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ABSTRACT

Continual learning seeks to enable machine learning systems to solve an increasing
corpus of tasks sequentially. A critical challenge for continual learning is forgetting,
where the performance on previously learned tasks decreases as new tasks are
introduced. One of the commonly used techniques to mitigate forgetting, sample
replay, has been shown empirically to reduce forgetting by retaining some examples
from old tasks and including them in new training episodes. In this work, we
provide a theoretical analysis of sample replay in an over-parameterized continual
linear regression setting, where given enough replay samples, one would be able
to eliminate forgetting. Our analysis focuses on replaying a few examples and
highlights the role of the replay samples and task subspaces. Surprisingly, we find
that forgetting can be non-monotonic with respect to the number of replay samples.
We construct tasks where replay of a single example can increase forgetting and
even distributions where replay of a randomly selected sample increases forgetting
on average. We provide empirical evidence that this is a property of the tasks rather
than the model used to train on them, by showing a similar behavior for a neural
net equipped with SGD. Through experiments on a commonly used benchmark,
we provide additional evidence that performance of the replay heavily depends on
the choice of replay samples and the relationship between tasks.

1 INTRODUCTION

Humans and other animals can seemingly learn new skills and accumulate knowledge throughout
their lifetimes. Continual learning algorithms aim to achieve this same capability: to produce systems
that can learn from a sequence of tasks. One of the main challenges is a phenomenon typically called
catastrophic forgetting (McCloskey & Cohen, 1989), where the learner’s performance on a previously
visited task degrades once it learns new tasks. A dominant theme in continual learning has been the
development of methods to address catastrophic forgetting (Li & Hoiem, 2017; Zenke et al., 2017;
Rebuffi et al., 2017; Kirkpatrick et al., 2017; Prabhu et al., 2020b). However, there has been limited
theoretical treatment of their efficacy.

In this work, we focus on a continual learning problem consisting of a sequence of linear regression
tasks. The tasks are designed such that a single linear model is sufficient to solve the full sequence.
The aim of focusing on this problem is that it is simple enough to permit analysis while preserving
some key challenges of the continual learning problem. A particularly noteworthy discovery of prior
work is that even in this setting, catastrophic forgetting can occur (Evron et al., 2022). However, an
open question remains: Can methods designed to combat forgetting succeed in this setting? As a first
step towards answering this question, we study one such method, experience replay.

There are many variations of experience replay. For example, van de Ven et al. (2020) introduce a
brain-inspired generative replay and show that it has strong performance on complex benchmarks. In
this paper, we focus on sample replay, an intuitive technique where samples observed during continual
learning are stored and repeated back to the learner during later tasks, to help retain solutions to
prior tasks. This simple method has been shown to be effective at ameliorating forgetting (Rebuffi
et al., 2017; Rolnick et al., 2019; Aljundi et al., 2019b; Wu et al., 2019; Chaudhry et al., 2019; Tiwari
et al., 2022), and is often used in dynamic learning settings like reinforcement learning (Lin, 1992).
Replay has also been a focus of study in neuroscience, as strong experimental evidence supports
the hypothesis that replay plays an important role in memory consolidation (Rasch & Born, 2007;
Oudiette & Paller, 2013).
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Some existing theoretical works in continual learning show that when tasks are revisited in a cyclical
order, forgetting would vanish. Evron et al. (2022) shows this in the continual linear regression setting,
while Chen et al. (2022) show a similar result in a more general PAC-like continual learning setting.
While these results show that forgetting decreases when the entire task sequence is replayed, they
do not consider what happens when replay occurs between tasks, and involves a subset of samples.
We analyze sample replay for continual linear regression and find that, when the number of replay
samples is small, the outcome of sample replay can vary significantly. A learner faced with a possibly
infinite sequence of tasks and finite memory cannot afford to hold on to a fixed number of samples
per task, so it is important to understand this low sample storage setting. Even when storage capacity
is not a concern, studying this low sample regime could lead to insights that make learning more
efficient.

We first prove that somewhat counter-intuitively there are worst-case scenarios where replay actually
causes more forgetting. We then prove a surprising stronger result, that this can still hold in a certain
average case sense: even when examples are sampled randomly from specific task subspaces, and
replay samples are chosen randomly, replay can increase forgetting on average. These findings
suggest that when the memory allocated to storing replay samples is very limited, not only does the
choice of replay samples matters, but also the relationship between tasks could dictate the effect of
replay on forgetting. In addition to our theoretical contributions, we provide an empirical investigation
of forgetting with sample replay to support our theoretical findings. We verify our theoretical results
and further show that the same surprising behavior exists in continual linear regression learning with
neural networks. Through experiments on MNIST continual learning benchmarks, we show that
there is significant variation in the effectiveness of replaying a few samples to mitigate forgetting,
and a task sequence where replay can increase forgetting.

2 BACKGROUND AND SETUP

2.1 BACKGROUND

Evron et al. (2022) initiated the study of catastrophic forgetting in overparameterized linear regression.
They consider a sequence of linear tasks (Xt,yt)

T
t=1 where Xt ∈ Rnt×d, yt ∈ Rnt and nt, d are the

number of samples per task and input dimension respectively. They assume that the sequence of linear
tasks share a solution that could be obtained by jointly training on all tasks, and for each task nt < d,
so any single task would not necessarily contain all the information needed to learn the common
solution. Despite the existence of a common solution, they show that there are sequences of tasks such
that learning them in a sequential manner with gradient descent will result in a significant amount of
forgetting, which is defined to be the average error on all previously seen tasks (Definition 2.3). In
this setting, d many samples would be sufficient to recover the solution to each task.

Another group of techniques used to mitigate forgetting is through regularization. For example,
forgetting can be eliminated using a Fisher information based weighting matrix (Kirkpatrick et al.,
2017; Evron et al., 2023). We note that storing such matrices would take order d2 bits of memory,
which is of the same order as storing d samples. Peng et al. (2023) introduce a general notion of an
“ideal continual learner” and instantiate it for continual linear regression. Their algorithm maintains
the shared null space of the previous tasks. Again, storing a null space could take order d2 bits of
memory. Sample replay, on the other hand, allows the learner to store much less than d many samples,
reducing memory requirements significantly. However, the effectiveness of replaying a few samples
in this linear setting is an open question and the focus of this paper.

2.2 GENERAL SETUP

Here we consider two different settings for sample replay: the worst case and the average case. We
first introduce the general setup, which is shared between the two settings and closely resembles the
earlier formulation described above, and then examine each separately, in Sections 3.1 and 3.2.1,
respectively. We start with the following two assumptions.

Assumption 2.1 (Over-parameterized linear regression). We assume that each task is:

• Linear: there is w∗
t ∈ Rd such that Xtw

∗
t = yt.

2
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• Over-parameterized: kt := rank(Xt) < d.

We also assume realizability, which ensures that the T tasks share a common solution:
Assumption 2.2. (Realizability). There exists w∗ ∈

⋃
t span(Xt), where ∥w∗∥2 ≤ 1, such that for

all tasks t, yt = Xtw
∗.

Projections. Let Πt be an orthogonal projection onto the row span of Xt, i.e. the span of the
samples of task t. We can write Πi = X+

t Xt where X+
t is the Moore-Penrose inverse of X+

t .
Another way to obtain the orthonormal projection is using a matrix Wt whose columns form an
orthonormal basis for the row span of Xt. Given Wt, we could write Πt = WtW

⊤
t . We use

Pt := I − Πi to denote the orthogonal projection onto the null space of task t. We use the term
projection interchangeably with orthogonal projection throughout the rest of this paper.

