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ABSTRACT

This paper addresses the problem of Rehearsal-Free Continual Category Discovery
(RF-CCD), which focuses on continuously identifying novel class by leveraging
knowledge from labeled data. Existing methods typically train from scratch, over-
looking the potential of base models, and often resort to data storage to prevent
forgetting. Moreover, because RF-CCD encompasses both continual learning and
novel class discovery, previous approaches have struggled to effectively integrate
advanced techniques from these fields, resulting in less convincing comparisons
and failing to reveal the unique challenges posed by RF-CCD. To address these
challenges, we lead the way in integrating advancements from both domains and
conducting extensive experiments and analyses. Our findings demonstrate that this
integration can achieve state-of-the-art results, leading to the conclusion that "in
the presence of pre-trained models, the representation does not improve and may
even degrade with the introduction of unlabeled data.” To mitigate representation
degradation, we propose a straightforward yet highly effective baseline method.
This method first utilizes prior knowledge of known categories to estimate the
number of novel classes. It then acquires representations using a model specifically
trained on the base classes, generates high-quality pseudo-labels through k-means
clustering, and trains only the classifier layer. We validate our conclusions and
methods by conducting extensive experiments across multiple benchmarks, includ-
ing the Stanford Cars, CUB, iNat, and Tiny-ImageNet datasets. The results clearly
illustrate our findings, demonstrate the effectiveness of our baseline, and pave the
way for future advancements in RF-CCD.

1 INTRODUCTION

Humans possess the ability to continuously learn new knowledge in ever-changing environments
with limited supervision. Inspired by this capability, several studies have proposed the problem of
continual novel class discovery (Roy et al., 2022; Joseph et al., 2022), aiming to enable models to
continuously capture new categories from unlabeled data. Such a continuous learning strategy can be
applied to a variety of artificial agents, for instance, allowing robots to autonomously learn in new
environments (Dai et al., 2024; Kejriwal et al., 2024). However, this is a highly challenging problem,
as it requires models to have the plasticity to discover new classes while avoiding catastrophic
forgetting with little supervision.

To address this problem, existing methods (Zhang et al., 2022b; Zhao & Mac Aodha, 2023; Joseph
et al., 2022; Roy et al., 2022) often draw on learning techniques from the field of novel class
discovery (Han et al., 2019; Gu et al., 2023; Zhang et al., 2023a; Fini et al., 2021), such as self-
labeling (Fini et al., 2021) or pair-wise learning (Han et al., 2019), to discover novel classes and
employ memory replay or generative feature-replay to prevent catastrophic forgetting in feature
extractors and classifiers. However, these methods typically train from scratch, overlooking the
development of foundational models and heavily relying on memory to store raw data, which can
be impractical in privacy-sensitive and/or low-resource scenarios. Subsequently, Liu et al. (2023)
propose a rehearsal-free baseline based on frozen pre-trained models, but provide limited insights
into the use of frozen pre-trained models. Moreover, they compare their approach with earlier
methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Buzzega et al., 2020), while overlooking

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

recent advancements in continual learning, such as (Zhang et al., 2023b; Smith et al., 2023; Wang
et al., 2022b). This oversight results in relatively limited experimental comparisons and as such the
conclusions remain open for the task of continual class discovery. More importantly, they fail to
address a crucial question: beyond the challenges of continual learning and novel class discovery,
what unique challenges does rehearsal-free continual category discovery (RF-CCD) face?

To overcome the above limitations, we initially combine existing methods from two different fields
and conduct extensive experiments on RF-CCD problem. Specifically, we select LwF (Li & Hoiem,
2017), CoDA-Prompt (Smith et al., 2023), and SLCA (Zhang et al., 2023b) for our analysis. To
enable these continual learning methods to discover novel classes, we replace supervised losses with
unsupervised ones, including Self-Labeling (Fini et al., 2021), PairWise (Han et al., 2021; Cao et al.,
2022), and Self-Distillation (Wen et al., 2022) loss, summarized from the field of category discovery.
Then, we rigorously test them across multiple benchmark datasets and probe the representation quality.
Our experiments reveal that SLCA with self-distillation loss outperforms current methods (Liu et al.,
2023; Wu et al., 2023; Roy et al., 2022). More importantly, we empirically found that with the best
combination learning strategy, continuous novel class discovery does not enhance, and can even
degrade, the representational capacity of the model. This is in stark contrast to supervised continual
learning, which continuously improves the model’s representational capabilities, highlighting a
unique challenge for RF-CCD.

Based on our experimental observations, we propose a simple yet effective baseline method named
"Freeze and Cluster" (FAC) to tackle the RF-CCD problem. Specifically, during the initial known-
class learning stage, we fine-tune the representation using known classes, which is essential for
adapting to downstream tasks. Concurrently, we perform over-clustering and progressively merge
clusters until they align with the ground truth, thereby deriving the minimal distance between clusters.
For subsequent novel class learning, we estimate the number of novel classes by over-clustering the
data and iteratively merging clusters until the minimal distance is achieved. The remaining clusters
represent the estimated number of novel classes. To discover these novel classes, we freeze the
representation space and apply k-means clustering to group the novel classes, assigning pseudo-labels
to each unlabeled data point. We then calculate the mean and variance for each identified cluster.
Finally, classifiers are trained by sampling data points from each cluster based on their means and
variances. In summary, FAC addresses the challenging issue of representation degradation by freezing
the model’s backbone in the novel class discovery stage.

