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Abstract

Risk-averse modeling is critical in safety-sensitive and high-stakes applications.
Conditional Value-at-Risk (CVaR) quantifies such risk by measuring the expected
loss in the tail of the loss distribution, and minimizing it provides a principled
framework for training robust models. However, direct CVaR minimization re-
mains challenging due to the difficulty of accurately estimating rare, high-loss
events—particularly at extreme quantiles. In this work, we propose a novel train-
ing framework that synthesizes informative samples for CVaR optimization using
score-based generative models. Specifically, we guide a diffusion-based generative
model to sample from a reweighted distribution that emphasizes inputs likely to
incur high loss under a pretrained reference model. These samples are then in-
corporated via a loss-weighted importance sampling scheme to reduce noise in
stochastic optimization. We establish convergence guarantees and show that the
synthesized, high-loss-emphasized dataset substantially contributes to the noise
reduction. Empirically, we validate the effectiveness of our approach across mul-
tiple settings, including a real-world wireless channel compression task, where
our method achieves significant improvements over standard risk minimization
strategies.

1 Introduction

Risk-averse learning has become increasingly relevant in high-stakes applications where robustness to
rare but costly failures is critical. In those domains, models must not only achieve strong average-case
performance but also avoid catastrophic errors on atypical inputs. A widely adopted risk measure for
capturing such sensitivity is the Conditional Value-at-Risk (CVaR), which focuses on the expected
loss in the worst-performing (1 — /) fraction of the input space (Rockafellar and Uryasev, 2000),
making it well-suited for applications requiring robustness guarantees, e.g., large language models,
system scheduling, control, medical, wireless communications, and more (Chaudhary et al.}|2024|
Tan et al.||2017}|Ahmadi et al.||2022}|Chan et al.|2014}|Yang et al.|[2022).

Despite its appeal, minimizing CVaR remains challenging in practice. As the quantile level g
approaches one, loss contributions become dominated by rare, high-risk inputs that are unlikely to be
observed through standard sampling from the data distribution. Without adequate coverage of these
tail events, naive Monte Carlo (MC) methods yield high-variance estimates of CVaR and inefficient
optimization, ultimately limiting the reliability of risk-averse training.
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Figure 1: System overview. A score-based generative model is guided using the loss values from a
pretrained model to sample high-loss inputs for CVaR optimization.

Recent advances in generative modeling offer new opportunities to address these limitations. In
particular, score-based generative models enable expressive and controllable sampling from complex
distributions, and have shown promise in tasks ranging from data augmentation to density estimation.
Concurrently, pretrained task models are becoming widely available and serve as informative priors
for task performance. These developments motivate a fundamental question: Can we actively generate
training inputs that are more informative for CVaR optimization?

In this work, we propose a novel framework that integrates pretrained (reference) models and
generative models to synthesize informative samples for risk-averse training. Our key observation
is that inputs which induce high loss under a pretrained model are highly beneficial for risk-averse
model training. This motivates a data generation strategy that explicitly targets failure modes of the
initial model and uses them to guide risk-aware training more effectively.

To realize this idea, we develop a method that uses pretrained loss values to guide a score-based
generative model toward a reweighted sampling distribution that emphasizes high-risk inputs. Our
approach leverages recent advances in training-free guidance for diffusion models, allowing the
generative process to be steered without retraining (Chung et al.;| 2023} |Yu et al.}|2023} Kim et al.}
2025c). The resulting samples are explicitly biased toward regions where the model is likely to
fail and are used to perform CVaR minimization via importance-weighted optimization. The main
contributions of this work are summarized as follows.

Framework Design. We propose a novel risk-averse learning framework based on loss-guided
generative importance sampling. As illustrated in Figure [1] our approach proceeds in two stages:
(i) a pretrained model is used to guide a score-based generative model to sample from a reweighted
distribution that emphasizes high-loss inputs; (ii) these samples are then used for CVaR minimization
via importance-weighted training, resulting in improved robustness and reduced training noise.

Theoretical Analysis. We provide convergence analysis for our framework and show that, under mild
assumptions, generating samples from high-loss regions provably reduces the noise of the CVaR
optimization process.