Learning Procedure. Initially w0 is set to the all-zero vector. For each task t, starting with the so-
lution wt−1 from the previous task(s), the learning algorithm minimizes squared error ∥Xtw − yt∥22
using GD or SGD.

It is known that training with GD or SGD leads to a solution that has minimum distance to initialization
(Gunasekar et al., 2018; Zhang et al., 2021), that is,

wt = argmin
w

∥w −wt−1∥2 s.t. Xtw = yt. (1)

Parameter error of the procedure in Equation 1 satisfies the following recursive relationship

wt −w∗ = Pt(wt−1 −w∗). (2)

We include a derivation of this relationship in Appendix A.1 for completeness. Initially, the parameter
error vector is w0 −w∗ = −w∗, Equation 2 states that after training on task t, the parameter error
vector is projected onto the null space of task t. So the parameter error vector evolves as a sequence
of orthonormal projections into task null spaces, while forgetting also takes into account projection
of the parameter error onto the task samples.

Definition 2.3 (Forgetting). Given a sequence of training samples for tasks S = ((Xt,yt))
T
t=1, the

forgetting with respect to the training samples is defined to be

FS(wT ) =
1

T − 1

T−1∑
t=1

∥XtwT − yt∥22. (3)

We drop the subscript S when it is clear from the context which sequence of tasks the forgetting
is being computed over. Note that the average forgetting defined above is over T − 1 tasks since
forgetting on the last task is always zero. We can consider forgetting for a certain task ordering
catastrophic, when limT→∞ FS(wT ) > 0, or in other words, when it does not vanish with the
number of tasks.
Remark 2.4. In our average case result, each task is given by a distribution, and forgetting is
measured on new samples from previous tasks’ distributions. We introduce and discuss these details
in Section 3.2.1.

Forgetting for the output of the learning procedure described in Equation 1 can be written as

FS(wT ) =
1

T − 1

T−1∑
t=1

∥Xt(wT −w∗)∥22 =
1

T − 1

T−1∑
t=1

∥XtPTPT−1 . . . P1w
∗∥22, (4)

see Appendix A.2 for this derivation. We can see from Equation 4 that forgetting not only depends
on the parameter error vector but also on its relationship with the training samples.

Replay. We consider a simple and standard formulation of replay in the literature, where the
learning algorithm can store up to m samples from the previously seen tasks in memory, sometimes
called episodic memory (Chaudhry et al., 2019). Let Xmem,ymem denote the set of stored samples.
During training on the current task t, in addition to the current task’s samples, the model also trains on
Xmem,ymem to get the new iterate w̃t+1. There are many ways the algorithm can update Xmem,ymem

(Chaudhry et al., 2019). In our worst case setup, this choice is adversarial, while in the average case
setup we consider a random selection.

3
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3 REPLAY CAN PROVABLY INCREASE FORGETTING IN CONTINUAL LINEAR
REGRESSION

In this section we show that replay can increase forgetting in two different settings. Each setting
demonstrates a different scenario where replay can increase forgetting. The worst case setting
highlights how the relationships between individual samples could lead to catastrophic forgetting
with replay, while the average case result goes beyond interactions between individual samples
and highlights the role of task subspaces and the angle(s) between them. For both of these results,
interference within samples of each task plays an important role. Since samples within a task can
be revisited many times during training, this intra-task sample interference does not matter without
replay and we only see forgetting due to interference across tasks. With replay, however, intra-task
sample interference could also contribute to forgetting.

3.1 WORST CASE: FROM VANISHING TO CATASTROPHIC FORGETTING VIA REPLAY SAMPLE
SELECTION

Our result in the worst case setting shows that the increase in forgetting due to replay can be rather
dramatic, or catastrophic. In addition to Assumptions 2.1 and 2.2, we require that samples have unit
norm:
Assumption 3.1. Let Xti be the ith row of Xt. Assume that ∥Xti∥2 = 1.

By restricting the sample norms in Assumption 3.1, we are emphasizing that sample norms are not
playing a role in the construction used to get the result in Theorem 3.2. This assumption is not
necessary to get the worst case result. In the worst case setting, the adversary is free to choose the
samples for each tasks, ((Xt,yt))t=1,...T and the replay sample(s) Xmem,ymem, with restriction that
((Xt,yt))t=1,...T must satisfy Assumptions 2.1, 2.2, and 3.1.

3.1.1 WORST CASE RESULTS

In this worst case setting, we choose the tasks and a (possibly empty) subset of samples from each
task to be replayed. In this setup, we show that forgetting could increase from vanishing, O

(
1
T

)
, to

Θ(1), which we have labeled catastrophic.

At the core of the tasks constructed in the worst case setting are three samples x1,x2 and x3, where
x1 and x3 are orthogonal to one another, and x2 is linearly independent but not orthogonal to x1 or
x3. Consider a sequence of two tasks where the samples for the first task consists of x1,x2, and the
second task contains only x3. After training on the first task, there is no error on x1 and x2. When
we train on the second task, since x3 is not orthogonal to x2, training on x3 introduces some error on
x2 but doesn’t introduce error on x1, since it is othogonal to x3. Now suppose that x2 is replayed, so
for the second task, we train on both x2 and x3. Since x1 is not orthogonal to x2, this will introduce
error on x1. Thus in this three sample, two task setup, replay causes an exchange of the error on x2

with error on x1. See Figure 7 in Appendix B.1 for a geometric illustration of this phenomena.
Theorem 3.2 (Worst case replay). Under assumptions 2.1 and 2.2, for any T ≥ 2, d ≥ 3, there is
a sequence of T tasks and a sample (x̃, ỹ) such that without replay, forgetting is F (wT ) = O

(
1
T

)
,

while with replay of (x̃, ỹ), forgetting is catastrophic, i.e., F (wT ) = Θ(1) .

In the proof, which is given in Appendix C.1 , we construct a scenario where this type of error
exchange is detrimental. We construct a sequence of tasks t = 1, . . . , T , where the sample x1 occurs
in all but the last task, while the sample x2 occurs in just one of these tasks. Then we can see that if x2

is replayed in the last task (t = T ), causing error on x1, the forgetting will be much larger, growing
with the number of tasks T , since x1 occurs in almost all the tasks. Note that in this construction,
replaying x1 would not change the final iterate wT , since without replay, there is no error on x1.
Additionally, the construction is such that without replay, there is no forgetting on any sample other
than x2.

3.2 AVERAGE CASE: FORGETTING IN A RANDOM SAMPLE SETTING

The goal of studying sample replay in the average case setting is to understand how much the increase
in forgetting due to sample replay depends on the relationship of individual samples within each
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subspace and the choice of samples to be replayed. As we will see, the relationship between the tasks
also affects forgetting with replay. We show that it is possible to pick task subspaces such that replay
increases forgetting, even when task samples are chosen randomly from those subspaces and a replay
sample is chosen randomly.

3.2.1 AVERAGE CASE SETUP

The average case setup is more natural and general relative to the worst case setup. Each task’s
samples are drawn from a distribution supported on some subspace, and the forgetting is measured
on a set of new samples from that distribution. Additionally, the replay samples are chosen randomly.

In the average case construction, the task distributions are Gaussians supported on specific subspaces.
Each of these subspaces can be specified by an orthonormal basis Wt ∈ Rd×kt . The rows of the
nt × d dimensional matrix Xt consist of individual samples Xt1, . . . ,Xtnt , where each sample

Xtj = WtZtj and Ztj ∼ N(0,
Ikt
kt

), (5)

and Ztj are iid for j ∈ [nt]. Since Xtj are rows of Xt, we can write Xt = ZtW
⊤
t , where Zt is a

nt × kt dimensional matrix whose rows are Ztj . Then w∗ along with Xt determines yt = Xtw
∗.

