

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING SINGLE-COMPONENT DISCRIMINATIVE REPRESENTATIONS VIA MAXIMAL CODING RATE RE- DUCTION

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 The recently proposed maximal coding rate reduction principle (MCR²) offers a
014 promising theoretical framework for interpreting modern deep networks through
015 the lens of data compression and discriminative representation. It maps high-
016 dimensional multi-class data into mutually orthogonal linear subspaces, with each
017 subspace capturing as many structural details of its class as possible. In this work,
018 we show that such structural maximization not only increases model sensitivity to
019 feature noise but also hinders generalization. In contrast, we argue that retaining
020 only the single most discriminative structural component per class improves both
021 generalization and robustness to feature noise, while preserving the desirable
022 properties of MCR², such as robustness to label noise and resistance to catastrophic
023 forgetting. We formalize this approach as a new framework termed SiMCoding
024 and validate it extensively across supervised learning, white-box architectures, and
025 incremental learning on diverse datasets. The superior performance of SiMCoding
026 highlights its potential as a strong alternative for medium-scale classification tasks,
027 particularly under label and feature noise.

028 1 INTRODUCTION

030 Numerous research efforts have sought to demystify the black-box nature of deep learning. Among
031 these, an influential direction is the principle of *Maximal Coding Rate Reduction* (MCR²) (Yu
032 et al., 2020), which reformulates the learning objective to explicitly capture the low-dimensional
033 structures underlying high-dimensional data, rather than focusing primarily on label fitting. MCR² is
034 grounded in the manifold hypothesis, which posits that although data points $x \in \mathbb{R}^D$ are observed in
035 a high-dimensional ambient space, their variability is largely confined to a union of low-dimensional
036 submanifolds, $\mathcal{M} = \bigcup_{i=1}^K \mathcal{M}_i$, as illustrated in Figure 1 (Hein & Audibert, 2005; Spigler et al.,
037 2019; Pope et al., 2021; Wright & Ma, 2021). Each submanifold \mathcal{M}_i corresponds to a semantic class
038 or cluster, and the central objective of MCR² is to faithfully uncover and effectively organize these
039 structures in the feature space.

040 As a foundational concept in information theory, the lossy *coding rate* $R(\mathcal{Z}, \epsilon)$ quantifies **the volume**
041 **of a distribution** or its finite set \mathcal{Z} , up to a precision ϵ (Rissanen, 1998; Cover, 1999; Ma et al., 2007):
042 a lower coding rate indicates a more compact set. What distinguishes the coding rate from other
043 classical concepts in information theory, such as entropy and mutual information, is that it serves as a
044 well-defined measure of distribution compactness even for degenerate distributions, which commonly
045 arise in data with relatively low intrinsic dimensionality. Formally, in a K -class classification task,
046 let the features of the i -th class be denoted by $\mathcal{Z}_i \in \mathbb{R}^{d \times m_i}$, and define the overall feature set as
047 $\mathcal{Z} = \bigcup_{i=1}^K \mathcal{Z}_i$. The MCR² framework aims to **maximize the volume** of the overall feature set \mathcal{Z} while
048 simultaneously **minimizing the volumes** of the individual cluster sets \mathcal{Z}_i . This simple mechanism
049 effectively maps high-dimensional data into a compact and structured low-dimensional representation,
050 as depicted in Figure 1:

- 051 1. **Discriminative representation:** Features of each class \mathcal{Z}_i are compressed into a low-dimensional
052 linear subspace \mathcal{S}_i , and these subspaces are mutually orthogonal, i.e., $\mathcal{Z}_i \mathcal{Z}_j^\top = \mathbf{0}$ for all $i \neq j$.
- 053 2. **Diverse representation:** The dimensionality (or variance) of features of each class is maximized
054 subject to the constraint of the representation space \mathbb{R}^d , i.e., $\sum_{i=1}^K \text{rank}(\mathcal{Z}_i) = d$.

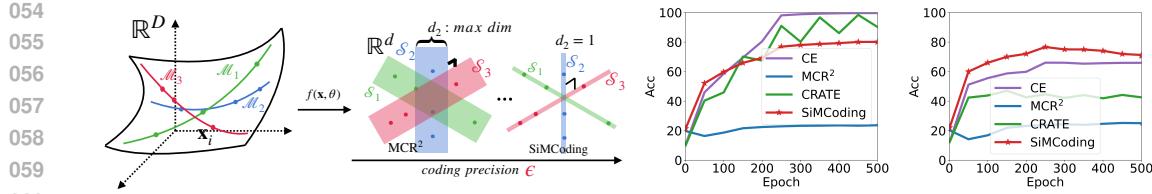


Figure 1: (Left) MCR^2 maps data x_i , typically distributed over nonlinear low-dimensional submanifolds \mathcal{M}_i , onto mutually orthogonal linear subspaces \mathcal{S}_i with maximal dimensionality, whereas SiMCoding enforces each subspace to be one-dimensional. (Middle and Right) Training and test accuracy on CIFAR-20 with 20% randomly corrupted labels.

