
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN TO ENSEMBLE: IDENTIFYING TOKEN-LEVEL
POINTS FOR STABLE AND FAST LLM ENSEMBLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensembling Large Language Models (LLMs) has gained attention as a promis-
ing approach to surpass the performance of individual models by leveraging their
complementary strengths. In particular, aggregating models’ next-token probabil-
ity distributions to select the next token has been shown to be effective in various
tasks. However, while successful for short-form answers, its application to long-
form generation remains underexplored. In this paper, we show that using existing
ensemble methods in long-form generation requires a careful choice of ensem-
bling positions, since the standard practice of ensembling at every token often de-
grades performance. We identify two key factors for determining the ensembling
positions: tokenization mismatch across models and consensus in their next-token
probability distributions. Based on this, we propose SAFE, (Stable And Fast LLM
Ensembling), a framework that selectively ensembles by jointly considering these
factors. To further improve stability, we apply a probability sharpening strategy
when the ensemble distribution becomes overly smooth, enabling the selection
of more confident tokens during ensembling. Our experiments on diverse bench-
marks, including MATH500 and BBH, demonstrate that SAFE outperforms ex-
isting methods in both accuracy and efficiency, with gains achieved even when
ensembling fewer than 1% of tokens.

1 INTRODUCTION

Recently, Large Language Models (LLMs) have achieved remarkable performance across diverse
domains, including mathematics (Yang et al., 2024b), coding (Guo et al., 2024) and reasoning (Yang
et al., 2025; OpenAI, 2024). Despite this progress, each LLM possesses unique strengths shaped by
its training recipe, and no single model dominates across all domains. As a result, combining the
complementary strengths of multiple models at inference time has emerged as a promising way
to surpass the performance of any individual model (Wang et al., 2025a; Yao et al., 2025; Chen
et al., 2025a). Compared to training a new model that jointly integrates all such capabilities, these
collaborative approaches provide a more practical and efficient pathway to superior performance.

Among various collaboration methods, probability-level ensemble, which aggregates the next-token
probability distributions of multiple LLMs to select the most confident token, has emerged as one
of the most effective ways (Yao et al., 2025; Yu et al., 2024; Huang et al., 2024; Xu et al., 2024).
It enables collaboration across diverse model architectures and effectively leverages the knowledge
of multiple models embedded in their probability distributions. Consequently, it has outperformed
individual models, particularly when directly answering multiple-choice or short-answer questions
without reasoning.

A natural question then arises: are probability-level ensemble methods equally effective for long-
form generation? We find that, in long-form generation, the effectiveness of ensembling critically
depends on deciding when to ensemble. Our analysis reveals that accuracy and efficiency improve
when ensembling occurs at appropriate token positions, guided by two key factors: tokenization
mismatch across models and their consensus in next-token probability distributions.

The first factor, tokenization mismatch across models, is crucial for stability, especially in long-
form generation where such mismatches occur more frequently. A mismatch arises when an ensem-
ble selects a token that conflicts with the tokenization scheme of a participating model. We refer
to these tokens as OOV-like tokens because while not truly out-of-vocabulary (OOV), they force a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLM 1

LLM 2
“ Ã ”

“ fia ”“ So ”

“ So ”
“Ã” is selected

after token alignment

OOV-like token for LLM 2

Tokenizer 1

Tokenizer 2

❌

✅

“Ã”

“fia”

“So”+“?”

“Ã”
“fia”

So fia

Sofia

Figure 1: Illustration of the OOV-like token problem. When So is fed into LLM2, which tokenizes
Sofia as a single token, the probability distribution of the next token becomes corrupted.

Option A: Incorret because the coronary arteries
However, the gallbladde r does not se crete insul in. ...
nourisment or feeding, ... which involves the digesive
system ...

Answer

Sofia and Tess will each randomly choose one of the 10
integers from 1 to 10. What is the probability that neither
integer chosen will be the square of the other?

Problem

To determine the probability that neither integer chosen
by SofÃa and Tess will be the square of the other, we
need to follow these steps: ... 2. Determine the total
number of possible outcomes: Each of SofÃaÂaÂÂÃ ...

Answer

Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for $5.00. How
much does he spend on yogurt over 30 days?

Problem

To determine how much Terry spends on yogurt over 30 days, we can break
down the problem into several steps:
1. Calculate the daily yogurt consumption in terms of the sale unit: - Terry eats 2
yogurts per day. - The sale is 4 yogurts for $5.00. - Therefore, Terry consumes
(2/4 = 0.5) of a sale unit per day.
2. Determine the daily cost based on the sale price: - Since 4 yogurts cost $5.00,
1 yogurt costs (5/4 = 1.25). - Therefore, 0.5 of a sale unit (which is equivalent to 2
yogurts) costs (0.5 × 1.25 = 0.625). - So, Terry spends $0.625 per day on yogurt.
3. Calculate the total cost over 30 days: - Terry spends $0.625 per day. - Over 30
days, the total cost is (0.625 × 30 = 18.75).
Therefore, the total amount Terry spends on yogurt over 30 days is
\\boxed{18.75}.

Answer

Wrong Information

❌

Unnatural Token Repetition

❌

Typo

❌

Figure 2: (Left) Failure cases of existing ensemble methods in long sequence generation. (Right)
Feeding OOV-like tokens into a model often causes it to produce wrong tokens.

model to predict the next token in an out-of-distribution state, often resulting in the generation of
erroneous tokens, as illustrated in Figure 1. Suppose the ensemble process first generates the token
So when constructing the word Sofia. However, since LLM2 tokenizes Sofia as a single token,
So acts as an OOV-like token for LLM2. Conditioning on this unnatural prefix corrupts LLM2’s
next-token probability distribution, leading to an erroneous output (i.e., Ã). Such errors accumulate
in long-sequence generation, degrading output quality. For example, in the case of unnatural token
repetition shown in Figure 2, an initial error in generating the word Sofia propagates, causing the
model to repeatedly output corrupted tokens like “Ã” on the subsequent generation. Consequently,
existing ensemble method (Yao et al., 2025) that performs ensembling at every token, suffers sub-
stantial performance degradation in Chain-of-Thought (CoT) reasoning (Wei et al., 2022), as shown
in Table 1. Therefore, accounting for tokenization mismatch across models is essential to prevent
the introduction of OOV-like tokens and ensure stable ensembling under CoT.

The second factor, consensus in models’ next-token probability distributions, relates to efficiency.
Given the next-token probability distributions from multiple models, an ensemble operation is per-
formed to aggregate these probability distributions. However, this introduces inefficiency when gen-
erating long sequences because the number of ensemble operations grows with sequence length. The
primary expense of the ensemble operation arises from aligning next-token probability distributions
defined over different vocabularies into a shared vocabulary space, a process that requires mapping
across large vocabulary sets. However, when individual models’ next-token probability distributions
exhibit sufficient consensus, the most confident token from the aggregated distribution can be identi-
fied without explicitly aligning distributions from multiple models. Leveraging this property, we can
determine the most confident token directly from the models’ next-token probability distributions,
thereby improving efficiency by skipping alignment operations.

To this end, we propose SAFE (Stable And Fast LLM Ensembling), which identifies the opportune
moments for ensembling in long-sequence generation by considering the two key factors above.
SAFE adopts a speculative strategy in which one model, the drafter, generates a lookahead se-
quence of tokens, while the remaining models, the verifiers, identify token-level ensemble points
within that sequence. Similar to speculative decoding (Leviathan et al., 2023), this role separation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Method MMLU-redux ARC-C MATH500

No CoT CoT No CoT CoT CoT
Qwen2.5-7B 68.86 74.88 87.37 88.74 72.4
Internlm3-8B 67.52 76.89 88.57 90.27 74.8

UniTE 69.36 (+0.50) 73.39 (-3.50) 88.40 (-0.17) 87.97 (-2.30) 59.6 (-15.2)
UniTE + Ours 69.36 (+0.50) 77.92 (+1.03) 88.40 (-0.17) 90.78 (+0.51) 77.6 (+2.8)

Table 1: Performance of the baseline ensemble method (UniTE) degrades under CoT prompting.
In contrast, it matches or outperforms individual models when directly answering multiple-choice
questions, since tokenizer mismatches do not arise. All models are instruction-tuned.

reduces computational cost by limiting autoregressive generation to the drafter, whereas conven-
tional ensemble methods require every model to do so. Specifically, SAFE iterates a three-step cycle:
Generate–Verify–Ensemble. (Generate) First, the drafter produces a lookahead sequence of tokens.
(Verify) Next, the verifiers examine drafter’s tokens in a single forward pass to determine whether
ensembling at each token is both stable and necessary. Ensembling is triggered among the drafter’s
tokens only when the following two conditions are satisfied: (i) OOV-like token is not introduced
and (ii) the verifiers exhibit insufficient agreement on the token. (Ensemble) Finally, ensembling is
applied only at the tokens validated in the Verify step, replacing them with the ensembled tokens. At
these points, if the ensemble distribution is overly smooth, we apply a probability sharpening strat-
egy that concentrates the probability mass onto the most plausible token for precise token selection.

Overall, we find that probability-level ensembling should occur at appropriate token positions, espe-
cially when generating long sequences with models that use different tokenizers. We then propose
SAFE, a method that determines these positions by jointly considering the two key factors. Conse-
quently, our method offers the following key advantages.

• Efficiency: SAFE significantly reduces computational cost in two ways. First, its specula-
tive strategy restricts costly autoregressive generation to a single drafter. Second, its selec-
tive ensembling reduces the number of ensemble operations. Therefore, SAFE can achieve
inference speed comparable to individual models, even on long sequences.

• Stability: SAFE ensures that tokens are generated from an uncorrupted ensemble distribu-
tion by preventing OOV-like tokens from being fed into models. As a result, SAFE enables
stable text generation and outperforms existing ensemble methods in CoT settings.

