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ABSTRACT

The recently proposed maximal coding rate reduction principle (MCR2) offers a
promising theoretical framework for interpreting modern deep networks through
the lens of data compression and discriminative representation. It maps high-
dimensional multi-class data into mutually orthogonal linear subspaces, with each
subspace capturing as many structural details of its class as possible. In this work,
we show that such structural maximization not only increases model sensitivity to
feature noise but also hinders generalization. In contrast, we argue that retaining
only the single most discriminative structural component per class improves both
generalization and robustness to feature noise, while preserving the desirable
properties of MCR2, such as robustness to label noise and resistance to catastrophic
forgetting. We formalize this approach as a new framework termed SiMCoding
and validate it extensively across supervised learning, white-box architectures, and
incremental learning on diverse datasets. The superior performance of SiMCoding
highlights its potential as a strong alternative for medium-scale classification tasks,
particularly under label and feature noise.

1 INTRODUCTION

Numerous research efforts have sought to demystify the black-box nature of deep learning. Among
these, an influential direction is the principle of Maximal Coding Rate Reduction (MCR2) (Yu
et al., 2020), which reformulates the learning objective to explicitly capture the low-dimensional
structures underlying high-dimensional data, rather than focusing primarily on label fitting. MCR2 is
grounded in the manifold hypothesis, which posits that although data points x ∈ RD are observed in
a high-dimensional ambient space, their variability is largely confined to a union of low-dimensional
submanifolds, M =

⋃K
i=1 Mi, as illustrated in Figure 1 (Hein & Audibert, 2005; Spigler et al.,

2019; Pope et al., 2021; Wright & Ma, 2021). Each submanifold Mi corresponds to a semantic class
or cluster, and the central objective of MCR2 is to faithfully uncover and effectively organize these
structures in the feature space.

As a foundational concept in information theory, the lossy coding rate R(Z, ϵ) quantifies the volume
of a distribution or its finite set Z, up to a precision ϵ (Rissanen, 1998; Cover, 1999; Ma et al., 2007):
a lower coding rate indicates a more compact set. What distinguishes the coding rate from other
classical concepts in information theory, such as entropy and mutual information, is that it serves as a
well-defined measure of distribution compactness even for degenerate distributions, which commonly
arise in data with relatively low intrinsic dimensionality. Formally, in a K-class classification task,
let the features of the i-th class be denoted by Zi ∈ Rd×mi , and define the overall feature set as
Z = ∪K

i=1Zi. The MCR2 framework aims to maximize the volume of the overall feature set Z while
simultaneously minimizing the volumes of the individual cluster sets Zi. This simple mechanism
effectively maps high-dimensional data into a compact and structured low-dimensional representation,
as depicted in Figure 1:

1. Discriminative representation: Features of each class Zi are compressed into a low-dimensional
linear subspace Si, and these subspaces are mutually orthogonal, i.e., ZiZ

⊤
j = 0 for all i ̸= j.

2. Diverse representation: The dimensionality (or variance) of features of each class is maximized
subject to the constraint of the representation space Rd, i.e.,

∑K
i=1 rank(Zi) = d.

1
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Figure 1: (Left) MCR2 maps data xi, typically distributed over nonlinear low-dimensional subman-
ifolds Mi, onto mutually orthogonal linear subspaces Si with maximal dimensionality, whereas
SiMCoding enforces each subspace to be one-dimensional. (Middle and Right) Training and test
accuracy on CIFAR-20 with 20% randomly corrupted labels.

Note that, to achieve the second property, the features must be encoded with high precision ϵ, enabling
the model to capture as many structural details as possible and thereby allowing each class-specific
feature set Zi to attain its maximal dimensionality, i.e., maximal structural components.

Owing to its simplicity and conceptual interpretability, MCR2 has emerged as an influential framework
in representation learning and has been applied across diverse settings. It has inspired the design of
interpretable white-box network architectures (Chan et al., 2022; Pai et al., 2023; Yu et al., 2024a;
Yang et al., 2024) and efficient self-attention modules (Wu et al., 2024). It has also been explored in
incremental learning (Wu et al., 2021; Tong et al., 2023), generative modelling (Dai et al., 2022), and
unsupervised learning (Tong et al., 2022; Chu et al., 2024; Wu et al., 2025), among others.