To illustrate the unique challenges of RF-CCD and demonstrate the effectiveness of our proposed base-
line, FAC, we conduct comprehensive experimental analyses on CUB, StanfordCars, TinyImageNet,
and the challenging iNat2021 datasets. In summary, our contributions are three-fold:

• We conduct comprehensive experiments to illustrate that: 1) combining continual learning
with novel class discovery methods can significantly surpass existing RF-CCD approaches;
and 2) the best combination learning strategies do not improve, and can even degrade, the
model’s representational ability in RF-CCD.

• We propose a simple yet effective baseline, Freeze and Cluster, to address RF-CCD, which
estimates the number of novel classes and discovers novel classes by learning classifier.

• We conduct experiments on CUB200, Scars196, Tiny-ImageNet, and iNat500, and our
proposed baseline achieves state-of-the-art performance on these benchmarks compared to
current continual learning methods, paving the way for subsequent developments.

2 RELATED WORK

2.1 CONTINUAL LEARNING

The goal of Continual Learning (CL) is to train a model to sequentially perform a series of tasks
while only accessing the data of the current task and evaluating the model’s performance on all tasks
encountered so far. Continual learning methods aim to mitigate the catastrophic forgetting of previous
task knowledge while enabling the model to flexibly learn new tasks. Existing continual learning
work primarily focuses on sequential training of deep neural networks from scratch. Representative
strategies include regularization-based methods such as LwF (Li & Hoiem, 2017) and Afec (Wang
et al., 2021b), which retain the old model and selectively update parameters; replay-based methods
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such as Gdumb (Prabhu et al., 2020), TMNs (Wang et al., 2021a), and DER (Buzzega et al., 2020),
which approximate and restore previously learned data distributions in each new task; and architecture-
based methods such as Coscl (Wang et al., 2022a), HAT (Serra et al., 2018), and DER (Yan et al.,
2021), which allocate dedicated parameter subspaces for each incremental task.

Continual Learning on Pretrained Model Witnessing the significant improvement brought by
powerful pre-training for downstream tasks, some recent methods have focused on exploring continual
learning methods in the context of pre-trained models. SAM (Mehta et al., 2021) demonstrated
the benefit of supervised pre-training for downstream continual learning tasks; L2P (Wang et al.,
2022c) proposed updating the network with a small number of learnable parameters (prompts), and
DualPrompt (Wang et al., 2022b) and CODA-prompt (Smith et al., 2023) further improved prompt
learning methods and enhanced the model’s continual learning capabilities. SLCA (Zhang et al.,
2023b) studied the updating paradigm of pre-trained models and significantly improved prediction
accuracy by lowering the learning rate of the backbone network. Meanwhile, some works mainly
explored the learning of classifiers (Janson et al., 2022; Goswami et al., 2024; Panos et al., 2023;
McDonnell et al., 2024). However, while those techniques are effective in supervised scenarios, their
ability to address open-world problems remains to be explored.

2.2 CATEGORY DISCOVERY

Novel Class Discovery Novel Class Discovery (NCD) involves using the knowledge obtained from a
labeled base dataset to learn and discover new classes in an unlabeled dataset. Existing methods in
this field can be categorized into three groups based on the loss function used for clustering novel
classes. 1) Pair-wise loss methods (Hsu et al., 2018; Han et al., 2019; Zhao & Han, 2021; Cao
et al., 2022): These methods explore various techniques, such as robust ranking statistics (Han et al.,
2019) and cosine similarity (Cao et al., 2022), to measure the similarity between two data points
in the representation space, and minimize the distance of similar data point. 2) Self-labeling loss
methods (Fini et al., 2021; Gu et al., 2023; Zhang et al., 2023a; Xu et al., 2024): These methods
formulate the problem of generating balanced or imbalanced pseudo labels as an optimal transport
problem and learn from these pseudo labels. 3) Self-distillation loss methods (Wen et al., 2022;
Zhang et al., 2022a): These methods generate both sharp and soft predictions for two augmented
views of the same data. The sharp prediction, which is typically more definitive and confident, is
then used to supervise the soft prediction. In addition to the above approaches, other strategies have
been proposed for learning representations of novel classes. For example, (Vaze et al., 2022; Pu et al.,
2023) introduce various contrastive learning strategies and perform clustering using semi-kmeans.
However, these methods primarily focus on static scenarios and have limitations when applied to
real-world applications where data is collected in a streaming manner.

Continual Category Discovery Continual category discovery (CCD) aims to discover novel classes
in a continual manner. (Joseph et al., 2022; Roy et al., 2022) first proposed the CCD setting, framed
in two sessions: the first with supervision and the second involving fully unlabeled new classes.
GM (Zhang et al., 2022b) proposed a more general setting, assuming the incremental stages have
unlabeled data containing both known and new classes. Then, Zhao & Mac Aodha (2023); Marczak
et al. (2023); Cendra et al. (2024) generalized this problem by proposing a setting where all tasks
contain both labeled and unlabeled data. Subsequently, Liu et al. (2023) leveraged pretrained models
and learned a classifier using self-labeling loss to discover novel classes.

