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Abstract

Deep neural networks (DNNs) have achieved remarkable performance in various
applications, but their deployment on edge devices is hindered by significant
computational and storage requirements. To mitigate these challenges, quantization
has proven effective in reducing model size while maintaining accuracy, with
pruning further enhancing model compression. However, achieving an optimal
balance between compression and performance, particularly in mixed-precision
strategies that allocate different bit widths to individual layers, remains a challenge.
In this paper, we present a method that ranks layers based on their statistical
importance and adaptively selects bit-width precision and pruning for each layer,
ensuring minimal accuracy loss. Our approach dynamically determines layer-
specific thresholds, optimizing compression without the need for complex tuning
or costly optimization. We validate our interpretable and efficient method through
image classification tasks, demonstrating its effectiveness across multiple DNN
architectures. Experimental results show that our method maintains classification
accuracy levels of 91.16% for VGG19, 86.06% for ResNet18, and 86.13% for
ResNet34 on CIFAR-10 dataset while achieving average bit-width reductions to
1.08, 2.66, and 2.42 bits, respectively.

1 Introduction and Related Works

Deep neural networks (DNNs) have demonstrated remarkable performance across various domains
such as computer vision and natural language processing (1). However, deploying these models on
resource-constrained edge devices presents significant challenges due to their substantial computa-
tional and storage demands (2; 3). Edge devices typically have stringent limitations in terms of power,
memory, and processing capabilities, creating a need to compress and optimize DNNs while maintain-
ing high accuracy. Several approaches have been proposed to tackle these challenges, including model
pruning (4; 5), knowledge distillation (6), low-rank factorization (7), and quantization (8; 9). Model
pruning focuses on inducing sparsity by reducing the number of nonzero parameters in the network,
typically by mapping parameters close to zero to zero (4). On the other hand, quantization reduces
the bit precision of weights and activations, transitioning from 32-bit floating-point representations to
lower-bit formats, which is a widely used technique for model compression (10).

Most existing quantization techniques employ uniform bit-width precision across all layers. While
effective for model size reduction and faster inference, these methods can result in accuracy degra-
dation, particularly for more complex models and tasks (11). This is because uniform precision
does not account for the varying importance of different layers in contributing to model performance
(12). Non-uniform quantization allows for different bit-widths across layers, adapting precision
based on the sensitivity of each layer (13). While uniform 8-bit quantization can reduce model size
by a factor of four without significant accuracy loss, more advanced mixed-precision quantization
approaches are necessary for achieving further reductions. Mixed-precision quantization methods
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Figure 1: Model accuracy across DNN architectures. The star markers highlight our method.

(14) have been developed to address these challenges, but determining the optimal bit precision
for each layer requires complex and computationally expensive optimization processes (15). For
instance, value-aware quantization (16) adjusts precision based on weight and activation distributions.
Similarly, existing pruning methods often use a fixed threshold across all layers (5). While uniform
pruning can reduce model size significantly with minimal accuracy impact, this approach is not
scalable due to the different parameter distributions across layers. To achieve even more compact
models without sacrificing accuracy, adaptive pruning strategies are needed.

Our proposed method addresses these limitations by introducing a novel layer-wise optimization
algorithm and an efficient method for computing layer importance. The algorithm iteratively adjusts
the bit-width of each layer based on its effect on model accuracy, optimizing the trade-off between
model size and performance. Additionally, we incorporate layer sparsity into the importance com-
putation and use an adaptive threshold for zeroing out parameters during pruning. Fig. 1 presents a
comparison of model accuracy across various DNN architectures against the average bit-width. Our
approach achieves comparable accuracy with adaptive quantization and pruning, while reducing the
average bit-width per parameter more effectively.

The remainder of this paper is organized as follows: Section 2 provides details on the proposed
method. Section 3 describes the experimental setup, and the results are discussed in Section 4. Finally,
the paper is concluded in Section 5.

2 Methodology

This section outlines our adaptive layer-wise quantization and pruning strategy for deep neural
networks, focusing on minimizing accuracy loss while significantly reducing model size. The
approach involves a quantization and pruning strategy and an iterative optimization algorithm, aiming
to make deep neural networks more feasible for edge devices with limited computational resources.
The method optimizes the bit-precision and pruning of each layer based on its importance, balancing
model size and accuracy.

The motivation comes from observing that different layers affect final model accuracy differently
(17). Experiments with varying low bit-precisions for individual layers (keeping others at 8-bit
quantization) show different performance impacts, as illustrated in Fig. 2a. For instance, quantizing
the first layer to 2-bit yields 84.28% accuracy, while quantizing the last layer to 2-bit yields 91.07%.
Similarly, varying pruning percentages for individual layers (without pruning other layers) show
different performance impacts, as illustrated in Fig. 2b. For instance, pruning the first layer by 90%
yields 71.05% accuracy, while pruning the last layer by 90% yields 90.99%.