However, in this work, we question whether it is truly necessary for a model to maximize structural
details across different learning settings. In unsupervised learning, where labels are unavailable, it is
natural for the model to retain as much structural information as possible in order to deeply uncover
the underlying structure and subsequently cluster the samples. In contrast, in supervised learning,
where labels provide guidance, preserving only a single discriminative structural component may
be sufficient for accurate classification. As a thought experiment, consider classifying images of
the digits 0 and 1. Recognizing their overall outlines is sufficient for the task, whereas fine-grained
structural details—such as the precise curvature of a 0 or the thickness of a 1—are unnecessary. Even
though in practice the features learned by neural networks are often highly abstract and difficult to
interpret directly (Zeiler & Fergus, 2014; Chen et al., 2023), this example illustrates that in supervised
classification tasks, high-level features may only need to preserve a single discriminative structural
component rather than all structural details of the input.

The main contributions of this work are summarized as follows:

• While MCR2 has achieved remarkable success, particularly in unsupervised learning, we
find that in supervised classification its pursuit of maximal structural detail leads to severe
underfitting and poor generalization. As shown in Figure 1, MCR2 struggles to fit CIFAR-20
dataset (with 20% randomly corrupted labels) (Krizhevsky et al., 2009) effectively and
exhibits weak generalization. Moreover, it is highly vulnerable to input noise (Table 2).

• To address these issues, we propose learning only the single most discriminative structural
component for each class, rather than maximizing all structural detailsza. We term this
approach Single-component Maximal Coding rate reduction (SiMCoding).
Specifically, we first provide a theoretical analysis showing how the coding precision ϵ deter-
mines the extent to which the model emphasizes structural details, formally corresponding
to the varying dimensionality of each class subspace Si. This analysis further reveals that ϵ
can be pre-specified to ensure that each class attains its minimal one dimensional subspace.
As an important byproduct, this theory removes the need to tune ϵ as a hyperparameter,
thereby significantly reducing the burden of applying SiMCoding.

• We validate SiMCoding across a wide range of datasets and learning settings. Experiments
show that SiMCoding matches the fitting ability and generalization of the widely used cross-
entropy framework, while exhibiting substantially stronger robustness to label noise. As
shown in Figure 1, on CIFAR-20 with 20% randomly corrupted labels, the training accuracy
of SiMCoding plateaus near 80%, indicating that it fits only the correctly labeled samples.
Moreover, despite adopting the opposite strategy of retaining only a single structural com-
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ponent per class, SiMCoding preserves key properties of MCR2, including robustness to
catastrophic forgetting in incremental learning setting.

• We analyse the computational complexity of SiMCoding and conclude that, despite potential
limitations, it remains a strong alternative for classification on datasets with a moderate
number of classes (e.g., K ⩽ 100), particularly in the presence of feature or label noise.

2 METHOD

Representation learning and the MCR2 principle. We are given data X = [x1,x2, . . . ,xm] ∈
RD×m consisting of m samples from K classes. The aim of deep representation learning is to
transform high-dimensional data into low-dimensional features that capture intrinsic properties such as
structure and geometry to facilitate downstream tasks such as classification. A widely used viewpoint,
often referred to as the manifold hypothesis, suggests that each class lies on a low-dimensional
submanifold Mi, and that the entire dataset is concentrated near the union M = ∪K

i=1Mi (Hein &
Audibert, 2005; Spigler et al., 2019; Pope et al., 2021; Wright & Ma, 2021). This motivates seeking
features zi ∈ Rd with d ≪ D that retain this structure while discarding redundant variability. To
obtain such features, one typically employs a nonlinear map fΘ : RD → Rd parametrized by neural
network weights Θ:

x 7→ z = fΘ(x),

and collects the feature matrix Z = [z1, . . . ,zm] ∈ Rd×m. Desirable features should not only align
with the underlying class structure but also admit a compact, structured and interpretable form.