In this average case setting, we need to have enough samples for each task to span each task subspace
Wt. The sample generation process described above ensures that this condition is met as long as the
number of samples for each task is larger than the task’s rank.

Assumption 3.3. Assume that the number of the samples for each task is at least as large as the rank
of the given subspace Wt, that is, kt ≤ nt.

While it will always be the case that rank(Xt) ≤ nt, the condition above is to ensure that rank(Xt) =
kt. We consider the expectation of forgetting with respect to kt test samples from previous tasks. To
mark this difference we use X′

t,y
′
t to denote the test samples and FS′(wT ) to denote forgetting with

respect to these new samples. That is

FS′(wT ) =
1

T − 1

T−1∑
t=1

∥X′
twT − y′

t∥
2
2 =

1

T − 1

T−1∑
t=1

∥X′
t(wT −w∗)∥22. (6)

We assume that there are kt test samples. This would ensure that there are enough test samples to
span the task’s subspace. Next proposition gives the expected forgetting (without replay) in this
setting, the proof is given in Appendix C.2.

Proposition 3.4. Suppose that Xtj are sampled according to Equation 5, then

E[FS′(wT )] =
1

T − 1

T−1∑
t=1

∥ΠtPT . . .P1w
∗∥22. (7)

Remark 3.5. Even though Evron et al. (2022) did not have any distributional assumptions on the
samples, the expected forgetting in the expression above is similar to the upper bound they get on
forgetting, which was 1

T

∑T
t=1∥ΠtPT . . .P1w

∗∥22. When it comes to replay, however, this setting
introduces new challenges, since the projections into the null spaces would then depend on the replay
samples and could be random in this average case setting.

3.2.2 AVERAGE CASE RESULTS

We now present the main result in Theorem 3.6, which states that replay can increase forgetting even
in this setting. In the proof of Theorem 3.6, we first give an analysis of expected forgetting with
replay for two tasks and then a simple two task construction where we can show that replaying a
single randomly chosen example from the first task’s examples increases forgetting on average. The
construction is such that the first task has rank two and hence replaying two samples would lead to
zero forgetting.

5
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(a) (b) (c) (d)

Figure 1: The red plane in (a) shows the null space of task 2. The null space of the first task, spanned
by p1, is in the span of {v2,v3} and very close to v2. Without replay, the angle between v2 and p1

determines forgetting , while with replay of one sample, the angle between p̃2 and p1 determines
forgetting. In displays 1b and 1c where p̃2 is not too far from v2, forgetting would increase with
replay, while in 1d, it would decrease.

Theorem 3.6 (Average case replay). Suppose that assumptions 2.1, 2.2, and 3.3 hold. For every
w∗ ∈ Rd where ∥w∗∥2 ≤ 1, there exists a sequence of two task subspaces, such that replaying a
randomly chosen sample from the first task’s samples increases expected forgetting. That is

E[FS′(w2)] < E[FS′(w̃2)], (8)

where w̃2 is the iterate after the second task with replay.

This result shows that there can be task sequences where most choices of sample options for replay
are unfavorable, so that it is not only choices of replay samples that matters but also the relationship
between the tasks.
Remark 3.7. A similar statement would hold if forgetting was measured with respect to the training
samples. So this increase in forgetting is not due to overfitting. We have stated it with respect to the
test samples, since it a stronger more general statement.

The proof of Theorem 3.6 is given in Appendix C.1. Note the statement in Theorem 3.6 is on the
expectation of forgetting with replay, and it does not mean that replaying any sample from the first
subspace would increase forgetting. In fact, there are directions in the first task’s subspace such that
replaying a sample in those directions would reduce forgetting.

Now we give an overview of our average case construction, and the intuition behind it. Fix an
orthonormal basis v1,v2,v3 of R3 and consider two tasks in R3, where the first and second tasks’
null spaces has rank one and two respectively. Let the unit vector p1 span the first task’s null space.
p1 is chosen such that it is in the span of {v2,v3}, is very close to v2. The second task’s null space
is spanned by {v1,v2}. See Figure 1a for an illustration of the null spaces. Replaying a sample in
this setting would reduce the rank of the second task’s null space. But this doesn’t necessarily mean
that the forgetting will be smaller. It is known that forgetting depends on the angle between the task
null spaces in a non-monotonic way, see Appendix A.3 for more details. Initially, this angle is the
angle between p1 and v2, which is very small. After replay, the second task’s null space will be
reduced to a one dimensional null space, spanned by p̃2. Displays (b) and (c) in Figure 1 show some
possible scenarios for p̃2 where forgetting would increase, since the angle between p1 and p̃2 would
be slightly larger than the angle between p1 and v2, but not much larger. Figure 1d on the other hand
shows a scenario where forgetting would decrease with replay since the angle between p̃2 and p1 is
much larger than the angle between p1 and v1. The construction in Theorem 3.6 is such that replay
of most samples would result in cases like (b) and (c) in Figure 1.
Remark 3.8. Although it is not clear whether the conditions under which replay increases forgetting
can be fully characterized, we note that a necessary but not sufficient condition is that there is some
forgetting on the replay sample(s) to begin with. Otherwise, the gradient with respect to that sample
would be zero and it would not have any effect on the iterate.

4 EXPERIMENTS

We have included three sets of experiments. The first set of experiments explores the extent to which
our theoretical results hold empirically, in the more general settings of higher-dimensional linear
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(a) The input data for the two tasks are given by
the three dimensional construction given in Theo-
rem 3.6. Each point is averaged over 150 runs.
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(b) An extension of the three dimensional construc-
tion to d = 50 displaying a similar behavior. Each
point is averaged over 60 runs.

Figure 2: Forgetting versus the number of replayed samples. Each plot shows forgetting of a linear
model and a neural net with one hidden layer. We can see that forgetting initially increases with a
small number of replay samples and then eventually decreases. The dashed lines show the baseline
of no replay and the error bars indicate standard mean error.

regression, and with respect to more complex (non-linear) networks. The other two experiments
involve MNIST (Lecun et al., 1998) and are in a classification setting. In the second set of experiments,
we replay one sample and study how the class of the replayed sample affects forgetting. In the third
set, we compare replay of different numbers of samples for two pairs of related task sequences.

4.1 EMPIRICAL EVALUATION AND EXTENSION OF THE THEORETICAL RESULTS

So far, we have shown that there are tasks that are realizable by linear models where sample replay
increases forgetting when a linear model is trained sequentially. In this set of experiments, we verify
these findings empirically and show that this behavior is not restricted to training with linear models.
The experiments here show that there are (linear) tasks where replay can increase forgetting even
when training nonlinear models on these tasks. We investigate the effect of replay on forgetting using
a multi-layer perceptron (MLP) with one hidden layer and ReLU activations on a sequence of two
tasks that are based on our worst case construction.

We consider two models: a linear model, and a MLP with one hidden layer. We consider two task
sequence constructions. The first construction is in R3 and is based on the construction given in
Theorem 3.6. The second task sequence is an extension of that construction into a higher dimensional
space (d = 50). Each sequence of tasks consists of two tasks. The model is trained on the first
task and then on the second task. Forgetting is then measured as the mean squared error of the
final model on the first task’s samples. When training with replay, m samples from the first task are
randomly selected without replacement and are combined with each batch during training on the
second task. See Appendix D for further details on the experimental setup and how the construction
in Theorem 3.6 was extended to a higher dimensional input.

Another experiment included in Appendix D.1.1, provides empirical evidence that forgetting for the
nonlinear models in this setting is affected by the angle between task null spaces through a mechanism
similar to linear models. This provides some insight into the behavior of the nonlinear models on the
continual linear regression problem, as seen in Figure 2.