Note that, to achieve the second property, the features must be encoded with high precision ϵ , enabling the model to capture as many structural details as possible and thereby allowing each class-specific feature set Z_i to attain its maximal dimensionality, i.e., maximal structural components.

Owing to its simplicity and conceptual interpretability, MCR^2 has emerged as an influential framework in representation learning and has been applied across diverse settings. It has inspired the design of interpretable white-box network architectures (Chan et al., 2022; Pai et al., 2023; Yu et al., 2024a; Yang et al., 2024) and efficient self-attention modules (Wu et al., 2024). It has also been explored in incremental learning (Wu et al., 2021; Tong et al., 2023), generative modelling (Dai et al., 2022), and unsupervised learning (Tong et al., 2022; Chu et al., 2024; Wu et al., 2025), among others.

However, in this work, we question whether it is truly necessary for a model to maximize structural details across different learning settings. In unsupervised learning, where labels are unavailable, it is natural for the model to retain as much structural information as possible in order to deeply uncover the underlying structure and subsequently cluster the samples. In contrast, in supervised learning, where labels provide guidance, preserving only a single discriminative structural component may be sufficient for accurate classification. As a thought experiment, consider classifying images of the digits 0 and 1. Recognizing their overall outlines is sufficient for the task, whereas fine-grained structural details—such as the precise curvature of a 0 or the thickness of a 1—are unnecessary. Even though in practice the features learned by neural networks are often highly abstract and difficult to interpret directly (Zeiler & Fergus, 2014; Chen et al., 2023), this example illustrates that in supervised classification tasks, high-level features may only need to preserve a single discriminative structural component rather than all structural details of the input.

The main contributions of this work are summarized as follows:

- While MCR^2 has achieved remarkable success, particularly in unsupervised learning, we find that in supervised classification its pursuit of maximal structural detail leads to severe underfitting and poor generalization. As shown in Figure 1, MCR^2 struggles to fit CIFAR-20 dataset (with 20% randomly corrupted labels) (Krizhevsky et al., 2009) effectively and exhibits weak generalization. Moreover, it is highly vulnerable to input noise (Table 2).
- To address these issues, we propose learning only the single most discriminative structural component for each class, rather than maximizing all structural details. We term this approach **Single-component Maximal Coding** rate reduction (SiMCoding).

Specifically, we first provide a theoretical analysis showing how the coding precision ϵ determines the extent to which the model emphasizes structural details, formally corresponding to the varying dimensionality of each class subspace \mathcal{S}_i . This analysis further reveals that ϵ can be pre-specified to ensure that each class attains its minimal one dimensional subspace. As an important byproduct, this theory removes the need to tune ϵ as a hyperparameter, thereby significantly reducing the burden of applying SiMCoding.

- We validate SiMCoding across a wide range of datasets and learning settings. Experiments show that SiMCoding matches the fitting ability and generalization of the widely used cross-entropy framework, while exhibiting substantially stronger robustness to label noise. As shown in Figure 1, on CIFAR-20 with 20% randomly corrupted labels, the training accuracy of SiMCoding plateaus near 80%, indicating that it fits only the correctly labeled samples. Moreover, despite adopting the opposite strategy of retaining only a single structural com-

108
109
110
ponent per class, SiMCoding preserves key properties of MCR², including robustness to
111 catastrophic forgetting in incremental learning setting.
112

- 113 • We analyse the computational complexity of SiMCoding and conclude that, despite potential
114 limitations, it remains a strong alternative for classification on datasets with a moderate
115 number of classes (e.g., $K \leq 100$), particularly in the presence of feature or label noise.

116 2 METHOD

117 **Representation learning and the MCR² principle.** We are given data $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m] \in$
118 $\mathbb{R}^{D \times m}$ consisting of m samples from K classes. The aim of deep representation learning is to
119 transform high-dimensional data into low-dimensional features that capture intrinsic properties such as
120 structure and geometry to facilitate downstream tasks such as classification. A widely used viewpoint,
121 often referred to as the *manifold hypothesis*, suggests that each class lies on a low-dimensional
122 submanifold \mathcal{M}_i , and that the entire dataset is concentrated near the union $\mathcal{M} = \bigcup_{i=1}^K \mathcal{M}_i$ (Hein &
123 Audibert, 2005; Spigler et al., 2019; Pope et al., 2021; Wright & Ma, 2021). This motivates seeking
124 features $\mathbf{z}_i \in \mathbb{R}^d$ with $d \ll D$ that retain this structure while discarding redundant variability. To
125 obtain such features, one typically employs a nonlinear map $f_{\Theta} : \mathbb{R}^D \rightarrow \mathbb{R}^d$ parametrized by neural
126 network weights Θ :

$$126 \quad \mathbf{x} \mapsto \mathbf{z} = f_{\Theta}(\mathbf{x}),$$

127 and collects the feature matrix $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_m] \in \mathbb{R}^{d \times m}$. Desirable features should not only align
128 with the underlying class structure but also admit a compact, structured and interpretable form.
129