The principle of Maximal Coding Rate Reduction (MCR2) (Yu et al., 2020; Chan et al., 2022)
provides an information-theoretic criterion for achieving this goal. It simultaneously maximizes
the overall volume of all features to encourage separation across classes (expansion) and minimizes
the average volume of each class to promote compactness (compression). Specifically, let Π =
{Πi ∈ Rm×m}Ki=1 denote a set of diagonal matrices, where each diagonal entry Πi(j, j) specifies
the probability that sample j belongs to class i. The MCR2 framework then seeks to optimise

max
Z,Π

∆R(Z,Π, ϵ) = 1
2 log det

(
I + d

mϵ2ZZ⊤)︸ ︷︷ ︸
Expansion: R(Z,ϵ)

−
K∑
i=1

tr(Πi)
2m log det

(
I + d

tr(Πi)ϵ2
ZΠiZ

⊤
)

︸ ︷︷ ︸
Compression: Rc(Z,Π,ϵ)

.
(1)

In this formulation, the membership matrices Π may either be fixed by labels (supervised case) or
optimised jointly with Z (unsupervised case). This flexibility enables MCR2 to unify both paradigms
within a single framework. The coding precision ϵ > 0 is typically and heuristically chosen to be
very small so that all fine structural details of data are preserved in learned features.

Coding rate. A central component of MCR2 is the coding rate R(·, ϵ), which quantifies the effective
volume of a distribution or its finite sample set under a prescribed distortion level ϵ > 0 (Rissanen,
1998; Cover, 1999; Ma et al., 2007). Formally, for each z ∈ Z, let its reconstruction ẑ satisfy

E[∥z − ẑ∥] ≤ ϵ,

the average number of binary bits required to encode the feature set Z is given by R(Z, ϵ) =
1
2 log det

(
I + d

mϵ2ZZ⊤) . This expression admits a clear geometric interpretation: it represents the
volume of the subspace spanned by Z, measured in units of ϵ-balls (i.e., d-dimensional spheres of
radius ϵ). Intuitively, a larger coding rate indicates that more ϵ-balls are required to cover the feature
subspace, implying a richer feature set. This closed-form formulation, originally derived for Gaussian
data supported on a subspace (Ma et al., 2007), offers both computational tractability and geometric
as well as statistical interpretability within the MCR2 framework.

Normalization and geometric view. The coding rate is closely related to the volume spanned by the
features. If the features are arbitrarily scaled, the measured volumes are no longer comparable across
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classes. To ensure fairness, Yu et al. (2020) normalise the scale of each class such that ∥Zi∥2F = mi,
a condition that can be conveniently enforced using batch normalization during training.

From this perspective, the two terms in equation 1 provide a natural geometric interpretation. The
expansion term R(Z, ϵ) measures the overall volume of the feature set Z; maximizing it encourages
the features to spread out and occupy as large a region of the space Rd as possible. The compression
term Rc(Z,Π, ϵ) measures the volume of features within each class; minimizing it reduces the
within-class spread, pulling samples of the same label into a compact, low-dimensional cluster.

Yu et al. (2020); Chan et al. (2022) showed that optimizing the overall objective yields representations
with two key properties: (i) features within each class concentrate on a linear subspace that reflects
the underlying submanifold, while subspaces of different classes tend toward orthogonality, thereby
enhancing discriminability; and (ii) with sufficiently high coding precision (e.g., ϵ2 = 0.5), the
subspaces collectively expand to span the full dimensionality of the feature space Rd, i.e.,

rank(Z) =
∑K

i=1
rank(Zi) =

∑K

i=1
di = d,

so that each class preserves the maximal possible structural components in its feature set Zi.

However, we demonstrate that in the supervised setting, blindly maximizing structural details within
MCR2 can make the model overly sensitive to input noise (Table 2) and may even lead to severe
underfitting and poor generalization (Figure 1 and Table 1). To mitigate these issues, we argue
that it is sufficient for MCR2 to capture only the most discriminative structural component of each
class, i.e., rank(Zi) = 1. This view resonates with the information bottleneck theory (Tishby &
Zaslavsky, 2015; Hu et al., 2024), which states that the role of a neural network is to extract features
Z that retain only the minimal sufficient information relevant to the target labels while discarding
irrelevant details. In a similar spirit, but from a different perspective, the MCR2 framework aims to
capture discriminative low-dimensional structures; thus, in the supervised case, it may be sufficient to
preserve only the minimal structural information required for class separation.

