
DevEval: A Code Generation Benchmark for Practical Software Projects

Anonymous ACL submission

Abstract

How to evaluate Large Language Models001
(LLMs) in code generation is an open ques-002
tion. There is currently no benchmark for prac-003
tical software projects. In this paper, we pro-004
pose a new benchmark named DevEval, which005
aligns with Developers’ experiences in practi-006
cal projects. DevEval is collected through a rig-007
orous pipeline, containing 2,690 samples from008
119 practical projects and covering 10 domains.009
Compared to previous benchmarks, DevEval010
aligns to practical projects in multiple dimen-011
sions, e.g., real program distributions, sufficient012
dependencies, and enough-scale project con-013
texts. We assess 12 popular LLMs on DevEval014
(e.g., gpt-4, gpt-3.5-turbo, Claude 2, GLM-4,015
CodeLLaMa, StarCoder, and Mistral) and re-016
veal their actual abilities in code generation.017
For instance, the highest Pass@1 of gpt-3.5-018
turbo only is 42.97% in our experiments. We019
also discuss the challenges of code generation020
in practical projects. We open-source DevEval1021
and hope it can facilitate the development of022
code generation in practical projects.023

1 Introduction024

Code generation with Large Language Models025

(LLMs) has attracted lots of researchers’ attention026

(Li et al., 2023c,a), and some commercial prod-027

ucts have been produced, such as GitHub Copilot028

(GitHub, 2023). How to evaluate LLMs on code029

generation is an open question. Many code genera-030

tion benchmarks have been proposed, but there are031

gaps between them and practical software projects.032

The gaps result in the development of code gen-033

eration technologies being inconsistent with the034

experience of developers. To clarify the gaps, we035

analyzed over 1 million functions from 500 practi-036

cal projects and summarized the gaps as follows.037

Gap 1: Existing benchmarks differ from real038

program distributions, especially the proportion039

1https://figshare.com/articles/
dataset/DevEval/25231922

imapclient.IMAPClient.namespace
def namespace(self):

data = self._command_and_check(“namespace”)
parts = []
for item in parse_response(data):

(more lines . .)
for prefix, separator in item:

if self.folder_encode:
prefix = decode_utf7(prefix)

converted.append((prefix, to_unicode)
parts.append(tuple(converted))

return Namespace(*parts)

def has_close_elements(numbers, threshold):
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if distance < threshold:

return True
return False

(a) A standalone function in HumanEval

(b) A non-standalone function in a real-world project

Figure 1: Examples of standalone and non-standalone
functions Dependencies are highlighted, i.e., yellow:
intra-class dependencies, green: intra-file dependencies,
and blue: cross-file dependencies.

of non-standalone programs. As shown in Figure 040

1, a standalone function solely uses built-in or pub- 041

lic libraries, while a non-standalone one contains 042

project-specific dependencies. A project-specific 043

dependency refers to an invocation of elements de- 044

fined in projects, like parse_response in Fig- 045

ure 1. Out of 500 practical projects, 73.8% of func- 046

tions are non-standalone, and 26.2% are standalone. 047

However, existing benchmarks focus on standalone 048

programs, with few or no non-standalone programs. 049

For example, a popular benchmark - HumanEval 050

(Chen et al., 2021) does not contain non-standalone 051

functions, and the latest benchmark, CoderEval (Yu 052

et al., 2023) only includes 146 non-standalone pro- 053

grams. 054

Gap 2: Dependencies within existing bench- 055

marks are insufficient compared to practical 056

projects. On average, each non-standalone func- 057

tion in 500 practical projects contains 3.22 depen- 058

1

https://figshare.com/articles/dataset/DevEval/25231922
https://figshare.com/articles/dataset/DevEval/25231922

Table 1: The comparison between popular code generation benchmarks and DevEval. SA: Standalone. L(Re): the
average lengths (tokens) of requirements.

Benchmark
Program Distribution Dependency Project Contexts

#L(Re)
#Project #Total SA (%) Non-SA (%) #Type #Total #Per Sample Path #File #Line

CoNaLA (Yin et al., 2018) – 500 100% 0% 0 0 0 0 0 13.1
HumanEval (Chen et al., 2021) – 164 100% 0% 0 0 0 0 0 58.8
MBPP (Austin et al., 2021) – 974 100% 0% 0 0 0 0 0 16.1
PandasEval (Zan et al., 2022) – 101 100% 0% 0 0 0 0 0 29.7
NumpyEval (Zan et al., 2022) – 101 100% 0% 0 0 0 0 0 30.5
AixBench (Li et al., 2023b) – 175 100% 0% 0 0 0 0 0 34.5
ClassEval (Du et al., 2023) – 100 100% 0% 0 0 0 0 0 –

Concode (Iyer et al., 2018) – 2,000 19.9% 80.1% 1 2,455 1.23 0 0 16.8
CoderEval (Yu et al., 2023) 43 230 36% 64% 3 256 1.73 71 14,572 41.5
DevEval 119 2,690 26.2% 73.8% 3 5,849 2.95 243 45,941 91.5