To leverage layer characteristics, each layer is quantized with different bit-precisions and pruned with
different thresholds. Deciding the order of quantization and pruning thresholds is challenging, hence,
we rank each layer based on its importance.

2.1 Layer Importance Computation

We compute the importance of each layer using multiple statistical measures relevant to the trade-off
between bit-precision, pruning percentage, and model accuracy. Firstly, the number of parameters in
each layer affects the overall model size. Layers with more parameters are prioritized for quantization
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(a) Model Quantization (b) Model Pruning

Figure 2: Comparison of model accuracy for VGG19.

to reduce size without compromising accuracy. Hence, we consider the normalized parameter
proportion, which is computed as:

NP (l) =
Number of parameters in layer l

Total number of parameters in the model
(1)

Secondly, zero-order entropy of parameters impacts bit requirements. Higher entropy indicates more
information and hence the requirement of more bits. Thus we consider the normalized zero-order
entropy, which is computed as:

NE(l) =
Zero-order entropy for parameters in layer l

Bit-precision of quantized model
(2)

Thirdly, it is well established that the parameter distribution drives the bit-precision requirement. Most
layers in the DNN model follow a Gaussian-like distribution, with variance indicating compactness.
Hence, we consider the normalized variance, which is computed as:

NV (l) = log

(
e− 1 +

Variance of parameters in layer l
maxk (Variance of parameters in layer k)

)
(3)

Lastly, activation sparsity indicates layer criticality. Layers with higher zero or near-zero activations
might be less critical, so we consider the normalized activation sparsity, which is computed as:

S(l) =
Number of zero or near-zero activations in layer l

Total number of activations in layer l
(4)

The final layer importance combines these components:

Importance(l) = wP ·NP (l) + wE ·NE(l) + wV ·NV (l) + wS · S(l) (5)

where wP , wE , wV , and wS are weight multiplying factors used to control the impact on the overall
importance score. These weights can be tuned to prioritize certain aspects of a layer, such as the
number of parameters or entropy, based on the optimization objective (e.g., reducing model size or
preserving accuracy).

2.2 Layer-wise Pruning Scheme

We present a method where weights close to zero are pruned based on an adaptive threshold, replacing
them with zero. The pruning process involves multiple steps. Firstly, a zero threshold ZT (l) is
calculated for each layer based on standard deviation σ(l) of weights:

ZT (l) = k(l)× σ(l) (6)

where k(l) is a pruning multiplying factor that controls the pruning percentage for layer l. By
adjusting k(l), one can influence the percentage of weights that are pruned. A larger value of k(l)
results in a higher threshold, leading to more weights being pruned, whereas a smaller value of k(l)
results in a lower threshold, which reduces the amount of pruning. We propose to find an optimal k(l)
for each layer through a search process, ensuring maximum pruning while maintaining high accuracy.
Then, the weights within the threshold are pruned using:
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Ŵl,ij =

{
Wl,ij if |Wl,ij | > ZT (l)

0 if |Wl,ij | ≤ ZT (l)
(7)

Lastly, the pruned model is updated for subsequent steps. In our framework, the sparsity is measured
by the proportion of pruned weights:

S(l) =
Number of pruned weights in layer l
Total number of weights in layer l

(8)

Overall sparsity is calculated as weighted average across all layers:

Soverall =

L∑
l=1

S(l) ·NP (l) (9)

2.3 Layer-wise Bit-width Selection Algorithm

Optimal bit-precision for each layer is determined through a search process, ensuring minimal bit-
width while maintaining high accuracy. Layers are ranked by importance and search process starting
with the layer with highest importance. Bit-width search begins from the lowest possible bit-width
with adaptive margin Tmargin(l):

Tmargin(l) = Tmargin× Importance(l) (10)

where Tmargin is a threshold representing the accuracy loss margin, which can be empirically
chosen for best performance. The bit-width b(l) and pruning parameter k(l) are adjusted iteratively,
optimizing sequentially based on layer importance. This ensures overall model accuracy remains
within an acceptable margin of the original model’s accuracy, starting with the most significant layers
and gradually decreasing bit precision while validating performance after each change.

3 Experimental setup

Our experiments were conducted on the Kaggle platform, utilizing NVIDIA Tesla P100 and G4
GPUs, which provided significant acceleration for training our neural networks.

