DevEval: A Code Generation Benchmark for Practical Software Projects

Anonymous ACL submission

Abstract

How to evaluate Large Language Models
(LLMs) in code generation is an open ques-
tion. There is currently no benchmark for prac-
tical software projects. In this paper, we pro-
pose a new benchmark named DevEval, which
aligns with Developers’ experiences in practi-
cal projects. DevEval is collected through a rig-
orous pipeline, containing 2,690 samples from
119 practical projects and covering 10 domains.
Compared to previous benchmarks, DevEval
aligns to practical projects in multiple dimen-
sions, e.g., real program distributions, sufficient
dependencies, and enough-scale project con-
texts. We assess 12 popular LLMs on DevEval
(e.g., gpt-4, gpt-3.5-turbo, Claude 2, GLM-4,
CodeLLaMa, StarCoder, and Mistral) and re-
veal their actual abilities in code generation.
For instance, the highest Pass@1 of gpt-3.5-
turbo only is 42.97 % in our experiments. We
also discuss the challenges of code generation
in practical projects. We open-source DevEval'
and hope it can facilitate the development of
code generation in practical projects.

1 Introduction

Code generation with Large Language Models
(LLM5s) has attracted lots of researchers’ attention
(Li et al., 2023c,a), and some commercial prod-
ucts have been produced, such as GitHub Copilot
(GitHub, 2023). How to evaluate LLMs on code
generation is an open question. Many code genera-
tion benchmarks have been proposed, but there are
gaps between them and practical software projects.
The gaps result in the development of code gen-
eration technologies being inconsistent with the
experience of developers. To clarify the gaps, we
analyzed over 1 million functions from 500 practi-
cal projects and summarized the gaps as follows.
Gap 1: Existing benchmarks differ from real
program distributions, especially the proportion

"https://figshare.com/articles/
dataset/DevEval/25231922

def has_close_elements(numbers, threshold):
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False

(a) A standalone function in HumanEval

imapclient.IMAPClient.namespace
def namespace(self):
data = self._command_and_check(“namespace”)
parts = []
for item in parse_response(data):
(more lines . .)
for prefix, separator in item:
if self.folder_encode:
prefix = decode_utf7(prefix)
converted.append((prefix, to_unicode)
parts.append(tuple(converted))
return Namespace (xparts)

(b) A non-standalone function in a real-world project

Figure 1: Examples of standalone and non-standalone
functions Dependencies are highlighted, i.e., yellow:
intra-class dependencies, green: intra-file dependencies,
and blue: cross-file dependencies.

of non-standalone programs. As shown in Figure
1, a standalone function solely uses built-in or pub-
lic libraries, while a non-standalone one contains
project-specific dependencies. A project-specific
dependency refers to an invocation of elements de-
fined in projects, like parse_response in Fig-
ure 1. Out of 500 practical projects, 73.8% of func-
tions are non-standalone, and 26.2% are standalone.
However, existing benchmarks focus on standalone
programs, with few or no non-standalone programs.
For example, a popular benchmark - HumanEval
(Chen et al., 2021) does not contain non-standalone
functions, and the latest benchmark, CoderEval (Yu
et al., 2023) only includes 146 non-standalone pro-
grams.

Gap 2: Dependencies within existing bench-
marks are insufficient compared to practical
projects. On average, each non-standalone func-
tion in 500 practical projects contains 3.22 depen-

https://figshare.com/articles/dataset/DevEval/25231922
https://figshare.com/articles/dataset/DevEval/25231922

Table 1: The comparison between popular code generation benchmarks and DevEval. SA: Standalone. L(Re): the

average lengths (tokens) of requirements.

Benchmark Program Distribution Dependency Project Contexts #L(Re)
#Project #Total SA (%) Non-SA (%) | #Type #Total #Per Sample Path | #File #Line

CoNaLA (Yin et al., 2018) - 500 100% 0% 0 0 0 X 0 0 13.1
HumanEval (Chen et al., 2021) - 164 100% 0% 0 0 0 X 0 0 58.8
MBPP (Austin et al., 2021) - 974 100% 0% 0 0 0 X 0 0 16.1
PandasEval (Zan et al., 2022) - 101 100% 0% 0 0 0 X 0 0 29.7
NumpyEval (Zan et al., 2022) - 101 100% 0% 0 0 0 X 0 0 30.5
AixBench (Li et al., 2023b) - 175 100% 0% 0 0 0 X 0 0 345
ClassEval (Du et al., 2023) - 100 100% 0% 0 0 0 X 0 0 -
Concode (Iyer et al., 2018) - 2,000 19.9% 80.1% 1 2,455 1.23 X 0 0 16.8
CoderEval (Yu et al., 2023) 43 230 36% 64% 3 256 1.73 X 71 14,572 41.5
DevEval 119 2,690 26.2% 73.8% 3 5,849 2.95 "4 243 45,941 91.5
500 Practical Projects | 500 IM 26.2% 738% | 3 M 322 - | 238 46313 | -

dencies, including intra-class, intra-file, and cross-
file dependencies. However, existing benchmarks
have insufficient dependencies. For instance, Con-
code (Iyer et al., 2018) and ClassEval (Du et al.,
2023) solely contain intra-class dependencies, and
CoderEval averages only 1.73 dependencies per
non-standalone function.