130 The principle of *Maximal Coding Rate Reduction* (MCR²) (Yu et al., 2020; Chan et al., 2022)
131 provides an information-theoretic criterion for achieving this goal. It simultaneously maximizes
132 the overall volume of all features to encourage separation across classes (*expansion*) and minimizes
133 the average volume of each class to promote compactness (*compression*). Specifically, let $\Pi =$
134 $\{\Pi_i \in \mathbb{R}^{m \times m}\}_{i=1}^K$ denote a set of diagonal matrices, where each diagonal entry $\Pi_i(j, j)$ specifies
135 the probability that sample j belongs to class i . The MCR² framework then seeks to optimise

$$136 \quad \max_{\mathbf{Z}, \Pi} \Delta \mathcal{R}(\mathbf{Z}, \Pi, \epsilon) = \underbrace{\frac{1}{2} \log \det(\mathbf{I} + \frac{d}{m\epsilon^2} \mathbf{Z} \mathbf{Z}^{\top})}_{\text{Expansion: } \mathcal{R}(\mathbf{Z}, \epsilon)} \\ 137 \\ 138 \quad \underbrace{- \sum_{i=1}^K \frac{\text{tr}(\Pi_i)}{2m} \log \det\left(\mathbf{I} + \frac{d}{\text{tr}(\Pi_i)\epsilon^2} \mathbf{Z} \Pi_i \mathbf{Z}^{\top}\right)}_{\text{Compression: } \mathcal{R}_c(\mathbf{Z}, \Pi, \epsilon)}. \quad (1)$$

139 In this formulation, the membership matrices Π may either be fixed by labels (supervised case) or
140 optimised jointly with \mathbf{Z} (unsupervised case). This flexibility enables MCR² to unify both paradigms
141 within a single framework. The coding precision $\epsilon > 0$ is typically and heuristically chosen to be
142 very small so that all fine structural details of data are preserved in learned features.
143

144 **Coding rate.** A central component of MCR² is the *coding rate* $\mathcal{R}(\cdot, \epsilon)$, which quantifies the effective
145 volume of a distribution or its finite sample set under a prescribed distortion level $\epsilon > 0$ (Rissanen,
146 1998; Cover, 1999; Ma et al., 2007). Formally, for each $\mathbf{z} \in \mathbf{Z}$, let its reconstruction $\hat{\mathbf{z}}$ satisfy

$$147 \quad \mathbb{E}[\|\mathbf{z} - \hat{\mathbf{z}}\|] \leq \epsilon,$$

148 the average number of binary bits required to encode the feature set \mathbf{Z} is given by $\mathcal{R}(\mathbf{Z}, \epsilon) =$
149 $\frac{1}{2} \log \det(\mathbf{I} + \frac{d}{m\epsilon^2} \mathbf{Z} \mathbf{Z}^{\top})$. This expression admits a clear geometric interpretation: it represents the
150 volume of the subspace spanned by \mathbf{Z} , measured in units of ϵ -balls (i.e., d -dimensional spheres of
151 radius ϵ). Intuitively, a larger coding rate indicates that more ϵ -balls are required to cover the feature
152 subspace, implying a richer feature set. This closed-form formulation, originally derived for Gaussian
153 data supported on a subspace (Ma et al., 2007), offers both computational tractability and geometric
154 as well as statistical interpretability within the MCR² framework.
155

156 **Normalization and geometric view.** The coding rate is closely related to the *volume* spanned by the
157 features. If the features are arbitrarily scaled, the measured volumes are no longer comparable across
158

162 classes. To ensure fairness, [Yu et al. \(2020\)](#) normalise the scale of each class such that $\|\mathbf{Z}_i\|_F^2 = m_i$,
 163 a condition that can be conveniently enforced using batch normalization during training.

164 From this perspective, the two terms in equation 1 provide a natural geometric interpretation. The
 165 expansion term $\mathcal{R}(\mathbf{Z}, \epsilon)$ measures the overall volume of the feature set \mathbf{Z} ; maximizing it encourages
 166 the features to spread out and occupy as large a region of the space \mathbb{R}^d as possible. The compression
 167 term $\mathcal{R}_c(\mathbf{Z}, \mathbf{\Pi}, \epsilon)$ measures the volume of features within each class; minimizing it reduces the
 168 within-class spread, pulling samples of the same label into a compact, low-dimensional cluster.

169 [Yu et al. \(2020\)](#); [Chan et al. \(2022\)](#) showed that optimizing the overall objective yields representations
 170 with two key properties: (i) features within each class concentrate on a linear subspace that reflects
 171 the underlying submanifold, while subspaces of different classes tend toward orthogonality, thereby
 172 enhancing discriminability; and (ii) with sufficiently high coding precision (e.g., $\epsilon^2 = 0.5$), the
 173 subspaces collectively expand to span the full dimensionality of the feature space \mathbb{R}^d , i.e.,

$$175 \text{rank}(\mathbf{Z}) = \sum_{i=1}^K \text{rank}(\mathbf{Z}_i) = \sum_{i=1}^K d_i = d,$$

177 so that each class preserves the maximal possible structural components in its feature set \mathbf{Z}_i .

