing its length control ability. Two modes including (a) SCP +
rule-based reward; (b) SCP + model-based reward are introduced and compared.

• Experiments show that by joint application of reinforcement fine-tuning and sample filter-
ing, the length-control errors can be significantly reduced from the baseline prompt-based
method. Moreover, the method show strong generalization ability to new prompt templates.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR TEXT GENERATION.

Reinforcement learning (RL) (Kaelbling et al., 1996; Arulkumaran et al., 2017) has been widely
studied and applied to improve generation task performance, including summarization (Stiennon
et al., 2020; Paulus et al., 2018), question generation (Pang and He, 2021), machine translation (Wu
et al., 2016; Nguyen et al., 2017; Kiegeland and Kreutzer, 2021) and dialogue generation (Li et al.,
2016; Zhou et al., 2017; Jaques et al., 2020). In general, we can consider the generative model as
the policy network and optimize its parameters for achieving higher reward from the environment
(Paulus et al., 2018; Wang et al., 2022). Human feedback is one of the most known strategies to
get the reward, which is shown to be more effective than optimizing using some automatic metrics,
such as rouge scores in text generation (Christiano et al., 2017; Stiennon et al., 2020; Wu et al.,
2021). Existing study (Ramamurthy et al., 2023) also shows that RL techniques are generally better
than supervised methods at aligning language models to human preferences. It is recently known
that Reinforcement learning from Human Feedback (RLHF) plays a vital role in the success of
autoregressive LLMs like InstructGPT (Ouyang et al., 2022), which utilizes human feedbacks on
model generation and to train a reward model, and use it to align the LLMs with human intention
through PPO reinforcement learning technique (Schulman et al., 2017).

2.2 LENGTH CONTROL FOR TEXT GENERATION

Length control is an important ability for text generation, especially for tasks with a large variance of
output length, such as writing an article within a given length or summarizing texts using a desired
range of number of words/tokens. Early work (Fan et al., 2018) on controlling lengths in abstractive
summarization quantizes summary length into discrete bins, and expands the input vocabulary with
special tokens to indicate the length bins of the ground-truth summary during training. Liu et al.
(2018) extends a convolutional sequence to sequence model to control the length of summarization.
To generate summaries of any desired length, a length constrain factor is added to each convolu-
tional block of the initial layer. Takase and Okazaki (2019) proposes an extension of a sinusoidal
positional encoding to enable neural encoder-decoder model to generate a text of any desired length.
GOLC (Makino et al., 2019) dedicates to increase the probabilities of generating a high quality
summary within a desired length by using minimum risk training. LenAtten (Yu et al., 2021) in-
troduces a length attention unit to break the trade-off between length controllability and summary
quality. LAAM (Liu et al., 2022) modifies the attention matrix based on length-budget dynamically
during the decoding process. Generally, we notice that existing length control approaches can not be
directly applied for control targets other than “equal to” a certain length, and are in lack of focusing
on prompt-based method for the most recent trend of GPT-style LLMs.

2

3 METHOD

This study aims to investigate the length-controlled generation in LLMs, particularly for summa-
rization, for which we propose a prompt-based method with the use of reinforcement learning and
sample filtering. We first introduce the whole architecture and then discuss each component of it.

3.1 MODEL ARCHITECTURE

Figure 1: Overview of the model architecture. In training
stage, the scores given by the reward model are used for the
reinforcement learning method. In inference stage, the scores
are applied for ranking and selecting the output sequences
generated by LLMs.

The architecture of our model is
given in Figure 1. The original
user utterances may involve the con-
trol instruction on length constraint,
which differs from factual and se-
mantic information in terms of that
it can be evaluated with rule-based
methods. For instance, if we can
somehow understand user intention
on length constraint, we can set up
this rule for ranking and selecting
generated candidates. Therefore, we
introduce a standard prompt extrac-
tor (SPE) to parse the information
of length constraint from user utter-
ance and thus generate a standard
length control prompt. This stan-
dard prompt includes different types
of length constraint and can be fur-
ther applied for rule-based inference
and evaluation (See Section 3.3).

As shown in Figure 1, the user utter-
ance is passed through both a SPE
and LLMs like GPT-family (Brown

et al., 2020; OpenAI, 2023), PALM (Chowdhery et al., 2022; Anil et al., 2023), LLaMA (Touvron
et al., 2023), Pangu (Ren et al., 2023), Ernie (Sun et al., 2019; 2020), etc. LLMs are the core modules
that generate an output sequence according to the user utterance. The reward model takes both the
standard control prompt (SCP) and generated sequence as input, and outputs a score to evaluate how
well the generated sequence meets the requirement of this control prompt (See Section 3.2). The
score can be applied as the reward signal in reinforcement learning method to fine-tune LLMs (See
Section 3.4), or be applied to rank and select the generated sequences in inference (see Section 3.5).

3.2 REWARD MODEL

Standard Control
Prompt

Reward

more than Lt −ReLU(Lt − Lg)
less than Lt −ReLU(−Lt + Lg)
equal to Lt −|Lt − Lg|
between LL and LU −(ReLU(LL − Lg) +

ReLU(Lg − LU))

Table 1: Standard control prompts (SCPs) with corre-
sponding reward functions.

To evaluate whether the generated text
meets the requirement of length con-
trol instruction, we introduce a reward
model to score the generated sequences
based on the length constraint in user ut-
terances. This score can be used as a re-
ward for fine-tuning existing LLMs by
leveraging reinforcement learning, or be
used to rank and select the candidates
generated by LLMs. We propose rule-
based reward models, in which we use
a SPE to parse each user utterance and

get its type of length constraint and target values as described in Table 1 and Section 3.3. Using the
actual length of the output sequence, we can finally calculate the rewards based on the right column
of Table 1, where Lt, LL, LU and Lg refer to the target length, the lower-bound length, the upper-
bound length and the actual generated length, respectively. The advantage of rule-based method is
that it provides the accurate evaluation on lengths given the SCP, while the latency is almost negli-

3

gible compared with using BERT or GPT models for scoring. However, it relies on extracting exact
standard control information from the user’s input. We also discuss the use of model-based reward
models in Appendix A.5.3.

3.3 STANDARD PROMPT EXTRACTOR

Figure 2: The demonstration of Standard Prompt Extractor (SPE). The generative type of models are
trained to output the standard control prompts (SCPs) directly (left), while the discriminative type
of models are trained to predict the type of each control instruction, as well as the requested number
of lengths from user utterance, such as the minimum value and the maximum value (right).

As above discussed, to get SCPs for applying rule-based reward model to score the generated se-
quences in RL and sample filtering, we introduce standard prompt extractor (SPE). It takes a user
utterance as input, and outputs the SCP if exists. This standard prompt consists of a basic descrip-
tion of what length constraint should be satisfied. As is shown in Figure 2, the prompt extractor can
be a generative model such as GPT, in which case the extractor is trained directly to generate the
full SCP as is shown by Figure 2 (left). The final control signal can be parsed into Lt, LU and LL

as in Table 1. We can also use a discriminative model such as BERT, as the prompt extractor, in
which case it is required to predict the type of SCP and the target numbers involved, as is shown in
Figure 2 (right). In this case, we prepend three [CLS] tokens at the beginning of the input. Three
linear projection layers with different output sizes (i.e., number of types of control instruction, num-
ber of possible minimum values, number of possible maximum value) map the three top vectors of
[CLS] tokens to fill in the type, minimum value and maximum value of a standard prompt tem-
plate. Therefore, we have three classification targets based on the three top vectors for predicting
the ground truth of SCP. Also, we can just use the minimum and maximum target values without
type information, where two [CLS] tokens and corresponding linear projections are needed.