Although Liu et al. (2023) shares similarities with our method, it falls short in utilizing advanced
techniques from continual learning and novel class discovery to effectively address RF-CCD, resulting
in a less convincing comparison. Additionally, their reliance on self-labeling loss to cluster novel
classes enforces a strong equality constraint on cluster size, which proves ineffective due to noisy
learning (Appendix E). More critically, they only fix the backbone without providing any analysis
or insights into the role of representation learning for RF-CCD. As a result, their work offers
limited insights for future research, which are key contributions of our work. Moreover, our method
outperforms Liu et al. (2023) with a simpler design.
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Table 1: Baseline results on CUB and Scars. The datasets are divided into four equally sized sessions
(refer to Sec.5.1 and Appendix D for more details). All experiments are conducted with DINO (Caron
et al., 2021) pretrained model.

Method CUB200 Scars196
Last Acc Old New Last Acc Old New

Lwf (Li & Hoiem, 2017) + PwL 34.6 60.1 26.5 18.1 49.0 7.8
Lwf (Li & Hoiem, 2017) + SeLa 26.0 86.4 6.9 21.2 79.5 1.8

Lwf (Li & Hoiem, 2017) + SeDist 38.4 69.4 28.6 21.2 55.0 9.9

CODA-P (Smith et al., 2023) + PwL 42.9 72.9 33.2 10.2 18.5 7.4
CODA-P (Smith et al., 2023) + SeLa 34.8 83.2 19.1 18.3 57.0 5.3

CODA-P (Smith et al., 2023) + SeDist 40.3 43.3 31.1 14.8 13.5 15.2

SLCA (Zhang et al., 2023b) + PwL 48.0 70.6 40.6 21.5 39.0 15.6
SLCA (Zhang et al., 2023b) + SeLa 50.4 76.0 42.1 26.3 59.4 15.1

SLCA (Zhang et al., 2023b) + SeDist 55.5 75.3 49.1 31.3 64.1 20.2
MetaGCD (Wu et al., 2023) 42.9 48.6 40.6 13.5 16.1 12.5

Frost (Roy et al., 2022) 50.2 75.0 42.1 20.9 43.0 13.4
KTRFR (Liu et al., 2023) 44.2 72.8 34.5 25.9 59.2 14.6

3 UNRAVELING THE CHALLENGES OF RF-CCD

In this section, we begin by integrating advanced methods from two domains, offering a convincing ex-
perimental comparison with existing approaches. Following this, we perform additional experiments
to assess representation quality, emphasizing the unique challenges presented by RF-CCD.

3.1 PROBLEM FORMULATION

In RF-CCD, to leverage the development of foundation models, we start with a self-supervised
pre-trained model gθ (Caron et al., 2021; Zhou et al., 2021; He et al., 2022). The model is initially
given a labelled dataset D0 = {x0

i , y
0
i }

N0
i=1 for supervised learning on session t = 0, where xs

i is the
input image and y0i is the label within Y0. After t = 0 is finished, the labelled set is discarded and
model is presented with a sequential of (T − 1) NCD sessions, each of which contains an unlabelled
dataset Dt = {xt

i}
Nt
i=1. For different sessions i, j, we assume classes are disjoint, i.e., Yi ∩ Yj = ∅.

During each session t, it is not allowed to store data from previous sessions. The aim of RF-CCD is
to continuously discover novel classes in Dt, without compromising performance on previously seen
classes from D0 to Dt−1.

3.2 MODIFY CL METHODS TO HANDLE RF-CCD

Combination of CL and NCD methods RF-CCD is a combination of continual learning and novel
class discovery. To delve deeper into the challenges of RF-CCD, we integrate various continual
learning methods with different NCD techniques to establish more comprehensive methods. Specifi-
cally, we select several typical rehearsal-free continual learning approaches, including well-known
Learning without Forgetting (LwF) (Li & Hoiem, 2017), as well as two of the latest approaches:
CODA-prompt (Smith et al., 2023) and SLCA (Zhang et al., 2023b). As much of the subsequent
analysis is based on SLCA, we provide a brief overview of it in Appendix B.

As outlined in Section 2.2, NCD techniques can be broadly categorized based on the loss functions
used for clustering novel classes. Specifically, we categorize the existing loss functions into three
groups: 1) self-labeling loss (SeLa), 2) pairwise loss (PwL), and 3) self-distillation loss (SeDist).
These loss functions have been summarized in Sec. 2.2 and detailed in Appendix A. To enable
standard continual learning methods to effectively cluster novel classes, we substitute the conventional
cross-entropy loss with the aforementioned three unsupervised losses, respectively.

State of the Arts RF-CCD methods There is existing research in the field of Continual Category
Discovery, including methods such as Frost (Roy et al., 2022), GM (Zhang et al., 2022b), iGCD (Zhao
& Mac Aodha, 2023), MetaGCD (Wu et al., 2023), and KTRFR (Liu et al., 2023). We exclude the
comparison with GM and iGCD, as their methods heavily rely on memory buffers, making them
difficult to handle RF-CCD.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Representation Analysis: We analyze representation using DINO (row 1), iBOT (row
2), and MAE (row 3) pre-trained backbones with K-means and Linear Probing on the CUB and
Scars datasets. The x-axis indicates the stages of continual learning, while the y-axis shows the
accuracy difference between the current stage and the initial stage. "Supervised" and "RF-CCD"
denote supervised and rehearsal-free continual category discovery settings, respectively. "Fully" and
"Last Block" refer to finetuning the entire network or just the last block.