Empirical Validation. We empirically validate our method in both synthetic and real-world settings.
In a controlled regression task with highly imbalanced modes, the proposed method successfully
synthesizes rare, high-loss samples that are critical for minimizing tail risk. In a real-world appli-
cation—wireless channel state information (CSI) compression—our method consistently improves
CVaR performance in the high 3 regime, compared to existing robust and risk-minimization baselines.

To the best of our knowledge, this is the first work that leverages generative models to perform
risk-averse learning by targeting high-loss regions via loss-guided importance sampling.

2 Related Work

Risk-Averse Learning and Conditional Value-at-Risk. Risk-averse learning seeks to prioritize
robustness over average-case performance, especially in high-stakes settings where rare but severe
failures are unacceptable. A widely used risk measure in this context is CVaR (Rockafellar and
Uryasev|2000), which quantifies the expected loss in the (1—/3)-worst portion of the input distribution.
Due to its ability to explicitly penalize high-loss instances, CVaR has been adopted in a broad range
of applications, including finance, credit, operational risk management, robust control in wireless



communications, large language models, and more (Alexander et al.||2006; |Andersson et al.,| 2001}
Filippi et al.||2020} Yang et al.||2022; |Chaudhary et al.||2024;|Chow and Ghavamzadeh}|2014).

However, training with CVaR objective is notoriously challenging due to the high variance in empirical
estimates, particularly when targeting extreme quantiles (Troop et al.||2021).

Importance Sampling for Risk Measures and Optimization. Importance sampling can be utilized
for improving the variance of risk estimation, particularly when rare events dominate the objective.
Prior works have explored its use in CVaR estimation and optimization (Bardou et al.}|2009; |Deo and
Murthy! 2021} /He et al.}|2024a), including sampling-based gradient estimators based on likelihood
ratios (Tamar et al.||2015). However, these approaches typically operate on a fixed dataset and focus
on reweighting existing samples to reduce estimation variance.

Our method introduces a fundamentally new perspective: we utilize a generative model to directly
synthesize importance-weighted samples. Under the availability of a generative model, we guide
the sample generation process toward high-loss regions using pretrained model losses. This enables
us to reduce the noise of CVaR optimization while expanding the effective support of the training
distribution.

Generative Models for Data Augmentation and Downstream Task Learning. Recent progress in
generative modeling, particularly in diffusion and score-based generative models, has enabled high-
fidelity sample generation and accurate distribution approximation (Chen et al.}|2024; |Wang et al.}
2024b). These models have been successfully applied across diverse domains for data augmentation,
including load forecasting (Xu and Zhu} |2024), medical imaging (He et al., [2024b), and audio
synthesis (Bahmei et al., 2022). Recently, generative models are increasingly used to augment
training datasets with specific purposes (Zheng et al.;|2023), e.g., enhancing semantic diversity
(Shivashankar and Miller/|2023} [Trabucco et al.||2023), generating label-specific instances (Shao
et al.}|2019), and bridging distributional gaps between training and test data (Wang et al.||2024a)).

Scope and Distinctiveness of the Proposed Approach. While prior work has primarily leveraged
generative models to enhance generalization by enriching the diversity of training data, our approach
adopts a different objective: synthesizing samples that are explicitly informative for risk-sensitive
training. Rather than uniformly augmenting the training distribution, we concentrate generation
toward high-loss regions—those most relevant for CVaR minimization. This targeted generation
paradigm aligns directly with risk-averse learning objectives, offering a principled and efficient path
toward robust model training.

3 Preliminaries and Problem Formulation

Recent advances in generative modeling, particularly score-based generative models, have substan-
tially improved the quality and controllability of synthetic data generation. A key strength of the
score-based generative models lies in their ability to support guided sampling, where samples can be
drawn from a distribution that is shifted or reweighted relative to a base distribution. In this work,
we leverage this capability to generate rare, high-loss-inducing samples that are underrepresented
in standard datasets but critical for risk-sensitive objectives. As we will show, synthesizing such
samples provides both theoretical and practical advantages in CVaR minimization.

