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Abstract

Risk-averse modeling is critical in safety-sensitive and high-stakes applications.
Conditional Value-at-Risk (CVaR) quantifies such risk by measuring the expected
loss in the tail of the loss distribution, and minimizing it provides a principled
framework for training robust models. However, direct CVaR minimization re-
mains challenging due to the difficulty of accurately estimating rare, high-loss
events—particularly at extreme quantiles. In this work, we propose a novel train-
ing framework that synthesizes informative samples for CVaR optimization using
score-based generative models. Specifically, we guide a diffusion-based generative
model to sample from a reweighted distribution that emphasizes inputs likely to
incur high loss under a pretrained reference model. These samples are then in-
corporated via a loss-weighted importance sampling scheme to reduce noise in
stochastic optimization. We establish convergence guarantees and show that the
synthesized, high-loss-emphasized dataset substantially contributes to the noise
reduction. Empirically, we validate the effectiveness of our approach across mul-
tiple settings, including a real-world wireless channel compression task, where
our method achieves significant improvements over standard risk minimization
strategies.

1 Introduction

Risk-averse learning has become increasingly relevant in high-stakes applications where robustness to
rare but costly failures is critical. In those domains, models must not only achieve strong average-case
performance but also avoid catastrophic errors on atypical inputs. A widely adopted risk measure for
capturing such sensitivity is the Conditional Value-at-Risk (CVaR), which focuses on the expected
loss in the worst-performing (1 − β) fraction of the input space (Rockafellar and Uryasev, 2000),
making it well-suited for applications requiring robustness guarantees, e.g., large language models,
system scheduling, control, medical, wireless communications, and more (Chaudhary et al., 2025;
Tan et al., 2017; Ahmadi et al., 2021; Chan et al., 2014; Yang et al., 2022).

Despite its appeal, minimizing CVaR remains challenging in practice. As the quantile level β
approaches one, loss contributions become dominated by rare, high-risk inputs that are unlikely to be
observed through standard sampling from the data distribution. Without adequate coverage of these
tail events, naive Monte Carlo (MC) methods yield high-variance estimates of CVaR and inefficient
optimization, ultimately limiting the reliability of risk-averse training.
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Figure 1: System overview. A score-based generative model is guided using the loss values from a
pretrained model to sample high-loss inputs for CVaR optimization.

Recent advances in generative modeling offer new opportunities to address these limitations. In
particular, score-based generative models enable expressive and controllable sampling from complex
distributions, and have shown promise in tasks ranging from data augmentation to density estimation.
Concurrently, pretrained task models are becoming widely available and serve as informative priors
for task performance. These developments motivate a fundamental question: Can we actively generate
training inputs that are more informative for CVaR optimization?

In this work, we propose a novel framework that integrates pretrained (reference) models and
generative models to synthesize informative samples for risk-averse training. Our key observation
is that inputs which induce high loss under a pretrained model are highly beneficial for risk-averse
model training. This motivates a data generation strategy that explicitly targets failure modes of the
initial model and uses them to guide risk-aware training more effectively.

To realize this idea, we develop a method that uses pretrained loss values to guide a score-based
generative model toward a reweighted sampling distribution that emphasizes high-risk inputs. Our
approach leverages recent advances in training-free guidance for diffusion models, allowing the
generative process to be steered without retraining (Chung et al., 2022; Yu et al., 2023; Kim et al.,
2025c,a). The resulting samples are explicitly biased toward regions where the model is likely to
fail and are used to perform CVaR minimization via importance-weighted optimization. The main
contributions of this work are summarized as follows.

Framework Design. We propose a novel risk-averse learning framework based on loss-guided
generative importance sampling. As illustrated in Figure 1, our approach proceeds in two stages:
(i) a pretrained model is used to guide a score-based generative model to sample from a reweighted
distribution that emphasizes high-loss inputs; (ii) these samples are then used for CVaR minimization
via importance-weighted training, resulting in improved robustness and reduced training noise.

Theoretical Analysis. We provide convergence analysis for our framework and show that, under mild
assumptions, generating samples from high-loss regions provably reduces the noise of the CVaR
optimization process.

Empirical Validation. We empirically validate our method in both synthetic and real-world settings.
In a controlled regression task with highly imbalanced modes, the proposed method successfully
synthesizes rare, high-loss samples that are critical for minimizing tail risk. In a real-world appli-
cation—wireless channel state information (CSI) compression—our method consistently improves
CVaR performance in the high β regime, compared to existing robust and risk-minimization baselines.

To the best of our knowledge, this is the first work that leverages generative models to perform
risk-averse learning by targeting high-loss regions via loss-guided importance sampling.

2 Related Work

Risk-Averse Learning and Conditional Value-at-Risk. Risk-averse learning seeks to prioritize
robustness over average-case performance, especially in high-stakes settings where rare but severe
failures are unacceptable. A widely used risk measure in this context is the Conditional Value-at-Risk
(CVaR) (Rockafellar and Uryasev, 2000), which quantifies the expected loss in the (1− β)-worst
portion of the input distribution. Due to its ability to explicitly penalize high-loss instances, CVaR has
been adopted in a broad range of applications, including finance, credit, operational risk management,
robust control in wireless communications, large language models, and more (Alexander et al., 2006;
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Andersson et al., 2001; Filippi et al., 2020; Yang et al., 2022; Chaudhary et al., 2025; Chow and
Ghavamzadeh, 2014).

However, despite its appeal, CVaR training is notoriously challenging due to the high variance in
empirical estimates, particularly when targeting extreme quantiles (Troop et al., 2021).

Importance Sampling for Risk Measures and Optimization. Importance sampling can be utilized
for improving the variance of risk estimation, particularly when rare events dominate the objective.
Prior works have explored its use in CVaR estimation and optimization (Bardou et al., 2009; Deo and
Murthy, 2021; He et al., 2024a), including sampling-based gradient estimators based on likelihood
ratios (Tamar et al., 2015). However, these approaches typically operate on a fixed dataset and focus
on reweighting existing samples to reduce estimation variance.

Our method introduces a fundamentally new perspective: we utilize a generative model to directly
synthesize importance-weighted samples. Under the availability of a generative model, we guide
the sample generation process toward high-loss regions using pretrained model losses. This enables
us to reduce the noise of CVaR optimization while expanding the effective support of the training
distribution.

Generative Models for Data Augmentation and Downstream Task Learning. Recent progress in
generative modeling, particularly in diffusion and score-based generative models, has enabled high-
fidelity sample generation and accurate distribution approximation (Chen et al., 2024; Wang et al.,
2024b). These models have been successfully applied across diverse domains for data augmentation,
including load forecasting (Xu and Zhu, 2024), medical imaging (He et al., 2024b), and audio
synthesis (Bahmei et al., 2022). Recently, generative models are increasingly used to augment
training datasets with specific purposes (Zheng et al., 2023), e.g., enhancing semantic diversity
(Shivashankar and Miller, 2023; Trabucco et al., 2023), generating label-specific instances (Shao
et al., 2019), and bridging distributional gaps between training and test data (Wang et al., 2024a).

Scope and Distinctiveness of the Proposed Approach. While prior work has primarily leveraged
generative models to enhance generalization by enriching the diversity of training data, our approach
adopts a different objective: synthesizing samples that are explicitly informative for risk-sensitive
training. Rather than uniformly augmenting the training distribution, we concentrate generation
toward high-loss regions—those most relevant for CVaR minimization. This targeted generation
paradigm aligns directly with risk-averse learning objectives, offering a principled and efficient path
toward robust model training.

3 Preliminaries and Problem Formulation

Recent advances in generative modeling, particularly score-based generative models, have substan-
tially improved the quality and controllability of synthetic data generation. A key strength of the
score-based generative models lies in their ability to support guided sampling, where samples can be
drawn from a distribution that is shifted or reweighted relative to a base distribution. In this work,
we leverage this capability to generate rare, high-loss-inducing samples that are underrepresented
in standard datasets but critical for risk-sensitive objectives. As we will show, synthesizing such
samples provides both theoretical and practical advantages in CVaR minimization.

3.1 Score-based Generative Models and Training-Free Guided Sampling

Let Xp ∈ Rd1 be a random variable with density p(x), where x denotes a realization. A generative
model seeks to approximate p(x) or its associated score function ∇x log p(x) to enable efficient
sampling from the underlying distribution. A key innovation of the recent score-based generative
models is to model the score function not directly on p(x), but on noise-perturbed data distributions
pt(x) indexed by a continuous-time parameter t ∈ [0, T ]. This enables the data generation process to
be formulated as a stochastic differential equation (SDE), which has been shown to enhance both
training stability and sample quality (Song et al., 2021). The perturbed distributions are modeled via
the Itô SDE:

dXp
(t) = f(Xp

(t), t) dt+ σ(t) dW(t), Xp
(0) ∼ p(x), (1)
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where f : Rd1 × [0, T ] → Rd1 is the drift term, σ(t) : [0, T ] → R is the diffusion coefficient, and
W(t) is a standard d1-dimensional Brownian motion. The marginal distribution of Xp

(t) is denoted
pt(x), and the initial distribution p0(x) corresponds to the data distribution we aim to model.