3.4 REINFORCEMENT LEARNING FOR LENGTH CONTROL FINE-TUNING

We apply a modified PPO method with actor-critic setting (Grondman et al., 2012; Bahdanau et al.,
2017; Schulman et al., 2017). Since evaluating the generated length does not depend on the input
article, both the reward model and critic model only take the concatenation of the SCP and the
generated text as input. As the reward for length control can only be determined after the end of
generation, we only calculate the reward and advantage with the final output. Assume πθ(a|s) is a
stochastic policy given by the GPT model, where θ is the trainable parameter, s is the whole input
sequence, and a is the finally generated sequence. The original policy gradient (PG) applied the loss
function given by Equation 1.

LPG(θ) = −ÊD[log πθ(a|s)Â], (1)

where ÊD[.] is the empirical average over a finite batch of samples from dataset D. Â is an estimator
of the advantage function at the end of generation. For the actor-critic case, we set Â = R(s′, a)−
V̂ϕold

(s′, a), where R(.) is the reward model, V̂ϕold
(s′, a) is the expect value from the critic model

of the last step. Note that the value and reward only depend on the standard control prompt s′ and
the generated sequence a. However, the original PG empirically often leads to a large policy update

4

and thus instability during fine-tuning. Therefore, both the trust region method (TRPO) (Schulman
et al., 2015) and Proximal Policy Optimization (PPO) (Schulman et al., 2017) use the probability
ratio r(θ) = πθ(a|s)

πθold
(a|s) instead of log πθ(a|s) in Equation 1. PPO utilizes a clipped surrogate

objective given by Equation 2 to stabilize the policy updates and ensure that the probability ratio
term is bounded between [1− ϵ, 1 + ϵ].

LCLIP (θ) = −ÊD[min(r(θ)Â,Clip(r(θ), 1− ϵ, 1 + ϵ)Â)]. (2)

To ensure sufficient exploration, we follow the PPO method (Schulman et al., 2017) to introduce an
entropy term S = 1

n

∑
πθ(a|s) log(πθ(a|s)), in which the average is taken across the vocabulary

dimension. In addition, we add a penalty for large KL divergence between the current and old
stochastic policy distributions (i.e. πθ and πθold). Therefore, the total policy loss to be optimized
can then be rewritten as:

LCLIP+S+KL(θ) = ÊD[LCLIP (θ)− cS[πθ|(s)] + βDKL(πθ|πθold)], (3)

where c, β are coefficients, DKL(πθ|πθold) is the KL-divergence between the old and current ac-
tion probability distributions. To avoid the performance loss for downstream task, we add an ex-
tra terms of SFT loss from the same batch of labeled data on the actor’s policy loss: LA(θ) =
LCLIP+S+KL(θ) + λLSFT (θ), where λ is a tunable hyper-parameter. Meanwhile, we optimize a
value loss LV F = (Vϕ(s

′, a)− R̂)2. The detailed algorithm is given in Appendix A.

3.5 INFERENCE & SAMPLE FILTERING

In the inference stage, the well fine-tuned LLMs can directly process user utterances and generate
a sequence following the expected length control instructions of user intention. This relies on the
generalization ability of the model if the control information in the user input is in diverse expres-
sions. In another word, our proposed prompt extractor serves as an important role to parse the SCP
to benefit the latter RL fine-tuning. Based on this, we can apply either trainable or rule-based re-
ward model to score, rank and select from a set of generated samples in beam sampling, which is
named as sample filtering in our method. Let k = argmaxi R(s′, ai), where R is the reward model,
ai is the ith sequence in all N output sequences, then a a = ak is selected to be the final output
sequence. Thereafter, the selected sequence can be used for both the RL fine-tuning phase and the
final evaluation to judge to what extent the length control ability can be achieved in existing LLMs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We perform experiments on two popular summarization datasets including CNNDM (Hermann
et al., 2015) and NYT (Durrett et al., 2016). CNNDM contains news articles from the CNN and
Daily Mail websites, with labelled abstractive and extractive summaries. There are 287,226 training
samples, 13,368 validation samples and 11,490 test samples. NYT contains 110,540 articles with
abstractive summaries from New York Times. We follow its paper to split the original dataset into
100,834 training and 9,706 test examples. This following subsections explain how to train and use
different modules of our method. We leave the detailed setting of hyper-parameters in Appendix A.4.

4.1.1 DATA PROCESSING AND AUGMENTATION

We design a set of SCPs, including five types of control instructions: “more than **
tokens”, “less than ** tokens”, “equal to ** tokens”, “between ** and
** tokens” and “none”. “**” means the expected length value of user intention, and “none”
means no length constraints. For each type, we randomly sample a target summary length from 50
tokens to 150 tokens based on the general news summary length, and fill these lengths into “**”
field of a randomly sampled SCP. For further simulate real user utterances with length control inten-
tion, about 10-20 different augmented prompt templates are applied for each SCP. The examples of
templates are shown in Figure 2 and Appendix A.3. Finally, we can create augmented input data by
replacing the placeholders in the augmented templates with target numbers and original articles.

5

4.1.2 TRAINING OF STANDARD PROMPT EXTRACTOR

As discussed in Section 3.1, we train two types of models, i.e., generative and discrimina-
tive models, to serve as a standard prompt extractor. In particular, we fine-tune a GPT-style
model (GPT2-small) as a generative extractor and a BERT-small model as a discriminative ex-
tractor. Both pre-trained checkpoints are obtained from huggingface (Wolf et al., 2019). We
use the augmented input data as discussed in Section 4.1.1. To make it clear, we use the orig-
inal articles of CNNDM and NYT, and first sample a SCP for each article, and then sample
an augmented prompt template from a pre-designed set. Next, we randomly assign the tar-
get length values between 50 and 150 to each article to form the finalized augmented template.
Each original article associated with its augmented template serves as input data, and its corre-
sponding SCP serves as the expected prediction, to finally train the standard prompt extractor.

Extractor Acc. Acc. Gen.
BERT-base-cls-2 100.0 100.0
BERT-base-cls-3 99.7 99.8

GPT-small 97.7 97.5

Table 2: Evaluation on the accuracy and
generalization of standard prompt extrac-
tors (SPEs). “cls-2” and “cls-3” refer to
only predicting the minimum and maxi-
mum values, or predicting the control type
as well. The “Acc. Gen.” column denotes
the generalization performance of SPE on
unseen prompt templates in test set.

Experimental results on evaluating SPEs are given in
Table 1. “Acc.” is the prediction accuracy on test
set, and “Acc. Gen.” means we apply 30% of ran-
domly sampled augmented control prompts as out-of-
sample templates for evaluation, and only train the
SPE model on the remaining 70% templates. Re-
sults show that BERT-base-cls-2 models can be trained
to achieve 100.0% test accuracy for extracting SCPs,
and it also generalizes well for out-of-sample control
prompts that are not used in training. The accuracy
of GPT-small is relatively lower, which may because
fully matching the whole generated text strings is more
difficult than extracting the key values. Details of the
learning curves are provided in Appendix A.6. In gen-
eral, we believe well selected extra extraction module
does not introduce much noise or accuracy loss in end-

to-end implementation with rule-based reward models. We use BERT-base-cls-2 discriminative ex-
tractor in later experiments to get clear and accurate minimum and maximum target values.

4.1.3 SUPERVISED FINETUNING OF GPT MODELS

To build the baseline summarization model with length control ability, we apply three pre-trained
GPTs with 124M, 355M and 774M parameters from Huggingface, denoted as GPT-S, GPT-M, GPT-
L, respectively. We experiment on two types of control settings. The first one is single-type control,
where we only consider the strict SCP of “equal to”. In details, for each example we randomly
sample a augmented control prompt under the type of “equal” and replace the text placeholder with
the input text and replace the length placeholder with the real text length of reference summary.
The second setting is multiple-type control, in which we randomly split the original dataset into
four parts, and each is augmented with one type of SCP. We then compare the real text length
of each reference summary with one (for “less than **” or “more than **”) or two (for
“between ** and **”) randomly sampled target lengths between 50 and 150. Similar to the
single-type control, we replace “**” with the corresponding sampled length. Finally, we perform
SFT on the labelled data to enable pre-trained GPTs to summarize texts with a length control ability.