3.1 Score-based Generative Models and Training-Free Guided Sampling

Let X? € R be a random variable with density p(x), where x denotes a realization. A generative
model seeks to approximate p(x) or its associated score function Vy logp(x) to enable efficient
sampling from the underlying distribution. A key innovation of the recent score-based generative
models is to model the score function not directly on p(x), but on noise-perturbed data distributions
p+(x) indexed by a continuous-time parameter ¢ € [0, T']. This enables the data generation process to
be formulated as a stochastic differential equation (SDE), which has been shown to enhance both
training stability and sample quality (Song et al.;|2021). The perturbed distributions are modeled via
the It6 SDE:

X, = f(X,, t)dt + o(t) AW (),  XP) ~ p(x), (1)



where f : R% x [0, 7] — R is the drift term, o (¢) : [0,7] — R is the diffusion coefficient, and

W 4) is a standard d; -dimensional Brownian motion. The marginal distribution of X’(’ ) is denoted

p¢(x), and the initial distribution pg(x) corresponds to the data distribution we aim to model.

Given access to the time-indexed score V log p;(x), samples from p=p can be obtained by solving
the reverse-time SDE (Anderson)|1982):

dx?, = (f(XZ(’t), 1) — o(£)2 Vi log pt(xft))) dt + o(t) AW ),
where W(t) denotes reverse-time Brownian motion. Sampling is typically initialized from a simple

prior such as a standard Gaussian pr(x) for large 7', and trajectories are integrated backward to
recover X?o) ~ po. For notational simplicity, scalar-vector multiplication denotes elementwise

scaling.

Beyond sampling from the base distribution p(x), recent advancements in the score-based generative
models allow sample generation from modified target distributions of the form ¢(x) x w(x)p(x),
where w(x) is a task-specific importance weight. While classical approaches such as the cross-
entropy method (CEM) and fine-tuning of generative models require retraining to realize such
reweighted distributions, training-free guidance techniques for the score-based generative models
enable approximate sampling from ¢ without modifying the base generative model. These methods
exploit the fact that, under the same SDE dynamics in , if a process begins from ¢(x) = ¢op(x) x

w(x)p(x) instead of p as dXZIt) = f(XE’t)7 t)dt + o (t) dW ;) with X?o) ~ q = qo, then its marginal

gt such that X?t) ~ g4 satisfies ¢:(x) o pi(x) Exfo) ~p(1X?, =x) [w(X’()O))} , where p(- | X’(’t) =x)
denotes the conditional distribution of the initial state given state x. Taking the log and the gradient
yields the identity:

Vxlog gt (X) = Vx logp: (X) + g(x, t)7 where g(x, t) = Vxlog EXZ()O)Np(<|Xft):x) [w(x?o))} :
This additional term g, often referred to as the guidance, can be approximated using known quantities
such as the score function of p; and the weight function w (Chung et al.}|[2023}/Kim et al.l|2025¢; |Yu
et al.}|2023), enabling sampling from approximated q via the reverse-time SDE without any further
training.

Motivated by these developments, we propose a new learning framework that leverages guided sample
generation to construct informative training data specifically tailored for risk-averse learning. Rather
than drawing training samples uniformly from p(x), we aim to generate samples that contribute to
noise reduction in risk-sensitive objectives, thereby improving model robustness to rare but high-loss
events.

3.2 Risk-Averse Learning via Conditional Value-at-Risk

Our ultimate goal is training of risk-averse task models, in which the objective is not merely to
optimize expected model performance, but to mitigate the impact of potentially rare but high-loss
outcomes. We consider CVaR, one of the most widely adopted risk measures, which builds upon the
concept of Value-at-Risk (VaR).

Let 6 € R denote the parameters of the task model, and let £(6; x) be the loss incurred on input x.
For a given quantile (confidence) level 5 € (0, 1), the VaR is defined as the smallest threshold « such
that the loss does not exceed a with probability at least S3:

VaRs(0) = min{a € R : P[{(0; XP) < o > G} )

where P[{(6; XP) < o] = |, 1(9:x) <o P(X) dx;, and the distribution is assumed to be continuous with
respect to o. While VaR captures a quantile of the loss distribution, it does not reflect the magnitude
of losses beyond the threshold. The Conditional Value-at-Risk addresses this by computing the
expected loss in the tail beyond VaRg(6):