Gap 3: The project contexts in existing bench-
marks are small-scale compared to practical
projects. In practical projects, developers rely
on the project contexts (e.g., relevant programs in
projects) to continually write new programs. The
contexts contain lots of project-specific knowledge
(e.g., private objects). The project contexts in 500
practical projects average 239 code files and around
43k lines. However, the project contexts in existing
benchmarks often are small-scale. For instance,
CoderEval’s project contexts average only 71 code
files and approximately 1.4k lines.

To address the above gaps, we propose a new
code generation benchmark named DevEval,
which aligns with Developers’ experiences in
practical projects. DevEval comprises 2,690 test-
ing samples from 119 practical projects, collected
by a rigorous pipeline and annotated by 13 devel-
opers. Each sample consists of a manually crafted
natural language requirement, project contexts, ref-
erence code, reference dependencies, and multiple
test cases. Table 1 compares DevEval with existing
benchmarks, highlighting its three advances.

Advance 1: Real program distribution. DevE-
val features a real program distribution, comprising
1,984 (73.8%) non-standalone and 706 (26.2%)
standalone programs, aligning the distribution ob-
served in 500 practical projects.

Advance 2: Sufficient Dependencies. DevE-
val includes 5,849 dependencies, around 23 times
more than CoderEval. Non-standalone programs

in DevEval average 2.95 dependencies, close to the
average value (i.e., 3.22) of 500 practical projects.
Besides, previous work (i.e., CoderEval) only pro-
vides dependencies’ names (e.g., close). Be-
cause many functions with the same name in prac-
tice, it is hard to identify whether the dependen-
cies generated by LLMs are correct by relying
on names. DevEval labels dependencies with
paths (e.g., A.py: :ClassB: :close), address-
ing ambiguity and biases.

Advance 3: Enough-scale project contexts.
DevEval contains enough-scale project contexts,
averaging 243 code files with 45,941 lines per
sample. Compared to previous benchmarks (e.g.,
CoderEval: 71 files with 14k lines), DevEval’s
project contexts are closer to the average in 500
practical projects (238 files with 46,313 lines).

DevEval also has advantages in requirements,
diversity, and evaluation metrics. @ Requirements.
Original comments of programs often are short
and vague and are not suitable for code genera-
tion. Thus, we engaged 13 developers to manually
write detailed and accurate requirements for all
programs. Our requirements average 91.5 tokens,
approximately 2.2 times that of CoderEval. @ Di-
versity. DevEval contains 11 times more samples
than CoderEval (2,690 vs. 230), collected from
119 projects across 10 domains (e.g., Text Process-
ing, Internet, Database). It covers diverse program-
ming topics to comprehensively assess LLMs. &
Evaluation Metrics. DevEval leverages Pass@k
(functional correctness) and Recall@k (recall of
reference dependencies) to comprehensively assess
generated programs.

We evaluate 12 popular LLMs upon De-
vEval (i.e., gpt-4-turbo-1106 (OpenAl, 2023b),
gpt-3.5-turbo-{0613, 1106} (OpenAl, 2023a),
CodelL.LaMa-{70B, 34B, 13B, 7B} (Roziere et al.,

Metrics: Pass@k, Recall@k
Evaluation Task: Context-based Code Generation: (1

DevEval Benchmark
Stats: A code generation benchmark containing 2690 testing samples, collected from 119 practical projects

def namespace(self):

@ Signature

@) Project Contexts

parses the response and converts it into the desired format.

exists, or a sequence of (prefix, separator) pairs. ""”

@ Requirement

“""Return the namespace for the IMAP account as a tuple of three
elements: personal, other, and shared. The function should send the
namespace command to the server and receive the response. Then, it

:param self: IMAPClient, an instance of the IMAPClient class.
treturn: Namespace. The namespace for the account as a tuple of
three elements. Each element may be None if no namespace of that type

import functools — imapclient

import imaplib > _ pycache
"t @ __init__.py
class Namespace(tuple): O Gillsy

@ datetime_util.py
(% imapd.py___
>:"} imapclient.py:
“& nteractpy

class SocketTimeout(..):
class MailboxQuotaRoots(..):

class Quota(..): O e [y

% response_parser.py

data = self._command_and_check("namespace")
parts = []
for item in parse_response(data):
if item is None:
parts.append(item)
else:
converted = []
for prefix, separator in item:
if self.folder_encode:
prefix = decode_utf7(prefix)

parts.append(tuple(converted))
return Namespace (kparts)

@ Reference Code

converted.append((prefix, to_unicode(separator)))

def require_capability(..):
Vs J %@ response_types.py

Intra-class Dependency:
imapclient.py::IMAPClient::_command_and_check
imapclient.py: :IMAPClient::folder_encode

Intra-file Dependency:
imapclient.py: :Namespace ® Reference
Dependency
Cross-file Dependency:
imap_utf7.py::decode_utf7

response_parser.py: :parse_response

def test_namespace(self):
self.set_return(b'(("&AP8-." "/")) NIL NIL‘)

self.assertEqual(self.client.namespace(), ((("\xff.",

® Test cases

"/"),), None, None))

Figure 2: An overview of DevEval. It contains 2,690 samples, and each sample consists of six components.