4.2 EXPERIMENTS ON MNIST

The goal of the experiments in this section is to translate the insights we have gained through the
input task and data constructions in the linear setting to some simple but common benchmarks in
continual learning. In all the experiments in this section, a MLP with two hidden layers of size 256
and ReLU activations was used. See Appendix D.2 for more detail on these experiments.
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(a) 45 degrees rotation. Differences in means for
classes 1, 4, and 8 are statistically significant.
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(b) 90 degrees rotation. Differences in the sample
means are statistically significant except for 4 and 5.

Figure 3: Class of the replayed sample affects forgetting. The x-axis shows the class of the replay
sample while the y-axis shows the amount of forgetting in Rotated MNIST. The points depict
the averages and the error bars show mean standard error over 80 runs. Comparing the average
forgetting without replay to the one with replay of a single sample from each class shows that the
effect of replay varies significantly across classes.

4.2.1 ROTATED MNIST

We study the role of replay samples in this experiment using Rotated MNIST (Lopez-Paz & Ranzato,
2017) in a task incremental setting. We consider two tasks, where the first task is MNIST and the
second task has the same training data, except that the digits are rotated. Forgetting is measured as
the drop in classification accuracy in test data from the first task. In each run, after training a MLP on
the first task, a copy of the network is trained on the second task either without replay or with replay
of a sample from the first task. The results of these experiments are shown in Figure 3. On average,
the extent to which replay decreases forgetting depends significantly on the class of the replayed
sample. For example, we can see that for 45 degrees rotation, replaying the digit 4 reduces forgetting
by about 3%, while replaying the digit 5 doesn’t seem to make much of a difference. Additionally,
the relationship between tasks, in this case characterized by the degree of the rotation, also affects the
behavior of replay with respect to the class of the replayed sample. For example, replaying a 4 seems
to be more beneficial in the 45 degrees rotation case than the 90 degrees.

We take a closer look at replaying the digit 5 in the 45 degree rotation case, where replay seems to
have minimal effect on forgetting. Figure 4 shows the distribution of differences in forgetting, that is,
forgetting without replay minus forgetting with replay of a randomly selected digit 5 sample. We can
see that even when on average this difference is not statistically significant, in many cases forgetting
with replay exceeds without replay. These results suggest that there could be significant differences
in the efficacy of replay depending on which examples are replayed.

4.2.2 SPLIT MNIST

In this experiment, we study whether the relationship between tasks affects forgetting with replay in
a class incremental setting. In one task sequence the first task involves discriminating 0’s from 1’s,
and the second 6’s from 7’s; in the other sequence the first task is 0 vs. 6, the second 1 vs. 7. Figure 5
shows that in the first task sequence replay consistently helps, but in the second forgetting initially
increases, and only begins helping with 4 or more samples. We hypothesize that the visual similarity
of the digits in the first task in the 0, 6 - 1, 7 sequence makes the forgetting worse with a small number
of replay samples, as the challenging discrimination task is sensitive to the selection of samples.

This empirical result bears important similarities to our theoretical results, in the average case setting.
The relationship between the tasks in a continual learning sequence determines the effect of replay on
forgetting. And even in this more complicated, classification problem, there exists sequences where
forgetting can increase with replay.
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Figure 4: A histogram of differences in forgetting without replay and with replay of a digit 5 sample
in Rotated MNIST, where the second task is rotated by 45 degrees.
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Figure 5: Role of tasks in replay for Split MNIST. For each task sequence, we have plotted the
average forgetting against the number of replay samples. The error bars show mean standard error
over 80 runs. Values for 0 replay samples show forgetting without replay. The differences in average
forgetting across the two task sequences are statistically significant in all replay cases except for the
no replay case. For the 0, 6− 1, 7 task sequence, the differences in the means for no replay and replay
of 2 samples is statistically significant, so the observed increase in forgetting is not noise.

5 RELATED WORK

For general background on continual or lifelong learning, see the surveys by De Lange et al. (2022);
Parisi et al. (2019); Wang et al. (2024). Theoretical studies of continual learning, and especially
replay have been relatively more scarce and recent. Nevertheless, there are a few studies of continual
learning in a linear setting. Doan et al. (2021) initiate the study of catastrophic forgetting of neural
nets in the NTK regime, which also applies to linear models. Goldfarb & Hand (2023) study the
effect of over-parameterization on forgetting in a linear regression setting for two tasks whose task
subspaces are effectively low rank and picked randomly. Lin et al. (2023) study generalization and
a slightly different notion of forgetting in continual linear regression. They allow the tasks to be
realized by different linear functions, while the task subspaces are essentially random. Li et al. (2023)
study the trade-off between stability and plasticity in a linear regression setting similar to (Evron
et al., 2022), with the distinction that they use ℓ2- regularization while training on the second task.
Shan et al. (2024) study continual learning in deep learning from a statistical-mechanics point of
view.
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Peng et al. (2023) define a general continual learner that has no memory constraints and incurs zero
forgetting. They propose an instantiation of it for continual linear regression that could require up to
order d2 bits of memory. Additionally, through their framework, they derive uniform convergence
type bounds and justify a form of sample replay where the learner keeps a task-balanced set of samples
from previous tasks in memory and for each new task trains on the stored and new task’s samples
from scratch. Note that without knowing the exact constants, these bounds do not provide much
information on replay of a few samples. Prabhu et al. (2020a) make a similar argument empirically
and show that training from scratch on the samples stored in memory plus the most recent task’s
samples outperforms many methods that were specifically designed to address catastrophic forgetting.

There is a large body of empirical work on continual learning and methods used to mitigate forgetting,
many of which use sample replay as a main strategy to address forgetting (Rebuffi et al., 2017;
Chaudhry et al., 2019; Wu et al., 2019; Aljundi et al., 2019a; Caccia et al., 2021). Although there
has been some concern in the literature that replaying a small number of samples might lead to
overfitting (Lopez-Paz & Ranzato, 2017), Chaudhry et al. (2019) find that replay of even one sample
per class improves performance and does not hurt generalization even when the model memorizes
the replay samples. Verwimp et al. (2021) give a more complex picture of this in terms of the loss
landscape. They find that while replay could keep the solution within a low loss region for previous
tasks it could also pull the solution towards an unstable region. Motivated by forgetting in continual
learning, Toneva et al. (2018) study forgetting of the examples across batches while training on a
task. They find that there are complex examples that are prone to be forgotten across different model
architectures. Prabhu et al. (2024); Zajac et al. (2023) show that their proposed replay-free methods
achieve better performance than replay-based ones. Our results differ from these empirical results
in that we focus on the existence of task sequences that would provably increase forgetting, and the
variability of forgetting effects when the number of replay samples is small.

6 DISCUSSION

This work aims to initiate the theoretical study of sample replay in continual learning, complementing
existing empirical work. We have shown that replaying a small number of examples can increase
forgetting in continual linear regression. Our experimental results show that an increase in forgetting
is not unique to linear models and can be present when sequentially training with simple MLPs and
even on more challenging continual learning problems.

This work raises a number of important questions for future study. First, the scenarios where replay
provably increases forgetting are based on a few sequential tasks in a linear setting; to what extent
can replay increase forgetting for a richer and more natural sequence of tasks? Secondly, can we
provide a characterization of when replay increases forgetting? Moreover, can we give a necessary
and/or sufficient conditions in terms of the quality/quantity of replayed samples that would mitigate
forgetting? We show that the choice of the replayed samples matters, but these results do not provide
a formal selection procedure, especially when the learner has no prior knowledge of future tasks.
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A ADDITIONAL BACKGROUND AND DEFINITIONS

A.1 DERIVATION OF EQUATION 2

The following is based on Evron et al. (2022) and included here for completeness. More information
on the properties of this solution and different forms of it are provided in their work.