500 Practical Projects 500 1M 26.2% 73.8% 3 3M 3.22 – 238 46,313 –

dencies, including intra-class, intra-file, and cross-059

file dependencies. However, existing benchmarks060

have insufficient dependencies. For instance, Con-061

code (Iyer et al., 2018) and ClassEval (Du et al.,062

2023) solely contain intra-class dependencies, and063

CoderEval averages only 1.73 dependencies per064

non-standalone function.065

Gap 3: The project contexts in existing bench-066

marks are small-scale compared to practical067

projects. In practical projects, developers rely068

on the project contexts (e.g., relevant programs in069

projects) to continually write new programs. The070

contexts contain lots of project-specific knowledge071

(e.g., private objects). The project contexts in 500072

practical projects average 239 code files and around073

43k lines. However, the project contexts in existing074

benchmarks often are small-scale. For instance,075

CoderEval’s project contexts average only 71 code076

files and approximately 1.4k lines.077

To address the above gaps, we propose a new078

code generation benchmark named DevEval,079

which aligns with Developers’ experiences in080

practical projects. DevEval comprises 2,690 test-081

ing samples from 119 practical projects, collected082

by a rigorous pipeline and annotated by 13 devel-083

opers. Each sample consists of a manually crafted084

natural language requirement, project contexts, ref-085

erence code, reference dependencies, and multiple086

test cases. Table 1 compares DevEval with existing087

benchmarks, highlighting its three advances.088

Advance 1: Real program distribution. DevE-089

val features a real program distribution, comprising090

1,984 (73.8%) non-standalone and 706 (26.2%)091

standalone programs, aligning the distribution ob-092

served in 500 practical projects.093

Advance 2: Sufficient Dependencies. DevE-094

val includes 5,849 dependencies, around 23 times095

more than CoderEval. Non-standalone programs096

in DevEval average 2.95 dependencies, close to the 097

average value (i.e., 3.22) of 500 practical projects. 098

Besides, previous work (i.e., CoderEval) only pro- 099

vides dependencies’ names (e.g., close). Be- 100

cause many functions with the same name in prac- 101

tice, it is hard to identify whether the dependen- 102

cies generated by LLMs are correct by relying 103

on names. DevEval labels dependencies with 104

paths (e.g., A.py::ClassB::close), address- 105

ing ambiguity and biases. 106

Advance 3: Enough-scale project contexts. 107

DevEval contains enough-scale project contexts, 108

averaging 243 code files with 45,941 lines per 109

sample. Compared to previous benchmarks (e.g., 110

CoderEval: 71 files with 14k lines), DevEval’s 111

project contexts are closer to the average in 500 112

practical projects (238 files with 46,313 lines). 113

DevEval also has advantages in requirements, 114

diversity, and evaluation metrics. ❶ Requirements. 115

Original comments of programs often are short 116

and vague and are not suitable for code genera- 117

tion. Thus, we engaged 13 developers to manually 118

write detailed and accurate requirements for all 119

programs. Our requirements average 91.5 tokens, 120

approximately 2.2 times that of CoderEval. ❷ Di- 121

versity. DevEval contains 11 times more samples 122

than CoderEval (2,690 vs. 230), collected from 123

119 projects across 10 domains (e.g., Text Process- 124

ing, Internet, Database). It covers diverse program- 125

ming topics to comprehensively assess LLMs. ❸ 126

Evaluation Metrics. DevEval leverages Pass@k 127

(functional correctness) and Recall@k (recall of 128

reference dependencies) to comprehensively assess 129

generated programs. 130

We evaluate 12 popular LLMs upon De- 131

vEval (i.e., gpt-4-turbo-1106 (OpenAI, 2023b), 132

gpt-3.5-turbo-{0613, 1106} (OpenAI, 2023a), 133

CodeLLaMa-{70B, 34B, 13B, 7B} (Rozière et al., 134

2

import functools
import imaplib
...
class Namespace(tuple):
...

class SocketTimeout(…):
...

class MailboxQuotaRoots(…):
...

class Quota(…):
...

def require_capability(…):
...

Intra-class Dependency:
imapclient.py::IMAPClient::_command_and_check
imapclient.py::IMAPClient::folder_encode

Intra-file Dependency:
imapclient.py::Namespace

Cross-file Dependency:
imap_utf7.py::decode_utf7
response_parser.py::parse_response

def test_namespace(self):
self.set_return(b'(("&AP8-." "/")) NIL NIL‘)
self.assertEqual(self.client.namespace(), ((("\xff.", "/"),), None, None))
. . . .

def namespace(self):

“””Return the namespace for the IMAP account as a tuple of three
elements: personal, other, and shared. The function should send the
namespace command to the server and receive the response. Then, it
parses the response and converts it into the desired format.

:param self: IMAPClient, an instance of the IMAPClient class.
:return: Namespace. The namespace for the account as a tuple of

three elements. Each element may be None if no namespace of that type
exists, or a sequence of (prefix, separator) pairs. ""”

data = self._command_and_check("namespace")
parts = []
for item in parse_response(data):
if item is None:
parts.append(item)

else:
converted = []
for prefix, separator in item:
if self.folder_encode:
prefix = decode_utf7(prefix)

converted.append((prefix, to_unicode(separator)))
parts.append(tuple(converted))

return Namespace(*parts)

DevEval Benchmark
Stats: A code generation benchmark containing 2690 testing samples, collected from 119 practical projects
Metrics: Pass@k, Recall@k
Evaluation Task: Context-based Code Generation:①②③→④

① Signature

② Requirement

④ Reference Code

③ Project Contexts

⑤ Reference
Dependency

⑥ Test cases

Figure 2: An overview of DevEval. It contains 2,690 samples, and each sample consists of six components.