To learn single-component discriminative representations via MCR2, we present Theorem 1 to
characterize how the coding precision ϵ influences the dimensionality of each subspace:
Theorem 1. Let Z∗ = Z∗

1 ∪ · · · ∪Z∗
K be the optimal solution to equation 1. Define d⋆i =

√
mi

m
d
ϵ2 .

Then the following properties hold:

• Discriminativeness: Features from different classes reside in mutually orthogonal, low-
dimensional linear subspaces; that is, (Z∗

i )
⊤Z∗

j = 0 for all i ̸= j.

• Bounded Dimensionality: Each class-specific subspace has dimensionality di ⩽ d⋆i . Fur-
thermore, for each class, the first di − 1 singular values of Z∗

i are identical.

This theorem implies that the dimensionality di of each class-specific subspace cannot exceed d⋆i .
Recall that ∥Zi∥2F = mi =

∑min(d,mi)
j=1 σ2

j where σj denotes the j-th singular value of Zi. As d⋆i
decreases, rank(Zi) also decreases, causing the energy to concentrate on fewer singular values. This,
in turn, highlights the significance of the remaining structural components. Now we can encourage
each class to collapse toward its minimal one-dimensional subspace, i.e., di = rank(Zi) → 1.
It should be emphasized that when the data are imbalanced, a uniform coding precision ϵ cannot
simultaneously enforce all subspaces to be one-dimensional, since the dimensionality of each class
subspace is also influenced by its proportion in the dataset, i.e., mi

m . Therefore, we require the weaker
condition min1≤i≤K di ⩾ 1. From this, an upper bound for ϵ can be readily obtained:

ϵ2 ⩽ ϵ2U = min
1≤i≤K

d

√
mi

m
.

Theoretically, the feature set Zi of each class can be constrained to retain only a single discriminative
structural component by setting ϵ = ϵU . However, such a constraint may be overly restrictive in
practice, especially for complex deep neural networks with nonlinear objectives, where perfect
convergence is rarely attainable on challenging datasets. For instance, Zhu et al. (2021) showed
that the global optimality conditions for cross-entropy with certain regularization terms require the
existence of at least one redundant dimension in the representation space, along which the gradient can
escape local minima. Motivated by this analysis, we advocate setting the minimum dimensionality of
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each subspace to di ⩾ 2. We emphasize that although Wang et al. (2024) provided a global landscape
analysis for a variant of MCR2, their formulation differs from ours, and their optimality condition
relies on maximising structural details, offering limited guidance for our setting. Moreover, since d⋆i
may not serve as a strict upper bound except in the trivial case d⋆i = di = 1, ensuring di = 2 requires
d⋆i > 2. Consequently, we recommend adopting d⋆i = 3, which provides both a stronger theoretical
guarantee and greater practical robustness.

Accordingly, the practically upper bound for ϵ is

ϵ2 ⩽ ϵ2⋆ = min
1≤i≤K

d

3

√
mi

m
.

As demonstrated in our experiments in Section 3, setting ϵ = ϵ⋆ is sufficient for the model to learn
single-component discriminative representations in practice. Further increasing ϵ does not provide
additional benefit.

Building on above theoretical insights, we propose a paradigm shift from conventional MCR2, which
seeks to capture maximal structural components, toward focusing on the most discriminative compo-
nent. We refer to this variant as Single-component Maximal Coding rate reduction (SiMCoding):

max
Z,Π

∆R(Z,Π, ϵ) = R(Z, ϵ)−Rc(Z,Π, ϵ), s.t. ϵ2 = min
1≤i≤K

d

3

√
mi

m
. (2)