Dataset: The CIFAR-10 dataset (18) is considered in our experiments. This dataset comprises 60,000
32x32 color images divided into 10 classes, with 50,000 images for training and 10,000 for testing.
The images were normalized to the range [0, 1] and augmented using techniques such as horizontal
flips and random crops.

Implementation Details: We validated our method using various architectures, including VGG19
(19), ResNet18 (20), and ResNet34 (20). Models were initialized from scratch without pre-trained
weights. The training was performed with a batch size of 128 for 100 epochs. The initial learning
rate was set to 0.02, with a decay factor of 0.5 applied every 20 epochs. The Stochastic Gradient
Descent (SGD) optimizer was used with a momentum of 0.9 and a weight decay of 5e-4, along with
the cross-entropy loss function. Note that our primary focus was on post-training quantization, not
quantization-aware training for faster deployment.

Hyper-parameter Settings: The weights wP , wE , wV , and wS used in the layer importance com-
putation were set equally, summing to 1. The threshold margin Tmargin is empirically set to 0.1%.
Given the impact of the first and last layers on overall performance, Tmargin was adjusted to 1/2 of
the predefined threshold (21). We primarily focused on weight quantization with low bit precision
starting from 1-bit to 8-bit quantization. The 8-bit quantization serves as the baseline. Moreover, we
considered a pruning multiplying factor k(l) for layer l, starting from 3, representing 99.7% pruning,
and decreasing to 0, which represents no pruning.

Evaluation Metrics: We used accuracy and average bit-width to evaluate the effectiveness of model
compression techniques. Accuracy measures the proportion of correctly classified instances out of the
total predictions made by the model. Whereas, an average bit-width measure the overall bit-precision
used across all layers of the model, calculated as the weighted average bit-width:
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Model VGG19 ResNet18 ResNet34
Original (32-bit) 91.16% 86.06% 86.22%

Quantization only approach
Fixed (8-bit) Quantization 91.17% 86.01% 86.25%
Fixed (7-bit) Quantization 91.23% 85.89% 86.12%
Fixed (6-bit) Quantization 91.25% 85.79% 85.97%
Fixed (5-bit) Quantization 91.00% 85.65% 85.28%
Fixed (4-bit) Quantization 90.54% 83.04% 82.10%
Fixed (3-bit) Quantization 59.57% 25.72% 45.63%
Fixed (2-bit) Quantization 10.00% 7.53% 9.75%
Fixed (1-bit) Quantization 10.00% 10.00% 10.00%
Ours Adaptive Quantization 91.09% 86.00% 86.18%
(Avg. Bit-width b̄) (2.24) (3.41) (4.18)
(b̄ with Huffman Enc.) (1.49) (2.08) (2.79)

Pruning only approach
Pruned (25%) 91.09% 85.8% 86.09%
Pruned (50%) 90.21% 81.17% 82.23%
Pruned (75%) 64.96% 43.70% 45.02%
Pruned (90%) 10.00% 19.91% 10.29%
Ours Adaptive Pruned 91.10% 85.94% 86.19%
Pruned Soverall (in %) (81%) (63%) (60%)
(Avg. Bit-width b̄) (6.20) (11.85) (12.87)

Adaptive quantization and pruning (AQP) approach
Proposed AQP 91.16% 86.06% 86.13%
(Avg. Bit-width b̄) (1.08) (2.66) (2.42)
(b̄ with Huffman Enc.) (0.59) (1.39) (1.49)

Table 1: Comparison of model accuracy and average bit-width across different DNN architectures
for adaptive quantization, adaptive pruning, and the combined adaptive quantization and pruning
approaches.

b̄ =

L∑
l=1

b(l) · S(l) ·NP (l) (11)

where, b(l) is the bit-width of the parameters in layer l, S(l) is the sparsity in layer l, and NP (l) is
the normalized parameter proportion in layer l. b̄ refers to the weighted average bit-width across all
layers of the model.

4 Results and Discussion

We present results for different quantization and pruning strategies, comparing them against our
proposed approaches. This includes the performance of adaptive quantization, adaptive pruning, and
their combined application.

4.1 Adaptive Quantization Results

We applied our adaptive quantization method to VGG19, ResNet18, and ResNet34 trained on the
CIFAR-10 dataset. Layers were ranked by importance, and quantization was performed sequentially,
using the lowest bit-precision that maintained model accuracy within a margin Tmargin. Table 1
shows model accuracy and average bit-width across various quantization levels. The baseline accuracy
for full-precision (32-bit) models was 91.16% for VGG19, 86.06% for ResNet18, and 86.22% for
ResNet34. Accuracy generally decreased as bit-width was reduced, with fixed 2-bit quantization
causing a drastic drop to about 10%. In contrast, our adaptive quantization method preserved
competitive accuracy (91.09% for VGG19, 86.00% for ResNet18, and 86.18% for ResNet34) while
achieving an average bit-width of 2.24, 3.41, and 4.18, respectively. Incorporating Huffman encoding
further reduced the average bit-widths to 1.49, 2.08, and 2.79, demonstrating that adaptive quantization
effectively balances model accuracy and bit-width.