2023), StarCoder (Li et al., 2023d), and Mistral-
{7B, MoE} (Jiang et al., 2023; Mistral.Al, 2023))
and obtain surprising findings. First, LLMs exhibit
low performance on DevEval, especially compared
to their performance on previous benchmarks. For
example, gpt-3.5-turbo-1106 achieves a Pass@1
score of 73% on HumanEval, while its highest
Pass@1 on DevEval is only 42.97%. Our results
reveal the actual abilities of LLMs in code genera-
tion. Second, LLMs benefit from project contexts
but struggle with comprehensively understanding
long contexts. Even if we input oracle contexts, the
Pass@1 of LLMs is still below 50%.
In summary, our contributions are as follows:

* We identify gaps (e.g., unreal program dis-
tributions, insufficient dependencies, and
small-scale project contexts) between exist-
ing benchmarks and practical projects. We
propose a new benchmark named DevEval
with 2,690 samples, addressing these gaps.

* DevEval closely aligns practical projects, in-
cluding real program distributions, sufficient
dependencies, and enough-scale project con-
texts.

* We evaluate 12 popular LLMs on DevEval,

analyzing their strengths and shortcomings in
code generation for practical projects.

We hope DevEval can align with actual experi-
ences of developers during the practical develop-
ment process. By DevEval, practitioners can pick
up superior LLMs and facilitate the application of
code generation techniques in practical projects.

2 Benchmark - DevEval

2.1 Overview

DevEval contains 2,690 samples derived from 119
real-world open-source projects. As shown in Fig-
ure 2, each sample consists of six components. @
Function Signature: The signature of the code
to be generated. ® Requirement: An English
description detailing the functionality of the code
to be generated. ® Project Contexts: Existing
programs (e.g., hundreds of code files) in the cur-
rent project. @ Reference Code: A reference im-
plementation of the code to be generated, crafted
by developers. This code invokes dependencies
defined in project contexts. @ Reference Depen-
dency: The dependencies invoked in the reference
code, include intra-class, intra-file, and cross-file
dependencies. ® Test Cases: Test cases are used
to check the functional correctness of the code.

Table 2: The distribution of dependency types. The
values in parentheses are the corresponding percentages
in all dependencies.

Dep;;l;l:ucy HumanEval Concode CoderEval DevEval 500 Projects

Intra-class 0 2455 (100%) 117 (46%) 2,383 (41%) 939k (42%)
Intra-file 0 0 90 (35%) 1,833 (31%) 597k (29%)
Cross-file 0 0 49 (19%) 1,633 (28%) 611k (30%)

2.2 Benchmark Characteristics

Compared to existing benchmarks (e.g., CoderEval
(Yu et al., 2023)), DevEval aligns practical projects
due to three key advances.

@ Real program distributions. As shown in Ta-
ble 1, it contains 1,984 (73.8%) non-standalone pro-
grams and 706 (26.2%) standalone programs, align-
ing the observed ratio in 500 practical projects.

0 Sufficient dependencies. DevEval covers
three dependency types and contain sufficient de-
pendencies. As shown in Table 1, each sample
in DevEval averages 2.95 dependencies, surpass-
ing the averages in previous benchmarks (e.g.,
CoderEval: 1.75) and closely approaching that of
500 practical projects (i.e., 3.22).

Table 2 shows the distribution of dependency
types, i.e., intra-class, intra-file, and cross-file de-
pendencies. DevEval outperforms previous bench-
marks in all types, showing a more real distribution
that is close to the distribution in 500 practical
projects. For instance, cross-file dependencies con-
stitute 28% in DevEval compared to the meager
19% in CoderEval.

® Enough-scale project contexts. As shown
in Table 1, previous benchmarks’ project contexts
are notably small-scale, e.g., CoderEval: 14k lines
versus practical projects: 46k lines. In contrast, De-
vEval introduces more large-scale project contexts,
averaging 45k lines.

Moreover, DevEval has advantages in other as-
pects compared to existing benchmarks, such as
requirements and test cases.

Requirements. We engaged 13 developers
to manually write requirements, costing approx-
imately 674 person-hours. As depicted in Figure 2,
each requirement encapsulates the code’s purpose
and input-output parameters. The average length of
requirements in DevEval (91.5 tokens) more than
doubles that of CoderEval (41.5 tokens).

Test cases. Each sample in DevEval is equipped
with 7.95 test cases on average. These test cases
are rigorously validated through code reviews and
are capable of achieving high line-level and branch-

level coverages. In comparison, the average num-
ber of test cases in HumanEval and MBPP are 7.7
and 3.0, respectively. Therefore, DevEval provides
a reliable evaluation environment.

2.3 Task Definition

We define the Context-based Code Generation
task upon DevEval. It aims to generate code based
on a function signature, a requirement, and the
project contexts. We also design a baseline setting,
which generates code based on the signature and re-
quirement. The baseline is used to evaluate LLMs’
coding ability without project contexts.

2.4 Evaluation Metrics

Pass@F (Functional Correctness). Following pre-
vious studies (Chen et al., 2021; Austin et al., 2021;
Yu et al., 2023), we assess the functional correct-
ness of programs by executing test cases and com-
pute the unbiased Pass@¥k. Specifically, we gen-
erate n > k programs per requirement, count the
number of correct programs ¢ < n that pass test
cases, and calculate the Pass@k:

k
PassQf := E 1-——

Requirements n
k

Recall @k (Recall of Reference Dependency).
Besides the functional correctness, we expect
LLMs to invoke relevant dependencies defined in
contexts. Hence, we propose Recall@Fk, which
gauges the recall of reference dependencies in gen-
erated programs.