Given access to the time-indexed score∇x log pt(x), samples from p=p0 can be obtained by solving
the reverse-time SDE (Anderson, 1982):

dXp
(t) =

(
f(Xp

(t), t)− σ(t)2∇x log pt(X
p
(t))
)
dt+ σ(t) dW̃(t),

where W̃(t) denotes reverse-time Brownian motion. Sampling is typically initialized from a simple
prior such as a standard Gaussian pT (x) for large T , and trajectories are integrated backward to
recover Xp

(0) ∼ p0. For notational simplicity, scalar-vector multiplication denotes elementwise
scaling.

Beyond sampling from the base distribution p(x), recent advancements in the score-based generative
models allow sample generation from modified target distributions of the form q(x) ∝ w(x)p(x),
where w(x) is a task-specific importance weight. While classical approaches such as the cross-
entropy method (CEM) and fine-tuning of generative models require retraining to realize such
reweighted distributions, training-free guidance techniques for the score-based generative models
enable approximate sampling from q without modifying the base generative model. These methods
exploit the fact that, under the same SDE dynamics in (1), if a process begins from q(x) = q0(x) ∝
w(x)p(x) instead of p as dXq

(t) = f(Xq
(t), t) dt+ σ(t) dW(t) with Xq

(0) ∼ q = q0, then its marginal

qt such that Xq
(t) ∼ qt satisfies qt(x) ∝ pt(x)EXp

(0)
∼p(·|Xp

(t)
=x)

[
w(Xp

(0))
]
, where p(· | Xp

(t) = x)

denotes the conditional distribution of the initial state given state x. Taking the log and the gradient
yields the identity:

∇x log qt(x) = ∇x log pt(x)+ g(x, t), where g(x, t) := ∇x logEXp
(0)

∼p(·|Xp
(t)

=x)

[
w(Xp

(0))
]
.

This additional term g, often referred to as the guidance, can be approximated using known quantities
such as the score function of pt and the weight function w (Chung et al., 2022; Kim et al., 2025c; Yu
et al., 2023), enabling sampling from approximated q via the reverse-time SDE without any further
training.

Motivated by these developments, we propose a new learning framework that leverages guided sample
generation to construct informative training data specifically tailored for risk-averse learning. Rather
than drawing training samples uniformly from p(x), we aim to generate samples that contribute to
noise reduction in risk-sensitive objectives, thereby improving model robustness to rare but high-loss
events.

3.2 Risk-Averse Learning via Conditional Value-at-Risk

Our ultimate goal is training of risk-averse task models, in which the objective is not merely to
optimize expected model performance, but to mitigate the impact of potentially rare but high-loss
outcomes. We consider Conditional Value-at-Risk (CVaR), one of the most widely adopted risk
measures, which builds upon the concept of Value-at-Risk (VaR).

Let θ ∈ Rd2 denote the parameters of the task model, and let ℓ(θ;x) be the loss incurred on input x.
For a given quantile (confidence) level β ∈ (0, 1), the VaR is defined as the smallest threshold α such
that the loss does not exceed α with probability at least β:

VaRβ(θ) = min{α ∈ R : P[ℓ(θ;Xp) ≤ α] ≥ β} (2)

where P[ℓ(θ;Xp) ≤ α] =
∫
ℓ(θ;x)≤α

p(x) dx, and the distribution is assumed to be continuous with
respect to α. While VaR captures a quantile of the loss distribution, it does not reflect the magnitude
of losses beyond the threshold. The Conditional Value-at-Risk addresses this by computing the
expected loss in the tail beyond VaRβ(θ):

CVaRβ(θ) = EXp∼p[ℓ(θ;X
p) | ℓ(θ;Xp) ≥ VaRβ(θ)]. (3)

Our objective is to find model parameters θ∗ that minimize the CVaR at a given quantile level β:

θ∗ = arg min
θ∈Rd2

CVaRβ(θ). (4)
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Algorithm 1 Risk-Averse Model Training via Loss-Guided Importance Sample Generation
Input: Initial model θ0, generative model ∇ log pt(x), confidence level β, function φ, dataset B
Output: Risk-averse model θK

1: Generate importance samples {xi}
Bq

i=1 ∼ q(x) ∝ φ(ℓ(θ0;x)) p(x)
2: Compute Z = EXp∼p[φ(ℓ(θ0;X

p))]
3: Initialize α0 ← Z.
4: for k = 1 to K + 1 do
5: Sample data pair {x, ℓ(θ0;x)} from q

6: MC estimation of αk−1 + EXq∼q

[
Z(ℓ(θk−1;X

q)−αk−1)
+

φ(ℓ(θ0;Xq))(1−β)

]
7: (θk, αk)

⊤ ← SubGradientDescent(∂Fβ , θk−1, αk−1)

This objective is known to be equivalent to the following unconstrained optimization problem
(Rockafellar and Uryasev, 2000) as

θ∗, α∗ = arg min
θ∈Rd2 ,α∈R

Fβ(θ, α) where Fβ(θ, α) = α+
1

1− β
EXp∼p[(ℓ(θ;X

p)− α)+]. (5)

Here, (x)+ = max(x, 0) denotes the positive part function. The solution α∗ corresponds to VaRβ ,
and θ∗ minimizes CVaRβ .

4 Risk-Averse Model Training via Loss-Guided Importance Samples

While the CVaR objective in (5) provides a principled framework for addressing tail-risk scenarios in
downstream tasks, its empirical estimation is particularly challenging, especially at high confidence
levels (β → 1). In this regime, the corresponding VaR threshold α becomes large, and the expectation
term EXp∼p[(ℓ(θ;X

p)−α)+] becomes increasingly difficult to estimate due to the rarity of high-loss
instances, for which (ℓ(θ;Xp)− α)+ is nonzero. For most samples from p(x), this term evaluates
to zero, leading to high variance and poor gradient signals during training. Consequently, naive
sampling from the base distribution p(x), even with a generative model, becomes inefficient and often
requires an infeasibly large number of samples to stably estimate the CVaR objective for training.

Key Idea. To address these, we propose leveraging the generative model to sample from an
importance-weighted distribution q(x) tailored to highlight high-loss regions. Based on the avail-
ability of a pretrained model θ0 and a score-based generative model capable of sampling from
p(x), our approach consists of two components: (i) Sample inputs from a weighted distribution
q(x) ∝ φ(ℓ(θ0;x)) p(x), where φ : R≥0 → R≥0 is a nondecreasing function that prioritizes
high-loss examples. (ii) Use the importance samples to perform CVaR minimization via importance-
weighted MC estimation.

Intuitively, this sample generation strategy concentrates on examples that are informative for CVaR
optimization, those in the tail of the loss distribution. These rare, high-loss instances expose the model
to critical failure modes and enable more effective risk-averse training. We refer to our approach as
Risk-Averse Model training via loss-guided Importance Samples (RAMIS).

4.1 Algorithm

Algorithm 1 takes as input: an initial pretrained model θ0, a score-based generative model capable of
sampling from p(x), a target quantile level β ∈ (0, 1), and a non-decreasing weighting function φ
used to construct the importance sampling distribution. We assume access to a dataset B = {xi}Bi=1,
where each xi is drawn i.i.d. from the base distribution p(x). This dataset may be externally provided
or synthesized via the generative model.

Line 1: We generate samples from the importance-weighted distribution, q0(x) = q(x) ∝
φ(ℓ(θ0;x)) p(x), by guiding the generative model using loss values computed under θ0. In score-
based generative models, this corresponds to solving the following reverse-time SDE:

dXq
(t) =

(
f(Xq

(t), t)− σ(t)2∇x log qt(X
q
(t))
)
dt+ σ(t) dW̃(t). (6)
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The specific implementation of this guided importance sampling process may vary based on the
chosen generative model guidance method and is detailed in Appendix B.

Line 2: The expectation of the importance weight function φ(ℓ(θ0;x)) over the base distribution
p(x) is computed as EXp∼p[φ(ℓ(θ0;X

p))] = Z. This normalization factor Z can be approximated
as Z ≈ 1

|B|
∑

x∈B φ(ℓ(θ0;x)) and is utilized in subsequent optimization iterations.

Lines 4–7: At each training step, we draw a sample from q(x) along with its corresponding im-
portance weight φ(ℓ(θ0;x)). The CVaR objective αk−1 + EXq∼q

[
Z(ℓ(θk−1;X

q)−αk−1)
+

φ(ℓ(θ0;Xq))(1−β)

]
is es-

timated via MC, which corresponds to a variational form in (5). Note that the likelihood ratio
p(x)/q(x) simplifies to Z/φ(ℓ(θ0;x)). We perform subgradient-based optimization using a subrou-
tine SubGradientDescent (see Appendix A for details), updating both θ and α in the direction that
minimizes the estimated CVaR objective.

Importance Sampling Mechanism. The proposed approach differs fundamentally from conven-
tional importance sampling techniques, which re-evaluate model performance at each iteration and
dynamically adjust sampling probabilities over a fixed dataset. Such methods introduce additional
per-iteration computational overhead (El Hanchi and Stephens, 2020; Needell et al., 2014; Zhao and
Zhang, 2015).

In contrast, our framework adopts a fixed importance sampling distribution constructed prior to
training. We guide the generative model to directly produce samples from the target importance-
weighted distribution. This eliminates the need for iterative reweighting or per-batch loss evaluations.
Importantly, during training (Lines 4–7 in Algorithm 1), our method introduces no additional
computational overhead beyond a lightweight scalar reweighting of the loss term (ℓ(θ;x)− α)+.