4.1.4 FINETUNING WITH REINFORCEMENT LEARNING

Based on the supervised fine-tuned LLMs in the above, we propose to further improve the accuracy
of length control via reinforcement learning with the PPO method described in Section 3.4. We
consider two settings to generate the reward. The first is to process the augmented inputs with SCP
and use a rule-based reward model based on the extracted standard control information, the second
is to apply a trainable reward model. Exploratory experiments show that actor-critic generally works
better than actor-only as shown in Table 14 in Appendix, thus in the main experiments we use actor-
critic setting. We apply AdamW optimizers with β1 = 0.9, β2 = 0.999 for both the actor and critic
(if applied) model, while the learning rate is set to 3e-7 for actor model and 3e-4 for critic model
(if applied). No learning rate schedule is used, and weight decay is set to 0. For each iteration, the
policy is run for every 512 samples to estimate the reward and value. In surrogate optimization of

6

each iteration, we set the epoch number to 16 and the mini-batch size to 8. The clipping parameter
ϵ in Equation 2 is 0.2, weights parameters in Equation 3 is set to c = 0.01 and β = 0.1.

4.2 RESULTS

Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

GPT-S

Prompt 37.57 15.30 37.74 62.47 11.62 47.48 29.27 42.36 67.86 13.33
Prompt+RL 37.44 15.02 39.05 62.10 7.81 47.59 29.41 42.66 67.82 11.92

Prompt+filter 38.20 16.02 37.31 61.96 10.44 48.37 30.83 42.72 67.96 10.30
Prompt+RL+filter 37.56 15.85 38.47 61.53 6.22 48.31 30.94 42.82 67.98 9.55

GPT-M

Prompt 38.05 16.15 37.81 62.93 14.31 48.34 30.53 43.11 68.54 5.12
Prompt+RL 37.73 15.98 38.07 62.62 11.57 48.86 31.19 43.98 69.09 4.47

Prompt+filter 38.18 16.55 37.14 62.32 12.60 48.53 30.95 43.33 68.55 2.12
Prompt+RL+filter 37.91 16.33 36.97 62.23 11.33 48.76 31.09 43.38 68.80 1.60

GPT-L

Prompt 40.27 17.33 39.67 63.96 12.20 49.98 32.43 44.65 69.44 5.89
Prompt+RL 39.49 16.42 39.02 63.38 9.84 49.12 30.86 43.59 69.03 5.54

Prompt+filter 39.52 17.33 38.64 63.22 11.57 47.22 31.77 43.29 69.02 5.76
Prompt+RL+filter 39.75 17.18 38.60 63.15 8.96 49.82 31.68 42.48 68.72 3.29

Table 3: Comparison of methods in the setting of single-type control instruction, i.e., “equal to”.

Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

GPT-S

Prompt 37.76 15.58 38.05 62.32 18.16 47.22 29.47 42.01 67.76 31.15
Prompt+RL 37.52 15.31 38.79 62.42 14.29 47.30 29.84 42.36 67.81 10.53

Prompt+filter 38.04 16.29 37.12 62.05 10.57 47.88 30.55 42.50 67.87 8.06
Prompt+RL+filter 37.48 16.01 37.20 61.88 7.06 47.84 30.43 42.26 67.54 3.89

GPT-M

Prompt 38.85 15.93 38.48 63.02 21.32 48.34 30.74 43.64 68.75 13.17
Prompt+RL 38.30 15.89 39.29 62.90 6.59 48.23 30.58 43.61 68.67 12.61

Prompt+filter 38.85 17.29 37.68 62.48 11.21 49.73 32.65 44.55 69.00 6.75
Prompt+RL+filter 37.83 16.89 37.20 61.91 4.98 49.41 32.18 44.05 68.40 3.65

GPT-L

Prompt 38.27 16.37 38.92 63.09 6.89 49.41 32.20 44.31 69.36 10.64
Prompt+RL 38.23 16.42 38.86 63.06 6.62 49.35 32.24 44.31 69.27 8.52

Prompt+filter 38.75 16.85 38.23 62.85 3.34 50.04 32.65 44.35 69.48 4.82
Prompt+RL+filter 38.70 16.52 38.39 62.98 3.22 50.01 32.52 44.14 69.51 4.60

Table 4: Comparison of methods in the setting of multiple-type control, in which we consider all the
four candidate types of control instructions, as shown in Table 1.

4.2.1 MAIN RESULTS

As Table 3 shows, we compare models with four different settings for prompt-based length con-
trol, including (1) Prompt: use GPTs after prompt-based SFT in Section 4.1.3 to control the
output length; (2) Prompt+RL: the GPTs used in (1) but further enhanced with reinforcement
learning; (3) Prompt+filter: the LLM in (1) but equipped with sample filtering; and (4)
Prompt+RL+filter: the enhanced GPTs with both RL and sample filtering, which is a com-
bination of (2) and (3). Other existing methods such as LenAtten and LAAM (Yu et al., 2021;
Liu et al., 2022) apply different length distributions and base models, and are not adaptive to prompt
based length control with multi-type control instructions for GPTs. Thus, we do not report the results
in their papers for comparison. For evaluation, we apply relevance scores including F1 of Rouge
Scores (ROUGE, 2004) (denoted as “R1”, “R2”, “RL”) and BertScore (Zhang et al., 2019) (denoted
as “B.S”), and control error (denoted as “Error”) which is the negative reward in Table 1 representing
the average difference between the output length and the desired range. We select the checkpoint
with the lowest validation control error and less than 1 point’s drop of BERTScore for evaluation on
the test set. For all methods with sample filtering, we set the number of output sequences to 8, and
select the one with the highest reward. Results of the single-type control that only considers “equal
to” are given in Table 3, while the results of multi-type control using augmented input with all the
SCPs (see Table 1) are presented in Table 4. Note that Rouge scores and BERTScore can be less

7

than the general state-of-the-art summarization models without random sampled target length, since
the length sampling distributions can be very different from the reference summaries. In fact, the
mean and standard deviation of the labelled summary lengths are 71 and 28 tokens respectively for
CNNDM, 104 and 35 tokens for NYT. The difference of control errors for two datasets may partly be
due to this length distribution. Overall, we can see that for all settings, the proposed RL method can
provide an improvement of length control ability with lower control errors. By further using sam-
ple filtering supported by the rule-based reward model, both the basic prompt-based length control
model Prompt+filter and the one with RL enhancement Prompt+RL+filter can achieve
lower control errors than not using sample filtering like the method (1) and (2). After checking the
learning curves (see Appendix A.7), we also find that the relevance metric BertScore indeed does
not have a clear decrease trend in early stage as the validation reward increases.

4.3 COMPARING OF DIFFERENT CONTROL TYPES

Control Setting R1 R2 RL B.S. Error↓

Equal

Prompt 38.1 15.7 38.9 62.6 26.1
+RL 35.7 14.6 38.7 61.9 13.6
+filter 37.9 16.3 37.4 61.9 12.5
+RL+filter 37.6 16.1 38.2 62.2 8.4

Less

Prompt 37.1 14.7 36.6 61.9 0.5
+RL 37.4 14.8 37.0 62.1 0.4
+filter 36.9 15.7 35.9 61.1 0.2
+RL+filter 36.9 15.7 35.9 61.1 0.2

More

Prompt 38.0 15.4 37.8 62.4 41.9
+RL 35.8 14.8 38.9 61.8 13.8
+filter 38.5 16.4 37.6 62.1 23.1
+RL+filter 37.4 16.3 37.9 62.2 6.0

Between

Prompt 36.4 15.0 38.7 62.0 5.8
+RL 36.1 15.0 39.0 61.8 4.5
+filter 38.1 16.4 37.4 62.1 1.2
+RL+filter 37.9 16.3 37.4 62.0 1.1

Table 5: Comparison of four control types in the
multiple-type control setting using GPT-S on CNNDM.