Specifically, LLMs generate k programs per re-
quirement. For the i-th program, we employ a
parser? to extract its dependencies as P;. Subse-
quently, we compare [P; with reference dependen-
cies R and compute the Recall@k:

ey

RecallQfk := E

Requirements

max

2
ikl |R]] 2)

where | - | means the number of elements of a set.

3 Benchmark Collection

As shown in Figure 3, the collection of DevEval
consists of four steps.

O Project Selection. We crawl high-quality
projects from an open-source community - PyPI

2We develop the parser based on an open-source static
analysis tool - Pyan (Pyan, 2023).

PyPI

@ Project Selection '

500 Projects, 1 million+ Functions

(@ Function Parse '

497 Projects, 590k Functions

@ Tests
Construction :> Test Cases
142 Projects, 3,764 Functions
:> Requirement,
Reference Dependency
121 Projects, 2,846 Functions
® Benchr.nark :> DevEval
Construction

119 Projects, 2,690 Functions

Signature, Reference Code,
Project Context

@ Human
Annotation

Figure 3: The process of collecting DevEval.

(PyPI). To ensure a broad diversity, we identify the
top 50 projects with open-source licenses in the top
10 popular programming topics. The 10 topics are
shown in Appendix A. We download the latest re-
leased versions in November 2023 and obtain 500
practical projects (10 topics * 50 projects).

® Function Parse. We extract all functions
within projects and parse their signatures and bod-
ies. Unparseable or empty functions are excluded.
The function bodies, crafted by developers and sub-
jected to rigorous code reviews, are deemed as the
reference code. Subsequently, we extract other pro-
grams within the current project as project contexts.
Finally, we obtain 590,365 functions.

® Tests Construction. For each function, we ex-
tract test cases invoking it from its project. We use a
popular testing framework - Pytest? to organize
these test cases. We leverage a public framework -
setuptools® to automatically build the running
environments for each project. Functions without
successful test cases are excluded. In summary, we
retain 3,764 functions, each equipped with both
successful test cases and running environments.

® Human Annotation. We engage 13 annota-
tors to manually annotate requirements and refer-
ence dependencies for each function. All annota-
tors obtain adequate payments given their countries
of residence.

Through discussions with annotators, we estab-
lish two criteria for requirements. Naturalness—
ensuring the requirement reads like a natural de-

*https://docs.pytest.org/en/8.0.x/
*nttps://github.com/pypa/setuptools

scription from the perspective of a real-world devel-
oper. Functionality—demanding clear descriptions
of the code’s purposes and input-output parame-
ters. Each requirement undergoes a dual-annotation
process, with one annotator assigned to its initial
drafting and another responsible for a meticulous
double-check. Trivial functions (e.g., shortcut func-
tions) and functions violating the ethical code (e.g.,
malware) are excluded. Subsequently, the same
13 annotators review the reference code and label
dependencies within it. Finally, we retain 2,846
functions with high-quality requirements and la-
beled reference dependencies.

® Benchmark Construction. Among the re-
tained functions, 862 are standalone, and 1,984 are
non-standalone. We follow the program distribu-
tion in 500 practical projects to construct DevEval,
ensuring the data size is maximized. Retaining all
1,984 (73.8%) non-standalone functions, we ran-
domly sample 706 (26.2%) standalone functions,
resulting in the DevEval with 2,690 samples.

4 Experiments

4.1 Studied LLMs

We evaluate 12 popular LLMs, including closed-
source LLMs (i.e., gpt-4-1106 (OpenAl, 2023b),
gpt-3.5-turbo-{0613, 1106} (OpenAl, 2023a),
Claude 2 (Anthropic, 2023), and GLM-4 (Zhipu.Al,
2024)) and open-source LLMs (i.e., CodeLLaMa-
{70B, 34B, 13B, 7B} (Rozi¢re et al., 2023), Star-
Coder (Li et al., 2023d), and Mistral-{7B, MoE}
(Jiang et al., 2023; Mistral.Al, 2023)). We use of-
ficial interfaces or implementations to reproduce
these LL.Ms. The details of LLMs can be found in
Appendix B.

4.2 Experimental Setup

The prompt template in our experiments is shown
in Appendix C. We use Pass@k and Recall@k (see
Section 2.4) to assess generated programs. In this
paper, k € [1,3,5,10]. When k = 1, we use the
greedy search and generate a single program per
requirement. When £ > 1, we use the nucleus
sampling with a temperature 0.4 and sample 20
programs per requirement. We set the top-p to 0.95
and the max generation length to 500.

4.3 Main Results

Baseline. Table 3 shows Pass@Fk and Recall@k
of LL.Ms in the baseline setting (i.e., without the
project contexts). As some closed-source LLMs

https://docs.pytest.org/en/8.0.x/
https://github.com/pypa/setuptools

Table 3: Pass@Fk and Recall@F on the baseline setting i.e., generating code based on the function signature and

requirement.