Positioning SiMCoding among MCR2 and CRATE. MCR2 can be directly employed as a loss
function to train predefined neural networks such as ResNet-18 (He et al., 2016), which is arguably
the most straightforward way to utilize it. Beyond this, Chan et al. (2022) demonstrated that a deep
neural network can be interpreted as the unrolling of iterative gradient steps for optimizing MCR2,
where each layer corresponds to one iteration. This perspective enables the principled design of
white-box neural networks. In particular, when shift-invariance is enforced for classification, the
resulting architecture naturally takes the form of a multi-channel convolutional network, termed
ReduNet. A key limitation, however, is that constructing ReduNet is computationally demanding,
which hinders its scalability. Consequently, Chan et al. (2022) primarily introduced ReduNet as a
rigorous proof-of-concept, with validation limited to small-scale datasets such as MNIST (LeCun,
1998). Nonetheless, this work has been highly influential.

Building on this line of research, Yu et al. (2023; 2024a) introduced sparse MCR2 and approximation
techniques, giving rise to a white-box transformer-like architecture termed CRATE, which has since
been applied across diverse domains (Pai et al., 2023; Yu et al., 2024b; Yang et al., 2024). However,
CRATE requires learning class-specific sets of orthonormal bases Uk, which in practice demands
large-scale datasets for effective training. In CRATE, the features are projected into these low-
dimensional basis spaces Uk. Since Z is sparse, the class-specific projection U⊤

k Z has lower
dimensionality than Uk itself. Interestingly, in our experiments we observed that CRATE also
tends to learn nearly one-dimensional, mutually orthogonal subspaces, albeit through a mechanism
fundamentally different from that of SiMCoding.

Computational Complexity. The computational complexity of SiMCoding is dominated by the
computation of (K + 1) log-determinants, resulting in a total cost of O

(
Kmin(d3,m3)

)
. This

indicates that SiMCoding is most suitable for datasets with a moderate number of classes.

It can be concluded that, in the supervised setting, MCR2 remains constrained to relatively simple
datasets such as MNIST, whereas CRATE represents a significant step toward scalability on large-
scale datasets such as ImageNet-1K and ImageNet-21K (Deng et al., 2009). Our proposed SiMCoding
strikes a balance, being particularly well-suited for datasets with a moderate number of classes (e.g.,
K ≤ 100), where it achieves superior overall performance compared not only to MCR2 and CRATE
but also to cross-entropy, especially in the presence of label or feature noise.

3 EXPERIMENT

In this section, we evaluate SiMCoding in terms of fitting ability, generalization, and robustness to
feature noise, label noise, and catastrophic forgetting. Our aim is not to exhaustively explore exten-
sions or engineering refinements, but rather to demonstrate that even the simplest use of SiMCoding
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Table 1: Training and test accuracy (%) of different methods across datasets. Best results are in bold.

Method MNIST CIFAR-10 CIFAR-20 CIFAR-100 ImageNette
Train Test Train Test Train Test Train Test Train Test

CE 100.00 99.08 99.98 93.23 99.95 80.76 99.98 75.14 97.99 91.78
MCR2 99.81 98.41 93.83 90.83 43.66 41.89 6.15 6.27 56.72 51.15
CRATE 99.70 96.01 93.88 79.90 93.01 53.45 98.36 51.23 92.17 82.19
SiMCoding 99.94 99.09 99.32 93.04 96.15 80.87 98.90 74.10 95.70 92.85

provides a strong alternative for moderate-scale classification tasks. We compare against influential
baselines—cross-entropy (CE), MCR2, and CRATE—focusing on validating the effectiveness of the
SiMCoding principle under fair conditions. Additional implementation details and experiments are
provided in the Appendix, with code included in the supplementary material to reproduce all results.

Performance Metric. Traditional MCR2-based methods typically rely on a Nearest Subspace
Classifier (NSC), which assigns labels by measuring the distance of a feature representation to the
principal subspace of each class (Yu et al., 2020; Chan et al., 2022). For class i, let µi be the class
mean and Ui the matrix containing its top ri principal components. Given a test feature f(x′;θ),
classification is performed by finding the subspace that minimizes the projection error:

i′ = argmin
i

∥∥(I −UiU
⊤
i )
(
f(x′;θ)− µi

)∥∥2
2
.