• Plug-and-Play: SAFE can be seamlessly integrated with existing ensemble methods by
simply adding the generate-verify logic. SAFE consistently improves recent ensembling
approaches across diverse model combinations.

2 RELATED WORK

2.1 LLM ENSEMBLE

LLM ensemble methods can be broadly categorized according to whether ensembling occurs after
inference or during inference (Chen et al., 2025b). Research in both directions has progressed in
parallel, each of which is detailed below.

2.1.1 ENSEMBLE AFTER INFERENCE

These approaches aggregate the responses generated by individual LLMs to obtain a better final
answer. Early work focused on methods in which multiple models engaged in iterative discussions
to converge to a single response (Du et al., 2023; Chen et al., 2024a; Liang et al., 2024). More
recently, attention has shifted toward methods that move away from debate-style interactions and
instead stack LLMs either in a cascade or a parallel structure.

Cascade structure FrugalGPT (Chen et al., 2024b) arranges models in a cascade ordered by cost,
invoking the next model only when the previous one produces an unreliable response, thereby re-
ducing cost while preserving performance. Gupta et al. (2024) takes a finer-grained approach by
deciding whether to call the next model based on token-level uncertainty rather than full responses.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Similarly, AutoMix (Aggarwal et al., 2024) employs self-verification to determine whether an addi-
tional model should be invoked.

Parallel structure In contrast to cascading, parallel ensembling runs multiple models independently
and then selects the best response among them. MORE (Si et al., 2023) trains a classifier to select
the optimal response by considering model expertise, confidence, and agreement across responses.
LLM-Blender (Jiang et al., 2023) employs a pairwise ranker to score responses and then fuses the
top-k candidates into a single answer.

Hybrid structure Recent work has also explored combining the advantages of cascade and parallel
structures. MoA (Wang et al., 2025a) proposed a framework that iteratively feeds responses from
multiple models into an aggregator LLM, which consolidates those responses into a single response.
Self-MoA (Li et al., 2025) showed that, in certain cases, using a single best-performing model within
this framework outperforms using multiple distinct models. Under the same framework, Symbolic-
MoE (Chen et al., 2025a) introduced an adaptive routing strategy that selects models according to
the query. Nevertheless, such frameworks require numerous LLM calls, and the aggregator LLM
often underperforms majority voting (Wang et al., 2025b), making consolidating multiple responses
into a persistent challenge.

2.1.2 ENSEMBLE DURING INFERENCE

In this setting, ensembling occurs during response generation, most commonly at the token level.
Co-LLM (Shen et al., 2024) adopts a routing method which dynamically selects which model to
use for generating each token. CoSD (Wang et al., 2025c) improves efficiency by introducing a
lightweight router and integrating speculative decoding. These approaches primarily target models
with identical tokenizers and rely on routing rather than aggregating probability across models.

To better exploit the collective intelligence of multiple models, another line of work explores
probability-level ensemble methods. These methods average the next-token probability distributions
of different models to select the most confident token. Since probability distributions are defined
over heterogeneous vocabularies, prior work has focused on constructing the ensemble distribution
by aligning different vocabularies across models. GaC (Yu et al., 2024) integrates probabilities by
taking the union of all model vocabularies and then mapping each model’s vocabulary to this union.
DEEPEN (Huang et al., 2024) projects each model’s vocabulary into a shared embedding space,
merges distributions there, and maps them back to the individual vocabulary spaces. UniTE (Yao
et al., 2025) demonstrates that aligning only the top-k tokens from each model is effective both in
performance and efficiency. While these methods achieve strong performance in directly generating
answer tokens by selecting the most confident token, they face challenges in long-sequence genera-
tion that involves reasoning. In such cases, an increase in OOV-like tokens destabilizes the ensemble,
and repeated autoregressive generation across multiple models, along with the need to align their vo-
cabulary spaces, makes such approaches inefficient. Therefore, we aim to simultaneously improve
the stability and efficiency of probability-level ensembling by introducing a verification algorithm
that determines when to ensemble.

2.2 SPECULATIVE DECODING

Speculative decoding (Leviathan et al., 2023) is a widely used technique for reducing the cost of
autoregressive generation in LLMs. To alleviate the repeated forward passes required by a large
model during token generation, speculative decoding replaces this process with a small drafter that
speculates a sequence of candidate tokens. The large target model then performs a single forward
pass to determine how many of the drafter’s proposed tokens to accept. This allows multiple tokens
to be generated in a single forward pass of the target model, thereby reducing computational cost.

Recently, speculative decoding has been explored as a way to accelerate probability-level LLM en-
sembling. However, existing approaches (Fu et al., 2025) are limited to settings in which all models
share an identical tokenizer, and cases where the drafter and target models use different tokeniz-
ers remain underexplored. In such scenarios, the drafter’s tokens cannot be properly evaluated by
other participating models due to tokenization misalignment and also exhibit OOV-like issues. To
address this, we extend speculative decoding to ensembles composed of models with heterogeneous
tokenizers by proposing an appropriate acceptance criterion.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

“Correct”

“Incorrect”

“Correct”

“Inc”

0.7 + 0.3 + 0.2		
3

= 0.4 < 0.5

Drafter
Tokenizer 1 Tokenizer 2

En semb le position is Inc orr ect

Generate

Verifier 2Verifier 1

Compute probability of each token

0.80.9 0.9 0.7 1.0 0.3 0.7 0.9 0.9 0.5 1.0 0.2

0.9 0.7 0.9 0.6 1.0 0.7 0.8 0.9

1.0 0.4

Verify the drafter’s tokens

✅ ✅ ✅ ✅

❌

✅

Verify

Ensemble with Probability sharpening

“Correct”

“Inc”

“Correct”

“Inc”

“Correct”

“Incorrect”

“Inc”

“Correct”

Drafter

Verifier 1

Verifier 2

Resume generation from
“Ensemble position is Correct”

: accepted token

: accepted token because the preceding token is OOV-like

: rejected token (ensemble is required)

0.6-0.9 0.8

Three Models
Average Probability

En s emble position is Inc orrect En semble position is Incorrect

En s emble position is Inc orrect En semble position is Incorrect

En semb le position is Inc

En semb le position is Correct

✅ ✅ ✅ ✅✅

✅

Figure 3: Overview of SAFE. The drafter generates a sequence of tokens, which the verifiers re-
tokenize with own tokenization schemes and identify the necessary ensembling point. At this posi-
tion, ensembling is performed with probability sharpening applied selectively to enhance precision.

3 SAFE: TOWARD STABLE AND FAST LLM ENSEMBLING

We aim to solve the problem of instability and inefficiency that arises when ensembling next-token
probability distributions across LLMs with heterogeneous tokenizers, particularly in long-sequence
generation. To this end, we propose SAFE, an algorithm that preemptively determines optimal points
for ensembling by jointly considering tokenization mismatch and consensus in next-token probabil-
ity distributions. Notably, SAFE can be seamlessly integrated with existing ensemble methods.

Given k different LLMs, our method begins by dividing the models into two roles: a drafter Mdraft,
which generates a lookahead sequence of tokens, and verifiers Mver, which identify the ensem-
ble points among the drafter’s tokens. We select the best-performing model as Mdraft, while the
remaining models serve as Mver. We then iterate the Generate (Section 3.1)-Verify (Section 3.2)-
Ensemble (Section 3.3) cycle. In each iteration, Mdraft first generates a sequence of tokens, which
Mver then examine to find a token that requires ensembling. At such points, ensembling is performed
to replace the token with the most confident token from the averaged distributions of all models, after
which Mdraft resumes generation from the ensembled token. Figure 3 shows the overview of SAFE.

3.1 GENERATE

The drafter Mdraft generates a predefined number n of tokens (ti, . . . , ti+n−1). Producing multiple
tokens rather than a single token allows SAFE to account for the different tokenization schemes of
the various models. For example, consider the word Incorrect. Suppose Mdraft generates it as
three tokens (Inc, orr, ect), while other models generate it as a single token (Incorrect). If
Mdraft were to generate only the first token Inc, it would fail to capture the tokenization schemes
of the other models. Therefore, at this stage, Mdraft produces a sequence of tokens to ensure com-
patibility with diverse tokenization schemes. The choice of n is discussed in Section 4.4.

3.2 VERIFY

In this step, the verifiers Mver collaboratively examine the drafter’s tokens (ti, . . . , ti+n−1) to iden-
tify which tokens require ensembling. Ensembling is triggered at the earliest token tj that satisfies
two checks: (i) OOV-like token verification, requiring that the immediately preceding token tj−1

is not an OOV-like token, and (ii) ensemble distribution verification, requiring that tj is not the
most confident token in the ensemble distribution Pens. This selective process addresses instability
by preventing the introduction of OOV-like tokens and improves efficiency by skipping unneces-
sary ensembling. Importantly, this entire verification process is efficient, as the drafter’s tokens are
processed by the verifiers in a single forward pass rather than autoregressively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(i) OOV-like Token Verification This check requires that the preceding token is not an OOV-like
token to prevent OOV-like tokens from corrupting the model’s next-token probability distribution. To
determine whether a drafter token tj is an OOV-like token, we examine whether the token boundary
up to tj aligns with the tokenization boundaries of the verifiers, ensuring that each verifier can be
conditioned on valid prefix tokens. For example, in the word Incorrect, tokens such as Inc or
orr are OOV-like, but ect is not. This is because the tokenization boundaries up to Inc or orr
are inconsistent with the other model’s tokenization boundary Incorrect, forcing that model to
be conditioned on an invalid prefix such as Inc or Incorr. The detailed verification process are
as follows. First, each verifier model LLMv ∈Mver tokenizes the drafter’s sequence t<i+n into its
own tokenization, tv<vi+n . Then, the drafter’s token tj is defined as an OOV-like token for LLMv

if the tokenization boundary of t<j+1 does not match any boundary in LLMv’s tokenization. This
condition is formally stated in Equation (1):

tj is OOV-like in LLMv ⇐⇒ ∀x ∈ [0, vi+n − 1], Decode(t<j+1) ̸= Decode(tv<x+1), (1)
where Decode(·) means merging tokens back into text. If tj is identified as OOV-like by any verifier,
ensembling is not triggered at the subsequent token tj+1. Therefore, in the word Incorrect,
ensembling is skipped at orr and ect, but can be triggered at the token following ect.