LLMs ‘ Size Context Window ‘ Pass@1 Pass@3 Pass@5 Pass@10 ‘ Recall@l Recall@3 Recall@5 Recall@10
gpt-4-1106 N/A 128,000 22.31 - - - 18.64 - - -
gpt-3.5-turbo-0613 N/A 4,096 18.48 21.38 22.50 23.93 12.51 14.25 14.75 15.85
gpt-3.5-turbo-1106 N/A 16,385 17.88 20.39 21.55 22.99 11.72 13.28 14.01 14.9
Claude 2 N/A 100,000 17.73 - - - 15.78 - - -
GLM-4 N/A 128,000 17.14 - - - 13.43 - - -
CodeLLaMa-Instruct | 70B 16,384 21.60 26.44 28.87 31.83 19.31 22.31 23.89 25.87
CodeLLaMa-Python 13B 16,384 17.88 22.86 25.32 28.39 16.80 20.43 22.02 24.27
CodeLLaMa-Python 7B 16,384 17.21 22.20 24.61 27.67 14.77 19.00 20.87 23.32
StarCoder 15.5B 8,192 17.10 21.89 24.33 27.26 17.73 21.36 23.57 25.75
CodeLLaMa-Instruct | 34B 16,384 16.25 19.34 20.69 22.77 15.35 17.23 17.82 18.79
Mistral-Instruct-MoE | 8*7B 32,768 13.23 17.06 18.75 20.76 10.44 13.66 15.26 16.67
Mistral-Instruct 7B 32,768 10.89 13.68 15.35 17.51 11.97 13.49 14.92 16.08

Table 4: Pass@k and Recall@Fk on context-based code generation, i.e., generating code based on a signature, a

requirement, and project contexts.

Settings gpt-3.5-turbo-1106 | CodeLLaMa-Instruct-34B | Mistral-Instruct-MoE
& Pass@1 Recall@1 | Pass@1 Recall@1 Pass@1 Recall@1
W/o Contexts 17.88 11.72 21.60 15.35 13.23 10.44
Local File 38.88 40.32 34.61 38.43 21.77 26.16
Local File + Sibling Files 41.26 45.91 39.70 46.36 23.56 28.14
Local File + Similar Files 42.34 46.29 39.78 47.63 24.65 30.95
Local File + Imported Files | 42.97 47.48 40.15 49.35 28.51 30.95
Local File + Oracle | 4464 5113 | 4461 53.54 | 29.26 37.92

are expensive, we report the Pass@1 with greedy
search. We can see that gpt-4 and CodeL.LaMa-
Instruct-70B achieve the highest Pass@1 and Re-
call@1 among all LLMs, respectively. However, all
LLMs exhibit relatively low Pass @k and Recall@k
values, compared to their performance on previous
benchmarks. For instance, gpt-4 achieves a Pass@1
score of 88.4 on HumanEval, whereas it scores
22.31 on Pass@1 in this setting. The decreases
validate our motivation that existing benchmarks
can not comprehensively assess the capabilities of
LLMs in practical projects. Furthermore, the re-
sults emphasize the importance of project contexts.
Interestingly, LLMs can successfully generate
several dependencies without project contexts. A
manual inspection of these dependencies reveals
that they are mainly simple dependencies that can
be reasoned from the requirements, e.g., initial-
ization functions of returned objects. It is hard
for LLMs to generate more intricate dependencies
without project contexts.
Context-based Code Generation. We further take
the project contexts into considerations. Project
contexts are typically very long, surpassing context
windows of existing LLLMs. Inspired by related
work (Shrivastava et al., 2023), we extract parts
of contexts as inputs. @ Local file: The code file
where the reference code is in. We only take pro-

grams above the reference code. We consider the
local file as a fundamental context and progres-
sively add other contexts. @ Sibling files: Files
within the same sub-folder as the local file. ® Im-
ported files: Files imported by the local file. @
Similar files: Files with names similar to the local
file. We split the names based on underscore or
camelcase formatting and then match the tokens
of names. If one or more parts match, two files
are considered to have similar names. ® Oracle:
Code implementations corresponding to reference
dependencies. It consists of many code snippets
from different files.

We input different contexts to three LLMs
(i.e., gpt-3.5-turbo-1106, CodeLLaMa-Instruct-
34B, and Mistral-Instruct-MoE), and the results
are presented in Table 4. After introducing the
contexts, Pass@k and Recall@k values increase
significantly. gpt-3.5-turbo-1106 achieves the high-
est Pass@1 under different contexts, although it is
worse than other LLMs without contexts. It shows
that gpt-3.5-turbo-1106 has a stronger ability to
understand contexts compared to other LLMs.

We further inspect a few successful cases and
attribute the improvements to the synergy of
contexts and our requirements. On the one hand,
the contexts provide lots of project-specific knowl-
edge. For example, the local file contains essen-

1 # Please complete the input code ...
2 # Here is the context:

122 # boto.regioninfo.connect

123 def connect(service_name, region_name, region_cls,
124 connection_cls, skkw_params):

125 # Create a connection class ...

126 i

163 # boto.swf.layerl.Layerl

164 class Layerl(AWSAuthConnection):

165 # Low-level interface to ...