4.2 Theoretical Analysis

In this subsection, we present a convergence analysis of the proposed RAMIS framework and justify
how loss-guided importance sampling improves risk-averse training. Specifically, we show that
sampling from a reweighted distribution, which is biased toward high-loss regions under a reference
model, reduces the noise of stochastic gradient descent.
Assumption 1 (Convexity, smoothness, and bounded loss). For all x ∈ Rd1 , ℓ(θ;x) are convex,
continuously differentiable, 0 ≤ ℓ(θ;x) < M < ∞, and ℓ(θ;x) and the norm of ∇ℓ(θ;x) are
L1-smooth and L2-Lipschitz, respectively. For all k ∈ [0,K], ∥θk∥ ≤ κ.

Assumption 1 implies the standard convexity and smoothness of the loss function. We provide a
formal definition of convexity and smoothness in Appendix A. Also, the parameterized model norm
is bounded. Building on the CVaR minimization analysis of Meng and Gower (2023), which relies
on the stochastic model-based framework of Davis and Drusvyatskiy (2019), we have the following
convergence property.
Theorem 1 (Convergence Rate). Suppose that Assumption 1 holds and over iterations k = 1, . . . ,K+
1, Algorithm 1 uses realizations xk that are i.i.d. with q. Let {ϕk} be the iterates generated by
Algorithm 1 such that ϕk = (θk, αk)

⊤, ϕ∗ is a minimizer of Fβ , and set λk = λ√
K+1

. For a given
quantile β, we have

E

[
Fβ

(
1

K+1

K+1∑
t=1

ϕk

)
− Fβ(ϕ

∗)

]
≤ ∥(θ0, Z)⊤ − ϕ∗∥2

2λ
√
K + 1

+
λv̂(q)√
K + 1

, (7)

where v̂(q) = EXp∼p

[
w∗(Xp)2

(1−β)2
p(Xp)
q(Xp) + 1

]
and w∗(x) =

(
(
√
2L1ℓ(θ0;x) + 2L2κ))

2 + 1
)1/2

.

Remark 1 (Loss-dependent Optimization Noise). Theorem 1 establishes an O(1/
√
K) con-

vergence rate with a stochastic noise term v̂(q) that depends on the initial loss ℓ(θ0;x). This
dependence on the loss value is well-aligned with the standard results in stochastic optimiza-
tion (Zhao and Zhang, 2015; Davis and Drusvyatskiy, 2019), where the stochastic noise is
governed by the gradient of the loss. To understand this relationship more precisely, con-
sider the case where the loss function satisfies a Polyak–Łojasiewicz (PL) condition (Karimi
et al., 2016). That is, for some µ > 0 and all θ, 2µ (ℓ(θ0;x)− ℓ∗) ≤ ∥∇θℓ(θ0;x)∥2 where
ℓ∗ = minθ ℓ(θ;x). Note that the PL condition holds for several classes of neural networks
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(Liu et al., 2019; Zhou and Liang, 2017; Charles and Papailiopoulos, 2018; Hardt and Ma, 2016).
Under L1-smoothness, ∥∇θℓ(θ0;x)∥2 ≤ 2L1ℓ(θ0;x) and we have

2µ (ℓ(θ0;x)− ℓ∗) ≤ ∥∇θℓ(θ0;x)∥2 ≤ 2L1ℓ(θ0;x). (8)

This chain of inequalities implies that the high-loss samples contribute proportionately to the norm of
the gradient.
Remark 2 (Noise Reduction via Importance Sampling). The term v̂(q) in Theorem 1 is minimized
when the sampling distribution q(x) is chosen as q(x) ∝ w∗(x)p(x), which depends on the quantities,
potentially impractical to compute in real-world scenarios. To circumvent this, we propose using
a non-decreasing surrogate weighting function φ : R≥0 → R≥0 that approximates the behavior of
desired importance weights. Specifically, sampling from the distribution q(x) ∝ φ(ℓ(θ0;x)) p(x)
reduces the term v̂(q) relative to naive sampling from p(x) under the following condition:

v̂(p) ≥ v̂(q) ⇐⇒ E[w∗(Xp)2] ≥ E
[

w∗(Xp)2

φ(ℓ(θ0;Xp))

]
· E[φ(ℓ(θ0;Xp))]. (9)

We observe that simple choices of φ—such as the identity function—yield strong performance
empirically (Sec. 5). In summary, the analysis establishes that loss-guided importance sampling
based on the pretrained model can reduce the error of CVaR optimization. Rather than merely
increasing the sample size, we leverage score-based generative models to synthesize samples from
the proposed reweighted distribution, enabling efficient risk-averse training.

5 Experiments

Evaluation Summary. We evaluate the effectiveness of our proposed framework across both
synthetic and real-world tasks. Specifically, we aim to answer the following questions: (i) Can we
generate high-loss-inducing samples using score-based generative models by pretrained models? (ii)
Do these samples improve downstream robustness relative to existing robust optimization methods?
(iii) Does the approach generalize to high-stakes, real-world applications?

To this end, we conduct two sets of experiments: Sec. 5.1: We evaluate our method on a controlled
regression task over a Gaussian mixture distribution to assess robustness under data heterogeneity and
sample scarcity. Sec. 5.2: We apply our method to a real-world wireless channel state information
(CSI) compression task, demonstrating its potential practical utility.

Baselines and Fairness. We compare against strong risk-sensitive and robust optimization base-
lines: Stochastic Subgradient Method (SSGM) for CVaR minimization (Meng and Gower, 2023),
DORO (Zhai et al., 2021), χ2-DRO (Namkoong and Duchi, 2016), and standard ERM (i.e., CVaR at
β = 0). All methods start from the same pretrained checkpoint and are trained on the same number
of samples from the same generative model; RAMIS uses the identical budget but replaces standard
samples with loss-guided (importance) samples. Running SSGM without importance sampling
isolates the contribution of our loss-guided sampling scheme, while comparisons to DORO and
χ2-DRO test whether state-of-the-art robust objectives can mitigate tail risk absent our mechanism.
ERM serves as a conventional average-risk baseline.

5.1 Risk-Averse Regression over Density-Heterogeneous Gaussians

Task Overview. We consider a synthetic regression task where inputs x ∈ R2 are drawn from
a Gaussian mixture distribution with three components centered at (−0.6, 0.6), (0.6, 0.6), and
(0.0,−0.6), each with standard deviation 0.06 but with unbalanced mixing weights of 0.001, 0.01,
and 0.989, respectively (See leftmost subplot in Figure 2). The objective is to predict the second
coordinate x[1] from the first x[0] using a quadratic regression model trained via risk minimization
methods with Mean Squared Error (MSE) loss. This setup can pose a significant challenge for robust
learning due to the extreme imbalance: standard training on limited number of samples from p(x)
yields poor performance on rare but critical components (e.g., the 0.01 or 0.001-weight modes),
which dominate the tail risk.

To evaluate our method, we adopt a two-phase training strategy. First, we obtain a pretrained
(reference) model θ0 on 2× 102 samples from p(x). Second, we use the loss values ℓ(θ0;x) itself to
construct an importance-weighted distribution q(x) ∝ ℓ(θ0;x) p(x) and draw the same number of
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Table 1: CVaR (mean ± std) across Quantile Levels β (lower is better).
β RAMIS (ours) SSGM DORO χ2-DRO ERM

0.99 0.0723 ± 0.0428 0.3516 ± 0.4008 0.4543 ± 0.4861 0.4819 ± 0.5279 0.3550 ± 0.3983
0.95 0.0235 ± 0.0089 0.0552 ± 0.0456 0.0618 ± 0.0293 0.0908 ± 0.0613 0.0684 ± 0.0516
0.90 0.0152 ± 0.0044 0.0279 ± 0.0170 0.0381 ± 0.0137 0.0526 ± 0.0325 0.0405 ± 0.0243
0.80 0.0098 ± 0.0022 0.0177 ± 0.0111 0.0213 ± 0.0081 0.0291 ± 0.0133 0.0248 ± 0.0116
0.50 0.0050 ± 0.0008 0.0078 ± 0.0037 0.0099 ± 0.0032 0.0098 ± 0.0024 0.0130 ± 0.0054
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Figure 2: Visualization of the process. From left to right: (1) true data distribution p(x), (2) samples
drawn from p(x), (3) pretrained model and its loss map, (4) samples drawn from q(x) ∝ ℓ(θ0;x)p(x),
and (5) the final risk-averse model trained on these samples. The loss-guided sampling expands
support to rare regions and enables robust optimization.

new samples from this distribution using the corresponding generative model. These samples are
then used to train a risk-averse model. More detailed setup and results are provided in Appendix C.

Results. Figure 2 visually illustrates our method. The leftmost panel shows the ground-truth
distribution p(x), which includes two rare Gaussian components with low probabilities (0.01 and
0.001). As depicted in the second panel, a limited number of samples drawn from p(x) rarely cover
these low-density regions, resulting in limited exposure during training. Consequently, the pretrained
model trained on these samples shows high loss to the rare (tail) regions, as reflected in the loss map
shown in the third panel–in the colormap, these tail regions appear in yellowish hues, indicating
higher loss.