2023), StarCoder (Li et al., 2023d), and Mistral-135

{7B, MoE} (Jiang et al., 2023; Mistral.AI, 2023))136

and obtain surprising findings. First, LLMs exhibit137

low performance on DevEval, especially compared138

to their performance on previous benchmarks. For139

example, gpt-3.5-turbo-1106 achieves a Pass@1140

score of 73% on HumanEval, while its highest141

Pass@1 on DevEval is only 42.97%. Our results142

reveal the actual abilities of LLMs in code genera-143

tion. Second, LLMs benefit from project contexts144

but struggle with comprehensively understanding145

long contexts. Even if we input oracle contexts, the146

Pass@1 of LLMs is still below 50%.147

In summary, our contributions are as follows:148

• We identify gaps (e.g., unreal program dis-149

tributions, insufficient dependencies, and150

small-scale project contexts) between exist-151

ing benchmarks and practical projects. We152

propose a new benchmark named DevEval153

with 2,690 samples, addressing these gaps.154

• DevEval closely aligns practical projects, in-155

cluding real program distributions, sufficient156

dependencies, and enough-scale project con-157

texts.158

• We evaluate 12 popular LLMs on DevEval,159

analyzing their strengths and shortcomings in 160

code generation for practical projects. 161

We hope DevEval can align with actual experi- 162

ences of developers during the practical develop- 163

ment process. By DevEval, practitioners can pick 164

up superior LLMs and facilitate the application of 165

code generation techniques in practical projects. 166

2 Benchmark - DevEval 167

2.1 Overview 168

DevEval contains 2,690 samples derived from 119 169

real-world open-source projects. As shown in Fig- 170

ure 2, each sample consists of six components. ❶ 171

Function Signature: The signature of the code 172

to be generated. ❷ Requirement: An English 173

description detailing the functionality of the code 174

to be generated. ❸ Project Contexts: Existing 175

programs (e.g., hundreds of code files) in the cur- 176

rent project. ❹ Reference Code: A reference im- 177

plementation of the code to be generated, crafted 178

by developers. This code invokes dependencies 179

defined in project contexts. ❺ Reference Depen- 180

dency: The dependencies invoked in the reference 181

code, include intra-class, intra-file, and cross-file 182

dependencies. ❻ Test Cases: Test cases are used 183

to check the functional correctness of the code. 184

3

Table 2: The distribution of dependency types. The
values in parentheses are the corresponding percentages
in all dependencies.

Dependency
Type

HumanEval Concode CoderEval DevEval 500 Projects

Intra-class 0 2,455 (100%) 117 (46%) 2,383 (41%) 939k (42%)
Intra-file 0 0 90 (35%) 1,833 (31%) 597k (29%)
Cross-file 0 0 49 (19%) 1,633 (28%) 611k (30%)

2.2 Benchmark Characteristics185

Compared to existing benchmarks (e.g., CoderEval186

(Yu et al., 2023)), DevEval aligns practical projects187

due to three key advances.188

❶ Real program distributions. As shown in Ta-189

ble 1, it contains 1,984 (73.8%) non-standalone pro-190

grams and 706 (26.2%) standalone programs, align-191

ing the observed ratio in 500 practical projects.192

❷ Sufficient dependencies. DevEval covers193

three dependency types and contain sufficient de-194

pendencies. As shown in Table 1, each sample195

in DevEval averages 2.95 dependencies, surpass-196

ing the averages in previous benchmarks (e.g.,197

CoderEval: 1.75) and closely approaching that of198

500 practical projects (i.e., 3.22).199

Table 2 shows the distribution of dependency200

types, i.e., intra-class, intra-file, and cross-file de-201

pendencies. DevEval outperforms previous bench-202

marks in all types, showing a more real distribution203

that is close to the distribution in 500 practical204

projects. For instance, cross-file dependencies con-205

stitute 28% in DevEval compared to the meager206

19% in CoderEval.207

❸ Enough-scale project contexts. As shown208

in Table 1, previous benchmarks’ project contexts209

are notably small-scale, e.g., CoderEval: 14k lines210

versus practical projects: 46k lines. In contrast, De-211

vEval introduces more large-scale project contexts,212

averaging 45k lines.213

Moreover, DevEval has advantages in other as-214

pects compared to existing benchmarks, such as215

requirements and test cases.216

Requirements. We engaged 13 developers217

to manually write requirements, costing approx-218

imately 674 person-hours. As depicted in Figure 2,219

each requirement encapsulates the code’s purpose220

and input-output parameters. The average length of221

requirements in DevEval (91.5 tokens) more than222

doubles that of CoderEval (41.5 tokens).223

Test cases. Each sample in DevEval is equipped224

with 7.95 test cases on average. These test cases225

are rigorously validated through code reviews and226

are capable of achieving high line-level and branch-227

level coverages. In comparison, the average num- 228

ber of test cases in HumanEval and MBPP are 7.7 229

and 3.0, respectively. Therefore, DevEval provides 230

a reliable evaluation environment. 231

2.3 Task Definition 232

We define the Context-based Code Generation 233

task upon DevEval. It aims to generate code based 234

on a function signature, a requirement, and the 235

project contexts. We also design a baseline setting, 236

which generates code based on the signature and re- 237

quirement. The baseline is used to evaluate LLMs’ 238

coding ability without project contexts. 239

2.4 Evaluation Metrics 240

Pass@k (Functional Correctness). Following pre- 241

vious studies (Chen et al., 2021; Austin et al., 2021; 242

Yu et al., 2023), we assess the functional correct- 243

ness of programs by executing test cases and com- 244

pute the unbiased Pass@k. Specifically, we gen- 245

erate n ≥ k programs per requirement, count the 246

number of correct programs c ≤ n that pass test 247

cases, and calculate the Pass@k: 248

Pass@k := E
Requirements

1−
(

n− c
k

)
(

n
k

)
 (1) 249

Recall@k (Recall of Reference Dependency). 250

Besides the functional correctness, we expect 251

LLMs to invoke relevant dependencies defined in 252

contexts. Hence, we propose Recall@k, which 253

gauges the recall of reference dependencies in gen- 254

erated programs. 255

Specifically, LLMs generate k programs per re- 256

quirement. For the i-th program, we employ a 257

parser2 to extract its dependencies as Pi. Subse- 258

quently, we compare Pi with reference dependen- 259

cies R and compute the Recall@k: 260

Recall@k := E
Requirements

[
max
i∈[1,k]

|R ∩ Pi|
|R|

]
(2) 261

where | · | means the number of elements of a set. 262

3 Benchmark Collection 263

As shown in Figure 3, the collection of DevEval 264

consists of four steps. 265

❶ Project Selection. We crawl high-quality 266

projects from an open-source community - PyPI 267

2We develop the parser based on an open-source static
analysis tool - Pyan (Pyan, 2023).

4

① Project Selection

PyPI

500 Projects, 1 million+ Functions

497 Projects, 590k Functions

② Function Parse

142 Projects, 3,764 Functions

③ Tests
Construction

121 Projects, 2,846 Functions

④ Human
Annotation

Signature, Reference Code,
Project Context

Test Cases

Requirement,
Reference Dependency

119 Projects, 2,690 Functions

⑤ Benchmark
Construction

DevEval

Figure 3: The process of collecting DevEval.