We start with the closed form solution of Equation 1. Recall that Πt,Pt are orthogonal projections
onto the spans of row spaces and null space of Xt respectively. Every solution to the equation
Xtw = yt can be written as w = Πtw

∗ +Ptv for some vector v. It is then easy to see that Ptwt−1

would minimize ∥w −wt−1∥2 and is in the null space of Xt, so the closed form solution would be
wt = Πtw

∗ + Ptwt−1. Subtracting w∗ from both sides would give Equation 2.

A.2 DERIVATION OF EQUATION 4

This derivation is also in given in Evron et al. (2022) and is included here for completeness. Using
Assumption 2.2, we can write each yt = Xtw

∗ and the forgetting as

FS(wT ) =
1

T − 1

T−1∑
t=1

∥Xt(wT −w∗)∥22. (9)

Applying Equation 2 repeatedly, the parameter error vector after task T would be

wT −w∗ =PT (wT−1 −w∗) = PT . . .P1(w0 −w∗) = −PT . . .P1w
∗. (10)

Plugging the equation above into each term in forgetting, we have

FS(wT ) =
1

T − 1

T−1∑
t=1

∥Xt(wT −w∗)∥22 =
1

T − 1

T−1∑
t=1

∥XtPTPT−1 . . .P1w
∗∥22. (11)

A.3 THE ANGLE BETWEEN NULL SPACES AND FORGETTING

Principal angles between two subspaces are a generalization of angles between two vectors. We start
with the following simple two task example. Let w∗ be an arbitrary unit vector and consider two
tasks whose null spaces are P1 = a1a

⊤
1 and P2 = a2a

⊤
2 , where a1,a2 are unit vectors such that∥∥a⊤

1 w
∗
∥∥
2
> 0. In this two task case, the expected forgetting, given in Equation 7, is proportional to

∥Π1P2P1w
∗∥22.

Note that P1w
∗ = a1a

⊤
1 w

∗ = c1a1 and P2P1w
∗ = c1a2a

⊤
2 a1 = c2a2 with c1 = a⊤

1 w
∗, and

c2 = c1a
⊤
2 a1. Figure 6 in Appendix A.3 shows how the norm of Π1P2P1w

∗ depends on the angle
between a1 and a2. When the angle between a1 and a2 is small, as in the left display, forgetting
will be small. In fact if the angle was zero, then forgetting would be zero. At the other extreme is
when the tasks are almost orthogonal, as shown in the right display, which would also result in less
forgetting. Evron et al. (2022) show that the maximum forgetting (over the choice of w∗ and a2) in
this two task setting is proportional to (a⊤

1 a2)
2
(
1− (a⊤

1 a2)
2
)

which is maximized when the angle
between a1 and a2 is π/4.
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Figure 6: A simple example to demonstrate how the angle between tasks with one dimensional null
spaces affects forgetting. a1,a2 span the null spaces of the first and second tasks respectively. The
two vectors that are outside span(Π1) show the projections P1w

∗ and P2P1w
∗ which will be in

the directions of a1 and a2 as marked. Each display shows the effect of the angle between the null
spaces, which is the angle between a1 and a2, on forgetting, which would be ∥Π1P2P1w

∗∥2. As
the angle between a1 and a2 increases (from the left to right display), the forgetting first increases
and then decreases. Forgetting is maximized when the angle between a1 and a2 is π/4.
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B INTUITION FOR THE PROOFS

B.1 INTUITION FOR THE WORST CASE RESULT

Figure 7: Replay can transfer error between samples. The first task consists of two samples x1 and
x2, while the second task has one sample x3. All of the plots display the three samples x1,x2,x3,
the target parameter vector w∗, and the iterates without replay w1 and w2 from different angles. The
vector v2, which is orthogonal to the samples x1 and x3, is also displayed to show the orientation
of the plots. The left figure in each row shows the general position of vectors of interest. Rest
of the figures in the first row focus on the error of the final iterate w2 on the first task’s samples
without replay. The second row, additionally, shows the final iterate w̃2 after replay of x2, and the
projection of w̃2 onto the first task’s samples. In each case, intersection of the dashed line originating
from parameter vectors w∗,w1, . . . with the sample x2 or x1 shows the projection of the parameter
vector onto that sample. The error of each iterate w2 and w̃2 along a sample is marked in red by the
discrepancy between its’ projection and the projection of w∗ onto the sample.
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(a) Without replay: The first iterate w1 is in the span of x1 and x2. The final iterate w2 is obtained by training
on (x3,x

⊤
3 w

∗) starting from w1. The change from w1 to w2 is in the direction of −x3, and since x3 is
orthogonal to x1, w2 has no error along x1. We can see this in the center figure where projections of w2 and
w∗ onto x1 coincide. As we can see in the right figure, w2 will have some error along x2, since x3 is not
orthogonal to x2. The discrepancy in the projections of w2 and w∗ onto x2 is shown in red.
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(b) With replay: Since w2 had error on x2, we consider replaying x2. The first display shows the iterate after
replay of x2, w̃2 relative to the other iterates and examples. Since w̃2 changes in the direction of x2 in addition
to changing in the direction of −x3, it also moves in the direction of x2. This causes it to incur some error in
the direction of x1 as seen in the center figure. The right figure shows that in contrast to w2, w̃2 does not have
any error along x2, since x2 was just replayed.

C PROOFS

C.1 PROOFS OF MAIN RESULTS

Proof of Theorem 3.2 We construct a sequence of tasks where all the examples have unit
norm. Fix an arbitrary orthonormal basis v1, . . . ,vd for Rd and consider the subspaces spanned by
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{v1,v2,v3} and W = span{v4, . . . ,vd}. Let

x1 =v1, (12)

x2 =
1

2
√
2
v1 +

1

2
√
2
v2 +

√
3

2
v3, (13)

x3 =v3, (14)

For each task 1 ≤ t ≤ T − 1, let X ′
t be a matrix containing a set of samples that are in the span of

W. That is, span of each X ′
t is a subset of W. The number of samples in each X ′

t does not affect our
construction.

For the first T − 2 tasks, set

Xt =

[
x⊤
1

X ′
t

]
. (15)

For the last two tasks we have

XT−1 =

 x⊤
1

x⊤
2

X ′
T−1

, (16)

and finally for the last task

XT =


x⊤
3

w′
1
⊤

...
w′

d−3
⊤

, (17)

where w′
1, . . .w

′
d−3 span W. Let u =

√
6
7v2− 1√

7
v3 be a vector that is orthogonal to x1 and x2. We

pick w∗ such that a := u⊤w∗ is bounded away from zero. To compute forgetting without replay, we
first compute PTPT−1 . . .P 1w∗. For every t < T − 1, we decompose the null space Pt = P ′

t + P̄ ,
where P̄ is a projection into the span of v2,v3 (which are orthogonal to x1) and P ′

t gives a projection
of the null space Pt into W. Note that P ′

t and P̄ are projections into orthogonal subspaces, hence
P ′

t P̄ = P̄P ′
t = 0. For t < T − 2, we can write Pt+1Pt = (P ′

t+1 + P̄ )(P ′
t + P̄ ) = P ′

t+1P
′
t + P̄ .