CVaRg(0) = Exr~p[l(6; XP) | £(6; XP) > VaRp(6)]. 3)
Our objective is to find model parameters 6* that minimize the CVaR at a given quantile level 5:
6" = argmin CVaRg(0). 4)
OeR2



Algorithm 1 Risk-Averse Model Training via Loss-Guided Importance Sample Generation

Input: Initial model 6y, generative model V log p; (x), confidence level 3, function ¢, dataset B
Output: Risk-averse model 5 ;1

1: Generate importance samples {x;},_%, ~ q(x) o ¢(£(6o;x)) p(x)
2: Compute Z = Exr~p[p(¢(60; XP))]
3: Initialize o

4: for k =1to K + 1do
5 Sample data pair {x, £(6p;x)} from ¢
6

7

MC estimation of a,—1 + Exaq [Z(gfek(5§§§:§)}fféi)+

(On, ap) T SubGradientDescent(0Fg, 01, a%—1)

This objective is known to be equivalent to the following unconstrained optimization problem
(Rockafellar and Uryasev,|2000) as

0*,a* = argmin Fjs(0,a) where F3(0,a) = a+ ——Exrp[(0(0; XP) — )] (5)
0cR¥2 ,acR 1- 6

Here, (z)" = max(x, 0) denotes the positive part function. The solution a* corresponds to VaRg,
and 6* minimizes CVaRg.

4 Risk-Averse Model Training via Loss-Guided Importance Samples

While the CVaR objective in (5) provides a principled framework for addressing tail-risk scenarios in
downstream tasks, its empirical estimation is particularly challenging, especially at high confidence
levels (8 — 1). In this regime, the corresponding VaR threshold a becomes large, and the expectation
term Exr.p[(¢(6; XP) — ) 7] becomes increasingly difficult to estimate due to the rarity of high-loss
instances, for which (£(6; X?) — o)™ is nonzero. For most samples from p(x), this term evaluates
to zero, leading to high variance and poor gradient signals during training. Consequently, naive
sampling from the base distribution p(x), even with a generative model, becomes inefficient and often
requires an infeasibly large number of samples to stably estimate the CVaR objective for training.

Key Idea. To address these, we propose leveraging the generative model to sample from an
importance-weighted distribution ¢(x) tailored to highlight high-loss regions. Based on the avail-
ability of a pretrained model 6, and a score-based generative model capable of sampling from
p(x), our approach consists of two components: (i) Sample inputs from a weighted distribution
q(x) o @(l(8p;x)) p(x), where ¢ : R>o — Rs( is a nondecreasing function that prioritizes
high-loss examples. (ii) Use the importance samples to perform CVaR minimization via importance-
weighted MC estimation.

Intuitively, this sample generation strategy concentrates on examples that are informative for CVaR
optimization, those in the tail of the loss distribution. These rare, high-loss instances expose the model
to critical failure modes and enable more effective risk-averse training. We refer to our approach as
Risk-Averse Model training via loss-guided Importance Samples (RAMIS).

4.1 Algorithm

Algorithm takes as input: an initial pretrained model 6, a score-based generative model capable of
sampling from p(x), a target quantile level 5 € (0,1), and a non-decreasing weighting function ¢
used to construct the 1rnp0rtance sampling distribution. We assume access to a dataset B = {x;}2 ,,
where each x; is drawn i.i.d. from the base distribution p(x). This dataset may be externally provided
or synthesized via the generative model.

Line 1: We generate B, samples from the importance-weighted distribution, go(x) = ¢(x)
©(£(00;x)) p(x), by guiding the generative model using loss values computed under . In score-
based generative models, this corresponds to solving the following reverse-time SDE:

dX{, = (f(xgt), t) — o(t)?V log qt(X‘(It))> dt + o (t) AW ). (6)



The specific implementation of this guided importance sampling process may vary based on the
chosen generative model guidance method and is detailed in Appendix

Line 2: The expectation of the importance weight function ¢(¢(6y; x)) over the base distribution
p(x) is computed as Exr~p[¢(£(0o; XP))] = Z. This normalization factor Z can be approximated
as Z ~ \Tls| > xen P(£(0o;x)) and is utilized in subsequent optimization iterations.