Results Analysis We conduct extensive experiments by using the DINO model (Caron et al., 2021),
which is pretrained on ImageNet1K in an unsupervised manner. As shown in Table 1, while methods
in the RF-CCD field, such as Frost (Roy et al., 2022) and KTRFR (Liu et al., 2023), have achieved
commendable results, they are significantly outperformed by the SLCA (Zhang et al., 2023b) with
self-distillation losses. Specifically, compared to Frost (Roy et al., 2022), SLCA+SeDist shows an
improvement of 7.0% on CUB200 and 6.8% on Scars196 for novel classes.

In addition, we found that the optimal choice of unsupervised loss is closely related to the continual
learning framework and dataset. Among them, self-distillation loss (Caron et al., 2021), which
demonstrates superior performance within the SLCA (Zhang et al., 2023b) and LwF (Li & Hoiem,
2017) frameworks, emerges as a strong candidate for subsequent analysis.

3.3 UNRAVEL THE CHALLENGE OF RF-CCD FROM REPRESENTATION PERSPECTIVE

Motivation In continual learning, with an appropriate learning strategy, representations can be
progressively enhanced over time in the presence of labeled data streams (Rebuffi et al., 2017; Zhu
et al., 2021). However, in RF-CCD, it remains unclear whether representation improves within the
current learning framework due to the noise involved in discovering novel classes. To shed light
on this issue, building on the experiments in Sec.3.2, we further investigate the optimal baseline,
SLCA (Zhang et al., 2023b) combined with Self-distillation (Caron et al., 2021), and analyze how
representation quality evolves with unlabeled data.

Specifically, after each incremental task, we utilize K-means and linear probing to evaluate repre-
sentation quality. For a comprehensive analysis, we compare the representations of two learning
paradigms: (1) Supervised continual learning (original SLCA), which serves as the upper bound,
and (2) SLCA + SeDist, which acts as a strong approach for the RF-CCD task. Additionally, we
conduct experiments using various unsupervised pre-trained models, including DINO (Caron et al.,
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Figure 2: FAC framework. In the first stage, we fine-tune a ViT on labeled known categories. In the
subsequent stages, we perform k-means clustering on new categories and then derive Gaussian means
and variances for each cluster. Finally, we sample data from each Gaussian (including the current
category as well as from memory) to train the classifier.

2021), iBOT (Zhou et al., 2021), and MAE (He et al., 2022), and apply two fine-tuning strategies:
full fine-tuning and fine-tuning of only the last block.

Results and Analysis The performance of linear probing and K-means is illustrated in Fig. 1. Overall,
experiments with the three backbones and two evaluation methods exhibit similar trends, leading us
to several conclusions. Specifically, in supervised learning, when the model is fully fine-tuned, the
representation quality gradually improves with the addition of incremental data. However, when only
the last block is fine-tuned, such improvements are marginal. In contrast, observations differ in the
RF-CCD setting. Here, fully fine-tuning results in a significant degradation of representation quality,
while fine-tuning only the last block yields no noticeable improvement and may even lead to a decline
in representation quality. We believe that continuous learning with unlabeled data accumulates noise,
which is detrimental to representation quality. Moreover, the more parameters that are tuned, the
more harmful this noise becomes.

If we aim to continuously improve the representation ability in RF-CCD, as supported by supervised
results, we must adjust more parameters to increase the upper limit. However, this adjustment leads
to poor outcomes with the best existing strategies, making improvement particularly challenging.

In conclusion, this analysis underscores a key challenge in RF-CCD: how can we continuously
improve or maintain the representation ability of the RF-CCD model?

4 METHOD

In this section, we introduce our framework for Rehearsal-Free Continual Category Discovery (RF-
CCD), which achieves strong performance with a simple design. As shown in Fig.2, we fine-tune
the model on labeled data in the initial session. In later sessions, we freeze the backbone and use
k-means clustering to generate pseudo labels from the representation space. Then, we assume each
cluster follows a Gaussian distribution and derive the mean and variance for each cluster. Finally, we
sample data from the current and stored Gaussian distributions to train the classifier. Additionally, we
propose a novel method to estimate the number of novel classes in RF-CCD scenarios.

4.1 FREEZE AND CLUSTER

Freeze Representation As illustrated in Sec.3.3, the representation ability shows no improvement
and even degradation in CCD after the first session. Therefore, we simply learn the representation in
the supervised session (t = 0) and freeze the backbone gθ for all remaining tasks. Although freezing
the backbone sacrifices the model’s plasticity, it avoids the detrimental effects caused by noisy novel
class learning and forgetting simultaneously, thereby enhancing stability.

Pseudo Label Generation by Clustering and Classifier Learning Since there are no labels for novel
class data, and thanks to the powerful representation, we first generate pseudo-labels for the novel
classes through k-means clustering in the representation space. After obtaining the representation,
rather than directly using these pseudo-labels for classifier learning, we follow the approach in (Zhang
et al., 2023b) to train the classifier.
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Algorithm 1 Class Number Estimation Algorithm
Input: Dataset D, initial cluster number m, merging threshold dmin

Output: Estimated number of novel classes Ku

Over-cluster the data to obtain sub-clusters C = {c1, c2, . . . , cm}
while true do

Compute the distance matrix D between sub-clusters
Find the closest pair of sub-clusters (ci, cj)
if D(ci, cj) > dmin then

break
else

Merge ci and cj into a single sub-cluster
end if

end while
return the number of remaining sub-clusters as Ku

Specifically, we model each cluster distribution as a single Gaussian, estimating the mean and variance
for each cluster. We then sample data from both the current learning stage and past learning stages
using the stored mean and variance to train the classifier. This approach helps mitigate the forgetting
of the classifier. Additionally, we apply logit normalization (Wei et al., 2022) to prevent bias towards
known classes. As the classifier learning is not our contribution, we detail it in Appendix C.