In contrast, for our SiMCoding, the dimensionality di of each class subspace is designed to approach
one, making it non-trivial to predefine a fixed ri. As a result, the NSC is not applicable in this setting.
Instead, we evaluate both SiMCoding and MCR2 by training a simple logistic softmax classifier on
their learned features and reporting its accuracy as the performance measure.

3.1 FITTING AND GENERALISATION

Dataset. In this subsection, we study the fitting and generalization ability of SiMCoding. We
evaluate on MNIST (LeCun, 1998), the CIFAR family (Krizhevsky et al., 2009) including CIFAR-10,
CIFAR-20 (the coarse-label version of CIFAR-100), and CIFAR-100, as well as ImageNette (Howard,
2019), a 10-class subset of ImageNet.

Architecture and Training. For the MNIST dataset, we use a compact convolutional network
consisting of two 3× 3 convolutional layers (with 32 and 64 channels, both with ReLU activation),
followed by 2× 2 max pooling, a fully connected ReLU layer with 1024 units, and a final projection
to d = 64 dimensions. In all experiments, the learned features are normalized such that ∥Zi∥2F = mi

for each class. For networks trained with CE, we append a classification layer to the same backbone
architecture used for MCR2 and SiMCoding. For the CIFAR datasets and ImageNette, we employ
a ResNet-18 (He et al., 2016) backbone, replacing the final layer with a two-layer ReLU-activated
MLP that outputs 512-dimensional representations. To ensure consistency and comparability, we
adopt training hyperparameters closely following (Yu et al., 2020; Chan et al., 2022; Yu et al., 2024a).
Implementation details are in the Appendix.

Performance Comparison. Table 1 report the final training and test accuracy, and Figure 5 in
the Appendix illustrates learning dynamics across datasets. For training accuracy, CE achieves
nearly perfect fitting, while SiMCoding attains a comparable level even on challenging datasets
such as CIFAR-100 and ImageNette, indicating a fitting capacity on par with CE. CRATE also
shows strong fitting but is weaker than CE and SiMCoding, whereas MCR2 converges to much
lower values, especially on CIFAR-20 and CIFAR-100. In terms of test accuracy, SiMCoding
consistently ranks among the best. It matches CE on MNIST and CIFAR-10, while slightly surpassing
it on CIFAR-20 and ImageNette, suggesting stronger robustness as dataset complexity increases.
CRATE underperforms on test accuracy (e.g., 51.23% on CIFAR-100), reflecting its reliance on class-
specific orthonormal bases Ui, which work better with large-scale data. MCR2 yields the weakest
generalization, consistent with its limited training performance. Overall, SiMCoding combines strong
fitting capacity with consistently high generalization, outperforming or matching CE and clearly
surpassing CRATE and MCR2 in both stability and robustness.
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(a) CE (b) MCR2 (c) CRATE (d) SiMCoding

Figure 2: Heatmaps of |ZZ⊤| on ImageNette, with samples sorted by class.

(a) CE (b) MCR2 (c) CRATE (d) SiMCoding

Figure 3: Feature spectra analysis on ImageNette under different training objectives. Top row:
per-class singular value spectra of Zi. Bottom row: overall singular value spectrum of Z.

Structure analysis of LDR. To examine the structure of the learned representations, we com-
pute ZZ⊤ on ImageNette, sorting samples by class index (Figure 2). This highlights inter-class
orthogonality. SiMCoding produces features that are clearly orthogonal across classes, yielding
well-separated representations. CRATE also induces a block-diagonal structure, though less sharply,
consistent with its slightly lower training accuracy. In contrast, MCR2 fails to enforce separation,
showing little block structure, while CE exhibits approximate orthogonality, consistent with neural
collapse phenomenon (Papyan et al., 2020). Figure 3 shows the singular value spectra of per-class
features Zi and the overall matrix Z. For CE, CRATE, and SiMCoding, each class spectrum is
dominated by a single leading singular value, indicating nearly rank-one features, while MCR2 retains
a much flatter spectrum, suggesting high-rank intra-class variability. At the global level, CE, CRATE,
and SiMCoding exhibit about ten dominant singular values, aligning with the number of classes
and indicating an effectively low-rank feature space, whereas MCR2 produces a full-rank spectrum,
reflecting its failure to compress intra-class variation or separate classes.