Then we have

PT−2 . . .P2P1w
∗ = P ′

T−2 . . .P
′
2P

′
1w

∗ + P̄w∗ (18)

For the second to last task, we have PT−1 = uu⊤ + P ′
T−1, so PT−1 . . .P1w

∗ = uu⊤P̄w∗ +
P ′

T−1 . . .P
′
1w

∗. Since w′
1, . . .w

′
d−3 span W, the last task’s null space PT is a projection into the

subspace spanned by v1,v2, therefore, PTP
′
T−2 . . .P

′
2P

′
1w

∗ = 0 and consequently

PTPT−1 . . .P1w
∗ = PTuu

⊤P̄w∗. (19)

Since u is fully in the span of P̄ , uu⊤P̄ = uu⊤. Finally, the forgetting is

1

T − 1

T−1∑
t=1

∥∥XtPTuu
⊤w∗∥∥2

2
. (20)

We first compute forgetting on the samples x1,x2 and x3. Since x3 is included in the last task,
x⊤
3 PTuu

⊤w∗ = 0, and since x⊤
1 PT = x⊤

1 , we have x⊤
1 PTuu

⊤w∗ = x⊤
1 uu

⊤w∗ = 0. Now, for
x2 we have

x⊤
2 PTuu

⊤w∗ =
[

1
2
√
2

1
2
√
2

][
v⊤
1

v⊤
2

]
uu⊤w∗ (21)

=
1

2
√
2
v⊤
2 uu

⊤w∗ =

√
3

2
√
7
· a. (22)
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The last equality follows from v⊤
2 u =

√
6
7 and definition of a. The rest of the samples are in W, and

since the samples in XT span W, we have that for all i, X ′
tPT = 0, that is, they make no contribution

to forgetting. So the only sample that contributes to forgetting is x2, which only occurs in task T − 1.
Then plugging in Equation 21 we have

1

T − 1

T−1∑
t=1

∥∥XtPTuu
⊤w∗∥∥2

2
=

1

T − 1

(
x⊤
2 PTuu

⊤w∗)2 (23)

=
3

28(T − 1)
· a2, (24)

which is of order 1/T as long as a is bounded away from zero.

Now, we compare this to forgetting with replay of the sample x2, y2, which is the only sample that
contributed to forgetting. In the replay scenario, x2 is combined with Xt to get X̃T , consequently

the null space P̃T = 1
2 (v1 − v2)(v1 − v2)

⊤. Recall that without replay PT = [v1,v2]

[
v⊤
1

v⊤
2 .

]
Now we compute the forgetting 1

T−1

∑T−1
t=1

∥∥∥XtP̃Tuu
⊤w∗

∥∥∥2
2
. Similar to the no replay case, we

can see that for all i, X ′
tP̃T = 0 and x3P̃T = 0, so these samples don’t contribute to forgetting.

Additionally, since x2 has just been replayed, it is in the span of X̃T and doesn’t contribute to
forgetting. We are left with

x⊤
1 P̃Tuu

⊤w∗ =
1

2
(v1 − v2)

⊤uu⊤w∗ = − 6

28
a (25)

Forgetting with replay is then T−1
T−1

(
x⊤
1 P̃Tuu

⊤w∗
)2

= 9
196a

2, since x1 appeared in all the first

T − 1 tasks. Comparing 3a2

28 (T−1) to 9a2

196 , we can see that as T → ∞, forgetting vanishes without
replay, while with replay, it is a constant.

Proof of Theorem 3.6 We use the following claim which simplifies the form of expected
forgetting in the two task case with replay. Proof of this claim is given in Appendix C.2
Claim C.1. Suppose that we have a sequence S of two tasks in the average case setting (as described
in Section 3.2). Let R be a set of m ≤ n1 randomly chosen (without replacement) indices of the
samples to be replayed from the first task. Let P1,P2 be the task null spaces and P̃2 = P̃2({x1,j}j∈R)

be the null space of the second task with replay. Then the expected forgetting with respect to test
samples and with replay of m samples from the first task can be simplified to

E[FS′(w̃2)] = E
[∥∥∥Π1P̃2P1w

∗
∥∥∥2
2

]
, (26)

where the expectation is over the randomness of P̃2.

Given w∗, we can pick orthonormal basis W1 and W2 for the subspaces, n1, and n2. Also recall the
sample generation process described in Equation 5. We start with describing the two task subspaces.

We first fix ϵ =
√

1
63 , though other small values of ϵ would work as well. Then we fix an orthonormal

basis v1,v2,v3 such that ∥P1w
∗∥2 > 0, where P1 is defined in Equation 28. The first task is

spanned by orthonormal vectors v1,u, where u = ϵv2 +
√
1− ϵ2v3 for some 1 > ϵ > 0 that will be

fixed later. That is

Π1 = W1W
⊤
1 = [v1,u]

[
v⊤
1

u⊤

]
. (27)

This leads to the following one dimensional null space for the first task

P1 = (
√
1− ϵ2v2 − ϵv3)(

√
1− ϵ2v2 − ϵv3)

⊤. (28)
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The second task is spanned by v3, leading to the null space

P2 = [v1,v2]

[
v⊤
1

v⊤
2

]
. (29)

Now we compute forgetting without replay using Equation 7. So we start with computing

Π1P2P1w
∗ =v1v

⊤
1 P2P1w

∗ + uu⊤P2P1w
∗ (30)

=uu⊤P2P1w
∗. (31)

The last equality holds since v⊤
1 P2 = v⊤

1 and v⊤
1 P1 = 0. Let a := ((

√
1− ϵ2) · v2 − ϵ · v3)

⊤w∗.
We have

uu⊤P2P1w
∗ =u[0, ϵ]

[
v⊤
1

v⊤
2

]
P1w

∗ (32)

=ϵ · a · uv⊤
2 (

√
1− ϵ2v2 − ϵv3) (33)

=ϵ ·
√
1− ϵ2 · a · u. (34)

Forgetting without replay is

∥Π1P2P1w
∗∥22 = · ϵ2 · (1− ϵ2) · a2 · ∥u∥22 (35)

= · ϵ2 · (1− ϵ2) · a2. (36)

Note that forgetting on the last task is always zero. To compute forgetting with replay of one sample,
we need to understand the distribution of P̃2 first. Let X1J be a randomly chosen sample from
the first task. By Equation 5, X1J = W1Z1J where Z1j ∼ N(0, I2

2 ) and J ∈R [nt] is an index
that is picked uniformly at random from the set [nt]. It’s important here to note that J and Z1J are
independent and Z1i are iid. Then we have

p(Z1J) =

nt∑
j=1

p(Z1J | J = j)p(J = j) (37)

=
1

nt

nt∑
j=1

p(Z1J | J = j) (38)

=
1

nt

nt∑
j=1

p(Z1j) = p(Z11), (39)

and consequently Z1J ∼ N(0, I2
2 ) and we can write

X1J = W1Z1J =
1

2
(α1v1 + α2u), (40)

where 1
2α1,

1
2α2 ∼ N(0, 1

2 ) are the two iid coordinates of Z1J .