Lines 4-7: At each training step, we draw a sample from ¢(x) along with its corresponding im-

portance weight ¢ (£(6p;x)). The CVaR objective a1 + Exanyg {Z(g(é’;@;f%:)))—(lafgﬂ

timated via MC, which corresponds to a variational form in . Note that the likelihood ratio
p(x)/q(x) simplifies to Z/p(£(0y; x)). We perform subgradient-based optimization using a subrou-
tine SubGradientDescent (see Appendix for details), updating both € and « in the direction that
minimizes the estimated CVaR objective.

is es-

Importance Sampling Mechanism. The proposed approach differs fundamentally from conven-
tional importance sampling techniques, which re-evaluate model performance at each iteration and
dynamically adjust sampling probabilities over a fixed dataset. Such methods introduce additional
per-iteration computational overhead (El Hanchi and Stephens||2020}{|Needell et al.,|2014}|Zhao and
Zhang||2015).

In contrast, our framework adopts a fixed importance sampling distribution constructed prior to
training. We guide the generative model to directly produce samples from the target importance-
weighted distribution. This eliminates the need for iterative reweighting or per-batch loss evaluations.
Importantly, during training (Lines 4-7 in Algorithm , our method introduces no additional
computational overhead beyond a lightweight scalar reweighting of the loss term (£(0;x) — a)™.

4.2 Theoretical Analysis

In this subsection, we present a convergence analysis of the proposed RAMIS framework and justify
how loss-guided importance sampling improves risk-averse training. Specifically, we show that
sampling from a reweighted distribution, which is biased toward high-loss regions under a reference
model, reduces the noise of stochastic gradient descent.

Assumption 1 (Convexity, smoothness, and bounded loss). For all x € R%, £(6; x) are convex,
continuously differentiable, 0 < ¢(0;x) < M < oo, and £(0;x) and the norm of V/(0;x) are
L1-smooth and Lo-Lipschitz, respectively. For all k € [0, K], |0 < k.

Assumption|l|implies the standard convexity and smoothness of the loss function. We provide a
formal definition of convexity and smoothness in Appendix[A] Also, the parameterized model norm
is bounded. Building on the CVaR minimization analysis of|Meng and Gower|(2023), which relies
on the stochastic model-based framework of|Davis and Drusvyatskiy| (2019), we have the following
convergence property.

Theorem 1 (Convergence Rate). Suppose that Assumption 1 holds and over iterationsk =1, ..., K+

1, Algorithm 1 uses realizations xy, that are i.i.d. with q. Let {¢y} be the iterates generated by
Algorithm 1 such that ¢, = (0, )", ¢* is a minimizer of Fg, and set \, = \/I)%T-l For a given

quantile 3, we have

1 K+1 .
Fs <K+1 kz: ¢k> — Fs(¢")

=1

NBo,00)” =672 Nilg)

E ;
T 20K +1 VK +1

)

S(a) = w' (XP)? p(X7) *(x) = ; 2, 4)"?
where 0(q) = Exrrp [ T qxm) T 1] and w*(x) = (( 2L10(60;x) + 2Lok))* + 1)
Remark 1 (Loss-dependent Optimization Noise). Theorem 1| establishes an O(1/v/K) con-
vergence rate with a stochastic noise term 9(q) that depends on the initial loss ¢(6p;x). This
dependence on the loss value is well-aligned with the standard results in stochastic optimiza-
tion (Zhao and Zhang| [2015; |Davis and Drusvyatskiy, |2019), where the stochastic noise is
governed by the gradient of the loss. To understand this relationship more precisely, con-
sider the case where the loss function satisfies a Polyak—t.ojasiewicz (PL) condition (Karimi
et al.||2016). That is, for some p > 0 and all 6, 2u (£(0;x) — £*) < ||[Vel(00;x)||* where
¥ = ming ¢(A;x). Note that the PL condition holds for several classes of neural networks



(Liu et al.}|2019;|Zhou and Liang||2017}|Charles and Papailiopoulos} 2018} Hardt and Ma, 2016).
Under L;-smoothness, ||Vol(0p;x)||* < 2L1¢(00;x) and we have

21 (£(00;x) — £°) < [[Vol(0o; x)||> < 2L1£(6; x). (®)

This chain of inequalities implies that the high-loss samples contribute proportionately to the norm of
the gradient.