178 However, we demonstrate that in the supervised setting, blindly maximizing structural details within
 179 MCR^2 can make the model overly sensitive to input noise (Table 2) and may even lead to severe
 180 underfitting and poor generalization (Figure 1 and Table 1). To mitigate these issues, we argue
 181 that it is sufficient for MCR^2 to capture only the most discriminative structural component of each
 182 class, i.e., $\text{rank}(\mathbf{Z}_i) = 1$. This view resonates with the information bottleneck theory ([Tishby &](#)
 183 [Zaslavsky, 2015](#); [Hu et al., 2024](#)), which states that the role of a neural network is to extract features
 184 \mathbf{Z} that retain only the minimal sufficient information relevant to the target labels while discarding
 185 irrelevant details. In a similar spirit, but from a different perspective, the MCR^2 framework aims to
 186 capture discriminative low-dimensional structures; thus, in the supervised case, it may be sufficient to
 187 preserve only the minimal structural information required for class separation.

188 To learn single-component discriminative representations via MCR^2 , we present Theorem 1 to
 189 characterize how the coding precision ϵ influences the dimensionality of each subspace:

190 **Theorem 1.** *Let $\mathbf{Z}^* = \mathbf{Z}_1^* \cup \dots \cup \mathbf{Z}_K^*$ be the optimal solution to equation 1. Define $d_i^* = \sqrt{\frac{m_i}{m}} \frac{d}{\epsilon^2}$.
 191 Then the following properties hold:*

- 193 • **Discriminativeness:** Features from different classes reside in mutually orthogonal, low-
 194 dimensional linear subspaces; that is, $(\mathbf{Z}_i^*)^\top \mathbf{Z}_j^* = \mathbf{0}$ for all $i \neq j$.
- 195 • **Bounded Dimensionality:** Each class-specific subspace has dimensionality $d_i \leq d_i^*$. Fur-
 196 thermore, for each class, the first $d_i - 1$ singular values of \mathbf{Z}_i^* are identical.

197 This theorem implies that the dimensionality d_i of each class-specific subspace cannot exceed d_i^* .
 198 Recall that $\|\mathbf{Z}_i\|_F^2 = m_i = \sum_{j=1}^{\min(d, m_i)} \sigma_j^2$ where σ_j denotes the j -th singular value of \mathbf{Z}_i . As d_i^*
 199 decreases, $\text{rank}(\mathbf{Z}_i)$ also decreases, causing the energy to concentrate on fewer singular values. This,
 200 in turn, highlights the significance of the remaining structural components. Now we can encourage
 201 each class to collapse toward its minimal one-dimensional subspace, i.e., $d_i = \text{rank}(\mathbf{Z}_i) \rightarrow 1$.
 202 It should be emphasized that when the data are imbalanced, a uniform coding precision ϵ cannot
 203 simultaneously enforce all subspaces to be one-dimensional, since the dimensionality of each class
 204 subspace is also influenced by its proportion in the dataset, i.e., $\frac{m_i}{m}$. Therefore, we require the weaker
 205 condition $\min_{1 \leq i \leq K} d_i \geq 1$. From this, an upper bound for ϵ can be readily obtained:

$$207 \epsilon^2 \leq \epsilon_U^2 = \min_{1 \leq i \leq K} d_i \sqrt{\frac{m_i}{m}}.$$

210 Theoretically, the feature set \mathbf{Z}_i of each class can be constrained to retain only a single discriminative
 211 structural component by setting $\epsilon = \epsilon_U$. However, such a constraint may be overly restrictive in
 212 practice, especially for complex deep neural networks with nonlinear objectives, where perfect
 213 convergence is rarely attainable on challenging datasets. For instance, [Zhu et al. \(2021\)](#) showed
 214 that the global optimality conditions for cross-entropy with certain regularization terms require the
 215 existence of at least one redundant dimension in the representation space, along which the gradient can
 escape local minima. Motivated by this analysis, we advocate setting the minimum dimensionality of

each subspace to $d_i \geq 2$. We emphasize that although Wang et al. (2024) provided a global landscape analysis for a variant of MCR^2 , their formulation differs from ours, and their optimality condition relies on maximising structural details, offering limited guidance for our setting. Moreover, since d_i^* may not serve as a strict upper bound except in the trivial case $d_i^* = d_i = 1$, ensuring $d_i = 2$ requires $d_i^* > 2$. Consequently, we recommend adopting $d_i^* = 3$, which provides both a stronger theoretical guarantee and greater practical robustness.

Accordingly, the practically upper bound for ϵ is

$$\epsilon^2 \leq \epsilon_*^2 = \min_{1 \leq i \leq K} \frac{d}{3} \sqrt{\frac{m_i}{m}}.$$

As demonstrated in our experiments in Section 3, setting $\epsilon = \epsilon_*$ is sufficient for the model to learn single-component discriminative representations in practice. Further increasing ϵ does not provide additional benefit.