We exploit this loss landscape by constructing an importance-weighted distribution based on ℓ(θ0;x)
and guiding the generative model to sample accordingly. The fourth panel shows samples generated
from this reweighted distribution. Despite using the same sample budget (2× 102), these samples
provide substantially better coverage of the support set, especially in the tails. The final panel shows
that training on these importance samples leads to a risk-averse model that performs reliably across
both high-density and tail regions of the input space.

Table 1 reports the CVaR performance across varying quantile levels β for our method and baseline
approaches. Across all risk levels, our framework (RAMIS) consistently achieves the lowest CVaR,
demonstrating superior robustness in tail-risk regimes. Among the baselines, SSGM performs second-
best, while other robust optimization methods such as DORO and χ2-DRO, as well as ERM, exhibit
significantly higher risk. These results highlight that access to high-loss-inducing importance samples
generated via pretrained model guidance provides a distinct advantage that cannot be matched by
applying robust optimization techniques over uniformly sampled data.

5.2 Risk-Averse Compression of Wireless Channel State Information

Task Overview. In wireless communication systems, Channel State Information (CSI) captures key
physical-layer characteristics such as signal directionality, multipath components, and propagation
strength between transmitters and receivers (Lin, 2022). Accurate CSI feedback from the transmitter
to the receiver is crucial for tasks like beamforming, scheduling, and adaptive modulation. However,
modern CSI matrices are typically high-dimensional, necessitating efficient compression to support
bandwidth-constrained channel feedback (Guo et al., 2022). To ensure reliable communication in
practical deployments, especially under worst-case scenarios, risk-averse compression is essential.

In this experiment, we assess the performance of the proposed method in the context of risk-averse
CSI compression. We assume access to a pretrained score-based generative model trained on a CSI
dataset generated by the Quadriga simulator (Jaeckel et al., 2021), where a single CSI instance is a
256× 32 complex matrix, and a baseline CSI compressor trained using ERM. The CSI compressor is
implemented as a vector-quantized autoencoder (Van Den Oord et al., 2017), comprising an encoder,
a quantization bottleneck, and a decoder. Following Algorithm 1, we guide the pretrained generative
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Table 2: CSI Compression CVaR (mean ± std), in units of 10−3 (lower is better).
β RAMIS (ours) SSGM DORO χ2-DRO ERM

0.99 2.10 ± 0.0028 2.21 ± 0.0341 2.28 ± 0.0032 2.50 ± 0.2330 2.22 ± 0.0016
0.95 1.39 ± 0.0085 1.44 ± 0.0075 1.46 ± 0.0205 1.52 ± 0.0014 1.44 ± 0.0019
0.90 1.07 ± 0.0047 1.12 ± 0.0113 1.10 ± 0.0083 1.14 ± 0.0022 1.10 ± 0.0018
0.80 0.76 ± 0.0067 0.76 ± 0.0026 0.76 ± 0.0052 0.78 ± 0.0252 0.76 ± 0.0013
0.50 0.39 ± 0.0018 0.38 ± 0.0006 0.39 ± 0.0249 0.38 ± 0.0260 0.38 ± 0.0003

Typical Samples High-loss inducing (rare) Samples

Figure 3: Visualization of generated samples. Left three columns: Typical samples with median
loss values sampled from the base distribution. Right three columns: High-loss samples generated
by pretrained model loss-guided sampling, which exhibit a 6.2 × 10−3 reconstruction loss—rare
and unseen across 8× 104 samples from the base distribution. Top row: Spatial-frequency (Y/X)
representation; Bottom row: Angular-delay (Y/X) representation.

model using the MSE loss values of the initial compressor to generate informative, high-loss samples.
These samples are then used to fine-tune the compressor using a CVaR-based objective. Detailed
specifications of the dataset, model architecture, and training parameters are provided in Appendix D.

Results. Table 2 reports the CVaR performance in terms of reconstruction distortion (MSE) across
various quantile levels β. Lower distortion indicates better robustness. RAMIS consistently achieves
the lowest CVaR in the high-risk regime (β ∈ {0.9, 0.95, 0.99}), outperforming all baselines, in-
cluding SSGM, DORO, χ2-DRO, and ERM. As β decreases toward 0.5, where CVaR approaches to
the expected loss, the performance gap narrows and RAMIS converges with SSGM and ERM. The
performance gain at the high β region supports that the conventional methods, which rely on samples
drawn from the original data distribution, are insufficient for minimizing tail risk.

Figure 3 further illustrates the nature of the samples generated via pretrained-loss-guided importance
sampling. The top row shows representations in the spatial-frequency domain, while the bottom
row visualizes the corresponding angular-delay profiles, computed via 2D inverse FFT (IFFT) with
truncation to the low-delay region for interpretability. The left three columns present typical generated
samples from the base generative model, chosen as the three median distortion examples by MSE.
Across this set, the worst observed reconstruction error was 1.10× 10−3.

By contrast, the right three columns show samples obtained via RAMIS, using the generative model
guided by the pretrained model loss. These samples exhibit significantly higher reconstruction
distortion, with the average MSE increasing by 4.99× 10−4 (from 9.95× 10−5) and a maximum
distortion exceeding 6.23× 10−3. Notably, the corresponding angular-delay representations reveal
more complex scattering patterns, indicating that the proposed framework successfully targets rare,
high-loss scenarios that are otherwise underrepresented in the base distribution.

5.3 Additional Analysis

To further assess the efficiency of the proposed framework, we analyze (i) the computational cost
of generating importance-weighted samples and (ii) the effect of the weighting function φ, which
controls the emphasis placed on high-loss regions. Detailed results and ablation studies are provided
in Appendix E.
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6 Discussion, Limitations of Work, and Future Directions

This paper introduces RAMIS, a novel risk-averse learning framework that integrates score-based
generative modeling with pretrained model feedback to synthesize high-loss, informative samples for
downstream optimization. In contrast to existing generative approaches that aim to increase sample
diversity or generalization, our framework targets the utility of samples specifically for minimizing
tail-risk objectives such as CVaR. By leveraging pretrained loss signals as importance guidance, we
enable generative models to contribute directly to risk-sensitive training.

Our study primarily focuses on the theoretical motivation behind loss-guided generative sampling
and demonstrates its effectiveness through controlled synthetic experiments and a domain-specific
application in wireless communication. While these results validate the core principles of RAMIS,
broader applications remain to be explored. As diffusion-based generative models continue to evolve
and become increasingly accessible across domains where risk-sensitive optimization is critical, we
expect RAMIS to generalize naturally to these settings.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: It provides the full set of assumptions and a complete and correct proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the implementation details are provided along with source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Yes, we provide source code. At submission time, we release anonymized
versions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the implementation details in the appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes. We provide the standard deviation of the performance under multiple
random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes. This work provides sufficient information regarding the computational
resources for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes. This work complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no specific societal impact of the work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes. All external assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes. The implementation code is clearly documented and released with the
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The main method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 3: Notation and Description

Notation Description Note

X Data sample Random variable
Xp

(t) State of the diffusion at time t started from p Xp
(0) ∼ p

x Realization of X x ∈ Rd1

p(x) Base data distribution
q(x) Importance sampling distribution
θ Parameters of task model θ ∈ Rd2

θ0 Pretrained reference model
ℓ(θ;x) Loss on input x for model θ
β CVaR confidence level
α Value-at-Risk (VaR) threshold
Fβ(θ, α) Surrogate CVaR objective
φ(·) Weighting function Non-decreasing, φ : R≥0 → R≥0

Z Normalization constant Z = Ep[φ(ℓ(θ0;X
p))]

K Total number of training iterations
λk Learning rate at iteration k
ϕk Joint variable (θk, αk) at iteration k
ϕ∗ Optimal joint variable
v̂(q) Noise term in convergence bound
κ Bound on parameter norm ∥θk∥ κ < ∞
B Dataset of i.i.d. samples from p(x)

A Technical Results

Definition 1. A differentiable function f is convex if f(θ′) ≥ f(θ) + ⟨∇f(θ), θ′ − θ⟩,∀θ′, θ.
Definition 2. For a given L > 0, a differentiable function f is L-smooth if ∥∇f(θ′)−∇f(θ)∥ ≤
L∥θ′ − θ∥,∀θ′, θ.

A.1 Proof of Theorem 1

The proof builds upon the stochastic subgradient method analysis for CVaR minimization developed in
Meng and Gower (2023), which itself extends the model-based optimization framework of stochastic
convex optimization presented in Davis and Drusvyatskiy (2019).

We consider the unconstrained formulation of the CVaR minimization problem given by
(θ∗, α∗) = arg min

θ∈Rd2 ,α∈R
Fβ(θ, α),

where the objective function is represented as

Fβ(θ, α) = α+
1

1− β
EXq∼q

[
p(Xq)

q(Xq)
(ℓ(θ;Xq)− α)+

]
,

with (z)+ = max(z, 0) denoting the positive-part operator.