166

1017 # Here is the input code:
1018 # boto.swf.connect_to_region
1019 def connect_to_region(region_name, skkw_params):

1020 """ Connect to a specific region in ...
1021
(a) Prompt
1 # Reference Code
2 # return connect('swf', region_name,
3 # connection_cls=Layerl, skkw_params)
4 return create_connection(region_name, xxkw_params)

(b) Generated Code

Figure 4: A failed case on DevEval-CGen.

Table 5: Lengths (#Tokens) of different contexts.

Context Average length Max length
Local File 2,468 51,716
Local File+Imported Files 14,913 771,644
Local File+Similar Files 17,589 2,038,908
Local File+Sibling Files 53,412 579,237
All Files 1,147,282 9,263,195

tial local environments (e.g., current classes, im-
ported libraries) and a majority of dependencies
(e.g., intra-class and intra-file: 72% in DevEval).
Similar and sibling files typically contain programs
pertinent to the requirements (e.g., parent classes).
Imported files offer many cross-file dependencies
that are likely to be invoked. Recent work (Zhang
et al., 2023) in code completion also proved the im-
portance of contexts. On the other hand, our man-
ually written requirements elaborate the purposes
of code and the background knowledge of projects.
Thus, our requirements help LLMs understand long
contexts and locate relevant dependencies.
Although promising, LLMs’ abilities in
context-based code generation are not satisfying.

Even if we input oracle contexts, the highest
Pass@1 only is 44.64%. A manual inspection
of failed cases reveals LLMs struggle with
understanding contexts. Figure 4 illustrates a
failed case. LLMs invoke a non-existent function
- create_connection, even though a valid
function connect is present in the contexts. We
think this problem is caused by two reasons.

First, the contexts are too long. Table 5 shows

60

49.58 49.71 4915

43.04
I | I | I

Local+Silbing Local+SimFile Local+lmport Local+Oracle

46.18 a2y

40 3782 - -
20
0

W/o contexts Local

B Standalone Non-standalone

Figure 5: The Pass@1 of gpt-3.5-turbo-1106 on differ-
ent program types.

the lengths of different contexts. The complete
project contexts are lengthy, approximately 9 times
the context window of the state-of-the-art LLM
- gpt-4-1106. Even when partial contexts are
considered, their lengths match or even exceed
the context window of most current LLMs. Re-
cent works (Liu et al., 2023) have found that
LLMs often ignore relevant information in the
middle of long contexts. This finding is consis-
tent with our results. Second, the contexts are
heterogeneous. In other words, the contexts are
composed of discrete code snippets from different
files rather than a continuous file. As shown in
Figure 4, the programs within contexts come from
multiple files, e.g., boto.regioninfo.py and
boto.swf.layerl.py. However, LLMs are
typically trained to predict the next tokens based on
the continuous contexts. The gap between training
and inference objectives leads to a poor understand-
ing of LLMs in contexts. Recent work (Shi et al.,
2023) also found similar gaps in reading compre-
hension and question answering.

Q Takeaway:

(1) Project contexts play a pivotal role in code
generation; without them, LLMs exhibit subpar
performance.

(2) Inputting relevant contexts benefits code gen-
eration. With limited context windows, local files
and imported files can bring obvious improvements.

(3) Detailed and accurate requirements not only
help LLMs know the purposes of programs but also
understand long contexts.

(4) Existing LLMs struggle with understanding
long and heterogeneous contexts. It causes LLMs to
disregard the knowledge in contexts and even gen-
erate hallucinations (e.g., non-existent functions).

60

50.31

54.5
52.33
49.19
44.77
40
20 16.15
] 69
0

W/o contexts Local

Local+Silbing Local+SimFile Local+import Local+Oracle

B Intra-class Intra—file B Cross-file

Figure 6: The Recall@1 of gpt-3.5-turbo-1106 on dif-
ferent dependency types.

4.4 Discussion

Results on different program types. Figure
5 shows Pass@1 of gpt-3.5-turbo-1106 on dif-
ferent program types (i.e., standalone and non-
standalone). The results reveal three observations.
® Project contexts are crucial to generating non-
standalone functions. For example, adding local
files improves the Pass@1 on non-standalone func-
tions from 10.84 to 36.24. @ Project contexts also
benefit standalone functions. This is attributed to
the project-specific knowledge within contexts, aid-
ing LLMs in understanding requirements. Thirdly,
there exists considerable room for improving LLMs
on both types of programs. How to effectively uti-
lize contexts is a key problem.

Results on different dependency types. Figure
6 shows the Recall@1 of gpt-3.5-turbo-1106 on
different dependency types (i.e., intra-class, intra-
file, and cross-file). The results yield two insights.
@ Without project contexts, LLLMs exhibit low Re-
call@]1 values across three dependency types. How-
ever, LLMs demonstrate the ability to infer reason
about easy dependencies based on requirements,
e.g., initialization functions of returned objects.
® With contexts, LLMs exhibit an improvement
in generating dependencies. Nevertheless, LLMs
have yet to grapple with generating dependencies,
especially cross-file dependencies. As illustrated in
Figure 4, LLMs often ignore available dependen-
cies defined in contexts.