(PyPI). To ensure a broad diversity, we identify the268

top 50 projects with open-source licenses in the top269

10 popular programming topics. The 10 topics are270

shown in Appendix A. We download the latest re-271

leased versions in November 2023 and obtain 500272

practical projects (10 topics * 50 projects).273

❷ Function Parse. We extract all functions274

within projects and parse their signatures and bod-275

ies. Unparseable or empty functions are excluded.276

The function bodies, crafted by developers and sub-277

jected to rigorous code reviews, are deemed as the278

reference code. Subsequently, we extract other pro-279

grams within the current project as project contexts.280

Finally, we obtain 590,365 functions.281

❸ Tests Construction. For each function, we ex-282

tract test cases invoking it from its project. We use a283

popular testing framework - Pytest3 to organize284

these test cases. We leverage a public framework -285

setuptools4 to automatically build the running286

environments for each project. Functions without287

successful test cases are excluded. In summary, we288

retain 3,764 functions, each equipped with both289

successful test cases and running environments.290

❹ Human Annotation. We engage 13 annota-291

tors to manually annotate requirements and refer-292

ence dependencies for each function. All annota-293

tors obtain adequate payments given their countries294

of residence.295

Through discussions with annotators, we estab-296

lish two criteria for requirements. Naturalness–297

ensuring the requirement reads like a natural de-298

3https://docs.pytest.org/en/8.0.x/
4https://github.com/pypa/setuptools

scription from the perspective of a real-world devel- 299

oper. Functionality–demanding clear descriptions 300

of the code’s purposes and input-output parame- 301

ters. Each requirement undergoes a dual-annotation 302

process, with one annotator assigned to its initial 303

drafting and another responsible for a meticulous 304

double-check. Trivial functions (e.g., shortcut func- 305

tions) and functions violating the ethical code (e.g., 306

malware) are excluded. Subsequently, the same 307

13 annotators review the reference code and label 308

dependencies within it. Finally, we retain 2,846 309

functions with high-quality requirements and la- 310

beled reference dependencies. 311

❺ Benchmark Construction. Among the re- 312

tained functions, 862 are standalone, and 1,984 are 313

non-standalone. We follow the program distribu- 314

tion in 500 practical projects to construct DevEval, 315

ensuring the data size is maximized. Retaining all 316

1,984 (73.8%) non-standalone functions, we ran- 317

domly sample 706 (26.2%) standalone functions, 318

resulting in the DevEval with 2,690 samples. 319

4 Experiments 320

4.1 Studied LLMs 321

We evaluate 12 popular LLMs, including closed- 322

source LLMs (i.e., gpt-4-1106 (OpenAI, 2023b), 323

gpt-3.5-turbo-{0613, 1106} (OpenAI, 2023a), 324

Claude 2 (Anthropic, 2023), and GLM-4 (Zhipu.AI, 325

2024)) and open-source LLMs (i.e., CodeLLaMa- 326

{70B, 34B, 13B, 7B} (Rozière et al., 2023), Star- 327

Coder (Li et al., 2023d), and Mistral-{7B, MoE} 328

(Jiang et al., 2023; Mistral.AI, 2023)). We use of- 329

ficial interfaces or implementations to reproduce 330

these LLMs. The details of LLMs can be found in 331

Appendix B. 332

4.2 Experimental Setup 333

The prompt template in our experiments is shown 334

in Appendix C. We use Pass@k and Recall@k (see 335

Section 2.4) to assess generated programs. In this 336

paper, k ∈ [1, 3, 5, 10]. When k = 1, we use the 337

greedy search and generate a single program per 338

requirement. When k > 1, we use the nucleus 339

sampling with a temperature 0.4 and sample 20 340

programs per requirement. We set the top-p to 0.95 341

and the max generation length to 500. 342

4.3 Main Results 343

Baseline. Table 3 shows Pass@k and Recall@k 344

of LLMs in the baseline setting (i.e., without the 345

project contexts). As some closed-source LLMs 346

5

https://docs.pytest.org/en/8.0.x/
https://github.com/pypa/setuptools

Table 3: Pass@k and Recall@k on the baseline setting i.e., generating code based on the function signature and
requirement.

LLMs Size Context Window Pass@1 Pass@3 Pass@5 Pass@10 Recall@1 Recall@3 Recall@5 Recall@10

gpt-4-1106 N/A 128,000 22.31 – – – 18.64 – – –
gpt-3.5-turbo-0613 N/A 4,096 18.48 21.38 22.50 23.93 12.51 14.25 14.75 15.85
gpt-3.5-turbo-1106 N/A 16,385 17.88 20.39 21.55 22.99 11.72 13.28 14.01 14.9
Claude 2 N/A 100,000 17.73 – – – 15.78 – – –
GLM-4 N/A 128,000 17.14 – – – 13.43 – – –

CodeLLaMa-Instruct 70B 16,384 21.60 26.44 28.87 31.83 19.31 22.31 23.89 25.87
CodeLLaMa-Python 13B 16,384 17.88 22.86 25.32 28.39 16.80 20.43 22.02 24.27
CodeLLaMa-Python 7B 16,384 17.21 22.20 24.61 27.67 14.77 19.00 20.87 23.32
StarCoder 15.5B 8,192 17.10 21.89 24.33 27.26 17.73 21.36 23.57 25.75
CodeLLaMa-Instruct 34B 16,384 16.25 19.34 20.69 22.77 15.35 17.23 17.82 18.79
Mistral-Instruct-MoE 8*7B 32,768 13.23 17.06 18.75 20.76 10.44 13.66 15.26 16.67
Mistral-Instruct 7B 32,768 10.89 13.68 15.35 17.51 11.97 13.49 14.92 16.08

Table 4: Pass@k and Recall@k on context-based code generation, i.e., generating code based on a signature, a
requirement, and project contexts.