Despite the simplicity of our baseline, in experiments (Sec.5.2), we show that we achieve impressive
results compared to advanced methods from both domains. Meanwhile, we emphasize that our
contribution not mainly lies in the baseline itself but in our extensive analysis, which illustrates the
challenges of CCD and provides a convincing baseline for future work.

4.2 NOVEL CLASS NUMBER ESTIMATION

In RF-CCD, it is usually assumed that the number of novel classes in each task is known. However,
in the real world, this assumption does not always hold. Therefore, we propose a novel method to
estimate the number of novel classes in RF-CCD.

Specifically, for known classes data, we first perform over-clustering to obtain many clusters, which
is generally set to three times the true number, i.e., 3×Ct. Then, we calculate the Euclidean distance
between cluster centers and greedily merge the two clusters with the minimal distance. The merging
process is stopped until the number of clusters is equal to the ground truth. Therefore, we obtain the
minimal distance dmin between the clusters.

We assume that if the distance between two clusters is smaller than dmin, the two clusters are from the
same class with high probability. Based on this assumption, in subsequent tasks, we first perform
over-clustering to obtain multiple sub-clusters and continuously merge the two closest sub-clusters
until the distance between the closest two clusters exceeds the merging threshold dmin. The number
of novel classes is determined by the number of clusters remaining after the merging process. The
detail of algorithm is shown in Algo.1.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset We build baselines and validate the effectiveness of our method on three fine-grained datasets:
CUB200 (Welinder et al., 2010), Stanford Cars196 (Krause et al., 2013), and iNat550, as well as one
generic dataset: Tiny-ImageNet200 (Le & Yang, 2015). We construct the iNat550 dataset by sampling
50 subcategories from each of the 11 supercategories in iNaturalist21 (Van Horn et al., 2021). We
divide CUB and Stanford Cars196 into four equal sessions. To reflect more realistic scenarios, we
adopt a ten-session strategy to generate the task sequence for Tiny-ImageNet200. For iNat550, we
create an 11-session task, with each session exclusively representing one supercategory. This setup
reduces the semantic relationships across sessions and increases the difficulty of knowledge transfer.

7
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Table 2: Main experimental results. The experiments are conducted across four datasets: CUB200
and Scars196 (4 sessions), and iNat550 and TinyImageNet200 (10 sessions). The first group of results
represents the supervised upper bound. The second group combines continual learning with novel
class discovery methods. The third group includes original CCD methods, while the fourth group
focuses on classifier learning methods.

Method CUB200 Scars196 iNat550 Tiny-ImageNet 200
Last Old New Last Old New Last Old New Last Old New

SLCA (Zhang et al., 2023b) 80.9 - - 77.7 - - 70.1 - - 79.1 - -
RanPAC (McDonnell et al., 2024) 80.9 - - 40.4 - - 70.6 - - 81.8 - -

LwF (Li & Hoiem, 2017) + SeDist 38.4 69.4 28.6 21.2 55.0 9.9 8.9 2.2 9.6 31.2 68.1 27.1
CODA-P (Smith et al., 2023) + SeLa 34.8 83.2 19.1 18.3 57.0 5.3 19.6 53.2 16.2 23.7 82.5 17.2
CODA-P (Smith et al., 2023) + PwL 42.9 72.9 33.2 10.2 18.5 7.4 30.4 63.2 27.1 12.6 4.6 13.5

CODA-P (Smith et al., 2023) + SeDist 40.3 43.3 31.1 14.8 13.5 15.2 24.4 25.8 24.3 57.4 47.7 58.8
SLCA (Zhang et al., 2023b) +SeLa 50.4 76.0 42.1 26.3 59.4 15.1 26.6 63.6 22.9 33.3 33.3 33.3
SLCA (Zhang et al., 2023b) + PwL 48.0 70.6 40.6 21.5 39.0 15.6 30.1 56.2 27.3 34.2 23.1 35.4

SLCA (Zhang et al., 2023b) + SeDist 55.5 75.3 49.1 31.3 64.1 20.2 34.4 66.4 31.1 50.2 49.6 50.3

MetaGCD (Wu et al., 2023) 42.9 48.6 40.6 13.5 16.1 12.5 - - - - - -
Frost (Roy et al., 2022) 50.2 75.0 42.1 20.9 43.0 13.4 31.7 54.2 29.5 58.9 49.9 59.9

KTRFR (Liu et al., 2023) 44.2 72.8 34.5 25.9 59.2 14.6 26.5 70.0 22.1 46.0 73.8 42.9

NCM (Janson et al., 2022) 57.6 78.1 50.9 29.5 62.7 18.3 37.3 70.4 34.0 68.1 74.8 67.4
FeCAM (Goswami et al., 2024) 53.8 75.0 46.9 29.2 63.4 17.6 36.6 69.4 33.3 69.1 76.6 68.3

RanPAC (McDonnell et al., 2024) 62.8 81.8 56.6 34.2 78.0 19.3 35.6 75.4 31.6 72.8 77.2 72.3

FAC (Ours) 66.2 81.2 59.6 35.6 73.7 22.7 39.5 72.6 36.2 73.7 77.5 73.2

In all considered splits, classes are evenly distributed, and the first session is considered supervised.
We show the details of dataset in Appendix D.