Consider a realization x sampled from distribution q. Then, the subgradients of Fβ(θ, α;x), i.e., the
objective value from a realization x, with respect to θ and α are given by

∂θFβ(θ, α;x) =
1

1− β

p(x)1ℓ(θ;x)>α∇θℓ(θ;x)

q(x)
, (10)

∂αFβ(θ, α;x) = 1− 1

1− β

p(x)1ℓ(θ;x)>α

q(x)
. (11)

Accordingly, the stochastic subgradient updates at iteration k are expressed as:

θk+1 = θk − λk ·
1

1− β
· p(xk)

q(xk)
· 1ℓ(θk;xk)>αk

· ∇θℓ(θk;xk), (12)

αk+1 = αk − λk ·
(
1− 1

1− β
· p(xk)

q(xk)
· 1ℓ(θk;xk)>αk

)
, (13)
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where λk denotes the step size at iteration k. The updates in (12)-(13) correspond to the procedure
SubGradientDescent(∂Fβ , θk, αk) in Algorithm 1.

To analyze convergence, we introduce a linearization model, i.e., the stochastic one-sided model,
centered at the current iterate as

fϕk
(ϕ,x) = αk +

1

1− β
· p(x)
q(x)

· (ℓ(θk;x)− αk)
+ + ⟨gk, ϕ− ϕk⟩ (14)

where gk ∈ ∂Fβ(ϕk;x), ϕk =

(
θk
αk

)
, and ϕ =

(
θ
α

)
. The update step is then equivalently

expressed as

(θk+1, αk+1) = argmin
θ,α

fϕk
(ϕ,x) +

1

2λk
∥ϕ− ϕk∥2.

Under this formulation, the convergence behavior of the algorithm can be analyzed via the theoretical
framework of model-based stochastic subgradient methods. In particular, under the following
assumptions (B1)–(B4) involving sample accessibility, one-sided accuracy, weak convexity, and
Lipschitz continuity, the method achieves a convergence rate of O(1/

√
K) after K iterations (Meng

and Gower, 2023; Davis and Drusvyatskiy, 2019).

Our analysis uses this framework in the CVaR minimization setting with the fixed importance
sampling distribution. Specifically, we consider a sampling distribution q(x) that is constructed a
priori based on an initial loss evaluation and a task-dependent importance weight function. This
extension allows the optimization to benefit from variance reduction while preserving the convergence
guarantees of stochastic model-based methods. We next verify assumptions (B1)–(B4).

(B1) Sampling. It is possible to generate i.i.d. realizations x1,x2, . . . ∼ q. This condition is satisfied
by the underlying assumption of Theorem 1.

(B2) One-sided accuracy. There exists ζ ∈ R and there is an open convex set U containing the
domain and a measurable function (ϕk, ϕ,x) 7→ fϕk

(ϕ;x), defined on U × U × Ω, satisfying

EXq∼q[fϕk
(ϕk;X

q)] = Fβ(θk, αk) ∀ϕk ∈ U, (15)

and

EXq∼q[fϕk
(ϕ;Xq)− Fβ(θ, α)] ≤

ζ

2
∥ϕ− ϕk∥2, (16)

where Ω is the sample space.

The equality (15) holds due to the definition of fϕk
(ϕ,x). Moreover, EXq∼q[fϕk

(ϕ;Xq) −
Fβ(θ, α)] = Fβ(θk, αk) − Fβ(θ, α) + EXq∼q[⟨gk, ϕ − ϕk⟩] ≤ 0 by the convexity of Fβ(θ, α)
with respect to ϕ, indicating ζ=0.

(B3) Weak convexity. fϕk
(ϕ;x) is convex for all ϕk, a.e. x ∈ Ω. This holds by the linearization

model definition in (14).

(B4) Lipschitz property. There exist V ∈ R and a measurable function v : Ω → R+ satisfying√
EX[v(X)2] ≤ V such that

fϕk
(ϕk;x)− fϕk

(ϕ;x) ≤ v(x)∥ϕk − ϕ∥. (17)

To show this, we examine the one-sided model gap as follows.

fϕk
(ϕk,x)− fϕk

(ϕ,x) = ⟨gk, ϕk − ϕk⟩ − ⟨gk, ϕ− ϕk⟩ ≤ ∥gk∥∥ϕk − ϕ∥ (18)

where gk is the subgradient of the estimated object. The norm of the subgradient is given as follows.

∥gk∥2 =

∥∥∥∥ 1

1− β

p(xk)uk∇θℓ(θk;xk)

q(xk)

∥∥∥∥2 + ∥∥∥∥1− 1

1− β

p(xk)uk

q(xk)

∥∥∥∥2 (19)

≤ 1

(1− β)2

∥∥∥∥p(xk)∇θℓ(θk;xk)

q(xk)

∥∥∥∥2 + 1 +
p(xk)

2

q(xk)2(1− β)2
(20)
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where uk = 1ℓ(θk;xk)>αk
and the inequality holds by the subadditivity of the norm. We denote the

square root of the upper bound as v as

v(x) :=

√
1

(1− β)2

∥∥∥∥p(x)∇θℓ(θk;x)

q(x)

∥∥∥∥2 + 1 +
p(x)2

q(x)2(1− β)2
. (21)

This function v(x) satisfies the pointwise Lipschitz condition (17). Furthermore, we use upper bounds
on v(x) to show the connection between the gradient of the loss and its value.

Consider the expected value of the stochastic noise as follows.

√
EXq∼q[v(Xq)2] =

√√√√EXq∼q

[
1

(1− β)2

∥∥∥∥p(Xq)∇θℓ(θk;Xq)

q(Xq)

∥∥∥∥2 + 1 +
p(Xq)2

q(Xq)2(1− β)2

]
.

(22)

We then have

EXq∼q

[
1

(1− β)2

∥∥∥∥p(Xq)∇θℓ(θk;X
q)

q(Xq)

∥∥∥∥2 + 1 +
p(Xq)2

q(Xq)2(1− β)2

]
(23)

≤ EXq∼q

[
1

(1− β)2

∥∥∥∥p(Xq)(∥∇θℓ(θ0;X
q)∥+ 2L2κ)

q(Xq)

∥∥∥∥2 + 1 +
p(Xq)2

q(Xq)2(1− β)2

]
(24)

= EXp∼p

[
1

(1− β)2
p(Xp)

q(Xp)
(∥∇θℓ(θ0;X

p)∥+ 2L2κ)
2
+ 1 +

p(Xp)

q(Xp)(1− β)2

]
(25)

where the first inequality holds by the assumption that the gradient of the loss function satisfies

|∥∇ℓ(θ;x)∥ − ∥∇ℓ(θ′;x)∥| ≤ L2∥θ − θ′∥ ∀θ, θ′ ∈ Rd2 ,x ∈ Rd1 , (26)

and the norm of the model parameter θ has a bounded value κ with L2∥θk − θ0∥ ≤ 2L2κ.
A corresponding bound also holds with L1 in place of L2 by the reverse triangle inequality,
|∥∇ℓ(θk;x)∥ − ∥∇ℓ(θ0;x)∥| ≤ ∥∇ℓ(θk;x)−∇ℓ(θ0;x)∥.
Moreover, L1–smoothness and convexity yield

∥∇θℓ(θ0;x)∥2 ≤ 2L1(ℓ(θ0;x)− ℓ∗) ≤ 2L1ℓ(θ0;x). (27)

Combining this, we define v̂(q) such that

v̂(q) := EXp∼p

[
1

(1− β)2
p(Xp)

q(Xp)

(√
2L1ℓ(θ0;Xp) + 2L2κ

)2
+ 1 +

p(Xp)

q(Xp)(1− β)2

]
, (28)

which satisfies
√
EX[v(X)2] ≤

√
v̂(q) and we set V =

√
v̂(q).

To simplify the term, we introduce w∗(x) =

√(√
2L1ℓ(θ0;x) + 2L2κ

)2
+ 1 which gives us

v̂(q) = EXp∼p

[
w∗(Xp)2

(1−β)2
p(Xp)
q(Xp) + 1

]
.

The imposed conditions (B1–B4) allow us to directly apply the standard model-based stochastic
gradient convergence analysis, as established in Theorem 4.4 of Davis and Drusvyatskiy (2019) and
Theorem 5.2 of Meng and Gower (2023). This yields the following convergence bound

E

[
Fβ

(
1

K+1

K+1∑
t=1

ϕk

)
− Fβ(ϕ

∗)

]
≤ ∥(θ0, Z)⊤ − ϕ∗∥2

2λ
√
K + 1

+
λv̂(q)√
K + 1

. (29)

A.2 Proof of Remark 2

Recall the definition of the stochastic noise v̂(q) = EXp∼p

[
w∗(Xp)2

(1−β)2
p(Xp)
q(Xp) + 1

]
. Since the scalar

constant 1/(1−β)2 and the additive term +1 are independent of the choice of the sampling distribution
q. Consider the importance sampling distribution q such that q(x) ∝ φ(ℓ(θ0;x))p(x).
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By definition, we have

v̂(p) = EXp∼p

[w∗(Xp)2

(1− β)2
+ 1
]
=

1

(1− β)2
EXp∼p

[
w∗(Xp)2

]
+ 1

and

v̂
(
q
)
=

1

(1− β)2
EXp∼p

[ w∗(Xp)2

φ(ℓ(θ0;Xp))

]
EXp∼p

[
φ(ℓ(θ0;X

p))
]
+ 1,

which directly gives us the equivalent condition

E[w∗(Xp)2] ≥ E
[

w∗(Xp)2

φ(ℓ(θ0;Xp))

]
· E[φ(ℓ(θ0;Xp))]. (30)

Similarly, consider the per-iteration CVaR objective as

Fβ(θk, αk) = αk +
1

1− β
EXq∼q

[
p(Xq)

q(Xq)
(ℓ(θk;X

q)− αk)
+

]
. (31)

Then, the variance of the MC estimator under q is smaller than that under the base distribution p if
and only if

EXp∼p

[
((ℓ(θk;X

p)− αk)
+)2
]
≥ EXq∼q

[
Z

φ(ℓ(θ0;Xq))
((ℓ(θk;X

q)− αk)
+)2
]
. (32)

Intuitively, this condition is satisfied when high-loss examples under the reference model θ0 tend
to remain high-loss during fine-tuning, so that ((ℓ(θk;x) − αk)

+)2 and φ(ℓ(θ0;x)) are positively
correlated. Such an assumption can be realistic in settings where high-loss inputs often persist across
training iterations and require multiple optimization steps to mitigate their contribution to risk.