Settings
gpt-3.5-turbo-1106 CodeLLaMa-Instruct-34B Mistral-Instruct-MoE

Pass@1 Recall@1 Pass@1 Recall@1 Pass@1 Recall@1

W/o Contexts 17.88 11.72 21.60 15.35 13.23 10.44
Local File 38.88 40.32 34.61 38.43 21.77 26.16
Local File + Sibling Files 41.26 45.91 39.70 46.36 23.56 28.14
Local File + Similar Files 42.34 46.29 39.78 47.63 24.65 30.95
Local File + Imported Files 42.97 47.48 40.15 49.35 28.51 30.95

Local File + Oracle 44.64 51.13 44.61 53.54 29.26 37.92

are expensive, we report the Pass@1 with greedy347

search. We can see that gpt-4 and CodeLLaMa-348

Instruct-70B achieve the highest Pass@1 and Re-349

call@1 among all LLMs, respectively. However, all350

LLMs exhibit relatively low Pass@k and Recall@k351

values, compared to their performance on previous352

benchmarks. For instance, gpt-4 achieves a Pass@1353

score of 88.4 on HumanEval, whereas it scores354

22.31 on Pass@1 in this setting. The decreases355

validate our motivation that existing benchmarks356

can not comprehensively assess the capabilities of357

LLMs in practical projects. Furthermore, the re-358

sults emphasize the importance of project contexts.359

Interestingly, LLMs can successfully generate360

several dependencies without project contexts. A361

manual inspection of these dependencies reveals362

that they are mainly simple dependencies that can363

be reasoned from the requirements, e.g., initial-364

ization functions of returned objects. It is hard365

for LLMs to generate more intricate dependencies366

without project contexts.367

Context-based Code Generation. We further take368

the project contexts into considerations. Project369

contexts are typically very long, surpassing context370

windows of existing LLMs. Inspired by related371

work (Shrivastava et al., 2023), we extract parts372

of contexts as inputs. ❶ Local file: The code file373

where the reference code is in. We only take pro-374

grams above the reference code. We consider the 375

local file as a fundamental context and progres- 376

sively add other contexts. ❷ Sibling files: Files 377

within the same sub-folder as the local file. ❸ Im- 378

ported files: Files imported by the local file. ❹ 379

Similar files: Files with names similar to the local 380

file. We split the names based on underscore or 381

camelcase formatting and then match the tokens 382

of names. If one or more parts match, two files 383

are considered to have similar names. ❺ Oracle: 384

Code implementations corresponding to reference 385

dependencies. It consists of many code snippets 386

from different files. 387

We input different contexts to three LLMs 388

(i.e., gpt-3.5-turbo-1106, CodeLLaMa-Instruct- 389

34B, and Mistral-Instruct-MoE), and the results 390

are presented in Table 4. After introducing the 391

contexts, Pass@k and Recall@k values increase 392

significantly. gpt-3.5-turbo-1106 achieves the high- 393

est Pass@1 under different contexts, although it is 394

worse than other LLMs without contexts. It shows 395

that gpt-3.5-turbo-1106 has a stronger ability to 396

understand contexts compared to other LLMs. 397

We further inspect a few successful cases and 398

attribute the improvements to the synergy of 399

contexts and our requirements. On the one hand, 400

the contexts provide lots of project-specific knowl- 401

edge. For example, the local file contains essen- 402

6

…

…

(a) Prompt

(b) Generated Code

Figure 4: A failed case on DevEval-CGen.

Table 5: Lengths (#Tokens) of different contexts.

Context Average length Max length

Local File 2,468 51,716
Local File+Imported Files 14,913 771,644
Local File+Similar Files 17,589 2,038,908
Local File+Sibling Files 53,412 579,237
All Files 1,147,282 9,263,195

tial local environments (e.g., current classes, im-403

ported libraries) and a majority of dependencies404

(e.g., intra-class and intra-file: 72% in DevEval).405

Similar and sibling files typically contain programs406

pertinent to the requirements (e.g., parent classes).407

Imported files offer many cross-file dependencies408

that are likely to be invoked. Recent work (Zhang409

et al., 2023) in code completion also proved the im-410

portance of contexts. On the other hand, our man-411

ually written requirements elaborate the purposes412

of code and the background knowledge of projects.413

Thus, our requirements help LLMs understand long414

contexts and locate relevant dependencies.415

Although promising, LLMs’ abilities in416

context-based code generation are not satisfying.417

Even if we input oracle contexts, the highest418

Pass@1 only is 44.64%. A manual inspection419

of failed cases reveals LLMs struggle with420

understanding contexts. Figure 4 illustrates a421

failed case. LLMs invoke a non-existent function422

- create_connection, even though a valid423

function connect is present in the contexts. We424

think this problem is caused by two reasons.425

First, the contexts are too long. Table 5 shows426

Figure 5: The Pass@1 of gpt-3.5-turbo-1106 on differ-
ent program types.

the lengths of different contexts. The complete 427

project contexts are lengthy, approximately 9 times 428

the context window of the state-of-the-art LLM 429

- gpt-4-1106. Even when partial contexts are 430

considered, their lengths match or even exceed 431

the context window of most current LLMs. Re- 432

cent works (Liu et al., 2023) have found that 433

LLMs often ignore relevant information in the 434

middle of long contexts. This finding is consis- 435

tent with our results. Second, the contexts are 436

heterogeneous. In other words, the contexts are 437

composed of discrete code snippets from different 438

files rather than a continuous file. As shown in 439

Figure 4, the programs within contexts come from 440

multiple files, e.g., boto.regioninfo.py and 441

boto.swf.layer1.py. However, LLMs are 442

typically trained to predict the next tokens based on 443

the continuous contexts. The gap between training 444

and inference objectives leads to a poor understand- 445

ing of LLMs in contexts. Recent work (Shi et al., 446

2023) also found similar gaps in reading compre- 447

hension and question answering. 448

♡ Takeaway: 449

(1) Project contexts play a pivotal role in code 450

generation; without them, LLMs exhibit subpar 451

performance. 452

(2) Inputting relevant contexts benefits code gen- 453

eration. With limited context windows, local files 454

and imported files can bring obvious improvements. 455

(3) Detailed and accurate requirements not only 456

help LLMs know the purposes of programs but also 457

understand long contexts. 458

(4) Existing LLMs struggle with understanding 459

long and heterogeneous contexts. It causes LLMs to 460

disregard the knowledge in contexts and even gen- 461

erate hallucinations (e.g., non-existent functions). 462

7

Figure 6: The Recall@1 of gpt-3.5-turbo-1106 on dif-
ferent dependency types.