(ii) Ensemble Distribution Verification For tokens that pass OOV-like token verification, our
method further checks whether the token is the most probable prediction in the ensemble distri-
bution. To avoid the cost of repeatedly constructing the ensemble distribution, we instead verify
whether a token tj is the most probable token by examining each model’s own distribution. Specifi-
cally, given LLMv’s tokenization tv<vj of the drafter’s tokens t<j , the drafter’s token tj is regarded
as the most confident and ensembling is therefore skipped, if either of the following holds:

1. (Unanimous consensus among verifiers)
If tvvj = argmaxt Pv(t | tv<vj) for all LLMv ∈ Mver, we skip ensembling, where Pv is
the probability distribution of LLMv .

2. (Average probability above one half)
If 1

|Mver∪Mdraft|
∑

LLMv∈Mver∪Mdraft
Pv(t

v
vj | t

v
<vj) >

1
2 , we skip ensembling at tj .

Intuitively, the first condition checks whether tvvj is the most probable one across all verifiers, while
the second checks whether its average probability across all models is greater than 0.5. Adopting
these criteria does not compromise accuracy compared to using the exact ensemble distribution,
which is proved in Appendix C.

Algorithm 1 SAFE: Generate-Verify-Ensemble algorithm

Require: Mdraft, Mver, p: prompt, n: drafter’s sequence length
1: i← 1
2: t0 ← BOS token
3: while not End-of-Sentence do
4: ti, · · · , ti+n−1 ←Mdraft(p, t<i) ▷ 1. Generate
5: tv<vi+n

← TOKENIZEv(t<i+n), ∀v ∈Mver ∪Mdraft

6: for j = i→ i+ n− 1 do ▷ 2. Verify
7: if tj−1 ̸= OOV-like token and tj passes Ensemble Distribution Verification then
8: Pens ← AVERAGEDIST({Pv(· | p, tv<vj)}v∈Mver∪Mdraft

) ▷ 3. Ensemble
9: tj ← argmaxt Pens(t | p, t<j)

10: i← j + 1
11: else
12: i← i+ n
13: end if
14: end for
15: end while

3.3 ENSEMBLE: SHARPENING ENSEMBLE DISTRIBUTION

In the Ensemble step, any token that passes both verifications in the Verify step is replaced with
the most probable token from Pens, which is constructed as the average of all models’ probabil-
ity distributions using existing ensemble methods. However, different tokenization schemes across

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

models can scatter probability mass for the same word across multiple sub-word tokens, resulting in
an overly smooth ensemble distribution (i.e., maxPens < 0.5) that hinders confident token selection.
To address this, we apply a probability sharpening strategy to consolidate the diffused probability
mass. We explore two different sharpening strategies. The first adopts a heuristic approach that con-
solidates the diffused probability by reallocating the probability mass from variant subword tokens
to their common prefix token. To prevent inflating probabilities of low-quality tokens, reallocation
is applied only to the drafter’s tokens with initial probability greater than a threshold λ. Formally,
the entire sharpening process is defined as:

Pens(tj)← Pens(tj) +
∑

ti : ti.startswith(tj)

Pens(ti), where Pens(tj) > λ.

The second strategy replaces the arithmetic mean with the geometric mean when aggregating the
models’ probability distributions. Since the geometric mean strongly penalizes tokens that receive
low probability by any individual model, it effectively concentrates probability mass on tokens that
are consistently supported across models. These two strategies are compared in section 4.4.

After selecting the most confident token from the (potentially sharpened) ensemble distribution, the
drafter resumes generation from this token.

4 EXPERIMENTS

This section evaluates SAFE across various benchmarks and model combinations. We begin by
outlining the experimental setup, followed by the implementation details, including our KV caching
strategy to further improve efficiency. We then provide an analysis of the results.

4.1 EXPERIMENTAL SETTINGS

internlm3 Qwen2.5 EXAONE3.5

internlm3

Qwen2.5

EXAONE3.5

100.0 53.06 46.8

53.06 100.0 63.81

46.8 63.81 100.0

Tokenization Similarity on Oxford5000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Tokenization agree-
ment rates between each
model pair on Oxford 5000
words.

Models We select three widely used LLMs with similar ca-
pability but heterogeneous tokenization schemes: Internlm3-8B-
Instruct (Cai et al., 2024), Qwen2.5-7B-Instruct (Qwen et al., 2025),
and EXAONE-3.5-7.8B-Instruct (An et al., 2024). Figure 4 presents
the tokenization similarity across model pairs on Oxford 5000
words (Oxford, 2018), which consists of commonly used English
words. As illustrated, only a small portion of the words are tok-
enized identically across models, with agreement rates ranging from
40% to 60%. To also evaluate ensembling on models with nearly
identical tokenizations, we include two widely used LLMs with
high agreement rates: Qwen2-7B-Instruct (Yang et al., 2024a) and
Llama-3.1-8B-Instruct (Dubey et al., 2024). For these two models,
more than 99% of Oxford 5000 words are tokenized identically. For
further study, 32B-scale models are experimented in Appendix F.

Benchmarks To evaluate performance across diverse domains, we use five benchmarks. For general
knowledge, we adopt MMLU-redux (Gema et al., 2025), a refined subset of MMLU (Hendrycks
et al., 2021) that covers 30 subjects with human-annotated corrections. For mathematical reasoning,
we use MATH500 (Lightman et al., 2024) and GSM8K (Cobbe et al., 2021). For general reasoning,
we employ ARC-Challenge (Clark et al., 2018) and BBH (Suzgun et al., 2023). All benchmarks
are evaluated under a zero-shot CoT setting, except for BBH, which uses 3-shot CoT. For BBH,
we choose 15 subjects where the models exhibit comparable performance. Further details, including
prompt templates and selected BBH subjects, are provided in Appendix A.

Baselines We apply our method to two recent SOTA probability-level ensemble methods: GaC (Yu
et al., 2024) and UniTE (Yao et al., 2025). GaC performs ensembling only when the main LLM’s
next-token probability falls below 0.5. In contrast, UniTE represents the SOTA among methods that
ensemble at every generation step. In our setting, “X + SAFE” means that the ensemble method X is
applied only at the token positions that SAFE identifies as requiring ensembling.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method MMLU-redux MATH500 GSM8K BBH ARC-C Avg.

Accuracy E/T Accuracy E/T Accuracy E/T Accuracy E/T Accuracy E/T Accuracy

Internlm3-8B 76.89 - 74.8 - 90.14 - 82.26 - 90.27 - 82.87
Qwen2.5-7B 74.88 - 72.4 - 91.81 - 79.15 - 88.74 - 81.40
EXAONE3.5-7.8B 73.25 - 72.8 - 90.45 - 78.75 - 90.44 - 81.14

Two-model ensembling (Internlm3 + Qwen2.5)

GaC 77.00 (+0.11) 8.43 74.2 (-0.6) 1.04 91.28 (-0.53) 0.82 82.34 (+0.08) 5.69 90.61 (+0.34) 10.22 83.09 (+0.22)
GaC + SAFE 77.11 (+0.22) 5.23 76.0 (+1.2) 0.71 91.36 (-0.45) 0.67 82.34 (+0.08) 3.73 91.13 (+0.86) 6.22 83.59 (+0.72)

UniTE 73.39 (-3.5) 100 59.6 (-15.2) 100 75.06 (-16.75) 100 79.58 (-2.68) 100 87.97 (-2.30) 100 75.12 (-7.75)
UniTE + SAFE 77.81 (+0.92) 12.59 77.4 (+2.6) 3.82 92.04 (+0.23) 5.16 82.97 (+0.71) 10.35 90.78 (+0.51) 14.47 84.20 (+1.33)

Two-model ensembling (Qwen2.5+ EXAONE3.5)

GaC 76.01 (+1.13) 13.42 75.4 (+2.6) 2.31 92.65 (+0.84) 2.60 79.61 (+0.46) 8.15 90.27 (-0.17) 14.66 82.79 (+1.39)
GaC + SAFE 76.79 (+1.91) 7.52 76.4 (+3.6) 1.09 92.57 (+0.76) 1.26 79.66 (+0.51) 4.51 90.78 (+0.34) 8.31 83.24 (+1.84)

UniTE 53.75 (-21.13) 100 43.4 (-29.4) 100 77.03 (-14.78) 100 67.45 (-11.70) 100 72.61 (-17.83) 100 62.85 (-18.55)
UniTE + SAFE 76.54 (+1.66) 17.24 76.4 (+3.6) 4.69 92.72 (+0.91) 5.60 81.69 (+2.54) 14.03 90.78 (+0.34) 19.24 83.63 (+2.23)

Two-model ensembling (Internlm3 + EXAONE3.5)

GaC 76.36 (-0.53) 8.71 75.8 (+1.0) 1.14 90.75 (+0.30) 0.88 81.57 (-0.69) 6.32 90.78 (+0.34) 10.07 83.05 (+0.18)
GaC + SAFE 77.21 (+0.32) 5.94 77.2 (+2.4) 0.84 90.67 (+0.22) 0.72 81.54 (-0.72) 4.38 91.72 (+1.28) 6.92 83.67 (+0.80)

UniTE 72.51 (-4.38) 100 73.6 (-1.2) 100 89.31 (-1.14) 100 78.04 (-4.22) 100 88.23 (-2.21) 100 80.34 (-2.53)
UniTE + SAFE 76.08 (-0.81) 15.84 77.0 (+2.2) 4.72 90.75 (+0.30) 5.55 81.37 (-0.89) 13.75 90.27 (-0.17) 17.89 83.09 (+0.22)

Three-model ensembling (Internlm3 + Qwen2.5 + EXAONE3.5)

UniTE 73.92 (-2.97) 100 76.0 (+1.2) 100 91.28 (-0.53) 100 77.47 (-4.79) 100 87.20 (-3.24) 100 81.17 (-1.70)
UniTE + SAFE 77.60 (+0.71) 16.18 79.0 (+4.2) 4.12 92.04 (+0.23) 5.14 82.77 (+0.51) 12.74 91.55 (+1.11) 18.60 84.59 (+1.72)

Table 2: Ensembling results of models with substantially different tokenizations using CoT. E/T (%)
represents the percentage of ensembling during generation, computed as # Ensemble

Token (%). Numbers in
parentheses denote the performance gap relative to the best-performing individual model.