B Implementation of the Pretrained Model Loss-guided Sampling

This section outlines the practical implementation of loss-guided sampling using a pretrained score-
based generative model, characterized by its score function∇x log pt(x).

Following standard practice (Ho et al., 2020; Lugmayr et al., 2022; Nichol and Dhariwal, 2021;
Choi et al., 2021), we adopt f(x, t) = − 1

2β(t)x, σ(t) =
√

β(t), where β(t) is a non-negative
scalar-valued function satisfying 0 ≤ β(t) ≤ 1. 2

B.1 SDE Discretization

Given the approximated score function of the importance sampling density, ∇x log qt(x) ≈
∇x log pt(x) + g̃(x, t) where g̃(x, t) is given in (41), we follow the reverse-time SDE formula-
tion to simulate the generative process. Recall that the continuous-time reverse SDE governed by the
time-dependent score function∇x log qt(x) is given as

dXq
(t) =

(
−1

2
β(t)Xq

(t) − β(t)∇x log qt(X
q
(t))

)
dt+

√
β(t) dW̃(t).

This formulation is equivalent to the reverse-time dynamics derived in Song et al. (2021) under the
variance-preserving setting.

To implement the sampling process in discrete time, we adopt the DDPM-style discretization. Let
t ∈ {0, . . . , T − 1}. We define discrete-time variance schedulers as

αt := 1− βt, ᾱt :=

t∏
s=0

αs =

t∏
s=0

(1− βs). (33)

2We follow conventional score-based generative model notation while avoiding clashes with CVaR parameters.
CVaR: (α, β); generative model: variance-schedule parameters (α, β). Thus, (α,β) are used only for diffusion
schedules, whereas (α, β) are used for denoting the VaR value and confidence level.
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We use the cosine schedule (Nichol and Dhariwal, 2021) in its discrete form as

νt = cos2
( t/T + εβ

1 + εβ
· π
2

)
, βt = 1− νt+1

νt
, αt = 1− βt, (34)

with εβ = 0.008 for numerical stability. Then the update formula is given as

x(t−1) =
1
√
αt

(
x(t) + βt∇x(t)

log qt(x(t))
)

+

√
β̃t z, z ∼ N (0, I). (35)

where β̃t = βt
1−ᾱt−1

1−ᾱt
.

For baseline methods that do not use importance samples, we utilize samples generated from the
pretrained base score function∇x log pt(x) through the reverse process.

B.2 Guidance Approximation

The noise-perturbed score function of the importance sampling density q can be represented as a
summation of the base score function and a guidance term g as follows.

∇x log qt(x) = ∇x log pt(x) + g(x, t), (36)

where the guidance term g(x, t) is defined by

g(x, t) := ∇x logEXp
0∼pX

p
0 |Xp

t
(·|x) [w(X

p
0)] , (37)

with w(Xp
0) denoting the weight function as q(x) ∝ w(x)p(x). In our setting w(x) = φ(ℓ(θ0;x));

for brevity we write w throughout this section.

Since this conditional expectation in (37) is intractable in general, a first-order Taylor expansion of
w(Xp

0) around the conditional mean can be considered. Let

x̄′
0|x,t := E[Xp

0 | X
p
t = x]

denote the conditional mean of Xp
0 given Xp

t = x. Linearizing the loss function around this point
yields

w(Xp
0) ≈ w(x̄′

0|x,t) +∇w(x̄′
0|x,t)⊤(X

p
0 − x̄′

0|x,t).
Taking the expectation over pXp

0 |X
p
t

eliminates the second term due to the zero-mean residual, giving
the following approximation

g(x, t) ≈ ∇x logw(x̄
′
0|x,t). (38)

The conditional mean x̄′
0|x,t is represented via Tweedie’s formula (Chung et al., 2022; Yu et al.,

2023), which connects the posterior mean to the score function of the marginal at time t,

x̄′
0|x,t =

1√
ᾱ(t)

(x+ (1− ᾱ(t))∇x log pt(x)) , (39)

where ᾱ(t) = exp
(
−
∫ t

0
β(s)ds

)
.

We further simplify (38) by using the finite difference approximation of the Hessian (Kim et al.,
2025a). Specifically, for a small step size ϵ > 0, the following directional approximation holds:

∇x log pt(x) + ϵHpt
(x)∇x̄′

0|x,t
logw(x̄′

0|x,t) ≈ ∇x log pt
(
x+ ϵ∇x̄′

0|x,t
logw(x̄′

0|x,t)
)
, (40)

which gives us

g(x, t) ≈ g̃(x, t) :=
1√
ᾱ(t)
∇x̄′

0|x,t
logw(x̄′

0|x,t)

+
1

ϵ(1− ᾱ(t))−1
√

ᾱ(t)

(
∇x log pt

(
x+ ϵ∇x̄′

0|x,t
logw(x̄′

0|x,t)
)
−∇x log pt(x)

)
. (41)

In our applications, the approximation in (41) can yield a guidance term for w(x) = φ(ℓ(θ0;x));
sampling proceeds by replacing the base score with ∇x log qt(x) ≈ ∇x log pt(x) + g̃(x, t) in the
reverse-time updates in (35).
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C Experiments on Gaussian Mixtures

This experiment is designed to evaluate the performance of the proposed RAMIS framework and
baseline methods in a controlled setting where the data distribution contains low-density (i.e., rare)
regions that are often underrepresented in standard training regimes. Specifically, we construct a
synthetic mixture-of-Gaussians distribution in which certain components contribute small probability
mass compared to high-density regions. These rare components are configured to induce high loss
under models trained with ERM, thereby creating a challenging testbed for assessing risk-aware
generative sampling.

To evaluate the sampling behavior of the proposed method, particularly the ability to capture rare,
high-loss regions, we leverage the closed-form expression of the ground-truth score function for the
mixture of Gaussian distributions. This allows us to perform both accurate generative modeling and
precise evaluation of coverage in the tail of the data distribution.

Score Function for Mixture of Gaussians. We consider a synthetic mixture-of-Gaussians (MoG)
prior at t = 0:

p0(x) =

N∑
i=1

πiN (x | µi,Σi),

where πi ≥ 0 and
∑N

i=1 πi = 1 are the mixture weights. Under the forward diffusion process, each
Gaussian component evolves with

µt
i =
√
ᾱt µi, Σt

i = ᾱt Σi + (1− ᾱt)I, pi(x | t) = N (x | µt
i,Σ

t
i).

The score function of each individual component is given by

∇x log pi(x | t) = −
(
Σt

i

)−1
(x− µt

i).

Let ρi(x, t) denote the posterior responsibility of the i-th component, defined as

ρi(x, t) =
πi pi(x | t)∑N

j=1 πj pj(x | t)
.

Then, the overall score function of the mixture distribution at time t is given by the weighted average

∇x log pt(x) =

N∑
i=1

ρi(x, t)∇x log pi(x | t).

We set T = 100 and use the discretization method and the variance scheduling presented in Appendix
B.1.

Task Model. For the regression task on the Gaussian Mixture distribution, we consider a simple
nonlinear model that maps the input vector x ∈ R2 to a scalar prediction. The model operates on
the first coordinate of the input, applying a quadratic transformation. The target label is defined as
the second coordinate of the input. The loss function is the mean squared error between the model
prediction and the label as follows.

ℓ(θ;x) =
(
θ[1]x

2
[1] + θ[2]x[1] + θ[3] − x[2]

)2
.

Pretrained Model Training. The regression model is first trained using ERM on a dataset contain-
ing 200 samples drawn from the predefined generative model. The dataset is evenly split into training
and validation sets, each consisting of 100 samples. Training is conducted for 1000 epochs using the
Adam optimizer with a learning rate of 0.1 and a batch size of 100.

Fine-Tuning. Each method, including the proposed RAMIS framework and all baselines, performs
1000 epochs of fine-tuning to adapt to newly generated samples. For RAMIS, fine-tuning is conducted
using samples drawn via importance sampling from the generative model, where the importance
weight function is chosen as the identity function, i.e., φ(ℓ) = ℓ. Baseline methods are fine-tuned
using the same number of newly generated samples, but drawn uniformly from the base generative
model. All fine-tuning procedures use the same optimizer and training configuration as the initial
ERM phase.
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Table 4: CVaR (mean ± std) across quantile levels β when training with the Extremile objective.