4.4 Discussion463

Results on different program types. Figure464

5 shows Pass@1 of gpt-3.5-turbo-1106 on dif-465

ferent program types (i.e., standalone and non-466

standalone). The results reveal three observations.467

❶ Project contexts are crucial to generating non-468

standalone functions. For example, adding local469

files improves the Pass@1 on non-standalone func-470

tions from 10.84 to 36.24. ❷ Project contexts also471

benefit standalone functions. This is attributed to472

the project-specific knowledge within contexts, aid-473

ing LLMs in understanding requirements. Thirdly,474

there exists considerable room for improving LLMs475

on both types of programs. How to effectively uti-476

lize contexts is a key problem.477

Results on different dependency types. Figure478

6 shows the Recall@1 of gpt-3.5-turbo-1106 on479

different dependency types (i.e., intra-class, intra-480

file, and cross-file). The results yield two insights.481

❶ Without project contexts, LLMs exhibit low Re-482

call@1 values across three dependency types. How-483

ever, LLMs demonstrate the ability to infer reason484

about easy dependencies based on requirements,485

e.g., initialization functions of returned objects.486

❷ With contexts, LLMs exhibit an improvement487

in generating dependencies. Nevertheless, LLMs488

have yet to grapple with generating dependencies,489

especially cross-file dependencies. As illustrated in490

Figure 4, LLMs often ignore available dependen-491

cies defined in contexts.492

Data leakage. Theoretically, all open-source493

projects may be included in the training data for494

LLMs. Consequently, there is a risk of data leak-495

age where several projects used to build DevEval496

appear in the training data. We think this risk has497

only a slight impact on DevEval due to four rea-498

sons. ❶ DevEval contains new data, i.e., manu-499

ally written requirements. These requirements are500

never included in the training data. ❷ Existing501

LLMs do not show overfitting tendencies to DevE- 502

val. Based on the release dates of 12 LLMs (see 503

Section 4.1), we divide DevEval into two groups: 504

unseen projects released later than LLMs and po- 505

tentially seen projects released earlier than LLMs. 506

The average difference of Pass@1 between the two 507

groups is around 0.42. Compared to the average 508

variations between LLMs (e.g., 3.38 in Table 3 and 509

10.98 in Table 4), 0.42 is slight. ❸ DevEval is 510

geared toward evaluating future LLMs. We release 511

the links to our selected projects in Appendix A 512

and encourage practitioners to omit these projects 513

when collecting the training data for future LLMs. 514

The bias of Recall@k. As stated in Section 2.4, we 515

develop a static analysis-based parser to automati- 516

cally extract dependencies in generated programs. 517

Because Python is a dynamically typed language, 518

certain dependencies only are determined at run- 519

time and may elude our parser. It may lead to lower 520

Recall@k than actual values. 521

To gauge the above bias, we manually annotate 522

dependencies within 100 programs generated by 523

gpt-3.5-turbo-1106. Simultaneously, we employ 524

our parser to extract dependencies in the same 100 525

programs. Based on the human-annotated and auto- 526

extracted dependencies, we compute two Recall@1 527

values. The bias of two Recall@1 values is 0.23. 528

Compared to the average variations between LLMs 529

(3.47 in Table 3 and 11.08 in Table 4), 0.23 is 530

slight. Consequently, we believe that Recall@k can 531

effectively rank different LLMs, notwithstanding 532

its slight bias. 533

5 Conclusion and Future Work 534

In this paper, we propose a new code generation 535

benchmark named DevEval. Collected through a 536

meticulous pipeline, DevEval aligns practical soft- 537

ware projects in multiple dimensions, e.g., real pro- 538

gram distributions, sufficient dependencies, and 539

enough-scale project contexts. We evaluate 12 pop- 540

ular LLMs on DevEval. The results reveal the 541

strengths and weaknesses of LLMs in practical 542

projects. Compared to previous benchmarks, De- 543

vEval offers a more challenging and practical eval- 544

uation scenario. We hope DevEval can facilitate 545

the applications of LLMs in practical projects. 546

In the future, we will continue to update De- 547

vEval, e.g., multilingual testing samples, more 548

projects, and more test cases. Besides, we will 549

explore how to improve the performance of LLMs 550

in context-based code generation, e.g., retrieval- 551

augmented and tool-augmented generation. 552

8

6 Limitations553

In this paper, we propose a new code generation554

benchmark - DevEval, which aligns with practical555

software projects. Based on DevEval, we evaluate556

12 popular LLMs and analyze their strengths and557

shortcomings.558

We believe that DevEval itself has four limita-559

tions. ❶ DevEval is a monolingual benchmark (i.e.,560

requirements in English and code in Python) and561

ignores other languages. In practice, LLMs require562

understanding requirements in different natural lan-563

guages (e.g., Chinese, Spanish) and generating564

programs in various programming languages (e.g.,565

Java, C). Thus, we plan to build a multilingual De-566

vEval in future work. ❷ Test cases in DevEval may567

be insufficient. As stated in Section 2.2, each sam-568

ple in DevEval is equipped with 7.95 test cases on569

average. These test cases are collected from prac-570

tical projects and pass rigorous reviews. However,571

there is a risk where several samples lack corner572

test cases. This results in some incorrect programs573

being mistaken for correct ones. To alleviate this574

threat, we plan to leverage test case generation tools575

(Lukasczyk and Fraser, 2022; Dinella et al., 2022)576

to produce corner test cases and improve the cov-577

erage of test cases. ❸ As shown in Table 1 and 2,578

DevEval is closer to practical projects, but still has579

slight differences in the number and distribution580

of dependencies. In the future, we will introduce581

more dependencies into DevEval and alleviate the582

difference. ❹ As stated in Section 4.4, Recall@k583

values in DevEval may have slight biases, i.e., they584