Evaluation Metric Following common settings in Continual Learning (Panos et al., 2023), we report
Last Acc, the Top-1 accuracy of the final model on a joint test set containing all categories. During
inference, we follow the task-agnostic protocol, i.e., the task ID is unknown in the joint test set. To
measure open-world recognition ability and distinguish between labeled and unlabeled classes, we
further report the prediction accuracy for both the ‘Old’ subset (instances belonging to the supervised
session) and the ‘Novel’ subset (samples from all unsupervised stages).

The mapping from unsupervised clustering ID to ground truth ID is done via the Hungarian optimal
assignment algorithm (Kuhn, 2010) after learning from each unsupervised session. This mapping for
unsupervised data is preserved after each session and used for inference in subsequent sessions.

Implementation Details For methods like CODA-prompt (Smith et al., 2023) and SLCA (Zhang
et al., 2023b), we followed all original training settings, only replacing the supervised training signal
with an unsupervised learning loss. For the state-of-the-art CNCD method Frost (Roy et al., 2022),
we inherited most of its training hyperparameters, except for searching for the best learning rate. For
NCM (Janson et al., 2022), FeCAM (Goswami et al., 2024), and RanPAC (McDonnell et al., 2024),
which only learn classifiers, we first generate pseudo-labels using k-means and then follow their
methods to train the classifier. All methods are trained with a ViT-B-16 backbone using DINO (Caron
et al., 2021) pre-trained weights. For methods that require tuning backbone, we only fine-tune the
last block for a fair comparison.

For our proposed baseline (FAC), during supervised adaptation, we fine-tune the last transformer
block. In the subsequent unsupervised data stream, we adopt the SGD optimizer and use a cosine
decay learning scheduler with an initial learning rate of 0.1 for classifier learning. We set the logit
normalization temperature τ to 0.1 in all experiments.

5.2 COMPARE WITH THE STATE OF THE ARTS AND STRONG BASELINES

As shown in Tab.2, we have conducted extensive comparative experiments with various methods,
and the excellent results prove the effectiveness of our baseline. Compared to the supervised upper
bound, our method achieves satisfactory results in CUB200 and Tiny-ImageNet200, while the results
on Stanford Cars196 and iNat550 still fall short of the upper bound. Additionally, when compared
to the best combined method (SLCA + SeDist), we outperform them by 10.7, 4.3, 5.1, and 23.5 on
CUB, Stanford Cars196, iNat550, and Tiny-ImageNet200, respectively.
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Table 3: Experiments with the estimated number of novel class.
CUB200 Scars196 iNat550 Tiny-ImageNet200

GT Class Number 50 49 50 20
Average Estimated Number 68 70 70 21

Known Class Number Last Acc 66.2 35.6 39.5 73.7
Unknown Class Number Last Acc 62.4 33.8 36.9 67.0

Table 4: Ablation study. Here we present the Last-Acc after continual learning of all sessions. ‘SA’
represents supervised session adaptation, ‘LN’ is logit normalization, and ‘GR’ stands for generative
replay, without ‘GR’ is simply train with pseudo label of training set on each session.

SA GR LN CUB200 Scars196
Last Old New Last Old New

✓ 33.0 0.0 44.5 12.1 0.0 16.2
✓ 51.6 77.3 42.6 22.8 61.3 9.8

✓ ✓ 59.4 72.4 54.9 31.7 61.5 21.6
✓ ✓ ✓ 66.2 81.2 59.6 35.6 73.7 22.7

We also compare our approach with native RF-CCD methods. Notably, KTPFR (Liu et al., 2023) is
similar to our method but employs the SeLa loss (Fini et al., 2021) to generate pseudo-labels through
classifier learning. However, our approach significantly outperforms theirs. As shown in Appendix E,
the simple K-means algorithm is more effective at producing high-quality pseudo-labels than the
SeLa loss-based classifier, which may be adversely affected by the noisy learning of unlabeled data.

Furthermore, compared to the classifier learning methods in the fourth group, we achieve sub-
stantial improvements in both final and novel class accuracy. The results demonstrate that, unlike
FeCAM (Goswami et al., 2024), which utilizes Mahalanobis distance for classifier learning, or
RanPAC (McDonnell et al., 2024), which projects features into a high-dimensional space, our
approach—simply normalizing the features and learning the classifier in the normalized feature
space—yields better results.

5.3 CLASS NUMBER ESTIMATION

The above experiments assume that the number of novel classes is known, which is not realistic in
practice. To adapt a model to an open-world environment, in each stage, we estimate the number of
novel classes and utilize the estimated number for clustering these novel classes. We show the average
of the estimated number of novel classes and the final accuracy. The results are presented in Table 3.
Although the average estimated number is larger than the ground truth (GT), the final accuracy is
comparable to the setting where the GT is known. As our method estimates many clusters, there are
numerous small subclusters for each cluster. In the Hungarian matching, these small subclusters are
ignored, resulting in minimal impact on the final accuracy.