Remark 2 (Noise Reduction via Importance Sampling). The term ©(q) in Theoremis minimized
when the sampling distribution ¢(x) is chosen as g(x) o w*(x)p(x), which depends on the quantities,
potentially impractical to compute in real-world scenarios. To circumvent this, we propose using
a non-decreasing surrogate weighting function ¢ : R>oy — R that approximates the behavior of
desired importance weights. Specifically, sampling from the distribution ¢(x) x ¢ (£(6p; x)) p(x)
reduces the term ©(q) relative to naive sampling from p(x) under the following condition:

0(p) > 9(q) = E[w(X?)] > E LDZZ@X;»

| ooz o
We observe empirically that simple choices of ¢, such as the square-root or identity mapping, yield
strong performance (Sec. @ In summary, the analysis establishes that loss-guided importance
sampling based on the pretrained model can reduce the error of CVaR optimization. Rather than
merely increasing the sample size, we leverage score-based generative models to synthesize samples
from the proposed reweighted distribution, enabling efficient risk-averse training.

5 Experiments

Evaluation Summary. We evaluate the effectiveness of our proposed framework across both
synthetic and real-world tasks. Specifically, we aim to answer the following questions: (i) Can we
generate high-loss-inducing samples using score-based generative models by pretrained models? (ii)
Do these samples improve downstream robustness relative to existing robust optimization methods?
(iii) Does the approach generalize to high-stakes, real-world applications?

To this end, we conduct two sets of experiments: Sec. We evaluate our method on a controlled
regression task over a Gaussian mixture distribution to assess robustness under data heterogeneity and
sample scarcity. Sec. We apply our method to a real-world wireless channel state information
(CSI) compression task, demonstrating its potential practical utility.

Baselines and Fairness. We compare against strong risk-sensitive and robust optimization base-
lines: Stochastic Subgradient Method (SSGM) for CVaR minimization (Meng and Gower} [2023),
DORO (Zhai et al.}|2021), X2-DRO (Namkoong and Duchi/[2016), and standard ERM (i.e., CVaR at
B = 0). All methods start from the same pretrained checkpoint and are trained on the same number
of samples from the same generative model; RAMIS uses the identical budget but replaces standard
samples with loss-guided (importance) samples. Running SSGM without importance sampling
isolates the contribution of our loss-guided sampling scheme, while comparisons to DORO and
X2-DRO test whether state-of-the-art robust objectives can mitigate tail risk absent our mechanism.
ERM serves as a conventional average-risk baseline.

5.1 Risk-Averse Regression over Density-Heterogeneous Gaussians

Task Overview. We consider a synthetic regression task where inputs x € R? are drawn from
a Gaussian mixture distribution with three components centered at (—0.6,0.6), (0.6,0.6), and
(0.0, —0.6), each with standard deviation 0.06 but with unbalanced mixing weights of 0.01, 0.001,
and 0.989, respectively (See leftmost subplot in Figure . The objective is to predict the second
coordinate x|1) from the first X|q; using a quadratic regression model trained via risk minimization
methods with Mean Squared Error (MSE) loss. This setup can pose a significant challenge for robust
learning due to the extreme imbalance: standard training on limited number of samples from p(x)
yields poor performance on rare but critical components (e.g., the 0.01 or 0.001-weight modes),
which dominate the tail risk.

To evaluate our method, we adopt a two-phase training strategy. First, we obtain a pretrained
(reference) model Ay on 10% samples from p(x). Second, we use () = x"? to construct an



Table 1: CVaR (mean = std over 100 trials) across Quantile Levels 3 (lower is better).

B RAMIS (ours) SSGM DORO x2-DRO ERM

0.99 0.0774 + 0.0602 0.5131 + 0.6211 0.4940 + 0.4168 0.6124 + 0.5954 0.4461 + 0.4415
0.95 0.0261 + 0.0156 0.1255 + 0.1406 0.1377 + 0.2146 0.1277 & 0.1012 0.1050 % 0.0963
0.90 0.0172 + 0.0080 0.0604 + 0.0604 0.0694 + 0.0903 0.0766 + 0.1154 0.0559 4 0.0481
0.80 0.0116 + 0.0050 0.0329 + 0.0295 0.0361 + 0.0422 0.0380 = 0.0466 0.0301 = 0.0240
0.50 0.0069 + 0.0024 0.0137 % 0.0106 0.0134 + 0.0102 0.0137 + 0.0115 0.0131 & 0.0096