4.2 IMPLEMENTATION

KV Cache Implementation KV caching is essential for efficient generation in LLMs. However,
unlike standard generation settings where previously generated tokens remain fixed, ensemble gen-
eration may replace tokens during the ensembling process, leading to inconsistencies between the
cache and the actual input sequence. Consequently, prior approaches have typically avoided imple-
menting KV cache management, leaving it as future work. In contrast, our method updates each
model’s KV cache at the end of every ensemble step to align with the ensembled output, and uses
this updated cache in the next step, thereby ensuring cache consistency. We apply our KV cache
management to all baselines in our experiments. Please refer to Appendix D for details.

Hardware and Hyperparameters We configure our method as follows. Following the approach of
UniTE (Yao et al., 2025) for selecting a primary model, we select the model with the best average
performance as Mdraft. For probability sharpening, we apply the heuristic strategy in our main
results with the threshold λ set to 0.1. The drafter generates tokens in chunks of 5, and all models
use greedy decoding with a maximum output length of 2048. For ensembling, each model is loaded
onto a separate GPU, with all experiments conducted on RTX 3090 GPUs with FP16 precision and
FlashAttention-2 (Dao, 2023) enabled.

4.3 MAIN ANALYSIS

Results of ensembling models with substantially different tokenization schemes are shown in Ta-
ble 2. We also report E/T, the percentage of tokens that undergo ensembling over the entire sequence.

SAFE improves performance with less ensembling. Overall, SAFE generally outperforms indi-
vidual models, making existing ensemble methods practical even under CoT. As shown in Table 2,
the baseline UniTE struggles significantly under a CoT setting, consistently underperforming indi-
vidual models across all experiments. This is because it ensembles at every generation step, which
increases the frequency of OOV-like tokens and consequently corrupts probability distributions. In
contrast, applying SAFE enables UniTE to achieve the best performance in many cases (9/15) while
reducing the ensemble frequency (E/T) to fewer than 20% of tokens. This highlights the importance
of determining when to ensemble, particularly when generating long sequences with models that
use heterogeneous tokenizers. GaC, on the other hand, is more robust, since it performs ensembling
only when the main LLM’s probability falls below 0.5, yielding an unintended but beneficial ef-
fect of preventing the introduction of OOV-like tokens. Nevertheless, SAFE further improves GaC’s
performance while reducing the number of ensemble operations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Latency comparison of UniTE with and w/o SAFE (b) Latency comparison of GaC with and w/o SAFE (c) Latency of GaC w/o our KV caching

Figure 5: Latency comparison on MATH500. Our method shows similar latency compared to indi-
vidual models, even when generating long sequences. w/ KV indicates that our KV caching strategy
is applied. Note that the time-axis scale in (c) differs from (a) and (b).

One interesting finding is that much less ensembling is required in math datasets. When SAFE is
applied with UniTE, ensembling is triggered for only 4.85% of tokens on average in math datasets,
whereas it rises to 15.24% in general-domain datasets, which is nearly three times higher. We at-
tribute this to the nature of math responses, which often contain equations or structured expressions
with limited variation, leading to higher agreement among verifier models. In contrast, responses
in general-domain datasets allow for greater linguistic variability, which reduces agreement across
models and thus requires more frequent ensembling.

Increasing the number of models is not always optimal. As shown in Table 2, ensembling three
models does not consistently outperform two-model ensembling, whereas ensembling the top-2 best
performing models typically yields the strongest results. This suggests that when model rankings
are known, restricting ensembling to the top-2 models is both effective and efficient. On the other
hand, when rankings are unknown, ensembling multiple comparable models provides stable, though
not necessarily optimal, performance.

SAFE can be as fast as individual models. A key challenge in LLM ensembling is achieving in-
ference speed comparable to running a single model. As shown in Figure 5, SAFE closely matches
the latency of individual models when generating hundreds of tokens, regardless of the underlying
ensemble method. Moreover, under the same computational resources, it significantly improves effi-
ciency over existing ensemble methods when generating long responses. This efficiency stems from
three properties of our approach. First, only Mdraft is responsible for autoregressive generation. Sec-
ond, SAFE substantially reduces the number of ensembling. Third, our KV caching strategy further
improves efficiency, as illustrated in Figure 5(c). We provide more comparisons in Appendix E.

SAFE further improves performance when ensembling models with similar tokenization. We
further evaluate SAFE on models with highly similar tokenizations, where more than 99% of Oxford
5000 words are tokenized identically. As shown in Table 3, the performance drop of existing methods
is less severe than in Table 2. This is because highly aligned tokenization schemes greatly reduce the
occurrence of OOV-like tokens, leading to more stable ensembling. Nevertheless, applying SAFE
to existing methods consistently improves performance, yielding over a 9% gain on MATH500
compared to the best-performing individual model.

4.4 ABLATION STUDY

We conduct ablation studies on probability sharpening strategy and the drafter’s sequence length.

Method MMLU-redux MATH500 GSM8K

Qwen2-7B 69.25 49.8 85.90
Llama3.1-8B 68.51 47.6 82.56

Two-model ensembling (Qwen2 + Llama3.1)

GaC 69.50 (+0.25) 52.4 (+2.6) 85.37 (-0.53)
GaC + SAFE 69.99 (+0.74) 59.4 (+9.6) 86.66 (+0.76)

UniTE 68.90 (-0.35) 54.0 (+4.2) 79.98 (-5.92)
UniTE + SAFE 69.71 (+0.46) 55.6 (+5.8) 84.08 (-1.82)

Table 3: Ensembling results of models with sim-
ilar tokenization.

Method MMLU-redux MATH500 GSM8K

Internlm3-8B 76.89 74.8 90.14
Qwen2.5-7B 74.88 72.4 91.81

Two-model ensembling (Internlm3 + Qwen2.5)

GaC 77.00 74.2 91.28
GaC + SAFE (w/o sharpen.) 77.11 75.2 91.36
GaC + SAFE 77.11 76.0 91.36
UniTE 73.39 59.6 75.06
UniTE + SAFE (w/o sharpen.) 77.53 76.6 91.66
UniTE + SAFE 77.81 77.4 92.04

Table 4: Ablation on probability sharpening
strategy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Sharpening Method MMLU-redux MATH500 GSM8K Avg.

UniTE + SAFE (no sharpening) 77.53 76.6 91.66 81.93
UniTE + SAFE (λ = 0.1) 77.81 77.4 92.04 82.42
UniTE + SAFE (λ = 0.2) 77.28 77.6 92.04 82.31
UniTE + SAFE (λ = 0.3) 77.21 76.6 91.89 81.90
UniTE + SAFE (geometric mean) 78.31 77.6 92.27 82.73

Table 5: Performance across different probability sharpening methods. UniTE + SAFE is used to
ensemble two models, Internlm3-8B-Instruct and Qwen2.5-7B-Instruct.

Probability sharpening As shown in Table 4, incorporating probability sharpening consistently
improves performance across benchmarks and ensemble methods. This result highlights that sharp-
ening is beneficial for choosing an accurate token when the ensemble distribution becomes overly
smooth. To further examine whether different sharpening strategies provide similar benefits, we
conduct additional experiments by varying the threshold λ in our heuristic sharpening method and
by applying the geometric mean. As demonstrated in Table 5, multiple sharpening strategies offer
consistent gains. The geometric mean generally yields strong performance, which we attribute to
its ability to gather the probability mass dispersed across multiple tokens by individual models and
concentrate it on the token with the highest consensus among the models. However, considering
that the arithmetic mean is widely used and often required, our heuristic strategy remains useful
in such settings. Therefore, we leave the specific choice of sharpening method as a flexible de-
sign decision, allowing each ensemble method to adopt the sharpening strategy most suitable for
its characteristics. The core takeaway is the importance of mitigating an overly smooth ensemble
distribution. Regarding the threshold λ used in our heuristic sharpening strategy, the performance
does not change drastically across different values. However, setting the threshold too high reduces
the number of tokens subject to sharpening, which in turn diminishes its effectiveness.

Drafter’s sequence length Table 6 presents the ablation on drafter sequence length. Generating
short sequences may fail to capture differences in tokenization across models, causing slight perfor-
mance drops. Conversely, generating overly long sequences does not harm accuracy but may reduce
efficiency, as shown in Figure 10. This is because longer sequences force the drafter to regener-
ate tokens more often from the ensembled token. A length of 5 provides the best balance between
accuracy and efficiency.