5.4 ABLATION STUDY

We conduct an ablation study to demonstrate the effectiveness of supervised adaptation (SA), gen-
erative replay (GR), and logit normalization (LN), as presented in Table 4. Comparing rows 1 and
3, we observe that GR significantly improves performance on both old and new classes, effectively
mitigating catastrophic forgetting, particularly for known classes. Comparing rows 2 and 3, SA
notably enhances novel class performance due to better representation initialization, though it reduces
performance on known classes in CUB200, likely due to classifier bias towards novel classes. With
LN, this bias is largely alleviated, resulting in significant improvements in old class performance.
The ablation study highlights the contribution of each component in our baseline, demonstrating the
benefits of supervised adaptation, generative replay, and logit normalization.
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6 CONCLUSION

In this work, we leverage advanced techniques from continual learning and novel class discovery,
conducting extensive experiments to tackle the rehearsal-free continual category discovery (RF-CCD)
problem. Our experiments illustrate that: 1) migrating the SLCA (Zhang et al., 2023b) method and
using self-distillation loss (Wen et al., 2022) to learn new classes can surpass the previous RF-CCD
method; 2) "in the presence of strong foundation models and with current novel class learning
strategy, the representation is hard to improve and even degrades in continuous discovery." Therefore,
we propose a simple baseline, named Freeze and Cluster (FAC), to tackle RF-CCD. This approach
estimates the number of novel classes, learns representations in the initial stage, and then only learns
the classifier using cluster labels in subsequent stages. Despite its simplicity, it outperforms all
existing methods. We hope our detailed experimental analysis and strong baseline can motivate future
work to develop more effective methods to tackle this problem. Meanwhile, since the representation
quality is difficult to improve, we also hope to re-examine the learning paradigm of RF-CCD and
consider to incorporate a limited amount of human supervision signals (Ma et al., 2024) to achieve
more effective open-world learning.

Limitation Although our analysis is comprehensive and provides insights into the problem, our
experimental analysis has some limitations: 1) Our characterization analysis primarily relies on the
optimal combination strategy (SeLa + SeDist). While it helps explain the issue, it has not been
experimentally verified across more combination methods to fully establish the universality of our
conclusions. We acknowledge that reaching universal conclusions is challenging because we cannot
exhaust all methods due to limited computational resources. 2) Our experimental analysis is based
on a simplified setting, assuming that the unlabeled data consists solely of novel class data. We
have not investigated a more generalized setting where the unlabeled data includes both novel and
known classes. We believe that a generalized approach could first identify whether the data belongs
to a novel or known class before adapting it to our experimental framework. While incorporating
known-class data may help mitigate forgetting to some extent, it does not address the inherent
challenges associated with noisy learning of novel class data, which is a crucial factor in degrading
representation quality.
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A SUMMARY OF LOSS FOR NOVEL CLASS LEARNING

In this section, we provide details on the learning loss for novel classes. We summarize the loss into
three categories: pairwise similarity loss (Hsu et al., 2018; Han et al., 2021; Cao et al., 2022), which
minimize the distance of a pair of similar data, a self-labeling loss (Asano et al., 2019; Fini et al.,
2021), which utilizes Sinkhorn-knopp algorithm to generate pseudo label for unlabeled data, and
self-distillation loss. Before detailing these losses, we introduce some notations: xu represents an
unlabeled image, yu represents the model’s prediction, zu represent the corresponding representation,
and f denotes the feature extractor.

Pairwise similarity loss (Hsu et al., 2018): The pairwise similarity loss learns to group a pair of
similar data, thus learning compact representation for unlabeled data. Specifically, given a batch
of B unlabeled data, we forward the model to get the embedding zu = f(xu) and prediction
yu = p(yu;xu). For each unlabeled data, to get its the pairwise pseudo label, we find its nearest
neighbor in the embedding space from the B unlabeled data. We denote the nearest neighbor of zui as
ẑui . Therefore, ignoring the negative pairs (Cao et al., 2022), the formulation of pairwise loss is:

Lu =
1

|Du|

|Du|∑
i=0

− log(yu
i )

T ŷu
i (1)

To avoid all the unseen class degenerate to a single cluster, Cao et al. (2022) also introduce a simple
entropy regularization term to regularize the size of cluster.

Self-labeling loss (Asano et al., 2019): The self-labeling loss first generates pseudo-labels for
unlabeled data, then utilizes the generated pseudo label to self-train model. It assumes unlabeled
data are equally partitioned into each cluster and utilizes Sinkhorn-knopp algorithm to find an
approximate assignment. We denote yq = q(yu;xu),yp = p(yu;xu), and yp,yq ∈ R(m+n)×1.
Let Q = [yq

1,y
q
2, , ,y

q
B ]

1
B , P = [yp

1,y
p
2, , ,y

p
B ]

1
B be the joint distribution of B sampled data. We

estimate Q by solving an optimal transport problem. We refer readers to (Cuturi, 2013; Asano et al.,
2019) for details. The optimal Q is the pseudo label of unlabeled data. We denote the optimal pseudo
label as q∗(yu;xu), so the self-labeling is formulated as:

Lu =
1

|Du|

|Du|∑
i=0

−q∗(yui ;x
u
i ) log p(y

u
i ;x

u
i ) (2)

Self-distillation For each unlabeled data point xi, we generate two views xv1
i and xv2

i through
random data augmentation. These views are then fed into the ViT (Dosovitskiy et al., 2020) encoder
and cosine classifier (h), resulting in two predictions yv1i = h(fθ(x

v1
i )) and yv2i = h(fθ(x

v2
i )),

yv1
i ,yv2

i ∈ RCk+Cn

. As we expect the model to produce consistent predictions for both views, we
employ yv2

i to generate a pseudo label for supervising yv1
i . The probability prediction and its pseudo

label are denoted as:

pv1
i = Softmax(yv1i /τ), qv2

i = Softmax(yv2i /τ ′) (3)