Method \ β 0.99 0.95 0.90 0.80 0.50

RAMIS + Extremile 0.187 ± 0.144 0.064 ± 0.021 0.044 ± 0.015 0.0288 ± 0.0062 0.0158 ± 0.0015
Extremile 0.339 ± 0.207 0.090 ± 0.044 0.048 ± 0.021 0.0289 ± 0.0041 0.0179 ± 0.0025

Applications with Other Risk Measures. This subsection examines whether the proposed frame-
work based on the score-based generative models and loss-guided sampling is also helpful when
training with different risk objectives. As an example, we consider Extremiles (Daouia et al., 2022).

Let L = ℓ(θ;X) denote the per-sample loss and let F̃ be the CDF of L. Following (Daouia et al.,
2022, 2019), define K̃τ (z) = z r(τ) for z ∈ [0, 1] and 0.5 ≤ τ < 1, where r(τ) = log(1/2)/ log(τ),
and set Jτ (z) = d

dz K̃τ (z). The probability-weighted-moment form of the τ extremile is given as

EXp∼p

[
L Jτ (F̃ (L))

]
.

In our implementation, F̃ is estimated on each minibatch using a weighted empirical CDF based
on the importance weighted samples from the pretrained generative model. We evaluate β ∈
{0.99, 0.95, 0.90, 0.80, 0.50} and set τ = β to align tail emphasis with the CVaR quantile.

Table 4 indicates that RAMIS+Extremile achieves lower tail risk than optimizing the Extremile
objective alone on the evaluated setups without importance samples. This empirical evidence
supports the usefulness of importance-weighted samples when training with a different risk objective.
Moreover, designing the importance sampling distribution to reflect the chosen risk measure or target
objective may further improve performance.

C.1 Baseline Method Implementations

We evaluate the proposed RAMIS framework against strong baselines that capture risk-sensitive
training paradigms. All methods are implemented under a unified training pipeline, sharing the
same network architecture, initialization, optimizer, and sample budget, in order to ensure a fair and
controlled comparison.

Empirical Risk Minimization (ERM). ERM serves as the canonical risk-neutral baseline. It is
trained directly using samples from the original data distribution p(x) without reweighting or sample
selection. The model is optimized to minimize the expected loss LERM = EXp∼p [ℓ(θ;X

p)]. This
objective corresponds to uniform sampling from p followed by standard stochastic gradient descent.

Stochastic SubGradient Method (SSGM). We also evaluate the stochastic model-based optimiza-
tion method proposed in Meng and Gower (2023), which ours extends. This is recovered by disabling
importance sampling, i.e., by setting the weighting function φ to a constant. In this setting, samples
are generated from a pretrained score-based generative model approximating p(x), and the model
parameters are updated using stochastic subgradients of the loss.

Distributionally Robust CVaR (DORO). To implement the CVaR-DORO method (Zhai et al.,
2021), given a minibatch of B̂ samples and associated loss vector l ∈ RB̂ , we sort losses in descending
order and compute the following loss function

LCVaR-DORO =
1

(1− β)(B̂ − n2)

n1∑
i=n2

l(i),

where l(i) denotes the i-th largest loss, and the selection range [n2, n1] is determined by quantile
truncation parameters n1 = ⌊(1 − β)B̂⌋ and n2 = 0. Note that the loss vector is obtained via
computing ℓ(θ;x) where x is a realization of the minibatch. Although DORO was designed for an
outlier-aware setting with n2 ≥ 0, here we set n2 = 0 and use it simply as a within-minibatch sorter
that selects the top (1− β) fraction of highest-loss samples.
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χ2-Divergence Robust Optimization (χ2-DRO). We implement a divergence-constrained robust
optimization baseline based on χ2-divergence risk envelopes (Namkoong and Duchi, 2016). The
robust objective is given by

Lχ2 = inf
η∈[0,Lmax]

{
C ·
√

EXp∼p

[
(ℓ(Xp)− η)

+
]2

+ η

}
,

where C =

√
1 +

(
1

1−β − 1
)2

is a divergence-induced robustness factor and Lmax = 10 is a fixed

upper bound for η. The inner minimization over η is solved numerically using Brent’s method.

D Experiments on Wireless Communications Channel State Information

Background. Accurate downlink channel state information (CSI) feedback is essential for high
throughput and effective interference coordination in 5G and beyond. The challenge intensifies in
massive MIMO deployments that span hundreds to thousands of subcarriers (Dahlman et al., 2013;
Zaidi et al., 2018), producing high-dimensional CSI that must be returned to the base station (BS)
from the user equipment (UE). Conventional feedback schemes scale poorly in this regime due to the
substantial signaling overhead required.

To address this bottleneck, recent work has focused on deep learning-based CSI compression (Wen
et al., 2018; Guo et al., 2022). These methods use autoencoders: the UE compresses CSI into a
compact representation, and the BS decodes it. Trained on environment-specific data, such models
learn channel priors and typically surpass codebook-based and compressed-sensing approaches.
Early efforts like CsiNet (Wen et al., 2018) introduced convolutional architectures that outperformed
classical baselines, followed by extensions that exploit temporal (Wang et al., 2018; Liu and Simeone,
2021) and spatial (Lu et al., 2020; Cai et al., 2019) structures in CSI. This data-driven direction
has attracted considerable interest in both research and standardization (e.g., 3GPP Release 18 (Lin,
2022)).

More recently, score-based generative models have emerged as powerful tools for modeling and
synthesizing wireless channels (Lee et al., 2025). Their ability to generate realistic channel realizations
has enabled applications in joint source–channel coding (Ankireddy et al., 2025) and neural CSI
compression (Kim et al., 2025b), where generative priors capture complex channel distributions and
facilitate robust reconstruction from highly compressed representations.

Objective. Building on these developments, we investigate the effectiveness of loss-guided channel
generation for improving neural CSI compression. Specifically, we fine-tune a pretrained neural
CSI compressor by augmenting its training set with high-loss channel realizations generated via a
score-based channel generative model.

Dataset. We evaluate our framework on a wireless CSI compression task using synthetic datasets
generated via the Quadriga channel simulator (QUAsi Deterministic RadIo channel GenerAtor)
(Jaeckel et al., 2014; Jaeckel et al., 2021). Specifically, we construct eight distinct datasets, de-
noted D(1), . . . ,D(8). These datasets are designed to capture diverse propagation environments
representative of real-world deployment scenarios.

Table 5 details the configuration of each dataset. The datasets differ in center frequency, BS cell type
(macro vs. micro), propagation conditions (line-of-sight (LOS) vs. non-line-of-sight (NLOS)), and
the number of dominant signal clusters Ndc used in channel generation, as defined in (Jaeckel et al.,
2021, Sec. 3). Each dataset corresponds to a distinct wireless environment with varying scattering
complexity and geometry. All BSs are placed at coordinate (0, 0), with macro-cell BSs positioned at
a height of 25 meters and micro-cell BSs at 10 meters. The UE is equipped with omnidirectional
antennas and randomly located within a circular region of radius 30 meters centered at the BS. The
BS antennas follow the 3GPP-3D antenna model.

To reduce training complexity, we operate on a compact angular–delay representation of the channel
by transforming the CSI instances to the delay–angle domain via a 2D IFFT and cropping out the
high-delay region, which is nearly zero. The result is a 32× 32 complex-valued tensor per sample.

29



Table 5: Channel model configuration

Center frequency Channel model Propagation Ndc

D(1) 0.8GHz Urban Micro-Cell LOS 10
D(2) 2.4GHz Urban Micro-Cell LOS 10
D(3) 0.8GHz Urban Macro-Cell LOS 5
D(4) 2.4GHz Urban Macro-Cell LOS 5
D(5) 0.8GHz Urban Micro-Cell NLOS 50
D(6) 2.4GHz Urban Micro-Cell NLOS 50
D(7) 0.8GHz Urban Macro-Cell NLOS 40
D(8) 2.4GHz Urban Macro-Cell NLOS 40

Generative Model. The denoising network used in our diffusion model is based on a modified UNet
architecture. The network is implemented using the UNet2DModel class provided by diffusers
library (von Platen et al., 2022), with an input resolution of 32× 32 and two input/output channels
corresponding to the real and imaginary parts of the CSI tensor. Each block in the UNet contains
two residual convolutional layers (layers_per_block=2). The encoder path comprises six down-
sampling stages with output channel sizes of (128, 128, 256, 256, 512, 512), where the fifth block
includes a spatial self-attention mechanism via the AttnDownBlock2D layer. The decoder mirrors
this structure, employing six upsampling blocks with corresponding channel sizes in reverse order,
and includes an attention layer (AttnUpBlock2D) in the second stage of the decoder.

The discretization of the SDE based on this score model follows the method in Appendix B.1,
including the variance scheduling and T = 100.

Task Model. We adopt a vector-quantized autoencoder architecture for compressing and recon-
structing CSI matrices. Specifically, we employ VQModel in diffusers (von Platen et al., 2022)
and customize it to operate on two-channel inputs (e.g., representing real and imaginary components)
and outputs reconstructions of the same dimensionality.