Data leakage. Theoretically, all open-source
projects may be included in the training data for
LLMs. Consequently, there is a risk of data leak-
age where several projects used to build DevEval
appear in the training data. We think this risk has
only a slight impact on DevEval due to four rea-
sons. @ DevEval contains new data, i.e., manu-
ally written requirements. These requirements are
never included in the training data. @ Existing

LLMs do not show overfitting tendencies to DevE-
val. Based on the release dates of 12 LLMs (see
Section 4.1), we divide DevEval into two groups:
unseen projects released later than LLMs and po-
tentially seen projects released earlier than LL.Ms.
The average difference of Pass@1 between the two
groups is around 0.42. Compared to the average
variations between LLMs (e.g., 3.38 in Table 3 and
10.98 in Table 4), 0.42 is slight. & DevEval is
geared toward evaluating future LLMs. We release
the links to our selected projects in Appendix A
and encourage practitioners to omit these projects
when collecting the training data for future LLMs.
The bias of Recall@k. As stated in Section 2.4, we
develop a static analysis-based parser to automati-
cally extract dependencies in generated programs.
Because Python is a dynamically typed language,
certain dependencies only are determined at run-
time and may elude our parser. It may lead to lower
Recall@F than actual values.

To gauge the above bias, we manually annotate
dependencies within 100 programs generated by
gpt-3.5-turbo-1106. Simultaneously, we employ
our parser to extract dependencies in the same 100
programs. Based on the human-annotated and auto-
extracted dependencies, we compute two Recall@ 1
values. The bias of two Recall@1 values is 0.23.
Compared to the average variations between LLMs
(3.47 in Table 3 and 11.08 in Table 4), 0.23 is
slight. Consequently, we believe that Recall@Fk can
effectively rank different LLMs, notwithstanding
its slight bias.

5 Conclusion and Future Work

In this paper, we propose a new code generation
benchmark named DevEval. Collected through a
meticulous pipeline, DevEval aligns practical soft-
ware projects in multiple dimensions, e.g., real pro-
gram distributions, sufficient dependencies, and
enough-scale project contexts. We evaluate 12 pop-
ular LLMs on DevEval. The results reveal the
strengths and weaknesses of LLMs in practical
projects. Compared to previous benchmarks, De-
vEval offers a more challenging and practical eval-
uation scenario. We hope DevEval can facilitate
the applications of LLMs in practical projects.

In the future, we will continue to update De-
vEval, e.g., multilingual testing samples, more
projects, and more test cases. Besides, we will
explore how to improve the performance of LLMs
in context-based code generation, e.g., retrieval-
augmented and tool-augmented generation.

6 Limitations

In this paper, we propose a new code generation
benchmark - DevEval, which aligns with practical
software projects. Based on DevEval, we evaluate
12 popular LLMs and analyze their strengths and
shortcomings.

We believe that DevEval itself has four limita-
tions. @ DevEval is a monolingual benchmark (i.e.,
requirements in English and code in Python) and
ignores other languages. In practice, LLMs require
understanding requirements in different natural lan-
guages (e.g., Chinese, Spanish) and generating
programs in various programming languages (e.g.,
Java, C). Thus, we plan to build a multilingual De-
vEval in future work. @ Test cases in DevEval may
be insufficient. As stated in Section 2.2, each sam-
ple in DevEval is equipped with 7.95 test cases on
average. These test cases are collected from prac-
tical projects and pass rigorous reviews. However,
there is a risk where several samples lack corner
test cases. This results in some incorrect programs
being mistaken for correct ones. To alleviate this
threat, we plan to leverage test case generation tools
(Lukasczyk and Fraser, 2022; Dinella et al., 2022)
to produce corner test cases and improve the cov-
erage of test cases. ® As shown in Table 1 and 2,
DevEval is closer to practical projects, but still has
slight differences in the number and distribution
of dependencies. In the future, we will introduce
more dependencies into DevEval and alleviate the
difference. @ As stated in Section 4.4, Recall@k
values in DevEval may have slight biases, i.e., they
may be slightly less than actual values. Because
Python is a dynamically typed language, certain
dependencies can only be identified at runtime and
may elude our parser. To gauge the bias introduced
by our parser, we manually annotate dependencies
within 100 programs generated by gpt-3.5-turbo-
1106. Simultaneously, we employ the parser to
extract dependencies in the same 100 programs.
Based on the human-annotated and auto-extracted
dependencies, we compute two Recall@1 values.
The bias of two Recall@1 is 0.23. Compared to the
average variations between LLMs (3.47 in Table 3
and 11.08 in Table 4), 0.23 is slight. Consequently,
the Recall@F can effectively rank different LLMs,
notwithstanding its slight bias.

Besides, our evaluation experiments can be fur-
ther improved in three aspects. ® More LLMs.
Due to the limited computing budgets, we mainly
evaluate 12 mainstream LLMs (see Section B). It is

worthy to evaluate some recently proposed LLMs
(Guo et al., 2024; DeepMind, 2023). ® More in-
vestigations of project contexts. As shown in Ta-
ble 4, we explore 5 straightforward approaches
to utilizing project contexts. In the future, we will
introduce more advanced techniques (e.g., retrieval-
augmented or tool-augmented generation) to inves-
tigate how to utilize contexts. @ Tuning hyper-
parameters. It is known that LLMs are sensitive
to sampling hyper-parameters and prompts. We
ensure all LLMs are evaluated under the same ex-
perimental settings. Due to the limited computing
budgets, we do not carefully tune hyper-parameters
and prompts. Thus, there may be better hyper-
parameters and prompts to further improve the per-
formance of LLMs.