We de-construct the setting of multiple-
type control and thus evaluate the ef-
fect of our proposed method on each
particular control type. Results on CN-
NDM are given in Table 5. Note that
here we apply the SFT on GPT-small
model for multiple-type control setting
as like Table 4, so the errors of type
“equal to” can be different from Ta-
ble 3. Therefore, in this ablation study,
the baseline Prompt gets a higher con-
trol error due to that it involves multi-
ple control types and owns a more com-
plex training goal. In general, our pro-
posed methods bring a significant im-
provement of length control accuracies
(i.e., Error) for all the four control types.
Moreover, some insightful findings can
be obtained from Table 5. As the aver-
age length of labelled summary in CN-
NDM (71 tokens) is much less than the
average of sampled target lengths, i.e.,
100 tokens, therefore, to generate with

“more than” a sampled target length is harder than “less than” for all candidate methods.
However, the Prompt+RL+filter can still provide a significantly large improvement on the con-
trol type of “more than”, by reducing the Error from 41.9 to 6.0. In the case of “less than”
with sample filtering, the RL method does not further reduce the validation error as it is already quite
low, thus the default checkpoint is always selected even after RL fine-tuning. We also provide this
ablation study on NYT in Table 13 in Appendix, and similar results and insights can be observed.

4.4 GENERALIZATION TO OUT-OF-SAMPLE PROMPT TEMPLATES

Type Setting R1 R2 RL B.S. Error↓

SG
Baseline 37.6 15.3 37.7 62.5 11.6
In-sample 37.4 15.0 39.1 62.1 7.8
Out-sample 36.7 15.0 39.1 61.3 8.0

MU
Baseline 37.8 15.6 38.1 62.3 14.7
In-sample 37.5 15.3 38.8 62.4 8.9
Out-sample 37.9 15.7 38.9 62.5 9.6

Table 6: Generalization to out-of-sample control
prompt templates of GPT-S on CNNDM.

To evaluate if the tuned model can general-
ize to unseen prompt templates of length
control, we conduct an extra experiment
by tuning on a 70% subset of prompt tem-
plates randomly sampled from Table 8, and
check the generalization performance of
the model on test data with the rest un-
seen prompt templates. The results are
give in Table 6, where the difference be-
tween “In-sample” and “Out-sample” set-
ting is if an out-of-sample set of control
prompt templates in Table 8 are applied for
augmenting the test dataset in CNNDM.

8

We notice that in some cases, there is a
slight performance degradation on out-of-sample prompt templates, but the length control ability
is still significantly better than baseline prompt-based method. This demonstrates that the propose
method has strong generalization ability to novel prompt templates. We believe with a larger set of
prompt templates in training, the generalization power can still be largely improved.

4.5 COMPARING OF DIFFERENT REWARD MODELS

Setting R1 R2 RL B.S. Error↓
Prompt 37.4 15.2 37.6 62.3 11.9
+RL (Rule) 37.3 14.9 38.9 61.8 7.4
+RL (GPT) 37.7 14.9 38.2 62.0 9.3
+RL (BERT) 37.4 15.0 38.3 70.2 9.1

+filter 38.3 16.1 37.4 61.9 10.5
+RL+filter (Rule) 37.3 15.7 38.7 61.2 6.3
+RL+filter (GPT) 37.1 15.7 37.9 61.5 8.8
+RL+filter (BERT) 36.6 15.1 37.0 69.2 7.8

Table 7: Results by using different types of reward mod-
els (Rule-based; GPT; BERT) for our method in the
single-type control setting (“equal to”). GPT-S and
CNNDM are used.

We further perform an empirical study
to compare the performance of rule-
based reward model and other train-
able reward models including BERT-
large and GPT-medium. For BERT, we
map the [CLS] token vector to a sin-
gle score value via a linear projection
layer. For GPTs, we add a linear pro-
jection layer on top of the last token
vector to predict the score. The train-
ing is to minimize the Mean Squared
Error (MSE) loss between the predicted
scores and the labelled scores for length
control. We build a simulated dataset
with 100,000 examples using the orig-
inal CNNDM and NYT datasets by
concatenating sampled standard control
prompts with randomly sampled target lengths from 50 to 150 and the summaries from the labels.
The score labels are then calculated by comparing the real lengths of labeled summaries and the sam-
pled control prompts by using Table 1. Then we fine-tune the pre-trained GPT-medium or BERT-
large (from Huggingface) as the trainable reward models to predict the reward labels by minimizing
MSE losses. We consider the single-type control setting and apply the modified PPO algorithm
with the above reward models to fine-tune GPT-small models to perform length-control summa-
rization on the augmented data based on CNNDM. Experimental results on the selected checkpoint
with the best control accuracy for each setting are shown in Table 7. We observe that all of three
settings using reinforcement learning achieve a significantly lower control error than the baseline
model only using the prompt-based strategy (i.e., Prompt) on CNNDM. In addition, the setting
of reinforcement learning with rule-based reward model, i.e., Prompt+RL(Rule), generally out-
performs other models in terms of control error. It validates the effectiveness of rule-based reward
models in the RL fine-tuning. Extra results on NYT show that the GPT-based reward model can
slightly outperform the BERT-based one. The details are provided in Table 16 in Appendix.

5 CONCLUSION

The paper proposes a method for improving the length control ability of GPT-style LLMs, espe-
cially for the domain of text summarization, due to that this task usually has a larger variance of
output lengths and more standard automatic metrics than other alternatives. The standard prompt
extractor and the rule-based reward model are introduced to provide an accurate control signal for
both fine-tuning and inference. A modified PPO algorithm with a state space particularly designed
for length control is applied for enhancing the length controlled generation. The method is shown to
be effective for three GPTs with different sizes on both CNNDM and NYT summarization datasets.
Compared to the baseline method using prompt-based strategies on GPTs, our method achieves
a significant improvement in terms of control accuracy. Moreover, it can process diverse length-
control prompts with strong generalization power to new prompt templates, which is not well han-
dled by existing length control methods. Our method can be applied in a variety of LLMs to improve
the user experience by outputting the text with a desired length. We believe for other format control
(e.g., rhyme scheme in a poem or song) that can be somehow evaluated or scored by a rule-based
reward model, our proposed method can also be applied. Meanwhile, the limitation of our method
is that it does changes the parameters of the pretrained models, which may result in a risk of per-
formance loss in some cases. Well designed in-context learning or introducing adaptors particularly
tuned for length control may be potential solutions for this.

9

REFERENCES

R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey,
Z. Chen, et al. Palm 2 technical report. arXiv:2305.10403, 2023.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep reinforcement learning:
A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An
actor-critic algorithm for sequence prediction. In International Conference on Learning Repre-
sentations (ICLR), 2017.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee,
Y. Li, S. Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4.
arXiv:2303.12712, 2023.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways.
arXiv:2204.02311, 2022.

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learn-
ing from human preferences. Advances in Neural Information Processing Systems (NeurIPS),
2017.

Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and Z. Sui. A survey for
in-context learning. arXiv:2301.00234, 2022.

G. Durrett, T. Berg-Kirkpatrick, and D. Klein. Learning-based single-document summarization with
compression and anaphoricity constraints. In Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2016.

A. Fan, D. Grangier, and M. Auli. Controllable abstractive summarization. In Proceedings of the
2nd Workshop on Neural Machine Translation and Generation, pages 45–54, 2018.

T. Goyal, J. J. Li, and G. Durrett. News summarization and evaluation in the era of gpt-3.
arXiv:2209.12356, 2022.

I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska. A survey of actor-critic reinforcement
learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), 42(6):1291–1307, 2012.