Method MMLU-redux GSM8K ARC-C

Internlm3-8B 76.89 90.14 90.27
Qwen2.5-7B 74.88 91.81 88.74

Two-model ensembling (Internlm3 + Qwen2.5)

UniTE + SAFE3 77.67 91.66 90.19
UniTE + SAFE5 77.81 92.04 90.78
UniTE + SAFE8 78.31 92.04 90.78

Table 6: Ablation on drafter sequence length. SAFEn denotes generation of n-token sequences.

5 CONCLUSION

In this paper, we examined probability-level ensemble methods for long-form generation and showed
that deciding when to ensemble is critical for both accuracy and efficiency. To this end, we pro-
posed SAFE, a generate-verify-ensemble framework that triggers ensembling only when safe and
necessary, guided by tokenization mismatch and consensus in models’ next-token probability distri-
butions. SAFE further improved accuracy via probability sharpening to mitigate smooth ensemble
distribution, and our KV cache implementation enabled much faster ensembling in long-form gener-
ation. Experiments demonstrated that SAFE outperforms existing methods with only a few ensem-
ble operations across widely used 7B-scale model combinations. We believe SAFE offers a practical
step toward making LLM ensembling both robust and deployable in real-world applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upadhyay,
Manaal Faruqui, and Mausam . Automix: Automatically mixing language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=e6WrwIvgzX.

Soyoung An, Kyunghoon Bae, Eunbi Choi, Kibong Choi, Stanley Jungkyu Choi, Seokhee Hong,
Junwon Hwang, Hyojin Jeon, Gerrard Jeongwon Jo, Hyunjik Jo, et al. Exaone 3.5: Series of large
language models for real-world use cases. arXiv e-prints, pp. arXiv–2412, 2024.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024.

Kris Cao and Laura Rimell. You should evaluate your language model on marginal likelihood
over tokenisations. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2104–2114, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.161. URL
https://aclanthology.org/2021.emnlp-main.161/.

Ivi Chatzi, Nina Corvelo Benz, Stratis Tsirtsis, and Manuel Gomez-Rodriguez. Canonical autore-
gressive generation. arXiv preprint arXiv:2506.06446, 2025.

Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-table conference improves
reasoning via consensus among diverse LLMs. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 7066–7085, Bangkok, Thailand, August 2024a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.381. URL https:
//aclanthology.org/2024.acl-long.381/.

Justin Chih-Yao Chen, Sukwon Yun, Elias Stengel-Eskin, Tianlong Chen, and Mohit Bansal.
Symbolic mixture-of-experts: Adaptive skill-based routing for heterogeneous reasoning. arXiv
preprint arXiv:2503.05641, 2025a.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. Transactions on Machine Learning Research, 2024b.

Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao,
Dingqi Yang, Hailong Sun, and Philip S Yu. Harnessing multiple large language models: A
survey on llm ensemble. arXiv preprint arXiv:2502.18036, 2025b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

11

https://openreview.net/forum?id=e6WrwIvgzX
https://openreview.net/forum?id=e6WrwIvgzX
https://aclanthology.org/2021.emnlp-main.161/
https://aclanthology.org/2024.acl-long.381/
https://aclanthology.org/2024.acl-long.381/
http://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Jiale Fu, Yuchu Jiang, Junkai Chen, Jiaming Fan, Xin Geng, and Xu Yang. Fast large language
model collaborative decoding via speculation. In Forty-two International Conference on Machine
Learning, 2025.

Renato Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang, and Guy Van den Broeck. Where is
the signal in tokenization space? In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 3966–3979, 2024.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
Claire Barale, Robert McHardy, Joshua Harris, Jean Kaddour, Emile Van Krieken, and Pasquale
Minervini. Are we done with MMLU? In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 5069–5096, Albuquerque, New Mexico, April 2025. Association for Computational Lin-
guistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.262. URL https:
//aclanthology.org/2025.naacl-long.262/.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Neha Gupta, Hari Narasimhan, Ankit Singh Rawat, Wittawat Jitkrittum, Aditya Menon, and Sanjiv
Kumar. Language model cascades: Token-level uncertainty and beyond. In International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
KgaBScZ4VI.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
Ensemble learning for heterogeneous large language models with deep parallel collaboration.
Advances in Neural Information Processing Systems, 37:119838–119860, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
els with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 14165–14178, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL https:
//aclanthology.org/2023.acl-long.792/.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Wenzhe Li, Yong Lin, Mengzhou Xia, and Chi Jin. Rethinking mixture-of-agents: Is mixing different
large language models beneficial? arXiv preprint arXiv:2502.00674, 2025.

12

https://arxiv.org/abs/2307.08691
https://aclanthology.org/2025.naacl-long.262/
https://aclanthology.org/2025.naacl-long.262/
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=KgaBScZ4VI
https://aclanthology.org/2023.acl-long.792/
https://aclanthology.org/2023.acl-long.792/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shum-
ing Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through
multi-agent debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
17889–17904, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.992. URL https://aclanthology.org/2024.
emnlp-main.992/.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Cong Liu, Xiaojun Quan, Yan Pan, Weigang Wu, Xu Chen, and Liang Lin. Cool-fusion: Fuse large
language models without training. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 10617–10627, 2025.

OpenAI. Gpt-o4 mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2024.

Oxford. The oxford 5000. https://www.oxfordlearnersdictionaries.com/
wordlists/oxford3000-5000, 2018.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to decode col-
laboratively with multiple language models. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 12974–12990, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.701. URL https:
//aclanthology.org/2024.acl-long.701/.

Chenglei Si, Weijia Shi, Chen Zhao, Luke Zettlemoyer, and Jordan Boyd-Graber. Getting MoRE out
of mixture of language model reasoning experts. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 8234–8249,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.552. URL https://aclanthology.org/2023.findings-emnlp.
552/.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 13003–13051, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.824. URL https://aclanthology.org/2023.
findings-acl.824/.

Tim Vieira, Tianyu Liu, Clemente Pasti, Yahya Emara, Brian Dusell, Benjamin Lebrun, Mario
Giulianelli, Juan Luis Gastaldi, Timothy J. O’Donnell, and Ryan Cotterell. Language mod-
els over canonical byte-pair encodings. In Aarti Singh, Maryam Fazel, Daniel Hsu, Simon
Lacoste-Julien, Felix Berkenkamp, Tegan Maharaj, Kiri Wagstaff, and Jerry Zhu (eds.), Pro-
ceedings of the 42nd International Conference on Machine Learning, volume 267 of Proceed-
ings of Machine Learning Research, pp. 61413–61443. PMLR, 13–19 Jul 2025. URL https:
//proceedings.mlr.press/v267/vieira25b.html.

13

https://aclanthology.org/2024.emnlp-main.992/
https://aclanthology.org/2024.emnlp-main.992/
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://www.oxfordlearnersdictionaries.com/wordlists/oxford3000-5000
https://www.oxfordlearnersdictionaries.com/wordlists/oxford3000-5000
https://arxiv.org/abs/2412.15115
https://aclanthology.org/2024.acl-long.701/
https://aclanthology.org/2024.acl-long.701/
https://aclanthology.org/2023.findings-emnlp.552/
https://aclanthology.org/2023.findings-emnlp.552/
https://aclanthology.org/2023.findings-acl.824/
https://aclanthology.org/2023.findings-acl.824/
https://proceedings.mlr.press/v267/vieira25b.html
https://proceedings.mlr.press/v267/vieira25b.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Junlin Wang, Jue WANG, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents
enhances large language model capabilities. In The Thirteenth International Conference
on Learning Representations, 2025a. URL https://openreview.net/forum?id=
h0ZfDIrj7T.

Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuai-
wen Leon Song, Ce Zhang, Bhuwan Dhingra, and James Zou. Think deep, think fast: Investigat-
ing efficiency of verifier-free inference-time-scaling methods. arXiv preprint arXiv:2504.14047,
2025b.

Ziyao Wang, Muneeza Azmat, Ang Li, Raya Horesh, and Mikhail Yurochkin. Speculate, then col-
laborate: Fusing knowledge of language models during decoding. In Forty-second International
Conference on Machine Learning, 2025c. URL https://openreview.net/forum?id=
XCBYIfu9Fs.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yangyifan Xu, Jinliang Lu, and Jiajun Zhang. Bridging the gap between different vocabularies for
llm ensemble. In North American Chapter of the Association for Computational Linguistics,
2024. URL https://api.semanticscholar.org/CorpusID:269149496.

Yangyifan Xu, Jianghao Chen, Junhong Wu, and Jiajun Zhang. Hit the sweet spot! span-level en-
semble for large language models. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend
Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Proceedings of the 31st Interna-
tional Conference on Computational Linguistics, pp. 8314–8325, Abu Dhabi, UAE, January 2025.
Association for Computational Linguistics. URL https://aclanthology.org/2025.
coling-main.555/.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024a. URL
https://arxiv.org/abs/2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Yuxuan Yao, Han Wu, Mingyang LIU, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, and Linqi
Song. Determine-then-ensemble: Necessity of top-k union for large language model ensembling.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=FDnZFpHmU4.

Yao-Ching Yu, Chun Chih Kuo, Ye Ziqi, Chang Yucheng, and Yueh-Se Li. Breaking the ceiling
of the LLM community by treating token generation as a classification for ensembling. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 1826–1839, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.99. URL
https://aclanthology.org/2024.findings-emnlp.99/.

14

https://openreview.net/forum?id=h0ZfDIrj7T
https://openreview.net/forum?id=h0ZfDIrj7T
https://openreview.net/forum?id=XCBYIfu9Fs
https://openreview.net/forum?id=XCBYIfu9Fs
https://api.semanticscholar.org/CorpusID:269149496
https://aclanthology.org/2025.coling-main.555/
https://aclanthology.org/2025.coling-main.555/
https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=FDnZFpHmU4
https://openreview.net/forum?id=FDnZFpHmU4
https://aclanthology.org/2024.findings-emnlp.99/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

In this section, we provide additional experimental details. We first present the exact prompts and
BBH subjects used in our experiments, followed by an explanation of baseline selection.