P̃2 is a projection onto the null space of the space spanned by task two samples, which have the
form X2j = v3Z2j , plus X1J . In another words, since all the samples for task 2 are colinear with
v3, P̃2 is a projection onto the null space of linear span of {v3, α1v1 + α2u}. Since α1v1 + α2u =

α1v1 + α2ϵv2 + α2

√
1− ϵ2v3, we have that

span
{
v3, α1v1 + α2ϵv2 + α2

√
1− ϵ2v3

}
(41)

= span{v3, α1v1 + α2ϵv2} (42)

Then P̃2 is a projection onto a one dimensional vector space that is orthogonal to v3 and α1v1+α2ϵv2.
We can write

P̃2 =
1

z
· (α2ϵv1 − α1v2)(α2ϵv1 − α1v2)

⊤
, (43)
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where z := ϵ2α2
2 + α2

1 is a normalizing constant. Next we compute each of the terms in

Π1P̃2P1w
∗ =v1v

⊤
1 P̃2P1w

∗ + uu⊤P̃2P1w
∗. (44)

We have

v1v
⊤
1 P̃2P1w

∗ =
1

z
· v1v

⊤
1 (α2ϵv1 − α1v2)(α2ϵv1 − α1v2)

⊤
P1w

∗ (45)

=
α2 ϵ

z
· v1(α2ϵv1 − α1v2)

⊤
P1w

∗ (46)

=
α2 ϵ

z
· v1(α2ϵv1 − α1v2)

⊤
(
√

1− ϵ2v2 − ϵv3) (47)

(
√
1− ϵ2v2 − ϵv3)

⊤w∗ (48)

=− α1 α2 ϵ
√
1− ϵ2

z
· a · v1, (49)

and

uu⊤P̃2P1w
∗ =− α1ϵ

z
· u (α2ϵv1 − α1v2)

⊤
P1w

∗ (50)

=
α2
1 ϵ

√
1− ϵ2

z
· a · u. (51)

Since u and v1 are orthogonal to each other, we can write∥∥∥Π1P̃2P1w
∗
∥∥∥2
2
=
∥∥∥uu⊤P̃2P1w

∗
∥∥∥2
2
+
∥∥∥v1v

⊤
1 P̃2P1w

∗
∥∥∥2
2

(52)

=α4
1ϵ

2(1− ϵ2)
a2

z2
+ α2

1α
2
2 ϵ2(1− ϵ2)

a2

z2
(53)

=

(
α2
1α

2
2 + α4

1

z2

)
ϵ2(1− ϵ2)a2. (54)

By Claim C.1, the expected forgetting with replay is

E
[∥∥∥Π1P̃2P1w

∗
∥∥∥2
2

]
= E

[
α2
1α

2
2 + α4

1

z2

]
ϵ2(1− ϵ2)a2. (55)

We compare this to expected forgetting without replay, which is ϵ2(1− ϵ2)a2, and show that there
exists ϵ such that

E
[
α2
1α

2
2 + α4

1

z2

]
> 1. (56)

Note that by definition, a2 = ∥P1w
∗∥22 and the orthonormal basis v1,v2,v3 can be chosen such that

a2 > 0. .

By definition of z, can write α2
2

z = (1 − α2
1

z ) · 1
ϵ2 and simplify the first term inside expectation to

α2
1α

2
2

z2 =
α2

1

z ·
(
1− α2

1

z

)
· 1
ϵ2 .

Let α′2
1 =

α2
1

z , then rewriting Equation 56, we have picked ϵ such that by Claim C.2

E
[
α′2
1 · (1− α′2

1 )
1

ϵ2
+ α′4

1

]
> 1. (57)

We can then conclude that replay has increased average forgetting.

Claim C.2. Let α1, α2 ∼ N(0, 1), and α′
1
2
=

α2
1

α2
2

63 +α2
1

. Then

E
[
63α′

1
2 − 62α′

1
4
]
≥ 1.4. (58)
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Proof of this claim is given in Appendix C.2.

C.2 PROOFS OF CLAIMS AND PROPOSITIONS

Proof of Proposition 3.4

Note that

E
[
X′

tjX
′⊤
tj

]
=E

[
WtZ

′
tjZ

′⊤
tjW

⊤
t

]
= Wt

Ik
kt

W⊤
t =

1

kt
WtW

⊤
t =

1

kt
Πt, (59)

where Πi was the projection matrix into the subspace spanned by samples of task i. Additionally, we
can write

E
[
X′⊤

t X
′
t

]
=

∑
j∈[kt]

E
[
X′

tjX
′⊤
tj

]
= Πt, (60)

which will be useful when we compute expected forgetting below.

Recall that Ztj were used to generate training samples for the task (Equation 5). Since any kt
independent Ztj samples are going to be linearly independent, we are guaranteed that Ztj will have
the same span as Wt under Assumption 3.3, which states that nt ≥ kt. Consequently, the null space
of each task t is Pt = I−Πt. Then similar to Equation 4, we can write each term in the expected
forgetting (with respect to test samples) as

E[FS′(wT )] =
1

T − 1

T−1∑
t=1

E
[
∥X′

t(wT −w∗)∥22
]
=

1

T − 1

T−1∑
t=1

E
[
∥X′

tPTPT−1 . . .P1w
∗∥22

]
,

(61)

where now the expectation is only over the randomness in X ′
t. Expanding the square inside the

expectations in Equation 61 and applying Equation 60 we get

E
[
∥XtPT . . .P1w

∗∥22
]
= E

[
w∗⊤P1 . . .PTX

⊤
t XtPT . . .P1w

∗
]
= w∗⊤P1 . . .PTΠtPT . . .P1w

∗

(62)

= ∥ΠtPT . . .P1w
∗∥22, (63)

where the last equality follows from the fact that Πt is an orthonormal projection and Πt = Π2
t .

Plugging this back into Equation 61 we can write the expected forgetting as

E[FS′(wT )] =
1

T − 1

T−1∑
t=1

∥ΠtPT . . .P1w
∗∥22. (64)

Proof of Claim C.1 Suppose that m samples are randomly (without replacement) selected from
the n1 samples for task one. Alternatively, we can think of them as being fixed before seeing any
samples. Let S1 ⊆ [n1] be a randomly chosen set of indices of samples that were selected for replay.
Let P̃2 be the projection into the null space of the combined samples for the second task. Then
P̃2 = P̃2({X1,s}s∈S1

) is random, unlike P2. The expected forgetting is

E[FS′(w̃2)] =E
[∥∥∥X′

1P̃2P1w
∗
∥∥∥2
2

]
= E

[
w∗⊤P1P̃2X

′⊤
1 X

′
1P̃2P1w

∗
]
. (65)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Since {X1,s}s∈S1
is independent from X ′

1 and E
[
X′⊤

1 X
′
1

]
= Π1 (see Equation 60), we can write

the expectation above as

E
[
w∗⊤P1P̃2Π1P̃2P1w

∗
]
= E

[∥∥∥Π1P̃2P1w
∗
∥∥∥2
2

]
, (66)

where now the expectation is only over the randomness in P̃2.

Proof of Claim C.2 Without loss of generality we can assume that α1, α2 ∼ N(0, 1), as this
would not change the distribution of α′

1
2. Define f(α′

1) = 63α′
1
2 − 62α′

1
4
= α′

1
2
(63− 62α′

1
2
). We

can lower bound the expectation by considering the following three events:

1. α′
1
2
< 1/31: under this event we use the trivial lower bound f(α′

1) ≥ 0.

2. 1/31 ≤ α′
1
2 ≤ 63/64: then f(α′

1) ≥ 1.9

3. α′
1
2
> 63/64: since we always have α′

1
2 ≤ 1, we will use the bound f(α′

1) ≥ 1.