P. Gupta, J. P. Bigham, Y. Tsvetkov, and A. Pavel. Controlling dialogue generation with semantic ex-
emplars. In North American Chapter of the Association for Computational Linguistics (NAACL),
pages 3018–3029, 2021.

K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom.
Teaching machines to read and comprehend. Advances in Neural Information Processing Systems
(NeurIPS), 2015.

N. Jaques, J. H. Shen, A. Ghandeharioun, C. Ferguson, A. Lapedriza, N. Jones, S. Gu, and R. Pi-
card. Human-centric dialog training via offline reinforcement learning. In Empirical Methods in
Natural Language Processing (EMNLP), 2020.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research (JAIR), 4:237–285, 1996.

S. Kiegeland and J. Kreutzer. Revisiting the weaknesses of reinforcement learning for neural ma-
chine translation. In North American Chapter of the Association for Computational Linguistics
(NAACL), 2021.

10

J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao. Deep reinforcement learning for
dialogue generation. In Empirical Methods in Natural Language Processing (EMNLP), 2016.

B. Liu, H. Wei, D. Niu, H. Chen, and Y. He. Asking questions the human way: Scalable question-
answer generation from text corpus. In Proceedings of The Web Conference 2020, pages 2032–
2043, 2020.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-train, prompt, and predict: A sys-
tematic survey of prompting methods in natural language processing. ACM Computing Surveys,
55(9):1–35, 2023a.

Y. Liu, Z. Luo, and K. Zhu. Controlling length in abstractive summarization using a convolutional
neural network. In Empirical Methods in Natural Language Processing (EMNLP), 2018.

Y. Liu, Q. Jia, and K. Zhu. Length control in abstractive summarization by pretraining information
selection. In Annual Meeting of the Association for Computational Linguistics (ACL), 2022.

Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li, M. He, Z. Liu, et al. Sum-
mary of chatgpt/gpt-4 research and perspective towards the future of large language models.
arXiv:2304.01852, 2023b.

T. Makino, T. Iwakura, H. Takamura, and M. Okumura. Global optimization under length con-
straint for neural text summarization. In Annual Meeting of the Association for Computational
Linguistics (ACL), 2019.

M. Mirshekari, J. Gu, and A. Sisto. Conquest: Contextual question paraphrasing through answer-
aware synthetic question generation. In Proceedings of the Seventh Workshop on Noisy User-
generated Text (W-NUT 2021), pages 222–229, 2021.

K. Nguyen, H. Daumé III, and J. Boyd-Graber. Reinforcement learning for bandit neural machine
translation with simulated human feedback. In Empirical Methods in Natural Language Process-
ing (EMNLP), 2017.

OpenAI. Gpt-4 technical report, 2023.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems (NeurIPS), 2022.

R. Y. Pang and H. He. Text generation by learning from demonstrations. In International Conference
on Learning Representations (ICLR), 2021.

R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive summarization. In
International Conference on Learning Representations (ICLR), 2018.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by
generative pre-training. OpenAI blog, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Ex-
ploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research (JMLR), 21(1):5485–5551, 2020.

R. Ramamurthy, P. Ammanabrolu, K. Brantley, J. Hessel, R. Sifa, C. Bauckhage, H. Hajishirzi, and
Y. Choi. Is reinforcement learning (not) for natural language processing?: Benchmarks, baselines,
and building blocks for natural language policy optimization. In International Conference on
Learning Representations (ICLR), 2023.

X. Ren, P. Zhou, X. Meng, X. Huang, Y. Wang, W. Wang, P. Li, X. Zhang, A. Podolskiy, G. Arshinov,
A. Bout, I. Piontkovskaya, J. Wei, X. Jiang, T. Su, Q. Liu, and J. Yao. Pangu-Σ: Towards trillion
parameter language model with sparse heterogeneous computing, 2023.

11

L. C. ROUGE. A package for automatic evaluation of summaries. In Proceedings of Workshop on
Text Summarization of ACL, 2004.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
International Conference on Machine Learning (ICML), 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano. Learning to summarize with human feedback. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020.

Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu, H. Tian, and H. Wu. Ernie:
Enhanced representation through knowledge integration. arXiv:1904.09223, 2019.

Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang. Ernie 2.0: A continual pre-training
framework for language understanding. In Proceedings of the AAAI conference on artificial intel-
ligence (AAAI), pages 8968–8975, 2020.

S. Takase and N. Okazaki. Positional encoding to control output sequence length. In North American
Chapter of the Association for Computational Linguistics (NAACL), 2019.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and
efficient foundation language models, 2023.

X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and Q. Miao. Deep reinforcement
learning: a survey. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv:1910.03771, 2019.

J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe, J. Leike, and P. Christiano. Recursively
summarizing books with human feedback. arXiv:2109.10862, 2021.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv:1609.08144, 2016.

Z. Yu, Z. Wu, H. Zheng, Z. XuanYuan, J. Fong, and W. Su. Lenatten: An effective length con-
trolling unit for text summarization. In Findings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2021.

C. Zhang, C. Zhang, S. Zheng, Y. Qiao, C. Li, M. Zhang, S. K. Dam, C. M. Thwal, Y. L. Tun, L. L.
Huy, et al. A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?
arXiv:2303.11717, 2023.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text generation
with bert. In International Conference on Learning Representations, 2019.

Y. Zhang, X. Zhang, X. Wang, S.-q. Chen, and F. Wei. Latent prompt tuning for text summarization.
arXiv:2211.01837, 2022.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, et al.
A survey of large language models. arXiv:2303.18223, 2023.

L. Zhou, K. Small, O. Rokhlenko, and C. Elkan. End-to-end offline goal-oriented dialog policy
learning via policy gradient. arXiv:1712.02838, 2017.

12

A APPENDIX

A.1 ALGORITHM FOR LENGTH CONTROLLED FINE-TUNING WITH OUR MODIFIED PPO

Following the explanations in Section 3.4, we further provide an algorithm table for our modified
PPO fine-tuning in Algorithm 1.

Algorithm 1: Algorithm for controlled fine-tuning with modified PPO
1: Get a pretrained GPT model to initialize the policy network πθold(a|s).
2: Initialize critic network Vϕ(s

′, a).
3: Initialize hyper-paramaters Niteration, M , B, nepoch, c, β.
4: for i<=1,...,Niteration do
5: for j=1,...,M do
6: Get an input sequence s0 augmented with random sampled augmented control prompt

from the data-loader.
7: Run SPE to get the SCP s′ from the input sequence.
8: Run policy πθold(a|s) for an input sequence with augmented control prompt s to get an

output sequence a, policy πθold .
9: Get the reward of output sequence a with reward model r = r(s′, a).

10: Store input s, SCP s′, generate sequence a, reward r and old policy πθold into memory.
11: end for
12: for e=1,...,nepoch do
13: for b=1,...,B do
14: Take the b-th mini-batch (s′, a, r, πθold) from the memory.
15: Use the actor and critic networks to get the new policy and value πθ(a|s), Vϕ(s

′, a).
16: Compute the ratio r(θ) = πθ(a|s)

πθold
(a|s) .

17: Compute advantage estimate Â = r − Vϕold
(s′, a).

18: Compute LCLIP with Equation 2.
19: Compute the KL-divergence DKL(πθ|πθold).
20: Compute the Entropy S[πθ|(s)].
21: Compute the actor loss LA

θ with Equation 3.
22: Update the policy network parameters θ with gradients of LA

θ .
23: Compute the value loss LV

ϕ = MSE(Vϕ(s
′, a), r).

24: Update the critic network parameters ϕ with gradients of LV
ϕ .

25: end for
26: end for
27: end for
28: return θ

A.2 DETAILS FOR DATASETS

CNNDM contains news articles from the CNN and Daily Mail websites, with labelled abstrac-
tive and extractive summaries. There are 287,226 training samples, 13,368 validation samples and
11,490 test samples. NYT contains 110,540 articles with abstractive summaries from New York
Times. We follow its paper to split the original dataset into 100,834 training and 9,706 test exam-
ples. When GPT-2 tokenizer is applied, the labeled summaries in CNNDM have an average length
of 71 tokens with a standard deviation of 28 tokens, while the labeled summaries in NYT have an
average length of 104 tokens with a standard deviation of 28 tokens.