Prompts For multiple-choice questions, we follow the template in Figure 6. For math datasets, we
use the template in Figure 7.

Question: [question]
A. …
B. …
C. …
D. …
Provide your step-by-step reasoning first, and then print “The answer is (X)” where X is the
answer choice (one capital letter), at the end of your response.

Figure 6: Prompt template used for multiple-choice questions.

[question]
Please reason step by step, and put your final answer within \boxed{}.

Figure 7: Prompt template used for math problems.

BBH subjects In our main experiments (Table 2), we filter BBH subjects to include only sub-
jects where models exhibit comparable performance. This choice is based on the observation of
UniTE (Yao et al., 2025) that ensemble is meaningful when the base models exhibit similar perfor-
mance levels. The chosen 15 BBH subjects are: boolean expressions, causal judgement, date under-
standing, disambiguation qa, formal fallacies, logical deduction three objects, movie recommenda-
tion, navigate, penguins in a table, reasoning about colored objects, ruin names, salient translation
error detection, snarks, temporal sequences, and tracking shuffled objects three objects.

Baseline selection As our purpose is to enhance the stability and efficiency of probability-level
ensemble methods, we focus on recent, state-of-the-art probability-level ensemble methods as base-
lines. Specifically, we consider two representative methods that differ in when ensembling is per-
formed. The first is GaC, which ensembles only when the main LLM’s probability falls below 0.5.
To the best of our knowledge, this is the only work that does not ensemble at every token generation.
The second is UniTE, which achieves state-of-the-art performance among methods that ensemble
at every generation step. By applying SAFE to both methods, we demonstrate its versatility and its
effectiveness in determining when to ensemble.

B LIMITATIONS AND FUTURE WORK

SAFE does not always guarantee superior performance compared to the best-performing individual
model. As shown in Table 2, in a few cases SAFE performs slightly worse than the best-performing
individual models. We believe this is because the most confident token in the ensemble distribution is
not necessarily the optimal choice, as poorly performing models can distort the ensemble distribution
by elevating an incorrect token as the most confident. Nevertheless, SAFE generally outperforms
individual models by ensuring a stable ensemble distribution when applied to ensembles of models
with similar capability.

Additionally, our experiments are limited to non-reasoning models. Extending SAFE to reasoning
models (Yang et al., 2025; Guo et al., 2025) would be a promising direction, as reasoning models
have recently gained significant attention.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C CORRECTNESS OF ENSEMBLE DISTRIBUTION VERIFICATION

Theorem 1 guarantees that applying the ensemble distribution verification criteria does not compro-
mise accuracy.
Theorem 1. Let t<j denote the drafter’s prefix. For each verifier model LLMv ∈ Mver, let tvvj
be its next token, aligned such that tv<vj is the LLMv’s tokenization of t<j . Let Pv be the next-
token probability distribution of LLMv . Suppose (i) all verifier models unanimously agree on the
next token tvvj , where tvvj = argmaxt Pv(t | tv<j) for all v, or (ii) their average probability in tvvj
exceeds 1

2 :
1

|Mver ∪Mdraft|
∑

v∈Mver∪Mdraft

Pv(t
v
vj | t

v
<vj

) >
1

2
.

Then tj is the token selected by the ensemble, i.e., tj = argmaxt Pens(t | t<j), where Pens is the
ensemble distribution.

Proof. Define the ensemble distribution as average of all models’ distributions which is aligned with
Mdraft’s tokenization

Pens(tj | t<j) ≜
1

|Mver|+ 1

∑
v∈Mver∪Mdraft

Pv

(
tvvj | t

v
<vj

)
.

(i) Unanimous consensus across verifiers. If for all v ∈ Mver we have tvvj = argmaxt Pv(tj |
tv<vj), then for any token u,

Pv(t
v
vj | t

v
<vj) ≥ Pv(u | tv<vj) for all v.

Since tvvj is aligned with tj for all v, averaging over v preserves the inequality:

Pens(tj | t<j) =
1

|Mver|+ 1

∑
v

Pv(t
v
vj | t

v
<vj

) ≥ 1

|Mver|+ 1

∑
v

Pv(u | tv<vj) = Pens(u | t<j).

Hence, tj = argmaxt Pens(t | t<j).

(ii) Average probability above one half. Assume

Pens(tj | t<j) =
1

|Mver|+ 1

∑
v∈Mver∪Mdraft

Pv(t
v
vj
| tv<vj

) > 1
2 .

Because Pens(· | t<j) is a probability distribution,
∑

t Pens(t | t<j) = 1. Thus, no other token
u ̸= tj can have Pens(u | t<j) ≥ Pens(tj | t<j), since two distinct tokens cannot both exceed 1/2.
Therefore, tj = argmaxt Pens(t | t<j).

In either case (i) or (ii), the ensemble selects tj , proving the claim.

Drafter is Inc orr ectThe answer

LLM Ensemble with verifier models

Drafter
After

Ensemble
isThe answer Correct

KV cache

is Inc orr ectThe answer

isThe answer Correct …

Prune
cache

Figure 8: Our KV cache management. The cache is pruned to ensure alignment with the ensembled
output.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D DETAILS OF OUR KV CACHE MANAGEMENT

While KV caching is essential for generating long responses, it introduces a challenge in ensem-
ble settings because the token selected by the ensemble may differ from the tokens generated by
individual models. As illustrated in Figure 8, the drafter initially generates The answer is
Incorrect, but after ensembling the output becomes The answer is Correct. In this case,
the drafter’s KV cache, which contains states for the discarded token Incorrect, must be updated.
To resolve this inconsistency, we prune each participating model’s KV cache by a fixed buffer at the
end of every ensemble step. This pruning ensures that each model’s KV cache is consistent with the
actual input sequences before producing the next token.

E LATENCY COMPARISON

We present additional latency comparisons on general-domain datasets, where the proportion of
ensembled tokens is higher than in math datasets. Figure 9 shows the latency of SAFE on MMLU-
redux dataset. As illustrated, SAFE substantially reduces latency compared to existing ensemble
methods and achieves speeds comparable to individual models when generating hundreds of tokens,
even in general-domain tasks. These results highlight the practical applicability of SAFE, demon-
strating that it enables efficient ensembling across diverse domains.

(a) Latency comparison of UniTE with and w/o SAFE (b) Latency comparison of GaC with and w/o SAFE (c) Latency of GaC w/o our KV caching

Figure 9: Latency comparison on MMLU-redux. SAFE significantly improves efficiency on general-
domain tasks. Note that the time-axis scale in (c) differs from (a) and (b).

200 400 600 800 1000
Number of Tokens

0

20

40

60

80

100

Ti
m

e
(s

)

UniTE + SAFE
UniTE + SAFE
UniTE + SAFE

UniTE + SAFE
UniTE + SAFE
UniTE + SAFE

Figure 10: Latency comparison depending on the drafter’s sequence length, where n denotes the
drafter’s sequence length in SAFEn. Generating a longer sequence reduces efficiency. We use
MMLU-redux for the comparison.

F ENSEMBLING LARGER MODELS

Table 7 presents the results for ensembling 32B-scale models: Qwen2.5-32B-Instruct (Qwen et al.,
2025) and EXAONE-3.5-32B-Instruct (An et al., 2024), evaluated on MMLU-redux and MATH500.
For MMLU-redux, we report two variants: MMLU-redux∗ and the full MMLU-redux. MMLU-
redux∗ includes only 21 subjects, excluding 9 subjects where Qwen2.5-32B-Instruct largely out-
performs EXAONE-3.5-32B-Instruct by more than 10%, making ensembling less meaningful. As
shown in the table, applying SAFE to existing ensemble methods consistently outperforms the base-
lines, demonstrating its effectiveness on larger-scale models. The 9 subjects excluded in MMLU-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

redux∗ are: college chemistry, college mathematics, college physics, formal logic, electrical engi-
neering, high school chemistry, professional accounting, clinical knowledge, and econometrics.

Method MMLU-redux∗ MMLU-redux MATH500

Accuracy Accuracy Accuracy

Qwen2.5-32B 85.06 84.54 80.8
EXAONE3.5-32B 82.34 79.26 77.2

Two-model ensembling (Qwen2.5 + EXAONE3.5)

GaC 84.70 82.73 80.4
GaC + SAFE 85.11 83.79 81.6

Table 7: Results of ensembling 32B-scale models.

G RELAXED ACCEPTANCE THRESHOLD

In the Ensemble Distribution Verification step, the acceptance threshold can be relaxed to support
various scenarios, such as sampling or weighted combinations of probability distributions, rather
than simple averaging. First, if the ensemble distribution is defined as a weighted sum of the mod-
els’ next-token probability distributions, the second condition of Ensemble Distribution Verification
becomes:

• (Average probability above one half)
If
∑

LLMv∈Mver∪Mdraft
wvPv(t

v
vj | t

v
<vj

) > 1
2 , we skip ensembling at tj ,

where wv is the weight assigned to LLMv and
∑

v wv = 1.

If we wish to use sampling rather than greedy decoding, we can incorporate speculative sam-
pling (Leviathan et al., 2023) into our framework. In this case, we do not use the first condition
(Unanimous consensus among verifiers), and the second condition is relaxed as follows:

• (Average probability above one half)→ (Speculative sampling)
We skip ensembling at tj with probability min(1,

Pens(tj |t<j)
Pdraft(tj |t<j)

).

Similar to greedy decoding setup, Pens(tj |t<j) is derived as:

Pens(tj |t<j) =
1

|Mver ∪Mdraft|
∑

LLMv∈Mver∪Mdraft

Pv(t
v
vj | t

v
<vj),

where tvvj is the token corresponding to tj under LLMv’s tokenization.