Building on above theoretical insights, we propose a paradigm shift from conventional MCR^2 , which seeks to capture maximal structural components, toward focusing on the most discriminative component. We refer to this variant as *Single-component Maximal Coding rate reduction* (SiMCoding):

$$\max_{\mathbf{Z}, \mathbf{\Pi}} \Delta \mathcal{R}(\mathbf{Z}, \mathbf{\Pi}, \epsilon) = \mathcal{R}(\mathbf{Z}, \epsilon) - \mathcal{R}_c(\mathbf{Z}, \mathbf{\Pi}, \epsilon), \quad \text{s.t. } \epsilon^2 = \min_{1 \leq i \leq K} \frac{d}{3} \sqrt{\frac{m_i}{m}}. \quad (2)$$

Positioning SiMCoding among MCR^2 and CRATE. MCR^2 can be directly employed as a loss function to train predefined neural networks such as ResNet-18 (He et al., 2016), which is arguably the most straightforward way to utilize it. Beyond this, Chan et al. (2022) demonstrated that a deep neural network can be interpreted as the unrolling of iterative gradient steps for optimizing MCR^2 , where each layer corresponds to one iteration. This perspective enables the principled design of *white-box neural networks*. In particular, when shift-invariance is enforced for classification, the resulting architecture naturally takes the form of a multi-channel convolutional network, termed *ReduNet*. A key limitation, however, is that constructing ReduNet is computationally demanding, which hinders its scalability. Consequently, Chan et al. (2022) primarily introduced ReduNet as a rigorous proof-of-concept, with validation limited to small-scale datasets such as MNIST (LeCun, 1998). Nonetheless, this work has been highly influential.

Building on this line of research, Yu et al. (2023; 2024a) introduced sparse MCR^2 and approximation techniques, giving rise to a white-box transformer-like architecture termed *CRATE*, which has since been applied across diverse domains (Pai et al., 2023; Yu et al., 2024b; Yang et al., 2024). However, CRATE requires learning class-specific sets of orthonormal bases \mathbf{U}_k , which in practice demands large-scale datasets for effective training. In CRATE, the features are projected into these low-dimensional basis spaces \mathbf{U}_k . Since \mathbf{Z} is sparse, the class-specific projection $\mathbf{U}_k^\top \mathbf{Z}$ has lower dimensionality than \mathbf{U}_k itself. Interestingly, in our experiments we observed that CRATE also tends to learn nearly one-dimensional, mutually orthogonal subspaces, albeit through a mechanism fundamentally different from that of SiMCoding.

Computational Complexity. The computational complexity of SiMCoding is dominated by the computation of $(K + 1)$ log-determinants, resulting in a total cost of $\mathcal{O}(K \min(d^3, m^3))$. This indicates that SiMCoding is most suitable for datasets with a moderate number of classes.

It can be concluded that, in the supervised setting, MCR^2 remains constrained to relatively simple datasets such as MNIST, whereas CRATE represents a significant step toward scalability on large-scale datasets such as ImageNet-1K and ImageNet-21K (Deng et al., 2009). Our proposed SiMCoding strikes a balance, being particularly well-suited for datasets with a moderate number of classes (e.g., $K \leq 100$), where it achieves superior overall performance compared not only to MCR^2 and CRATE but also to cross-entropy, especially in the presence of label or feature noise.

3 EXPERIMENT

In this section, we evaluate SiMCoding in terms of fitting ability, generalization, and robustness to feature noise, label noise, and catastrophic forgetting. Our aim is not to exhaustively explore extensions or engineering refinements, but rather to demonstrate that even the simplest use of SiMCoding

270 Table 1: Training and test accuracy (%) of different methods across datasets. Best results are in bold.
271

Method	MNIST		CIFAR-10		CIFAR-20		CIFAR-100		ImageNette	
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
CE	100.00	99.08	99.98	93.23	99.95	80.76	99.98	75.14	97.99	91.78
MCR ²	99.81	98.41	93.83	90.83	43.66	41.89	6.15	6.27	56.72	51.15
CRATE	99.70	96.01	93.88	79.90	93.01	53.45	98.36	51.23	92.17	82.19
SiMCoding	99.94	99.09	99.32	93.04	96.15	80.87	98.90	74.10	95.70	92.85

272
273
274
275
276
277
278
279
280 provides a strong alternative for moderate-scale classification tasks. We compare against influential
281 baselines—cross-entropy (CE), MCR², and CRATE—focusing on validating the effectiveness of the
282 SiMCoding principle under fair conditions. Additional implementation details and experiments are
283 provided in the Appendix, with code included in the supplementary material to reproduce all results.
284