A.3 EXAMPLES OF STANDARD CONTROL PROMPT AND AUGMENTED CONTROL PROMPT
TEMPLATES

The SCPs and corresponding augmented prompt templates for generating the augmented input with
length control information are given in Table 8. In the experiments, we use the augmented prompts

13

to train and evaluate the standard prompt extractor. For reward models and generation models, SCPs
can be considered as available given a high-performing standard prompt extractor.

Equal Less More Between

summarize "*" with length ? summarize "*" with length
smaller than ?

summarize "*" with length
larger than ?

summarize "*" with length
between ! and ?

summarize the following doc-
ument with length ?: "*" ’

summarize the following doc-
ument with length smaller
than ?: "*"

summarize the following doc-
ument with length larger than
?: "*"

summarize the following doc-
ument with length between !
and ?: "*"

Summarize with exactly ? to-
kens: *’

Summarize with less than ?
tokens: *

Summarize with more than ?
tokens: *

Summarize with between !
and ? tokens: *

I want a summary of "*" with
exactly ? Tokens

I want a summary of "*" with
less than ? Tokens

I want a summary of "*" with
more than ? Tokens

I want a summary of "*" with
between ! and ? Tokens

Give me a summary with ? to-
kens from "*"’

Give me a summary with less
than ? tokens from "*"

Give me a summary with
more than ? tokens from "*"

Give me a summary with be-
tween ! and ? tokens from "*"

Please summarize "*" with
exactly ? Tokens

Please summarize "*" with
less than ? Tokens

Please summarize "*" with
more than ? Tokens

Please summarize "*" with
between ! and ? Tokens

Write a summary of "*" with
exactly ? Tokens

Write a summary of "*" with
less than ? Tokens

Write a summary of "*" with
more than ? Tokens

Write a summary of "*" with
between ! and ? Tokens

summarize "*" with ? tokens
for me

summarize "*" with less than
? tokens for me

summarize "*" with more
than ? tokens for me

summarize "*" with between !
and ? tokens for me

Please give me a summary of
"*" with ? Tokens

Please give me a summary of
"*" with less than ? Tokens

Please give me a summary of
"*" with more than ? Tokens

Please give me a summary of
"*" with between ! and ? To-
kens

I need a summary of length ?
for "*"

I need a summary of length ?
for "*"

I need a summary of length ?
for "*"

I need a summary of length
between ! and ? for "*"

generate a summary for "*"
with length ?

I need a summary of length
less than ? for "*"

I need a summary of length
larger than ? for "*"

Need a summary of "*" with
length between ! and ?

Need a summary of "*" with
length equal to ?

Need a summary of "*" with
length smaller than ?

Need a summary of "*" with
length larger than ?

write a summary of length be-
tween ! and ? for "*"

write a summary of length ?
for "*"

summarize the following arti-
cle with no longer than ? to-
kens: "*"

summarize the following arti-
cle with longer than ? tokens:
"*"

summarize with length be-
tween ! and ?: "*"

summarize with length equal
to ?: "*"’

summarize the following arti-
cle with shorter than ? tokens:
"*"

write a summary of length
larger than ? for "*"

summarize with between !
and ? tokens:"*"

summarize with exactly ? to-
kens:"*"

write a summary of length
smaller than ? for "*"

summarize with length larger
than ?: "*"

summarize with ! to ? to-
kens:"*"

summarize this document
with about ? tokens: "*"

summarize with length
smaller than ?: "*"

summarize with more than ?
tokens:"*"

summarize "*" with ! to ? To-
kens

summarize "*" with around ?
tokens

summarize with less than ? to-
kens:"*"

summarize the following arti-
cle with over ? tokens:"*"

Please summarize "*" with !
to ? Tokens

need a summary of "*" with
length ?

summarize "*" within ? to-
kens

summarize "*" with over ? to-
kens

summarize following article
with ! to ? tokens: "*"

Table 8: Examples of standard control prompts and corresponding augmented prompt templates,
where each column shows one SCP followed by augmented prompt templates. Where “*” is the
placeholder for input document to be summarized, “!” and “?” are the placeholders for the sampled
length value. To build the input examples in training and evaluation datasets, we only need to first
replace “!” and “?” with the minimum and maximum target lengths, and then replace “*” with the
original article to be summarized.

A.4 HYPER-PARAMETER SETTINGS

In this section, we provide hyper-parameter settings of different modules and training stages of
our method, where we denote hyper-parameter as “HP” in the tables. For the standard prompt
extractor, the hyper-parameter settings are given in Table 9. For the trainable reward models, the
hyper-parameter settings are given in Table 10. For pretraining of GPT summarization models with
control prompts, the hyper-parameter settings are given in Table 11. For enhancing control ability
with reinforcement finetuning, the hyper-parameter setting are given in Table 12.

14

HP BERT extractor GPT extractor

pretrained model BERT-small GPT-small
optimizer AdamW AdamW
batch size 32 64

lr 2E-05 2E-05
β1 0.9 0.9
β2 0.999 0.999

weight decay 1E-07 0
num iterations 200k 200k

Table 9: Hyper-parameter setting of Standard Prompt Extractors.

HP BERT reward GPT reward

pretrained model BERT-large GPT-medium
optimizer AdamW AdamW
batch size 64 32

lr 0.00005 0.00005
β1 0.9 0.9
β2 0.999 0.999

weight decay 0 0
num iterations 200k 200k

Table 10: Hyper-parameter setting of trainable reward models.

HP GPT-S GPT-M GPT-L

optimizer AdamW AdamW AdamW
batch size 64 64 64

lr 5E-05 5E-05 2E-05
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

weight decay 1E-06 1E-06 1E-06
num iterations 200k 200k 200k

Table 11: Hyper-parameter setting of prompt-based SFT on pretrained GPT models.

HP GPT-S GPT-M GPT-L

optimizer AdamW AdamW AdamW
actor_lr 3E-07 3E-07 3E-07
critic_lr 0.0003 0.0003 0.0003

β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

actor_adam_eps 1E-07 1E-07 1E-07
critic_adam_eps 1E-07 1E-07 1E-07

weight decay 0 0 0
epochs 1 1 1

update timestep 512 512 512
surrogate epoch 16 16 16

surrogate batch size 32 16 8
β 0.1 0.1 0.1
c 0.01 0.01 0.01

ϵclip 0.2 0.2 0.2
λ 1.0 1.0 1.0

Table 12: Hyper-parameter setting of PPO for pretrained GPT models. ϵclip is the clipping pa-
rameter ϵ shown in Equation 2. β and c are weights for KL divergence and entropy as shown in
Equation 3. λ is the coefficient for SFT loss.

15

A.5 EXTRA RESULTS

A.5.1 COMPARING OF DIFFERENT CONTROL TYPES

We provide extra results for Section 4.3 in Table 13, which includes the results on both CNNDM
and NYT.

Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

Equal

Prompt 38.14 15.71 38.91 62.61 26.13 44.17 27.15 40.54 66.50 36.22
Prompt+RL 35.67 14.64 38.73 61.86 13.61 47.57 30.33 42.88 67.82 18.81

Prompt+filter 37.90 16.26 37.42 61.89 12.47 47.60 30.32 42.02 67.80 17.80
Prompt+RL+filter 37.56 16.10 38.15 62.23 8.35 47.76 30.34 42.15 67.71 8.72

Less

Prompt 37.08 14.68 36.64 61.88 0.47 45.81 28.52 41.22 67.17 29.45
Prompt+RL 37.37 14.83 36.99 62.10 0.40 44.83 28.78 40.82 66.67 0.99

Prompt+filter 36.90 15.72 35.87 61.13 0.22 46.68 29.87 41.53 66.87 2.09
Prompt+RL+filter 36.90 15.72 35.87 61.13 0.22 46.72 30.43 42.03 65.97 0.33

More

Prompt 38.00 15.43 37.82 62.41 41.87 44.01 27.12 40.22 66.62 2.27
Prompt+RL 35.75 14.83 38.88 61.79 13.85 42.45 25.94 39.89 65.85 1.32

Prompt+filter 38.53 16.44 37.64 62.13 23.05 47.78 30.63 42.39 68.00 1.42
Prompt+RL+filter 37.43 16.26 37.92 62.22 6.01 47.77 30.55 42.30 68.00 1.02

Between

Prompt 36.38 15.03 38.65 61.96 5.76 44.78 27.87 41.13 67.04 30.49
Prompt+RL 36.10 14.95 38.99 61.80 4.53 47.09 29.74 42.18 67.63 10.75

Prompt+filter 38.06 16.43 37.44 62.07 1.15 47.13 29.70 41.37 67.47 6.76
Prompt+RL+filter 37.85 16.28 37.45 62.00 1.09 48.12 30.57 42.24 67.77 3.26

Table 13: Comparison of four control types in the multiple-type control setting using GPT-S on
NYT datasets.

A.5.2 COMPARING BETWEEN ACTOR-CRITIC MODEL AND ACTOR ONLY MODEL

Another experiment is done to check the effect of using actor-critic model in comparison with actor-
only model. The details of these two settings has been discussed in Section 2.1. We conduct exper-
iments with both settings, and consider fine-tuning GPT-small model for single-type control. The
results are given in Table 14. For the case without sample filtering, the model trained with actor-
critic RL perform better than the model trained with actor-only RL in terms of control accuracy on
both datasets. With sample filtering, actor-critic method still significantly outperforms actor-only
method on NYT, but slightly worse than actor-only method on CNNDM. On NYT, rule-based re-
ward model achieves the lowest and second lowest in the cases with and without sample filtering
respectively. Meanwhile, the trainable reward models also works well.

Setting
NYT CNNDM

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓
Prompt 47.37 29.22 42.25 67.70 13.46 37.45 15.24 37.62 62.31 11.89

Prompt+RL+Rule (A-C) 47.66 29.49 42.70 67.97 12.77 37.31 14.94 38.92 61.83 7.39
Prompt+RL+Rule (A) 47.64 29.53 42.04 67.96 12.94 37.74 15.57 38.20 62.27 10.98

Prompt+Filter 48.35 30.77 42.67 67.91 10.28 38.26 16.06 37.39 61.94 10.48
Prompt+RL+Filter (A-C) 48.31 30.94 42.82 67.98 9.55 37.34 15.71 38.75 61.22 6.29
Prompt+RL+Filter (A) 47.76 30.08 42.07 67.59 9.70 38.66 16.64 38.55 62.10 9.61

Table 14: The comparison of control performance of GPT-S for single-type control (“equal to”) after
fine-tuning by RL with and without critic models.

A.5.3 EFFECT OF SFT LOSS

As was discussed in Section 3.4, the actor loss involves a term of SFT loss, which is controlled
by λ. We conduct an extra experiment on CNNDM by comparing the tuned GPT-S models using
different λs for both the case of single and multiple control types. The results are given in Table 15,

16

which shows that a suitable λ is helpful in perserving the performance on downstream task, and the
control accuracy will not be largely affected in most cases. Also, the optimal value of λ differs in
the cases of SG and MU, thus hyper-parameter tuning is usually needed.

λ
SG MU

R1 R2 RL B.S. Error↓ R1 R2 RL B.S. Error↓

0.01 36.87 15.17 37.23 62.10 8.93 37.28 15.42 38.55 62.18 15.16
0.03 36.69 14.83 37.06 61.89 8.93 37.81 15.95 38.94 62.39 18.04
0.1 37.36 15.20 37.35 62.29 8.54 36.85 15.24 37.99 61.78 14.38
0.3 37.87 15.52 37.92 62.44 7.97 36.54 15.07 37.76 61.69 14.55
1 37.92 15.83 37.57 62.26 7.78 37.06 15.26 38.00 61.92 14.57
3 38.09 15.96 37.71 62.29 7.95 37.09 15.36 37.78 61.94 15.16

Table 15: The effect of SFT loss. λ is the hyper-parameter discussed in Section 3.4.

A.5.4 COMPARING WITH TRAINABLE REWARD MODELS.

The trainable reward models can be either BERT or GPT-style models, which are trained to score
the generated text by concatenating it with the SCP (or the user utterance with control instructions)
as input. We merge a set of randomly sampled (standard) control prompt and simulated generation
with random lengths between 50 and 150 to formulate the simulated input. Then we apply the
formula in Table 1 to get the labelled reward. We build a simulated dataset with 100,000 examples
using the original CNNDM and NYT datasets. Then we fine-tune the pre-trained GPT-medium or
BERT-large (from Huggingface) as the trainable reward models to predict reward labels. In terms
of the trainable reward model performance on scoring the simulated output sequences, fine-tuned
GPT-medium gives a test MSE of normalized length (Ltarget/Lmax, where Lmax is the maximum
output length 1024 of the used LLM) about 2e− 4 while BERT-large is around 1.5e− 3, which are
significantly worse than rule-based reward model with a scoring MSE of 0. Note that although the
trainable reward models use rule-based labels as in Table 1, they do not require standard prompts for
calculating reward scores. Therefore, they may have better generalization than rule-based method,
especially for out-of-domain user expression. The results are given in Table 16, which includes

Setting
NYT CNNDM

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓
Prompt 47.37 29.22 42.25 67.70 13.46 37.45 15.24 37.62 62.31 11.89

Prompt+RL+Rule 47.66 29.49 42.70 67.97 12.77 37.31 14.94 38.92 61.83 7.39
Prompt+RL+GPT 47.65 29.52 42.62 68.07 12.80 37.67 14.87 38.24 62.01 9.26

Prompt+RL+BERT 46.79 28.78 41.80 73.16 13.23 37.44 15.05 38.35 70.16 9.12

Prompt+filter 48.35 30.77 42.67 67.91 10.28 38.26 16.06 37.39 61.94 10.48
Prompt+RL+Rule+filter 48.31 30.94 42.82 67.98 9.55 37.34 15.71 38.75 61.22 6.29
Prompt+RL+GPT+filter 48.56 30.89 43.07 68.01 11.01 37.13 15.67 37.88 61.51 8.81

Prompt+RL+BERT+filter 48.42 30.75 42.92 73.53 10.94 36.61 15.09 37.01 69.17 7.83

Table 16: Results by using different reward models for length control with single control type (“equal
to”) and GPT-M, where we consider the case of both with and without sample filtering.

the results on both CNNDM and NYT. Overall, both BERT or GPT models can achieve similar
performance in serving as a trainable reward model. Compared to rule-based model, the advantage
of BERT or GPT based reward models include a potentially better generalization ability for out-of-
domain utterances and no requirement of SCPs.

A.6 LEARNING CURVES OF STANDARD PROMPT EXTRACTION

We provide the learning curves of two types of SPE in Figure 5. For GPT-based extractor, the
accuracy is 1 only if the generated SCP exactly matches the label. For BERT-based extractor, we

17

calculate the validation accuracy on a case-by-case basis: If the ground truth SCP type is “none”,
the accuracy is always 1; if the ground truth SCP type is “more than”, we only match the minimum
value and check if the minimum value is smaller than maximum value; if the ground truth SCP
type is “less than”, we only match the maximum value and check if the minimum value is smaller
than maximum value; if the ground truth SCP type is “equal to” or “between”, we match both of
minimum and maximum values. As is shown in Figure 3, both of the SPEs converge well with
a validation proportion of matching rate close to 100% in later validation steps. Meanwhile, we
find the both BERT and GPT-based extractors performs fairly well on out-of-sample augmented
prompts, which demonstrates strong generalization ability to new control prompts. For BERT-base,
the validation curve and accuracy curve of model on out-of-sample augmented prompts converge
slower than in-sample augmented prompts with a right-shift, but the accuracy values in later steps
can even surpass that of in-sample validation curve. Notes than we only fine-tune the pre-trained
GPT-small and BERT-base from Huggingface, which indicates the noise introduced by the extractors
can generally be neglected in practice with same or larger size models.