H FURTHER DISCUSSION OF OOV-LIKE TOKENS

In this section, we provide a more detailed explanation about OOV-like tokens, which we use to de-
termine whether tokenization mismatch occurs. OOV-like tokens are defined as tokens that can cor-
rupt the next-token probability distribution of a participating model due to differences in tokeniza-
tion across models. As described in Section 3.2, whether a drafter token is classified as OOV-like is
determined by checking whether the token boundary up to that token aligns with the tokenization
boundaries of the verifiers.

One similar concept to OOV-like token is non-canonical tokenization, which refers to any tokeniza-
tion other than the canonical tokenization for a given model. Several studies (Cao & Rimell, 2021;
Geh et al., 2024; Chatzi et al., 2025; Vieira et al., 2025) have explored the use of non-canonical

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

tokenizations in generation within a single LLM. However, we highlight two important distinc-
tions between OOV-like tokens and non-canonical tokenizations. First, OOV-like tokens are defined
strictly at the token level. For example, consider the sequence “Hello, world”. If (Hello, world)
is the canonical tokenization, then alternative tokenizations such as (Hell, o, world) or (Hello,
w, orld) would be considered non-canonical tokenizations. However, we do not treat an entire

tokenization like (Hell, o, world) as an OOV-like case. Instead, we identify only the specific
mismatched tokens within such non-canonical tokenizations, such as Hell or w, as OOV-like to-
kens. Second, OOV-like tokens consider only the tokenizations used by the participating models,
whereas non-canonical tokenization is a broader concept that encompasses all possible tokeniza-
tions of a sequence. For example, if the participating models tokenize “Hello” in only one way,
(Hello), then no OOV-like token exists. In contrast, non-canonical tokenization includes any tok-
enization that can compose Hello, such as (H, e, l, l, o) or (He, ll, o), regardless of whether it is
produced by the models. These distinctions directly relate to how we handle tokenization mismatch.
We only assess mismatch at the token level, using only tokenizations of participating models. These
two distinctions clearly represent differences from prior work on non-canonical tokenization.

I COMPARISON WITH METHODS THAT ENSEMBLING AT A SPAN-LEVEL

We discuss how our method differs from methods that ensemble at a larger-granularity, such as
span-level ensembling, in addressing tokenization mismatch. Recently, several approaches (Xu et al.,
2025; Liu et al., 2025) have proposed ensembling at a larger granularity, such as a set of words, to
bypass the tokenization mismatch problem when ensembling LLMs that use heterogeneous tokeniz-
ers. These methods avoid tokenization mismatch by not performing ensembling at the token level
and instead ensemble only at the span level. As a result, ensembling cannot occur inside a span,
thereby sacrificing token-level probability information. In contrast, our method addresses tokeniza-
tion mismatch within token-level ensembling. Our method resolves OOV-like issues by identifying
token-level positions in the drafter’s tokens where no mismatch occurs, and only these positions
are considered valid candidates for ensembling. This allows ensembling to take place within a span
while avoiding OOV-like issues, providing greater flexibility in where ensembling can occur.

J LLM USAGE

We used the LLM solely for the purpose of polishing the writing.

K QUALITATIVE RESULTS

In this section, we present qualitative results of SAFE. Tables 8 to 11 compare responses from
existing ensemble methods with those obtained when SAFE is applied. As shown in Table 8, SAFE
can successfully yield the correct solution even when individual models fail to produce the correct
answer or reasoning. Tables 8 and 11 further illustrate how existing ensemble methods suffer from
repeated generation of erroneous tokens due to the introduction of OOV-like tokens. Finally, Tables 9
and 10 highlight cases where existing ensemble methods generate incorrect reasoning that leads to
wrong answers.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Question Sofia and Tess will each randomly choose one of the 10 integers from 1 to 10.
What is the probability that neither integer chosen will be the square of the other?
(A) 0.64 (B) 0.72 (C) 0.81 (D) 0.95

Answer (D) 0.95

Internlm3-
8B-Instruct

To determine the probability that neither integer chosen by Sofia and Tess will
be the square of the other, we can follow these steps: 1. Identify the squares of
the integers from 1 to 10: The squares of the integers from 1 to 10 are: [12 =
1, 22 = 4, 32 = 9] So, the squares are 1, 4, and 9. 2. Determine the total number
of possible outcomes: Each of Sofia and Tess can choose any of the 10 integers,
so the total number of possible outcomes is: [10× 10 = 100] 3. Count the number
of outcomes where one integer is the square of the other: We need to count the
pairs ((a, b)) where (a) is the square of (b) or (b) is the square of (a). The pairs
are: [(1, 1), (1, 4), (1, 9), (4, 1), (4, 4), (4, 9), (9, 1), (9, 4), (9, 9)] There are 9 such
pairs. 4. Calculate the number of outcomes where neither integer is the square of
the other: [100 − 9 = 91] 5. Calculate the probability: [91

100 = 0.91] However,
none of the provided answer choices match 0.91. ... The answer is C.

Qwen2.5-
7B-Instruct

To solve this problem, we need to determine the probability that neither of the two
chosen integers is the square of the other. First, let’s identify the squares of integers
from 1 to 10: (12 = 1), (22 = 4), (32 = 9) So, the only pairs of numbers in the
range from 1 to 10 where one number is the square of the other are:(1, 1), (4, 2),
(4, 4), (9, 3), (9, 9) There are 5 such pairs. Since each person can independently
choose any of the 10 integers, there are a total of (10 × 10 = 100) possible
outcomes when both Sofia and Tess make their choices. Next, we calculate the
number of outcomes where at least one of the chosen integers is the square of the
other. This includes the 5 pairs listed above and their reverses (since if (4, 2) is
a pair, so is (2, 4)). However, since (1, 1), (4, 4), and (9, 9) are symmetric, they
are already counted once. Therefore, we have:(1, 1) - 1 way, (4, 2) and (2, 4) - 2
ways, (4, 4) - 1 way, (9, 3) and (3, 9) - 2 ways, (9, 9) - 1 way. This gives us a total
of (1 + 2 + 1 + 2 + 1 = 7) pairs where one number is the square of the other.
Thus, the number of outcomes where neither integer is the square of the other is
(100 − 7 = 93). The probability that neither integer chosen will be the square
of the other is therefore: [93

100 = 0.93] However, this does not match any of the
provided options exactly. ... Given the options, the closest match to our calculated
probability of 0.93 is 0.95. The answer is (D).

UniTE To determine the probability that neither integer chosen by SofÃa and Tess will
be the square of the other, we need to follow these steps: 1. Identify the squares
of the integers from 1 to 10: The squares of the integers from 1 to 10 are: [12 =
1, 22 = 4, 32 = 9] So, the squares are 1, 4, and 9. 2. Determine the total number
of possible outcomes: Each of SofÃÃÃÃÃ...

UniTE +
SAFE

To determine the probability that neither integer chosen by Sofia and Tess will be
the square of the other, we can follow these steps: 1. Identify the squares of the
integers from 1 to 10: The squares of the integers from 1 to 10 are: [12 = 1, 22 =
4, 32 = 9] So, the squares are 1, 4, and 9. 2. Determine the total number of possible
outcomes: Each of Sofia and Tess can choose any of the 10 integers. Therefore,
the total number of possible outcomes is: [10 × 10 = 100] 3. Count the number
of outcomes where one integer is the square of the other: We need to count the
pairs ((a, b)) where (a) is the square of (b) or (b) is the square of (a). The pairs are:
[(1, 1), (4, 2), (2, 4), (9, 3), (3, 9)] There are 5 such pairs. 4. Calculate the number
of outcomes where neither integer is the square of the other: [100 − 5 = 95]
5. Calculate the probability: [95

100 = 0.95] Therefore, the probability that neither
integer chosen will be the square of the other is D.

Table 8: Response comparisons of UniTE and UniTE + SAFE. Some verbose outputs are omitted
due to space constraints.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Question Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for $5.00. How
much does he spend on yogurt over 30 days?

Answer 75

Qwen2.5-
7B-Instruct

Let’s break down the problem step by step to find out how much Terry spends on
yogurt over 30 days. 1. Determine the number of yogurts Terry eats in 30 days:
Terry eats 2 yogurts per day. Over 30 days, he will eat (2 × 30 = 60) yogurts. 2.
Calculate how many sets of 4 yogurts are in 60 yogurts: Since the yogurts are sold
in sets of 4 for $5.00, we need to find out how many such sets are in 60 yogurts.
The number of sets is (604 = 15). 3. Calculate the total cost: Each set of 4 yogurts
costs $5.00. For 15 sets, the total cost is (15 × 5 = 75) dollars. Therefore, the
amount Terry spends on yogurt over 30 days is 75

EXAONE-
3.5-7.8B-
Instruct

To determine how much Terry spends on yogurt over 30 days, let’s break down
the problem step by step: 1. Calculate Daily Yogurt Consumption: - Terry eats 2
yogurts per day. 2. Determine Total Yogurt Consumption Over 30 Days: Over 30
days, Terry will consume (2 yogurts/day× 30 days = 60 yogurts). 3. Understand
the Sale Price: The yogurts are sold at a rate of 4 yogurts for $5.00. 4. Calculate
the Cost Per Yogurt: The cost per yogurt is (5.00 dollars

4 yogurts = 1.25 dollars/yogurt).
5. Calculate Total Cost for 60 Yogurts: If each yogurt costs $1.25, then for 60
yogurts, the total cost will be (60 yogurts × 1.25 dollars/yogurt = 75 dollars).
Therefore, the total amount Terry spends on yogurt over 30 days is 75