285 **Performance Metric.** Traditional MCR²-based methods typically rely on a Nearest Subspace
286 Classifier (NSC), which assigns labels by measuring the distance of a feature representation to the
287 principal subspace of each class (Yu et al., 2020; Chan et al., 2022). For class i , let μ_i be the class
288 mean and \mathbf{U}_i the matrix containing its top r_i principal components. Given a test feature $f(\mathbf{x}'; \theta)$,
289 classification is performed by finding the subspace that minimizes the projection error:

$$i' = \arg \min_i \|(\mathbf{I} - \mathbf{U}_i \mathbf{U}_i^\top)(f(\mathbf{x}'; \theta) - \mu_i)\|_2^2.$$

290 In contrast, for our SiMCoding, the dimensionality d_i of each class subspace is designed to approach
291 one, making it non-trivial to predefine a fixed r_i . As a result, the NSC is not applicable in this setting.
292 Instead, we evaluate both SiMCoding and MCR² by training a simple logistic softmax classifier on
293 their learned features and reporting its accuracy as the performance measure.
294

295 3.1 FITTING AND GENERALISATION

296 **Dataset.** In this subsection, we study the fitting and generalization ability of SiMCoding. We
297 evaluate on MNIST (LeCun, 1998), the CIFAR family (Krizhevsky et al., 2009) including CIFAR-10,
298 CIFAR-20 (the coarse-label version of CIFAR-100), and CIFAR-100, as well as ImageNette (Howard,
299 2019), a 10-class subset of ImageNet.
300

301 **Architecture and Training.** For the MNIST dataset, we use a compact convolutional network
302 consisting of two 3×3 convolutional layers (with 32 and 64 channels, both with ReLU activation),
303 followed by 2×2 max pooling, a fully connected ReLU layer with 1024 units, and a final projection
304 to $d = 64$ dimensions. In all experiments, the learned features are normalized such that $\|\mathbf{Z}_i\|_F^2 = m_i$
305 for each class. For networks trained with CE, we append a classification layer to the same backbone
306 architecture used for MCR² and SiMCoding. For the CIFAR datasets and ImageNette, we employ
307 a ResNet-18 (He et al., 2016) backbone, replacing the final layer with a two-layer ReLU-activated
308 MLP that outputs 512-dimensional representations. To ensure consistency and comparability, we
309 adopt training hyperparameters closely following (Yu et al., 2020; Chan et al., 2022; Yu et al., 2024a).
310 Implementation details are in the Appendix.
311

312 **Performance Comparison.** Table 1 report the final training and test accuracy, and Figure 5 in
313 the Appendix illustrates learning dynamics across datasets. For training accuracy, CE achieves
314 nearly perfect fitting, while SiMCoding attains a comparable level even on challenging datasets
315 such as CIFAR-100 and ImageNette, indicating a fitting capacity on par with CE. CRATE also
316 shows strong fitting but is weaker than CE and SiMCoding, whereas MCR² converges to much
317 lower values, especially on CIFAR-20 and CIFAR-100. In terms of test accuracy, SiMCoding
318 consistently ranks among the best. It matches CE on MNIST and CIFAR-10, while slightly surpassing
319 it on CIFAR-20 and ImageNette, suggesting stronger robustness as dataset complexity increases.
320 CRATE underperforms on test accuracy (e.g., 51.23% on CIFAR-100), reflecting its reliance on class-
321 specific orthonormal bases \mathbf{U}_i , which work better with large-scale data. MCR² yields the weakest
322 generalization, consistent with its limited training performance. Overall, SiMCoding combines strong
323 fitting capacity with consistently high generalization, outperforming or matching CE and clearly
324 surpassing CRATE and MCR² in both stability and robustness.

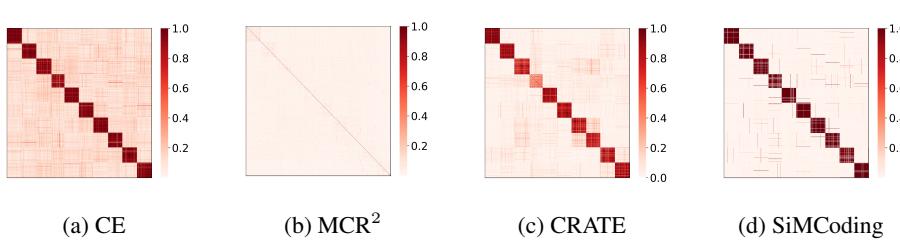


Figure 2: Heatmaps of $|ZZ^\top|$ on ImageNette, with samples sorted by class.