Here, τ, τ ′ represents the temperature coefficients that control the sharpness of the prediction and
pseudo label, respectively. Similarly, we employ the generated pseudo-label qv1

i , based on yv1
i , to

supervise yv2
i . However, self-labeling approaches may result in a degenerate solution where all novel

classes are clustered into a single class (Caron et al., 2018). To mitigate this issue, we introduce an
additional constraint on cluster size. Thus, the loss function can be defined as follows:

Lu =
1

2|Du|

|Du|∑
i=1

[l(pv1
i ,SG(qv2

i )) + l(pv2
i ,SG(qv1

i ))] + ϵH(
1

2|Du|

|Du|∑
i=1

pv1
i + pv2

i ) (4)

Here, l(p,q) = −q logp represents the standard cross-entropy loss, and SG denotes the “stop
gradient” operation. The entropy regularizer H enforces cluster size to be uniform thus alleviating
the degenerate solution issue. The parameter ϵ represents the weight of the regularize.
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Dataset Labeled Session Unlabeled Session
#class #image #class #image

CUB200 (Welinder et al., 2010) 50 1.5k 50 1.5k
StanfordCars (Krause et al., 2013) 49 2.1k 49 2k
Tiny-ImageNet (Le & Yang, 2015) 20 10k 20 10k

iNat550 (Van Horn et al., 2021) 50 2.5k 50 2.5k

Table 5: Datasets used in our experiments. We provide the number of classes in the labeled and
unlabeled sets.

B SLCA

SLCA (Zhang et al., 2023b) utilizes a two-stage learning process in continual learning tasks. In the
first stage, representations are learned with a slow learning rate (e.g., 1e-4 for the SGD optimizer),
and class means and variances are stored. These stored statistics are then replayed in the second
stage for classifier learning, which helps mitigate forgetting and maintain the performance of both the
backbone and the classifier. For further details, we refer readers to the original paper.

C CLASSIFIER LEARNING

In this section, we detail the classifier learning. Specifically, we sample generated features F̂r =

[f̂t,1, . . . , f̂t,Mc
] from the distribution (µc,Σc) of each cluster c ∈ C1:T , where Mc is the number of

generated features per class. Note that C1:T represents all the observed clusters. These simulated
features serve as input to adjust the classification layer hθ. The classifier training uses the common
cross-entropy loss. Considering that the learned classes are repeatedly trained in each subsequent
task, potentially leading to overconfidence in the training data, we follow the SLCA (Zhang et al.,
2023b) and normalize the magnitude of the network output when computing the cross-entropy.
H1:T = [l1, . . . , l[C1:T ])] represents the logit scores of sampled features, which can be rewritten as

the product of magnitude and direction: H1:T = ∥H1:T ∥ · H⃗1:T . Here ∥H1:T ∥ =
√∑

c∈C1:T
∥lc∥2

represents the magnitude, and H⃗1:T represents the direction. We then perform classifier alignment
using a modified cross-entropy loss with logit normalization:

L(θcls; F̂1:T ) = − log
ely/(τ∥H1:T ∥)∑

c∈C1:T
elc/(τ∥H1:T ∥) (5)

where ly denotes the y-th element of H1:T corresponding to label y. τ is the temperature hyperpa-
rameter.

D DATSET SPLITS

We provide the details of the dataset splits in Table 5 . For all the benchmarks considered, each
session contains an equal number of classes.

E COMPARISON WITH KTRFR

In this section, we provide a detailed analysis of the pseudo-labeling effects of the KTR method
compared to our simple K-means approach. The results indicate that the pseudo-label quality of
K-means is superior. We speculate that the suboptimal performance of SeLA (Fini et al., 2021)
arises from its reliance on optimal transport (OT) (Cuturi, 2013) to generate pseudo-labels and train
a classifier with noisy pseudo-labels. The significant learning noise in this classifier degrades the
quality of the pseudo-labels, leading to reduced effectiveness.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Pseudo-Label quality on unlabelled session. Ours method uses clustering, while KTRFR
(Liu et al., 2023) learns a linear classifier with Sela (Fini et al., 2021) Loss.

Method CUB200 Scars196
stage1 stage2 stage3 stage1 stage2 stage3

KTRFR (Liu et al., 2023) 41.7 46.0 45.0 20.3 22.4 24.1

FAC (Ours) 71.4 70.8 64.0 33.5 35.3 34.9

F COMPARISON WITH PROMPTCCD

We adapt PromptCCD (Cendra et al., 2024) to our setting and conduct comparative experiments.
The results indicate that we achieve significant improvements over their approach. The results are
presented in Table 7

Table 7: Comparison with PromptCCD (Cendra et al., 2024). We adapt the PromptCCD (Cendra
et al., 2024) method to our benchmark and replace the Semi-supervised Kmeans with Kmeans to
align with our evaluation protocol.

Method CUB200 Scars196 iNat550
Last Old New Last Old New Last Old New

PromptCCD (Cendra et al., 2024) 40.5 48.4 37.9 12.2 15.2 11.2 31.0 41.0 30.0
FAC (Ours) 66.2 81.2 59.6 35.6 73.7 22.7 39.5 72.6 36.2
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