7 Ethics Consideration

DevEval is collected from open-source projects
from the real world. We manually check all sam-
ples in DevEval. We ensure all samples do not
contain private information or offensive content.
We ensure all programs in DevEval are behaving
normally and exclude any malicious programs.

References

Anthropic. 2023. Claude 2. https://www.
anthropic.com/news/claude-2.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general
intelligence: Early experiments with GPT-4. CoRR,
abs/2303.12712.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,

https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732

William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

DeepMind. 2023. Gemini ultra.
//blog.google/technology/ai/
google—gemini-ai/#sundar—-note

https:

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and
Shuvendu K. Lahiri. 2022. TOGA: A neural method
for test oracle generation. In 44th IEEE/ACM 44th
International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,
pages 2130-2141. ACM.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A
manually-crafted benchmark for evaluating llms on
class-level code generation. CoRR, abs/2308.01861.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,
Ethan Perez, Nicholas Schiefer, Kamal Ndousse,
Andy Jones, Sam Bowman, Anna Chen, Tom Con-
erly, Nova DasSarma, Dawn Drain, Nelson Elhage,
Sheer El Showk, Stanislav Fort, Zac Hatfield-Dodds,
Tom Henighan, Danny Hernandez, Tristan Hume,
Josh Jacobson, Scott Johnston, Shauna Kravec,
Catherine Olsson, Sam Ringer, Eli Tran-Johnson,
Dario Amodei, Tom Brown, Nicholas Joseph, Sam
McCandlish, Chris Olah, Jared Kaplan, and Jack
Clark. 2022. Red teaming language models to re-
duce harms: Methods, scaling behaviors, and lessons
learned. CoRR, abs/2209.07858.

GitHub. 2023. Github copilot. https://github.
com/features/copilot.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Srinivasan Iyer, loannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1643—1652. Association
for Computational Linguistics.

Robert A. Jacobs, Michael 1. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Comput., 3(1):79-87.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego

10

de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Munoz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. 2022. The stack: 3 TB of permissively
licensed source code. CoRR, abs/2211.15533.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023a. Struc-
tured chain-of-thought prompting for code genera-
tion. arXiv preprint arXiv:2305.06599.

Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and
Xing Hu. 2023b. Skcoder: A sketch-based approach
for automatic code generation. In 45th IEEE/ACM
International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023,
pages 2124-2135. IEEE.

Jia Li, Yunfei Zhao, Li Yongmin, Ge Li, and Zhi Jin.
2023c. Acecoder: Utilizing existing code to enhance
code generation. arXiv preprint arXiv:2303.17780.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Mufoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023d. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language
models use long contexts. CoRR, abs/2307.03172.

Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin:
Automated unit test generation for python. In 44th
IEEE/ACM International Conference on Software
Engineering: Companion Proceedings, ICSE Com-
panion 2022, Pittsburgh, PA, USA, May 22-24, 2022,
pages 168—-172. ACM/IEEE.

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://blog.google/technology/ai/google-gemini-ai/#sundar-note
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2308.01861
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3510454.3516829

Mistral.Al. 2023. Mistral-moe. https://mistral.

ai/news/mixtral-of-experts/.

OpenAl. 2023a. gpt-3.5-turbo. https:
//platform.openai.com/docs/models/
gpt—-3-5.

OpenAl. 2023b. GPT-4 technical report. CoRR,
abs/2303.08774.
Pyan. 2023. Pyan. https://github.com/

davidfraser/pyan.
PyPIL. Pypi. https://pypi.org/.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou,
Margaret Li, Xi Victoria Lin, Noah A. Smith, Luke
Zettlemoyer, Scott Yih, and Mike Lewis. 2023. In-
context pretraining: Language modeling beyond doc-
ument boundaries. CoRR, abs/2310.10638.

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-
low. 2023. Repository-level prompt generation for
large language models of code. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
31693-31715. PMLR.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Dongdong Zhang, and Furu Wei. 2022. Deep-
net: Scaling transformers to 1, 000 layers. CoRR,
abs/2203.00555.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
pages 476—486. ACM.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and
Qianxiang Wang. 2023. Codereval: A benchmark
of pragmatic code generation with generative pre-
trained models. CoRR, abs/2302.00288.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and
Jian-Guang Lou. 2022. CERT: continual pre-training
on sketches for library-oriented code generation. In
Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, pages 2369-2375.
ijcai.org.

11

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130B: an open bilingual pre-trained model. In
ICLR. OpenReview.net.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. RepoCoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2471-2484, Singapore. Association for Com-
putational Linguistics.

Zhipu.Al. 2024. Glm-4.
bigmodel.cn/pricing.

https://open.

https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://doi.org/10.48550/ARXIV.2303.08774
https://github.com/davidfraser/pyan
https://github.com/davidfraser/pyan
https://github.com/davidfraser/pyan
https://pypi.org/
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://doi.org/10.48550/ARXIV.2310.10638
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.48550/arXiv.2302.00288
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://open.bigmodel.cn/pricing
https://open.bigmodel.cn/pricing
https://open.bigmodel.cn/pricing