may be slightly less than actual values. Because585

Python is a dynamically typed language, certain586

dependencies can only be identified at runtime and587

may elude our parser. To gauge the bias introduced588

by our parser, we manually annotate dependencies589

within 100 programs generated by gpt-3.5-turbo-590

1106. Simultaneously, we employ the parser to591

extract dependencies in the same 100 programs.592

Based on the human-annotated and auto-extracted593

dependencies, we compute two Recall@1 values.594

The bias of two Recall@1 is 0.23. Compared to the595

average variations between LLMs (3.47 in Table 3596

and 11.08 in Table 4), 0.23 is slight. Consequently,597

the Recall@k can effectively rank different LLMs,598

notwithstanding its slight bias.599

Besides, our evaluation experiments can be fur-600

ther improved in three aspects. ❺ More LLMs.601

Due to the limited computing budgets, we mainly602

evaluate 12 mainstream LLMs (see Section B). It is603

worthy to evaluate some recently proposed LLMs 604

(Guo et al., 2024; DeepMind, 2023). ❻ More in- 605

vestigations of project contexts. As shown in Ta- 606

ble 4, we explore 5 straightforward approaches 607

to utilizing project contexts. In the future, we will 608

introduce more advanced techniques (e.g., retrieval- 609

augmented or tool-augmented generation) to inves- 610

tigate how to utilize contexts. ❼ Tuning hyper- 611

parameters. It is known that LLMs are sensitive 612

to sampling hyper-parameters and prompts. We 613

ensure all LLMs are evaluated under the same ex- 614

perimental settings. Due to the limited computing 615

budgets, we do not carefully tune hyper-parameters 616

and prompts. Thus, there may be better hyper- 617

parameters and prompts to further improve the per- 618

formance of LLMs. 619

7 Ethics Consideration 620

DevEval is collected from open-source projects 621

from the real world. We manually check all sam- 622

ples in DevEval. We ensure all samples do not 623

contain private information or offensive content. 624

We ensure all programs in DevEval are behaving 625

normally and exclude any malicious programs. 626

References 627

Anthropic. 2023. Claude 2. https://www. 628
anthropic.com/news/claude-2. 629

Jacob Austin, Augustus Odena, Maxwell I. Nye, 630
Maarten Bosma, Henryk Michalewski, David Dohan, 631
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, 632
and Charles Sutton. 2021. Program synthesis with 633
large language models. CoRR, abs/2108.07732. 634

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, 635
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter 636
Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, 637
Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro, 638
and Yi Zhang. 2023. Sparks of artificial general 639
intelligence: Early experiments with GPT-4. CoRR, 640
abs/2303.12712. 641

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 642
Henrique Pondé de Oliveira Pinto, Jared Kaplan, 643
Harrison Edwards, Yuri Burda, Nicholas Joseph, 644
Greg Brockman, Alex Ray, Raul Puri, Gretchen 645
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 646
try, Pamela Mishkin, Brooke Chan, Scott Gray, 647
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 648
Kaiser, Mohammad Bavarian, Clemens Winter, 649
Philippe Tillet, Felipe Petroski Such, Dave Cum- 650
mings, Matthias Plappert, Fotios Chantzis, Eliza- 651
beth Barnes, Ariel Herbert-Voss, William Hebgen 652
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 653
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 654

9

https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732

William Saunders, Christopher Hesse, Andrew N.655
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan656
Morikawa, Alec Radford, Matthew Knight, Miles657
Brundage, Mira Murati, Katie Mayer, Peter Welinder,658
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya659
Sutskever, and Wojciech Zaremba. 2021. Evaluat-660
ing large language models trained on code. CoRR,661
abs/2107.03374.662

DeepMind. 2023. Gemini ultra. https:663
//blog.google/technology/ai/664
google-gemini-ai/#sundar-note.665

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and666
Shuvendu K. Lahiri. 2022. TOGA: A neural method667
for test oracle generation. In 44th IEEE/ACM 44th668
International Conference on Software Engineering,669
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,670
pages 2130–2141. ACM.671

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,672
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng673
Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A674
manually-crafted benchmark for evaluating llms on675
class-level code generation. CoRR, abs/2308.01861.676

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda677
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,678
Ethan Perez, Nicholas Schiefer, Kamal Ndousse,679
Andy Jones, Sam Bowman, Anna Chen, Tom Con-680
erly, Nova DasSarma, Dawn Drain, Nelson Elhage,681
Sheer El Showk, Stanislav Fort, Zac Hatfield-Dodds,682
Tom Henighan, Danny Hernandez, Tristan Hume,683
Josh Jacobson, Scott Johnston, Shauna Kravec,684
Catherine Olsson, Sam Ringer, Eli Tran-Johnson,685
Dario Amodei, Tom Brown, Nicholas Joseph, Sam686
McCandlish, Chris Olah, Jared Kaplan, and Jack687
Clark. 2022. Red teaming language models to re-688
duce harms: Methods, scaling behaviors, and lessons689
learned. CoRR, abs/2209.07858.690

GitHub. 2023. Github copilot. https://github.691
com/features/copilot.692

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai693
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,694
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-695
feng Liang. 2024. Deepseek-coder: When the large696
language model meets programming - the rise of code697
intelligence. CoRR, abs/2401.14196.698

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and699
Luke Zettlemoyer. 2018. Mapping language to code700
in programmatic context. In Proceedings of the 2018701
Conference on Empirical Methods in Natural Lan-702
guage Processing, Brussels, Belgium, October 31 -703
November 4, 2018, pages 1643–1652. Association704
for Computational Linguistics.705

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,706
and Geoffrey E. Hinton. 1991. Adaptive mixtures of707
local experts. Neural Comput., 3(1):79–87.708