Ground-truth Pretrained Model Risk-Averse Model
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Figure 2: Visualization of the process. From left to right: (1) true data distribution p(x), (2)
samples drawn from p(x), (3) pretrained model and its loss map, (4) samples drawn from ¢(x) o
©(£(00;x))p(x), and (5) the final risk-averse model trained on these samples. The loss-guided
sampling expands support to rare regions and enables robust optimization.
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Density
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importance-weighted distribution ¢(x) o< p(¢(6g; x)) p(x) and draw the same number of new samples
from this distribution using the corresponding generative model. These samples are then used to train
a risk-averse model. More detailed setup and results are provided in Appendix Other choices of ¢
are provided in Appendix |

Results. Figure (2| visually illustrates our method. The leftmost panel shows the ground-truth
distribution p(x), which includes two rare Gaussian components with low probabilities (0.01 and
0.001). As depicted in the second panel, a limited number of samples drawn from p(x) rarely cover
these low-density regions, resulting in limited exposure during training. Consequently, the pretrained
model trained on these samples shows high loss in the low-density regions, as reflected in the loss
map shown in the third panel—in the colormap, these tail regions appear in yellowish hues, indicating
higher loss.

We exploit this loss landscape by constructing an importance-weighted distribution based on £(6; x)
and guiding the generative model to sample accordingly. The fourth panel shows samples generated
from this reweighted distribution. Despite using the same sample budget, these samples provide
substantially better coverage of the support set, especially in the tails. The final panel shows that
training on these importance samples leads to a risk-averse model that performs reliably across both
high-density and tail regions of the input space.

Table reports the CVaR performance across varying quantile levels 3 for our method and baseline ap-
proaches. Across all quantile levels, our framework (RAMIS) consistently achieves the lowest CVaR,
demonstrating superior robustness in tail-risk regimes. The baseline methods without importance
samples exhibit substantially higher risk. These results demonstrate that access to high-loss-inducing
importance samples generated via pretrained model guidance provides a distinct advantage that
cannot be matched by applying robust optimization techniques over uniformly sampled data.

5.1.1 Additional Analysis

To further assess the efficiency of the proposed framework, we analyze (i) the computational cost
of generating importance-weighted samples and (ii) the effect of the weighting function ¢, which
controls the emphasis placed on high-loss regions. Detailed results and ablation studies are provided

in Appendix

5.2 Risk-Averse Compression of Wireless Channel State Information

Task Overview. In wireless communication systems, Channel State Information (CSI) captures key
physical-layer characteristics such as signal directionality, multipath components, and propagation
strength between transmitters and receivers (Lin}|2022). Accurate CSI feedback from the transmitter
to the receiver is crucial for tasks like beamforming, scheduling, and adaptive modulation. However,
modern CSI matrices are typically high-dimensional, necessitating efficient compression to support



Table 2: CSI Compression CVaR (mean = std over 10 trials), in units of 10~3 (lower is better).

B RAMIS (ours) SSGM DORO x2-DRO ERM

0.99 2.2604 + 0.0419 23413 + 0.0346 2.4987 4 0.0744 2.5594 + 0.0341 2.3442 4 0.0346
0.95 1.4759 + 0.0259 1.5260 + 0.0198 1.6163 + 0.0429 1.6655 + 0.0313 1.5273 + 0.0198
0.90 1.1292 + 0.0189 1.1659 + 0.0130 1.2340 + 0.0258 1.2697 + 0.0225 1.1670 £ 0.0126
0.80 0.7895 + 0.0127 0.8115 =+ 0.0069 0.8576 £ 0.0100 0.8863 + 0.0112 0.8119 =+ 0.0067
0.50 0.3870 + 0.0054 0.3954 + 0.0024 0.4029 =+ 0.0014 0.4169 + 0.0018 0.3953 =+ 0.0024
0.00 0.2030 + 0.0027 0.2063 + 0.0013 0.2059 + 0.0012 0.2061 + 0.0014 0.2061 + 0.0014

|
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Figure 3: Visualization of generated samples. Left three columns: Typical samples with median
loss values sampled from the base distribution. Right three columns: High-loss samples generated
by pretrained model loss-guided sampling, which exhibit a 6.2 x 103 reconstruction loss—rare
and unseen across 8 x 10* samples from the base distribution. Top row: Spatial-frequency (Y/X)
representation; Bottom row: Angular-delay (Y/X) representation.

bandwidth-constrained channel feedback (Guo et al.|[2022). To ensure reliable communication in
practical deployments, especially under worst-case scenarios, risk-averse compression is essential.