4.2 Adaptive Pruning Results

Our adaptive pruning method was similarly applied to the same model architectures. Layers were
pruned based on their computed importance, allowing us to select the highest pruning percentage
that maintained accuracy within Tmargin. Table 1 also summarizes model accuracy and average
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Method Model #Parameters (M) × Avg. bit-width b̄ Accuracy difference (in %)
Proposed AQP VGG19 20.04 × 1.08 0.00%
Proposed AQP ResNet18 11.69 × 2.66 0.00%
Proposed AQP ResNet34 21.80 × 2.42 -0.09%
APoT (22) ResNet18 11.69 × 4.00 -0.40%
APoT (22) ResNet18 11.69 × 3.00 -0.84%
APoT (22) ResNet18 11.69 × 2.00 -1.75%
LIEI-NNQ (21) ResNet18 11.69 × 1.96 -1.55%
APoT (22) MobileNetV2 3.47 × 4.00 -4.25%
APoT (22) MobileNetV2 3.47 × 3.00 -10.39%
APoT (22) MobileNetV2 3.47 × 2.00 -24.45%
LIEI-NNQ (21) MobileNetV2 3.47 × 3.32 -9.42%

Table 2: Comparison of accuracy difference (%) relative to the 32-bit baseline model, average
bit-width, and number of parameters between the proposed approach and existing methods across
various DNN architectures.

sparsity. As the pruning percentage increased, accuracy typically decreased. Fixed thresholds resulted
in significant accuracy drops, whereas our adaptive pruning method achieved competitive accuracy
(91.10% for VGG19, 85.94% for ResNet18, and 86.19% for ResNet34) with overall sparsity of 81%,
63%, and 60%, respectively. This highlights the effectiveness of our adaptive layer importance-guided
pruning technique in preserving accuracy while reducing model size.

4.3 Adaptive Quantization and Pruning Results

Table 1 compares the performance of different architectures under various quantization and pruning
techniques. The original 32-bit models and fixed 8-bit quantized models maintained comparable
accuracy, with our adaptive methods achieving accuracies of 91.16% for VGG19, 86.06% for
ResNet18, and 86.13% for ResNet34. By employing adaptive quantization and pruning, we reduced
average bit-widths to 1.08, 2.66, and 2.42, respectively, with minimal accuracy loss.

4.4 Performance Comparison with Existing Methods

Table 2 presents a comparative analysis between our approach and existing methods, focusing on
parameters, average bit-width, and accuracy differences. The proposed method maintained accuracy
for VGG19 and ResNet18 at significantly lower bit-widths (1.08 and 2.66, respectively), with minimal
accuracy drop (0.09%) for ResNet34 at an average bit-width of 2.42. In contrast, existing methods
like APoT (22) and LIEI-NNQ (21) experienced higher accuracy losses, especially at lower bit-widths.
These results highlight the potential of our adaptive layer-wise quantization and pruning approach for
deploying DNNs on resource-constrained devices. By optimizing bit-widths adaptively, our method
ensures efficient models that retain high accuracy, making it a valuable solution for applications with
limited computational resources.

Our work has following limitations. Although the adaptive quantization and pruning techniques
effectively reduce model size on disk, they can lead to fragmented unstructured sparsity, which may
not improve computation costs or latency. In the worst case, loading additional computation operators
for different precision levels can increase memory consumption, potentially offsetting the benefits of
model compression.

5 Conclusion

In this paper, we introduced an adaptive layer-wise quantization and pruning method for deep neural
networks (DNNs) aimed at enhancing model efficiency while preserving accuracy. By tailoring the
quantization and pruning processes to the sensitivity of each layer, we achieved substantial reductions
in average bit-width with minimal loss of accuracy. Experimental results indicated that our approach
outperforms uniform quantization and pruning techniques, effectively maintaining accuracy across
varying bit-widths, which is particularly beneficial for edge devices with constrained computational
resources. Our analysis underscores the robustness of the proposed adaptive method, striking an
optimal balance between performance and resource efficiency. Future research will focus on extending
this method to additional datasets and architectures to further validate its generalizability.
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