UniTE To determine how much Terry spends on yogurt over 30 days, we can break down
the problem into several steps: 1. Calculate the daily yogurt consumption in terms
of the sale unit: Terry eats 2 yogurts per day. The sale is 4 yogurts for $5.00.
Therefore, Terry consumes (24 = 0.5) of a sale unit per day. 2. Determine the daily
cost based on the sale price: Since 4 yogurts cost $5.00, 1 yogurt costs (5.004 =
1.25). - Therefore, 0.5 of a sale unit (which is equivalent to 2 yogurts) costs (0.5×
1.25 = 0.625). So, Terry spends $0.625 per day on yogurt. 3. Calculate the total
cost over 30 days: Terry spends $0.625 per day. Over 30 days, the total cost is
(0.625 × 30 = 18.75). Therefore, the total amount Terry spends on yogurt over
30 days is 18.75

UniTE +
SAFE

To determine how much Terry spends on yogurt over 30 days, we can break down
the problem into several steps: 1. Calculate the daily yogurt consumption cost:
Terry eats 2 yogurts per day. The sale price is 4 yogurts for $5.00. To find the cost
per yogurt, we divide the total cost by the number of yogurts: Cost per yogurt =
5.00
4 = 1.25 dollars per yogurt. Since Terry eats 2 yogurts per day, the daily cost

is: Daily cost = 2 × 1.25 = 2.50 dollars 2. Calculate the total cost over 30 days:
Terry spends $2.50 per day on yogurt. Over 30 days, the total cost is: Total cost =
2.50 × 30 = 75.00 dollars Therefore, the total amount Terry spends on yogurt
over 30 days is 75.00

Table 9: Response comparisons of UniTE and UniTE + SAFE.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Question Compute 992 + 99 + 1 in your head.

Answer 9901

Internlm3-
8B-Instruct

To compute 992+99+1 in my head, I can use algebraic manipulation to simplify
the expression. Let’s start by rewriting the expression in a more convenient form.
First, let’s denote x = 99. Then the expression becomes: x2 + x+ 1. Notice that
this expression can be rewritten using the identity for the square of a binomial:
x2 + x + 1 = (x + 1)2 − x. Substituting x = 99 back into the expression, we
get: 992 + 99 + 1 = (99 + 1)2 − 99. Simplifying inside the parentheses, we
have: 99 + 1 = 100. So the expression becomes: 1002 − 99. Now, we know that
1002 = 10000, so the expression simplifies to: 10000 − 99 = 9901. Therefore,
the value of 992 + 99 + 1 is 9901

Qwen2.5-
7B-Instruct

To compute 992+99+1 in my head, I will break it down into simpler steps. First,
let’s calculate 992: [992 = (100−1)2 = 1002−2·100·1+12 = 10000−200+1 =
9801.] Next, we add 99 to the result: 9801 + 99 = 9900. Finally, we add 1 to the
result: 9900 + 1 = 9901. So, the final answer is 9901

GaC To compute 992+99+1 in my head, I can use algebraic manipulation to simplify
the expression. Let’s start by rewriting the expression in a more convenient form.
First, let’s denote x = 99. Then the expression becomes: x2 + x + 1. Now, we
need to compute x2 + x+ 1 for x = 99. Notice that x2 + x+ 1 can be rewritten
using the identity for the sum of cubes: x2 + x + 1 = (x + 1)2 − x. However, a
simpler approach is to recognize that x2+x+1 can be expressed as: x2+x+1 =
(x+1)2−x+x = (x+1)2. So, we have: 992+99+1 = (99+1)2 = 1002. Now,
we just need to compute 1002: 1002 = 10000. Therefore, the value of 992+99+1

is 10000

GaC +
SAFE

To compute 992+99+1 in my head, I can use algebraic manipulation to simplify
the expression. Let’s start by rewriting the expression in a more convenient form.
First, let’s denote x = 99. Then the expression becomes: x2 + x + 1. Now, we
can use the identity for the square of a binomial to rewrite x2+x+1. Notice that:
x2 + x + 1 = (x + 1)2 − x. Substituting x = 99 back into the expression, we
get:992 +99+ 1 = (99+ 1)2 − 99. Simplifying inside the parentheses, we have:
99 + 1 = 100. So the expression becomes: 1002 − 99. Next, we compute 1002:
1002 = 10000. Now, we subtract 99 from 10000: 10000− 99 = 9901. Therefore,
the value of 992 + 99 + 1 is 9901

Table 10: Response comparisons of GaC and GaC + SAFE.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Question At 25°C, the maximum amount of PbI2 that can be dissolved in 1.00 L of pure
water is 1.0 mmol. Assuming complete dissociation, the solubility product, Ksp,
for lead iodide at 25°C is (A) 1.0 × 10−3, (B) 1.0 × 10−6, (C) 1.0 × 10−9, (D)
4.0× 10−9

Answer (D)

Qwen2.5-
7B-Instruct

To solve this problem, we need to understand the relationship between the sol-
ubility of a compound and its solubility product constant Ksp. 1. Dissociation
of Lead Iodide PbI2: PbI2(s) ⇌ Pb2+(aq) + 2I−(aq) 2. Solubility in Water:
Given that 1.0 mmol (or 1.0× 10−3mol) of PbI2 dissolves in 1.00 L of pure wa-
ter, we can determine the concentrations of the ions: The concentration of Pb2+

is 1.0 × 10−3M. The concentration of I− is 2 × 1.0 × 10−3 = 2.0 × 10−3M.
3. Solubility Product Constant Ksp: The expression for the solubility product
constant Ksp for PbI2 is: Ksp = [Pb2+][I−]2 Substituting the concentrations:
Ksp = (1.0 × 10−3)(2.0 × 10−3)2 = (1.0 × 10−3)(4.0 × 10−6) = 4.0 × 10−9

Therefore, the solubility product, Ksp, for lead iodide at 25°C is 4.0× 10−9. The
answer is D.

EXAONE-
3.5-7.8B-
Instruct

To determine the solubility product constant Ksp for lead iodide PbI2, we need
to follow these steps: 1. Understand the Dissociation Reaction: Lead iodide dis-
sociates in water as follows: PbI2 → Pb2+ + 2I− 2. Determine the Concentra-
tions: Given that the maximum amount of PbI2 that can dissolve in 1.00 L of
water is 1.0 mmol, we can find the molar concentrations of Pb2+ and I− ions
produced. Since 1 mmol of PbI2 dissociates into 1 mmol of Pb2+ and 2 mmol
of I−: [Pb2+] = 1.0 mmol

1.0 L = 1.0 mmol/L = 1.0 × 10−3 M, [I−] = 2×1.0 mmol
1.0 L =

2.0 mmol/L = 2.0 × 10−3 M 3. Write the Expression for Ksp: The solubility
product constant expression for PbI2 is: Ksp = [Pb2+] · [I−]2 4. Substitute the
Concentrations into the Ksp Expression: Ksp = (1.0× 10−3) · (2.0× 10−3)2 =
(1.0× 10−3) · (4.0× 10−6) = 4.0× 10−9 Therefore, the solubility product con-
stant Ksp for lead iodide PbI2 at 25°C is 4.0× 10−9. The answer is (D).

GaC To solve this problem, we need to understand the relationship between the sol-
ubility product constant Ksp and the solubility of a compound. 1. Identifing
the Dissociation Equation: Lead(II) iodide PbI2 dissociates in water as follows:
PbI2(s) ⇌ Pb2+(aq) + 2I−(aq) 2. Expressing Solubility in Terms of Concentra-
tions: Let s be the molar solubility of PbI2. This means that when PbI2 dissolves,
it produces s moles of PbÂ2â ‘gº per liter of solution and 2s moles of Iâââââ...

GaC +
SAFE

To solve this problem, we need to understand the relationship between the sol-
ubility product constant Ksp and the solubility of a compound. For lead iodide
PbI2, the dissociation in water can be represented as: PbI2 ⇌ Pb2+ + 2I− Given
that the maximum amount of PbI2 that can be dissolved in 1.00 L of pure water
is 1.0 mmol (which is 1.0× 10−3mol, we can determine the concentrations of the
ions in solution. 1. Determine the concentration of Pb2+ ions: Since 1.0 mmol of
PbI2 dissociates into 1.0 mmol of Pb2+ ions, the concentration of Pb2+ ions is:
[Pb2+] = 1.0 × 10−3M 2. Determine the concentration of I− ions: Each mole
of PbI2 dissociates into 2 moles of I− ions. Therefore, the concentration of I−
ions is: [I−] = 2 × 1.0 × 10−3M = 2.0 × 10−3M 3. Calculate the solubility
product constant Ksp: The expression for Ksp for PbI2 is: Ksp = [Pb2+][I−]2.
Substituting the concentrations we found: Ksp = (1.0 × 10−3)(2.0 × 10−3)2 =
(1.0× 10−3)(4.0× 10−6) = 4.0× 10−9 Therefore, the solubility product, Ksp,
for lead iodide at 25°C is 4.0× 10−9. The answer is D.

Table 11: Response comparisons of GaC and GaC + SAFE. Some verbose outputs are omitted due
to space constraints.

23

	Introduction
	Related Work
	LLM Ensemble
	Ensemble after inference
	Ensemble during inference

	Speculative Decoding

	SAFE: Toward Stable and Fast LLM Ensembling
	Generate
	Verify
	Ensemble: Sharpening Ensemble Distribution

	Experiments
	Experimental Settings
	Implementation
	Main Analysis
	Ablation Study

	Conclusion
	Experimental details
	Limitations and Future Work
	Correctness of Ensemble Distribution Verification
	Details of Our KV Cache Management
	Latency Comparison
	Ensembling larger models
	Relaxed Acceptance Threshold
	Further Discussion of OOV-like Tokens
	Comparison with methods that ensembling at a span-level
	LLM usage
	Qualitative results