Now we bound the probability of these events. Note that by symmetry, α2
2 ≤ α2

1 with probability of
1/2, then with would have

α′
1
2
=

α2
1

α2
2

63 + α2
1

≥ α2
1

α2
1

63 + α2
1

=
63

64
. (67)

So the event in Item 3 happens with probability 1/2. Next, we argue that probability of the event in
Item 1 is very small. If α′

1
2
=

α2
1

α2
2

63 +α2
1

< 1/31, then it must be that 30 · 63α2
1 < α2

2. We first argue

that with high probability α2
1 ≥ 4

30·61 . Note that the pdf of normal distribution is upper bounded by
1√
2π

, so

Pr

[
α2
1 <

4

30 · 61

]
≤

√
2 · 4

2π · 30 · 61
≤ 0.018. (68)

Then we have

Pr
[
α′
1
2
< 1/31

]
≤Pr

[
α2
1 <

4

30 · 61

]
+ Pr

[
30 · 63α2

1 < α2
2 | α2

1 ≥ 4

30 · 61

]
(69)

≤ 0.018 + Pr

[
30 · 63α2

1 < α2
2 | α2

1 ≥ 4

30 · 61

]
. (70)

Note that

Pr

[
30 · 63α2

1 < α2
2 | α2

1 ≥ 4

30 · 61

]
≤ Pr

[
4 < α2

2

]
≤ 0.0001. (71)

Now we have that Pr
[
α′
1
2
< 1/31

]
≤ 0.019. This lets us lower bound the probability of the event in

Item 2 by 0.5− 0.019 = 0.481. Collecting these three bounds together we get

E
[
63α′

1
2 − 62α′

1
4
]
≥ 0.481 · 1.9 + 0.5 · 1 ≥ 1.4. (72)
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D DETAILS OF THE EXPERIMENTS

D.1 CONTINUAL LINEAR REGRESSION EXPERIMENTS

The linear models were trained starting from 0 using SGD while the neural nets were trained with
Adam and randomly initialized (Glorot uniform). The models are trained until convergence. Unless
explicitly specified otherwise, the MLPs have one hidden layer of width 128d where d is the input
dimension. The number of samples per task was also 10 and 100 for the 3 and 50 dimensional case
respectively.

Training details Both of the linear and MLP models were trained for 7000 epochs on each task to
produce Figure 2a, and 5000 epochs in Figure 2b. The batch sizes used for experiments with 3 and
50 dimensions are 4 and 32 respectively. The linear model in Figure 2a was trained with plain SGD
with learning rate 0.1. The linear model for the higher dimensional case in Figure 2b was also trained
with SGD with learning rate 1 on the first task, while for the second task, the learning rate was 0.1
with exponential decay rate 0.8.

In the three dimensional case (Figure 2a), the MLP was trained on the first task using Adam with
learning rate 8e−4 and exponential decay rate 0.7. On the second task, the learning rate was 0.001
with exponential decay rate 0.6. In the 50 dimensional case, the MLP was trained on the first task
starting with learning rate 1e−4 and exponential decay rate 0.6. The starting learning rate on the
second task was 0.001 and the exponential decay rate was 0.6.

These parameters were picked such that the training converges and training error is minimized. We
have plotted the forgetting with higher number of independent runs, since the variance in error is
quite high. Note that the statement of the average case result is on the expectation, and hence the
error bars show standard mean error. The construction of the input distribution is the same as the one
given in the proof of the theorem with ϵ = 0.2.

Replay Implementation Let b be the batch size for training on the second task, during each training
step of the second task, a random batch of b′ = min{b,m} many samples from the second task are
combined with a random batch of b samples from (Xmem,ymem), and they are weighted by b

b′ so that
their total weight is equal to that of task two samples.

Extension of the three dimensional construction in Theorem 3.6 to higher dimensions. Fix an
arbitrary orthonormal basis {v1, . . . ,vd} and ϵ = 0.4. Set u = ϵv2+

√
1− ϵ2v3 like the three dimen-

sional construction. The first task spans the d− 1 dimensional subspace span({v1,u,v4, . . . ,vd}).
As in the three dimensional construction, the second task is spanned by v3 only.

In both the three dimensional and higher dimensional case d− 1 samples from the first task would
information theoretically be sufficient to learn w∗, but training until close to zero error might be
challenging especially in the linear case. We experimentally verify this by directly solving the linear
system and observing that replaying a few samples increases forgetting, while replaying 50 samples
will result in zero forgetting.

Narrower Network We also include Figure 8, which shows forgetting against the number of replay
samples for a smaller network, where the width of the hidden layer is 4d = 200. The input data is
generated with the same distributional parameters as in Figure 2b. The training parameters for the
second task were slightly different here. Specifically, the exponential learning decay rate used on the
second task was 0.9.

We note that it is possible that regularization, and training with small learning rate affect the observed
pattern, especially with narrower networks. However, studying the effect of regularization and hyper
parameters on forgetting with replay is outside the scope of this paper.
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Figure 8: Same experiment as in Figure 2b with a network of width 4d instead

We have attached code used to generate input data for these experiments.

D.1.1 THE EFFECT OF THE ANGLE BETWEEN TASKS WHILE TRAINING WITH A MLP

We discussed in Section 3.2 how replay changes the angle between the two tasks in a way that
increases forgetting on average. To understand whether a similar mechanism is responsible for the
increase in forgetting due to replay in the nonlinear case, we also look at the effect of the angle
between two (linear) tasks on forgetting while using a nonlinear model for training. To do this, we
pick the two tasks to be spanned by two 9 dimensional subspaces in R10, so that their null spaces are
essentially given by two vectors u1,u2. We vary the angle between u1 and u2 and for each angle
measure forgetting on the first task after training on the second task, see Figure 9. We can see that
forgetting of the MLP and linear model behave differently around angels that are close to π/2. In
our three dimensional average case construction this won’t matter, since initially without replay, the
angle between the subspaces is close to zero, while with replay, the angle increases slightly but not a
lot with high probability. Specifically, the construction is such that probability of replay leading to
the angle being close to π/2 is very small.
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Figure 9: When training using a MLP, the angle between task null spaces mostly has a similar effect
on forgetting as the linear case, with the exception of near orthogonal angles. Each point is averaged
over 50 runs and the error bars here show standard deviation.

Here we give more details on the experiments used to get Figure 9. The input distributions and what
we referred to as the angle between two tasks has been already discussed in the last paragraph of
Section 4. The number of samples used per task is 100. The linear model was trained using SGD with
learning rate 0.1. During training on the second task there was exponential decay rate of 0.95. The
MLP had one hidden layer of width 128d, and it was trained on the first task with starting learning
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rate 1e− 4 and on the second task with initial learning rate 0.001. in both cases (MLP training on
task one and two), there was an exponential decay rate 0.6. All the models for this experiment were
trained for 5000 epochs with the batch size 32.

D.2 EXPERIMENTS ON MNIST

In all the experiments, a fully connected network with two hidden layers of size 256 was used. In all
cases, training on each task was for 3 epochs, with batch size of 32, and using Adam (Kingma & Ba,
2014) with learning rate of 0.001.

Statistical tests. When we compared the means, we used Welch’s t-test, which is similar to a
student t-test while allowing the populations to have different variances.

Rotated MNIST. Rotated MNIST experiments are in a task incremental setting and use the training
data for all the 10 digits. The training data on the second task is the same as the training data on
the first task, except that it is rotated. Forgetting is measure on test samples. The replay is done the
same as the regression experiments. That is, for each class, a random sample is combined with the
samples in the each batch and the replay samples are up-weighted such that the replay sample has
equal weight to the rest of the samples. The no replay baseline is what the literature might call the
fine tuning baseline. The network is sequentially trained on the two tasks. The optimizer is reset after
training on the first task.

Split MNIST. These experiments are in a class incremental setting, so the network had 4 output
heads. During evaluation on the first task, only the logits corresponding to the classes in the first task
were taken into account. This is the case with or without replay. Again, the replay implementation
here is similar to the regression experiments.

D.3 COMPUTE RESOURCES

D.3.1 REGRESSION EXPERIMENTS

The experiment in Figure 9 took about 20 hours on a machine with single NVIDIA GeForce RTX
4080 GPU. Each run of the experiments in figures 2 and 8 would take about 0.5− 1 hour on a single
NVIDIA A100-SXM4-80GB GPU. All the experiments did not use a significant amount of memory,
since the input data was at most 50 dimensional.

D.4 MNIST EXPERIMENTS

The experiments in Figure 3 took about 6 hours on a machine with a single NVIDIA GeForce RTX
4080 GPU for each rotation. The experiment in Figure 5 took about 2 hours on the same machine.
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