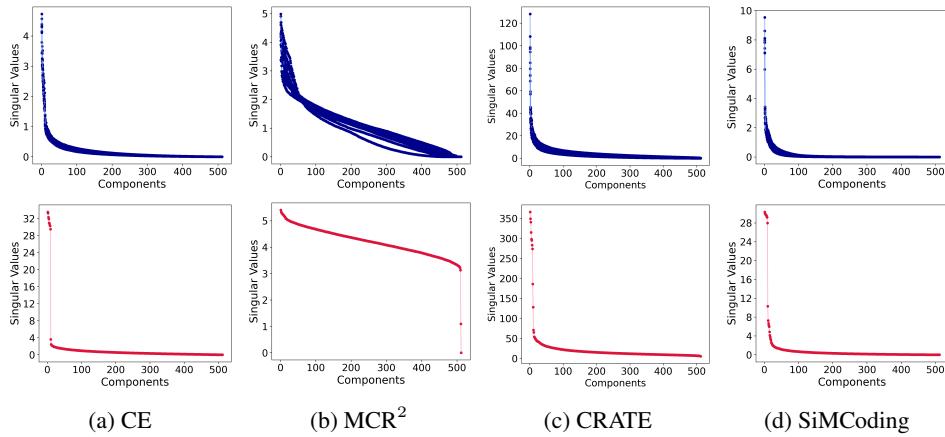


Figure 3: Feature spectra analysis on ImageNette under different training objectives. Top row: per-class singular value spectra of Z_i . Bottom row: overall singular value spectrum of Z .

Structure analysis of LDR. To examine the structure of the learned representations, we compute ZZ^\top on ImageNette, sorting samples by class index (Figure 2). This highlights inter-class orthogonality. SiMCoding produces features that are clearly orthogonal across classes, yielding well-separated representations. CRATE also induces a block-diagonal structure, though less sharply, consistent with its slightly lower training accuracy. In contrast, MCR² fails to enforce separation, showing little block structure, while CE exhibits approximate orthogonality, consistent with neural collapse phenomenon (Papyan et al., 2020). Figure 3 shows the singular value spectra of per-class features Z_i and the overall matrix Z . For CE, CRATE, and SiMCoding, each class spectrum is dominated by a single leading singular value, indicating nearly rank-one features, while MCR² retains a much flatter spectrum, suggesting high-rank intra-class variability. At the global level, CE, CRATE, and SiMCoding exhibit about ten dominant singular values, aligning with the number of classes and indicating an effectively low-rank feature space, whereas MCR² produces a full-rank spectrum, reflecting its failure to compress intra-class variation or separate classes.

Results on other datasets showing similar patterns are in Figures 7, 8, 9, and 10 in the Appendix.

Discarding Structural details To further investigate the learning mechanism of SiMCoding, we visualize mean saliency maps for 500 randomly selected images per class. For CE, MCR², and SiMCoding, saliency maps are computed directly. For CRATE, which relies on tokenization, we instead aggregate the four attention heads on MNIST into a single visualization. Figure 4 shows the results for digits 0 and 1, with the full set in Figure 6 in the Appendix. The differences are evident. CE produces saliency patterns that only partially align with digit structure, reflecting its focus on label fitting rather than structural abstraction. MCR² captures fine-grained details. CRATE distributes attention across digit components, capturing complementary cues. In contrast, SiMCoding concentrates on the most discriminative element—the digit outline—suggesting a mechanism that filters redundant details while preserving class-defining features.

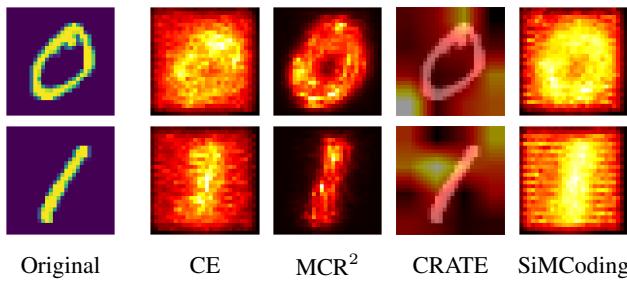


Figure 4: Comparison of saliency maps for digits 0 and 1.

Table 2: Training and test accuracy (%) on CIFAR-10 under different levels of feature noise (std).

Noise Std	Training Accuracy					Test Accuracy				
	0.04	0.08	0.12	0.16	0.20	0.04	0.08	0.12	0.16	0.20
CE	99.91	99.74	99.38	98.60	97.57	91.04	87.94	84.59	81.04	78.59
MCR ²	91.31	87.54	83.79	80.38	75.91	88.30	83.93	79.92	75.29	69.76
CRATE	92.92	90.48	87.46	83.48	79.53	77.64	71.77	62.66	54.62	52.81
SiMCoding	98.26	96.15	93.30	90.16	87.25	91.41	88.02	84.66	81.00	78.03

3.2 ROBUSTNESS AGAINST FEATURE NOISE

Following [Chan et al. \(2022\)](#), we corrupt CIFAR-10 with additive Gaussian noise $\mathcal{N}(0, \sigma^2)$ at $\sigma \in \{0.04, 0.08, 0.12, 0.16, 0.20\}$, keeping the architecture and training setup unchanged. Final accuracies are in Table 2, with learning dynamics in Figure 11 in the Appendix.

It is clear that test accuracy decreases monotonically with σ for all frameworks. CE maintains nearly saturated training accuracy (e.g., 99.9% \rightarrow 97.6%), reflecting its tendency to fit even heavily corrupted inputs. SiMCoding achieves the strongest or tied generalization at low–moderate noise ($\sigma \leq 0.12$) and stays within 0.5 pp of CE at higher noise.