In this experiment, we assess the performance of the proposed method in the context of risk-averse
CSI compression. We assume access to a pretrained score-based generative model trained on a CSI
dataset generated by the Quadriga simulator (Jaeckel et al.}[2021), where a single CSI instance is a
256 x 32 complex matrix, and a baseline CSI compressor trained using ERM. The CSI compressor is
implemented as a vector-quantized autoencoder (van den Oord et al.,|2017), comprising an encoder, a
quantization bottleneck, and a decoder. Following Algorithm|1| we guide the pretrained generative
model using the MSE loss values of the initial compressor to generate informative, high-loss samples.
These samples are then used to fine-tune the compressor using a CVaR-based objective. Detailed
specifications of the dataset, model architecture, and training parameters are provided in Appendix@

Results. Tablereports the CVaR performance in terms of reconstruction distortion (MSE) across
various quantile levels /3. Lower distortion indicates better robustness. RAMIS consistently achieves
the lowest CVaR in the high-risk regime (3 € {0.9,0.95,0.99}), outperforming all baselines, in-
cluding SSGM, DORO, XQ-DRO, and ERM. As (3 decreases toward 0, where CVaR approaches
the expected loss, the performance gap narrows, and RAMIS converges with SSGM and ERM.
This further indicates that RAMIS with importance samples does not degrade the average-case
performance, confirming its consistency. The performance gain at the high 3 region supports that
the conventional methods, which rely on samples drawn from the original data distribution, are
insufficient for minimizing tail risk.

Figure funher illustrates the nature of the samples generated via pretrained-loss-guided importance
sampling. The top row shows representations in the spatial-frequency domain, while the bottom
row visualizes the corresponding angular-delay profiles, computed via 2D inverse FFT (IFFT) with
truncation to the low-delay region for interpretability. The left three columns present typical generated
samples from the base generative model, chosen as the three median distortion examples by MSE.

By contrast, the right three columns show samples obtained via RAMIS, using the generative model
guided by the pretrained model loss. These samples exhibit significantly higher reconstruction
distortion, with the average MSE increasing by 4.7 x 10~* and a maximum distortion exceeding
6 x 1073, Notably, the corresponding angular-delay representations reveal more complex scattering
patterns, indicating that the proposed framework successfully targets rare, high-loss scenarios that are
otherwise underrepresented in the base distribution.



6 Discussion, Limitations of Work, and Future Directions

This paper introduces RAMIS, a novel risk-averse learning framework that integrates score-based
generative modeling with pretrained model feedback to synthesize high-loss, informative samples for
downstream optimization. In contrast to existing generative approaches that aim to increase sample
diversity or generalization, our framework targets the utility of samples specifically for minimizing
tail-risk objectives such as CVaR. By leveraging pretrained loss signals as importance guidance, we
enable generative models to contribute directly to risk-sensitive training.

Our study primarily focuses on the theoretical motivation behind loss-guided generative sampling
and demonstrates its effectiveness through controlled synthetic experiments and a domain-specific
application in wireless communication. While these results validate the core principles of RAMIS,
broader applications remain to be explored. As diffusion-based generative models continue to evolve
and become increasingly accessible across domains where risk-sensitive optimization is critical, we
expect RAMIS to generalize naturally to these settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: It provides the full set of assumptions and a complete and correct proof.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, the implementation details are provided along with source code.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Yes, we provide a Github link.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all the implementation details in the appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes. We provide the standard deviation of the performance under multiple
random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes. This work provides sufficient information regarding the computational
resources for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes. This work complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no specific societal impact of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes. All external assets are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes. The implementation code is clearly documented and released with the
paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The main method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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