Results on other datasets showing similar patterns are in Figures 7, 8, 9, and 10 in the Appendix.

Discarding Structural details To further investigate the learning mechanism of SiMCoding, we
visualize mean saliency maps for 500 randomly selected images per class. For CE, MCR2, and
SiMCoding, saliency maps are computed directly. For CRATE, which relies on tokenization, we
instead aggregate the four attention heads on MNIST into a single visualization. Figure 4 shows
the results for digits 0 and 1, with the full set in Figure 6 in the Appendix. The differences are
evident. CE produces saliency patterns that only partially align with digit structure, reflecting its
focus on label fitting rather than structural abstraction. MCR2 captures fine-grained details. CRATE
distributes attention across digit components, capturing complementary cues. In contrast, SiMCoding
concentrates on the most discriminative element—the digit outline—suggesting a mechanism that
filters redundant details while preserving class-defining features.
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Original CE MCR2 CRATE SiMCoding

Figure 4: Comparison of saliency maps for digits 0 and 1.

Table 2: Training and test accuracy (%) on CIFAR-10 under different levels of feature noise (std).

Training Accuracy Test Accuracy

Noise Std 0.04 0.08 0.12 0.16 0.20 0.04 0.08 0.12 0.16 0.20

CE 99.91 99.74 99.38 98.60 97.57 91.04 87.94 84.59 81.04 78.59
MCR2 91.31 87.54 83.79 80.38 75.91 88.30 83.93 79.92 75.29 69.76
CRATE 92.92 90.48 87.46 83.48 79.53 77.64 71.77 62.66 54.62 52.81
SiMCoding 98.26 96.15 93.30 90.16 87.25 91.41 88.02 84.66 81.00 78.03

3.2 ROBUSTNESS AGAINST FEATURE NOISE

Following Chan et al. (2022), we corrupt CIFAR-10 with additive Gaussian noise N (0, σ2) at
σ ∈ {0.04, 0.08, 0.12, 0.16, 0.20}, keeping the architecture and training setup unchanged. Final
accuracies are in Table 2, with learning dynamics in Figure 11 in the Appendix.

It is clear that test accuracy decreases monotonically with σ for all frameworks. CE maintains
nearly saturated training accuracy (e.g., 99.9%→97.6%), reflecting its tendency to fit even heavily
corrupted inputs. SiMCoding achieves the strongest or tied generalization at low–moderate noise
(σ ≤ 0.12) and stays within 0.5 pp of CE at higher noise.

MCR2 and CRATE degrade sharply. MCR2 encodes noise along with fine details (88.30→69.76),
while CRATE is even more brittle (77.64→52.81), reflecting its reliance on class bases Ui that also
capture corrupted variability. Their convergence is slower and less stable than CE and SiMCoding.
Overall, CE and SiMCoding are the most robust, with SiMCoding matching or surpassing CE at
moderate noise and maintaining a substantially smaller generalization gap at higher corruption levels.

3.3 ROBUSTNESS AGAINST LABEL NOISE

We evaluate robustness by randomly corrupting a ratio α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} of CIFAR-20
labels. Final accuracies are reported in Table 3, with training and test dynamics in Figure 12. Training
accuracy values closest to 1− α indicate selective fitting of correctly labeled samples.

CE attains nearly perfect training accuracy across all α, showing that it memorizes noisy labels.
Consequently, its test accuracy drops sharply (73.6%→40.6% as α increases from 0.1 to 0.5). In
contrast, SiMCoding fits mainly the correctly labeled portion, with training accuracy tracking 1− α
(e.g., 87.9% at α = 0.1 and 49.6% at 0.5). This selective fitting prevents overfitting and yields the
strongest test performance, consistently surpassing CE and other baselines. CRATE shows moderate
robustness in training but weak generalization (25.4% test at α = 0.5). MCR2 performs poorly
overall, with training accuracy below 30% even at α = 0.1 and consistently low test results. Overall,
SiMCoding demonstrates the strongest robustness to label noise, limiting fitting to reliable samples
and achieving substantially better generalization than CE, CRATE, and MCR2.