The encoder network comprises three 2D downsampling blocks, each with increasing channel capacity
(64, 128, 256) and two convolutional layers per block, enabling the model to effectively compress
spatially correlated CSI features. Symmetrically, the decoder is composed of three upsampling blocks
mirroring the encoder’s configuration. The architecture utilizes the SiLU activation function and group
normalization with 32 groups. The latent representation has 128 channels and is discretized by using
four vector quantization learnable embeddings of dimension 128. During forward propagation, the
output includes both the reconstructed CSI sample and an auxiliary vector quantization commitment
loss.

Generative Model Training Configuration. The score-based generative model is trained for 103
epochs using a dataset consisting of 8 × 104 samples. We use the Adam optimizer with an initial
learning rate of 10−4. We adopt the one-cycle learning rate scheduler, which increases the learning
rate linearly to a peak value during the first 25% of training steps and then anneals it following a
cosine decay schedule. The scheduler is configured with total steps set to the product of the number
of epochs and the number of batches per epoch.

Pretrained Model Training Configuration. The pretrained model is trained using ERM with the
mean squared error loss over 102 epochs with a training set of size 105. We use the Adam optimizer
with a learning rate of 10−4 and a batch size of 100.

Fine-Tuning. The fine-tuning learning rate is set to 10−5 and optimization is conducted using
Adam. For RAMIS, the importance weight function φ is chosen as the squared loss function (i.e.,
φ(ℓ) = ℓ2). For baseline methods, fine-tuning is performed using 105 newly generated samples from
the generative model, without the importance reweighting.

The remaining details, including the baseline methods implementation and generative model dis-
cretization, follow the setups described in Appendix C.

Additional Results. As β → 0, the conditional value-at-risk objective CVaRβ(θ) converges to the
standard empirical risk minimization (ERM) objective. We set β = 0 and evaluate the average-case
performance of the proposed method in comparison with the baselines (Table 6).
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Table 6: ERM performance when optimizing β = 0 (CVaR reduces to ERM). Metric units match
Table 2; lower is better.

RAMIS (ours) SSGM DORO χ2-DRO ERM

ERM (β = 0) 0.2032 0.2032 0.2029 0.2029 0.2028

Table 7: Cross-quantile evaluation of models trained with β=0.99. Entries are mean± std over seeds;
lower is better.

β RAMIS (ours) SSGM DORO χ2-DRO ERM

0.99 (train target) 2.10 ± 0.0028 2.21 ± 0.0341 2.28 ± 0.0032 2.50 ± 0.2330 2.22 ± 0.0016
0.95 1.41 ± 0.0283 1.43 ± 0.0153 1.49 ± 0.0034 1.72 ± 0.2293 1.44 ± 0.0019
0.90 1.09 ± 0.0121 1.10 ± 0.0059 1.14 ± 0.0029 1.38 ± 0.2267 1.10 ± 0.0018
0.80 0.77 ± 0.0028 0.78 ± 0.0012 0.80 ± 0.0014 1.02 ± 0.2249 0.76 ± 0.0013
0.50 0.39 ± 0.0069 0.41 ± 0.0038 0.43 ± 0.0004 0.63 ± 0.2251 0.38 ± 0.0003
0.00 0.21 ± 0.0048 0.23 ± 0.0045 0.24 ± 0.0005 0.44 ± 0.2229 0.20 ± 0.0001

The results show that all baseline methods and the proposed RAMIS framework exhibit nearly
identical performance under β = 0. This further indicates that RAMIS with importance samples
neither improves nor degrades the average-case performance, confirming its consistency.

When β ̸= 0, we study whether emphasizing tail risk induces trade-offs with average-case perfor-
mance. We fix the training target to β = 0.99 (i.e., the worst 1% tail) and evaluate each trained model
across a sweep of non-target quantiles β ∈ {0.99, 0.95, 0.90, 0.80, 0.50, 0.00}.
RAMIS delivers the strongest performance at the intended target β = 0.99 and across the high-
risk tail, outperforming alternatives at β ∈ {0.95, 0.90}. Conversely, at quantiles under β ≤ 0.80,
including β = 0.50 and β = 0, ERM achieves the best results. Overall, the results show a tail–average
trade-off: optimizing for large β improves robustness in rare, high-loss regimes, but can modestly
reduce average-case performance.

E Further Experimental Results

E.1 Cost of Importance Sampling

Compared to the base generative model, the computational cost of importance sampling primarily
arises from the need to evaluate a composed gradient of the importance weight function w(x), which
in our case is φ(ℓ(θ0,x)), alongside the score function∇x log pt(x). Specifically, the guided score
used in our method is approximated as g(x, t) ≈ ∇x logw(x̄

′
0|x,t), as explored in (Chung et al.,

2022). This gradient computation must be performed at each reverse diffusion step, making it
more costly than standard sampling from the base model. This cost can be mitigated by adopting
a lightweight approximation strategy based on the directional finite-difference method proposed
in (Kim et al., 2025a). As a result, the sampling time increases by a modest factor, approximately
2.3×, relative to the base generative model. This includes the overhead of computing two evaluations
of the score function per step, as well as a single backward pass to differentiate the importance
weighting function.

This added cost may be negligible for scenarios where the goal is to capture rare, high-loss samples.
In such regimes, conventional generative models often fail to sample from the critical low-density
regions, which dominate tail-risk measures.

To quantify the cost-benefit trade-off, we report empirical results in Figure 4. Each plot shows the
CVaR performance (vertical axis) as a function of the number of samples used (horizontal axis) for
different values of β ∈ {0.99, 0.95, 0.90, 0.80, 0.50}.
As shown in Figure 4, when β = 0.99, the proposed method achieves superior CVaR performance
even with only 1/8 the number of samples compared to baseline methods. Similar trends are observed
for β = 0.95, underscoring the importance of sampling from rare, high-risk regions. As β decreases
(e.g., β = 0.80 or β = 0.50), the importance of extreme loss values diminishes, and a larger sample
budget becomes necessary to achieve parity or superiority over robust baselines such as χ2-DRO.
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Figure 4: CVaR performance versus number of samples for varying β levels. The proposed method
significantly outperforms baselines under high β (e.g., 0.99, 0.95), even with substantially fewer
samples (e.g., 1/8 of the budget).

E.2 Impact of Importance Level Emphasis

We investigate how the choice of the importance weighting function φ affects performance.

Square-root emphasis. Consider the optimization-noise term

v̂(q) = EXp∼p

[
w∗(Xp)2

(1− β)2
p(Xp)

q(Xp)
+ 1

]
.

Then the desired importance weight is q(x) ∝ w∗(x)p(x); substituting this choice yields a Jensen-
type inequality as

v̂(p) =
1

(1− β)2
EXp∼p

[
w∗(Xp)2

]
+ 1 ≥ 1

(1− β)2
EXp∼p [w

∗(Xp)]EXp∼p [w
∗(Xp)] + 1.

(42)

Based on this, we consider
φ(ℓ) =

√
ℓ+ c,

where c ≥ 0 is a scalar hyperparameter that adjusts the relative emphasis on high-loss regions.
Intuitively, smaller values of c amplify the contrast between low- and high-loss samples, focusing
the generative model more aggressively on rare, high-risk regions. In contrast, larger values of c
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Figure 5: CVaR performance across different values of φ(ℓ) =
√
ℓ+ c with varying β levels.

can flatten the weight distribution, thereby reducing the selectivity of the sampling process. To
empirically examine this effect, we evaluate φ(ℓ) = ℓ+ c for c ∈ {0.0, 0.001, 0.01, 0.1, 1.0, 10.0},
denoted “RAMIS+c” in Figure 5.

Figure 5 summarizes the CVaR performance under various risk levels β. For β ∈ {0.99, 0.95}, all φ
variants significantly outperform both risk minimization and robust optimization baselines. Notably,
configurations with c ∈ {0.001, 0.01} achieve the best results, improving CVaR by over 30% relative
to the strongest baseline.

Linear emphasis. We also consider the following linear design to mimic the behavior of w∗ as

φ(ℓ) = ℓ+ c.

Similarly, as shown in Figure 6, the best performance occurs for relatively small c ∈
{0.0, 0.01, 0.001}, while larger constants consistently degrade results. Across all settings, the pro-
posed method outperforms baselines that do not use importance samples. In contrast, setting c = 1.0
or higher diminishes the emphasis on high-loss samples and leads to degradation in performance,
approaching that of SSGM without importance sampling.

These results indicate that the additive constant c in φ can serve as a simple hyperparameter controlling
the strength of importance sampling. Smaller c sharpens focus on high-risk inputs (beneficial for
tail-sensitive objectives), whereas overly large c flattens the weights.

Overall, in these experiments, the linear choice φ(ℓ) = ℓ+ c slightly outperforms the square-root
family, and we adopt φ(ℓ) = ℓ in the main experiments.
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Figure 6: CVaR performance across different values of φ(ℓ) = ℓ + c with varying β levels. Our
method consistently outperforms baseline methods, especially under risk-sensitive settings (β ≥ 0.9).

Limitations. A limitation of these experiments is that constructing the importance distribution via
guided sampling can introduce sampling-approximation error in the score-based generative model. In
addition, the analysis controls stochastic noise through an upper-bound surrogate. Exploring guidance
procedures with reduced approximation error and alternative weight functions φ informed by tighter
bounds may improve the quality of the importance sampling and its empirical performance.
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