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-709
sch, Chris Bamford, Devendra Singh Chaplot, Diego710

de Las Casas, Florian Bressand, Gianna Lengyel, 711
Guillaume Lample, Lucile Saulnier, Lélio Re- 712
nard Lavaud, Marie-Anne Lachaux, Pierre Stock, 713
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo- 714
thée Lacroix, and William El Sayed. 2023. Mistral 715
7b. CoRR, abs/2310.06825. 716

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, 717
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer- 718
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf, 719
Dzmitry Bahdanau, Leandro von Werra, and Harm 720
de Vries. 2022. The stack: 3 TB of permissively 721
licensed source code. CoRR, abs/2211.15533. 722

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023a. Struc- 723
tured chain-of-thought prompting for code genera- 724
tion. arXiv preprint arXiv:2305.06599. 725

Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and 726
Xing Hu. 2023b. Skcoder: A sketch-based approach 727
for automatic code generation. In 45th IEEE/ACM 728
International Conference on Software Engineering, 729
ICSE 2023, Melbourne, Australia, May 14-20, 2023, 730
pages 2124–2135. IEEE. 731

Jia Li, Yunfei Zhao, Li Yongmin, Ge Li, and Zhi Jin. 732
2023c. Acecoder: Utilizing existing code to enhance 733
code generation. arXiv preprint arXiv:2303.17780. 734

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 735
Muennighoff, Denis Kocetkov, Chenghao Mou, 736
Marc Marone, Christopher Akiki, Jia Li, Jenny 737
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 738
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 739
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 740
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 741
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 742
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 743
Zhiruo Wang, Rudra Murthy V, Jason Stillerman, 744
Siva Sankalp Patel, Dmitry Abulkhanov, Marco 745
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa- 746
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam 747
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku- 748
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee, 749
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai- 750
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 751
Alex Gu, Jennifer Robinson, Carolyn Jane Ander- 752
son, Brendan Dolan-Gavitt, Danish Contractor, Siva 753
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer- 754
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas 755
Wolf, Arjun Guha, Leandro von Werra, and Harm 756
de Vries. 2023d. Starcoder: may the source be with 757
you! CoRR, abs/2305.06161. 758

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran- 759
jape, Michele Bevilacqua, Fabio Petroni, and Percy 760
Liang. 2023. Lost in the middle: How language 761
models use long contexts. CoRR, abs/2307.03172. 762

Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: 763
Automated unit test generation for python. In 44th 764
IEEE/ACM International Conference on Software 765
Engineering: Companion Proceedings, ICSE Com- 766
panion 2022, Pittsburgh, PA, USA, May 22-24, 2022, 767
pages 168–172. ACM/IEEE. 768

10

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3510454.3516829

Mistral.AI. 2023. Mistral-moe. https://mistral.769
ai/news/mixtral-of-experts/.770

OpenAI. 2023a. gpt-3.5-turbo. https:771
//platform.openai.com/docs/models/772
gpt-3-5.773

OpenAI. 2023b. GPT-4 technical report. CoRR,774
abs/2303.08774.775

Pyan. 2023. Pyan. https://github.com/776
davidfraser/pyan.777

PyPI. Pypi. https://pypi.org/.778

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten779
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,780
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom781
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-782
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,783
Wenhan Xiong, Alexandre Défossez, Jade Copet,784
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-785
las Usunier, Thomas Scialom, and Gabriel Synnaeve.786
2023. Code llama: Open foundation models for code.787
CoRR, abs/2308.12950.788

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou,789
Margaret Li, Xi Victoria Lin, Noah A. Smith, Luke790
Zettlemoyer, Scott Yih, and Mike Lewis. 2023. In-791
context pretraining: Language modeling beyond doc-792
ument boundaries. CoRR, abs/2310.10638.793

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-794
low. 2023. Repository-level prompt generation for795
large language models of code. In International Con-796
ference on Machine Learning, ICML 2023, 23-29797
July 2023, Honolulu, Hawaii, USA, volume 202 of798
Proceedings of Machine Learning Research, pages799
31693–31715. PMLR.800

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,801
Dongdong Zhang, and Furu Wei. 2022. Deep-802
net: Scaling transformers to 1, 000 layers. CoRR,803
abs/2203.00555.804

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan805
Vasilescu, and Graham Neubig. 2018. Learning to806
mine aligned code and natural language pairs from807
stack overflow. In Proceedings of the 15th Interna-808
tional Conference on Mining Software Repositories,809
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,810
pages 476–486. ACM.811

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,812
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and813
Qianxiang Wang. 2023. Codereval: A benchmark814
of pragmatic code generation with generative pre-815
trained models. CoRR, abs/2302.00288.816

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu817
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and818
Jian-Guang Lou. 2022. CERT: continual pre-training819
on sketches for library-oriented code generation. In820
Proceedings of the Thirty-First International Joint821
Conference on Artificial Intelligence, IJCAI 2022,822
Vienna, Austria, 23-29 July 2022, pages 2369–2375.823
ijcai.org.824

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 825
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 826
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, 827
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan 828
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023. 829
GLM-130B: an open bilingual pre-trained model. In 830
ICLR. OpenReview.net. 831

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 832
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 833
Weizhu Chen. 2023. RepoCoder: Repository-level 834
code completion through iterative retrieval and gen- 835
eration. In Proceedings of the 2023 Conference on 836
Empirical Methods in Natural Language Processing, 837
pages 2471–2484, Singapore. Association for Com- 838
putational Linguistics. 839

Zhipu.AI. 2024. Glm-4. https://open. 840
bigmodel.cn/pricing. 841

11

https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://doi.org/10.48550/ARXIV.2303.08774
https://github.com/davidfraser/pyan
https://github.com/davidfraser/pyan
https://github.com/davidfraser/pyan
https://pypi.org/
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://open.bigmodel.cn/pricing
https://open.bigmodel.cn/pricing
https://open.bigmodel.cn/pricing