3.4 ROBUSTNESS AGAINST CATASTROPHIC FORGETTING

Chan et al. (2022) show that optimizing MCR2 via iterative gradient ascent naturally induces a multi-
layer white-box network, ReduNet. Wu et al. (2021) further adapt ReduNet to incremental learning,
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Table 3: Training and test accuracy (%) on CIFAR-20 under different label noise ratios.

Training Accuracy Test Accuracy

Ratio α 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

CE 99.74 99.67 99.76 99.79 99.76 73.56 65.94 58.37 47.89 40.57
MCR2 30.03 23.63 19.71 15.62 13.76 30.37 25.06 22.12 16.37 14.52
CRATE 91.97 90.23 88.94 85.90 84.51 48.00 42.56 35.71 31.21 25.42
SiMCoding 87.86 80.15 71.53 61.25 49.63 77.70 71.26 64.80 57.83 50.70

Table 4: Test accuracy (%) on Task 1 after each training session on MNIST and CIFAR-10.

Algorithm MNIST CIFAR-10

Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 3 Task 4 Task 5

ReduNet 99.95 98.02 95.82 94.94 92.95 78.75 62.35 48.80 44.50 43.07
SiM-ReduNet 99.91 98.05 95.94 94.96 92.25 83.15 63.45 47.97 44.11 40.99

showing reduced catastrophic forgetting. The key difference between MCR2 and our SiMCoding
lies in subspace dimensionality: MCR2 favors maximal dimensions, whereas SiMCoding seeks
minimal ones, ideally one-dimensional. This property allows SiMCoding to also yield a ReduNet-like
network. We therefore propose SiM-ReduNet, obtained by optimizing SiMCoding through iterative
gradient ascent, and show that it offers stronger robustness to catastrophic forgetting and improved
performance over ReduNet. A limitation of ReduNet-based incremental learning is memory cost. We
adopt a simplified architecture compared to Wu et al. (2021), but still demonstrate that SiMCoding
can be directly applied to incremental learning while retaining robustness.

Experimental setup. We evaluate on MNIST and CIFAR-10 under a class-incremental setting,
splitting the 10 classes into 5 tasks of 2 classes each. After each task, performance is measured on all
classes seen so far. For MNIST, we follow Wu et al. (2021) but reduce the network depth to 50 layers.
For CIFAR-10, we omit Gaussian kernel lifting, use a shallower 10-layer network instead of 50, and
increase the learning rate from η = 0.5 to η = 2.5.

Table 4 reports test accuracy on the first task after each incremental training session. On MNIST,
ReduNet and SiM-ReduNet perform similarly, both maintaining high accuracy; SiM-ReduNet is
slightly stronger on intermediate tasks but marginally weaker at the final task. On CIFAR-10,
forgetting is more pronounced. SiM-ReduNet starts from a higher baseline (e.g., 83.15% vs. 78.75%
after Task 1) and holds an advantage in early stages, though ReduNet retains slightly more by the
last task. These results confirm that SiMCoding can be effectively extended to incremental learning:
SiM-ReduNet closely matches ReduNet’s robustness to catastrophic forgetting and delivers stronger
performance on earlier tasks.

4 CONCLUSION

We introduced SiMCoding, a framework that learns representations where each class is characterized
by a single, most discriminative component, in contrast to the maximal structural details favoured by
MCR2. This shift yields strong empirical benefits: SiMCoding consistently matches or surpasses
cross-entropy in generalization while showing markedly stronger robustness to label and feature noise.
Compared to CRATE and MCR2, it demonstrates superior fitting capacity, stability, and inter-class
separation across moderate-scale benchmarks. When adapted to incremental learning, SiMCoding
also shows robustness against catastrophic forgetting. Despite its computational complexity, these
results establish SiMCoding as a simple yet powerful alternative to cross-entropy and related coding-
based methods on moderate datasets, with strong potential for robust representation learning and
incremental learning.

Empirically, we observed that both CRATE and SiMCoding pursue minimal-dimensional, mutually
orthogonal subspaces. Establishing a rigorous connection between the two would be valuable for
both theoretical understanding and practical application, which we leave for future work.
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