0 20 40 60 80 100
(a) Validation Steps (GPT-small)

0

2

4

6

8

10

12

14

Va
lid

at
io

n
Lo

ss

0 20 40 60 80 100
(b) Validation Steps (BERT-base)

0

2

4

6

8

10 In-sample prompts
Out-of-sample prompts

0 20 40 60 80 100
(c) Validation Steps (GPT-small)

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
Ac

cu
ra

cy

0 20 40 60 80 100
(d) Validation Steps (BERT-base)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: Learning Curves of Standard Prompt Extractors. (a) Validation losses of GPT extractor.
(b) Validation losses of BERT extractor. (c) Matching accuracy of GPT extractor. (c) Matching
accuracy of BERT extractor. We show the curves of validation cross entropy and matching rate for
both cases.

18

A.7 LEARNING CURVES OF REINFORCEMENT FINE-TUNING

To analyze the learning behavior, we visualize the learning curves of the policy loss and value loss
on training set, reward (negative error normalized by the maximum length of 1024) and BERTscore
(F1, in proportion) on validation set for a range of validation step. The results are generated by small
GPT-2 model on both NYT and CNNDM for single-type control (with only one control instruction
which is “equal to”), which are shown in Figure 4. We can see that as the decrease of policy loss
and value loss, the validation reward increases relatively smoothly, while there is no clear decreasing
trend of validation BERT score. The indicates that even with small GPT-2 model, the relevance can
be preserved as the control accuracy increase during the RL finetuning.

0 10 20 30 40 50
(a) Validation Steps

0.02

0.03

0.04

0.05

0.06

CN
ND

M

Policy Loss (Train)

0 10 20 30 40 50
(b) Validation Steps

0.00

0.01

0.02

0.03

0.04 Value Loss (Train)

0 10 20 30 40 50
(c) Validation Steps

0.048

0.046

0.044

0.042

0.040

0.038

0.036

0.034 Reward (Val)

0 10 20 30 40 50
(d) Validation Steps

0.6215

0.6220

0.6225

0.6230

0.6235

0.6240

0.6245

0.6250
B.S. (Val)

0 10 20 30 40 50
(e) Validation Steps

0.025

0.030

0.035

0.040

0.045

0.050

NY
T

Policy Loss (Train)

0 10 20 30 40 50
(f) Validation Steps

0.000

0.005

0.010

0.015

0.020

0.025 Value Loss (Train)

0 10 20 30 40 50
(g) Validation Steps

0.01325

0.01300

0.01275

0.01250

0.01225

0.01200

0.01175

0.01150

0.01125 Reward (Val)

0 10 20 30 40 50
(h) Validation Steps

0.674

0.676

0.678

0.680

0.682
B.S. (Val)

Figure 4: The Diagram of Learning Curves with GPT-S for single-type control instruction (only for
“equal to”) without sample filtering..

0 10 20 30 40 50
(a) Validation Steps

0.015

0.020

0.025

0.030

0.035

CN
ND

M

Policy Loss (Train)

0 10 20 30 40 50
(b) Validation Steps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040 Value Loss (Train)

0 10 20 30 40 50
(c) Validation Steps

0.035

0.030

0.025

0.020

0.015 Reward (Val)

0 10 20 30 40 50
(d) Validation Steps

0.605

0.610

0.615

0.620

0.625
B.S. (Val)

0 10 20 30 40 50
(e) Validation Steps

0.020

0.025

0.030

0.035

NY
T

Policy Loss (Train)

0 10 20 30 40 50
(f) Validation Steps

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Value Loss (Train)

0 10 20 30 40 50
(g) Validation Steps

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010 Reward (Val)

0 10 20 30 40 50
(h) Validation Steps

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68 B.S. (Val)

Figure 5: The Diagram of Learning Curves with GPT-S for multi-type control instructions without
sample filtering.

19

0 10 20 30 40 50
(a) Validation Steps

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

CN
ND

M

Policy Loss (Train)

0 10 20 30 40 50
(b) Validation Steps

0.00

0.01

0.02

0.03

0.04

Value Loss (Train)

0 10 20 30 40 50
(c) Validation Steps

0.040

0.038

0.036

0.034

0.032

0.030 Reward (Val)

0 10 20 30 40 50
(d) Validation Steps

0.618

0.619

0.620

0.621

0.622

0.623 B.S. (Val)

0 10 20 30 40 50
(e) Validation Steps

0.035

0.040

0.045

0.050

0.055

NY
T

Policy Loss (Train)

0 10 20 30 40 50
(f) Validation Steps

0.000

0.005

0.010

0.015

0.020

0.025
Value Loss (Train)

0 10 20 30 40 50
(g) Validation Steps

0.0100

0.0098

0.0096

0.0094

0.0092

0.0090

0.0088

0.0086 Reward (Val)

0 10 20 30 40 50
(h) Validation Steps

0.674

0.675

0.676

0.677

0.678

0.679

0.680

0.681

0.682 B.S. (Val)

Figure 6: The Diagram of Learning Curves with GPT-S for single-type control instruction (only for
“equal to”) with sample filtering.

0 10 20 30 40 50
(a) Validation Steps

0.015

0.020

0.025

0.030

0.035

0.040

0.045

CN
ND

M

Policy Loss (Train)

0 10 20 30 40 50
(b) Validation Steps

0.00

0.02

0.04

0.06

0.08 Value Loss (Train)

0 10 20 30 40 50
(c) Validation Steps

0.0105

0.0100

0.0095

0.0090

0.0085

0.0080

0.0075

0.0070 Reward (Val)

0 10 20 30 40 50
(d) Validation Steps

0.614

0.616

0.618

0.620

0.622

0.624

0.626 B.S. (Val)

0 10 20 30 40 50
(e) Validation Steps

0.020

0.025

0.030

0.035

0.040

NY
T

Policy Loss (Train)

0 10 20 30 40 50
(f) Validation Steps

0.00

0.02

0.04

0.06

0.08 Value Loss (Train)

0 10 20 30 40 50
(g) Validation Steps

0.0070

0.0065

0.0060

0.0055

0.0050

0.0045

0.0040 Reward (Val)

0 10 20 30 40 50
(h) Validation Steps

0.672

0.674

0.676

0.678

0.680 B.S. (Val)

Figure 7: The Diagram of Learning Curves with GPT-S for multi-type control instructions with
sample filtering.

20

	Introduction
	Related work
	Reinforcement learning for text generation.
	Length control for text generation

	Method
	Model Architecture
	Reward model
	Standard Prompt Extractor
	Reinforcement Learning for length control fine-tuning
	Inference & Sample filtering

	Experiments
	Experimental Setup
	Data processing and augmentation
	Training of standard prompt extractor
	Supervised FineTuning of GPT models
	Finetuning with reinforcement learning

	Results
	Main Results

	Comparing of different control types
	Generalization to out-of-sample Prompt Templates
	Comparing of different reward models

	Conclusion
	Appendix
	Algorithm for length controlled fine-tuning with our modified PPO
	Details for Datasets
	Examples of standard control prompt and augmented control prompt templates
	Hyper-parameter settings
	Extra Results
	Comparing of different control types
	Comparing between actor-critic model and actor only model
	Effect of SFT loss
	Comparing with trainable reward models.

	Learning curves of Standard Prompt Extraction
	Learning curves of Reinforcement Fine-tuning