MCR² and CRATE degrade sharply. MCR² encodes noise along with fine details (88.30 \rightarrow 69.76), while CRATE is even more brittle (77.64 \rightarrow 52.81), reflecting its reliance on class bases U_i that also capture corrupted variability. Their convergence is slower and less stable than CE and SiMCoding. Overall, CE and SiMCoding are the most robust, with SiMCoding matching or surpassing CE at moderate noise and maintaining a substantially smaller generalization gap at higher corruption levels.

3.3 ROBUSTNESS AGAINST LABEL NOISE

We evaluate robustness by randomly corrupting a ratio $\alpha \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ of CIFAR-20 labels. Final accuracies are reported in Table 3, with training and test dynamics in Figure 12. Training accuracy values closest to $1 - \alpha$ indicate selective fitting of correctly labeled samples.

CE attains nearly perfect training accuracy across all α , showing that it memorizes noisy labels. Consequently, its test accuracy drops sharply (73.6% \rightarrow 40.6% as α increases from 0.1 to 0.5). In contrast, SiMCoding fits mainly the correctly labeled portion, with training accuracy tracking $1 - \alpha$ (e.g., 87.9% at $\alpha = 0.1$ and 49.6% at 0.5). This selective fitting prevents overfitting and yields the strongest test performance, consistently surpassing CE and other baselines. CRATE shows moderate robustness in training but weak generalization (25.4% test at $\alpha = 0.5$). MCR² performs poorly overall, with training accuracy below 30% even at $\alpha = 0.1$ and consistently low test results. Overall, SiMCoding demonstrates the strongest robustness to label noise, limiting fitting to reliable samples and achieving substantially better generalization than CE, CRATE, and MCR².

3.4 ROBUSTNESS AGAINST CATASTROPHIC FORGETTING

[Chan et al. \(2022\)](#) show that optimizing MCR² via iterative gradient ascent naturally induces a multi-layer white-box network, ReduNet. [Wu et al. \(2021\)](#) further adapt ReduNet to incremental learning,

432 Table 3: Training and test accuracy (%) on CIFAR-20 under different label noise ratios.
433

434 435 Ratio α	436 Training Accuracy					437 Test Accuracy				
	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
CE	99.74	99.67	99.76	99.79	99.76	73.56	65.94	58.37	47.89	40.57
MCR ²	30.03	23.63	19.71	15.62	13.76	30.37	25.06	22.12	16.37	14.52
CRATE	91.97	90.23	88.94	85.90	84.51	48.00	42.56	35.71	31.21	25.42
SiMCoding	87.86	80.15	71.53	61.25	49.63	77.70	71.26	64.80	57.83	50.70

440
441 Table 4: Test accuracy (%) on Task 1 after each training session on MNIST and CIFAR-10.
442

443 Algorithm	444 MNIST					445 CIFAR-10				
	Task 1	Task 2	Task 3	Task 4	Task 5	Task 1	Task 2	Task 3	Task 4	Task 5
ReduNet	99.95	98.02	95.82	94.94	92.95	78.75	62.35	48.80	44.50	43.07
SiM-ReduNet	99.91	98.05	95.94	94.96	92.25	83.15	63.45	47.97	44.11	40.99

446 showing reduced catastrophic forgetting. The key difference between MCR² and our SiMCoding
447 lies in subspace dimensionality: MCR² favors maximal dimensions, whereas SiMCoding seeks
448 minimal ones, ideally one-dimensional. This property allows SiMCoding to also yield a ReduNet-like
449 network. We therefore propose SiM-ReduNet, obtained by optimizing SiMCoding through iterative
450 gradient ascent, and show that it offers stronger robustness to catastrophic forgetting and improved
451 performance over ReduNet. A limitation of ReduNet-based incremental learning is memory cost. We
452 adopt a simplified architecture compared to [Wu et al. \(2021\)](#), but still demonstrate that SiMCoding
453 can be directly applied to incremental learning while retaining robustness.
454

455 **Experimental setup.** We evaluate on MNIST and CIFAR-10 under a class-incremental setting,
456 splitting the 10 classes into 5 tasks of 2 classes each. After each task, performance is measured on all
457 classes seen so far. For MNIST, we follow [Wu et al. \(2021\)](#) but reduce the network depth to 50 layers.
458 For CIFAR-10, we omit Gaussian kernel lifting, use a shallower 10-layer network instead of 50, and
459 increase the learning rate from $\eta = 0.5$ to $\eta = 2.5$.
460

461 Table 4 reports test accuracy on the first task after each incremental training session. On MNIST,
462 ReduNet and SiM-ReduNet perform similarly, both maintaining high accuracy; SiM-ReduNet is
463 slightly stronger on intermediate tasks but marginally weaker at the final task. On CIFAR-10,
464 forgetting is more pronounced. SiM-ReduNet starts from a higher baseline (e.g., 83.15% vs. 78.75%
465 after Task 1) and holds an advantage in early stages, though ReduNet retains slightly more by the
466 last task. These results confirm that SiMCoding can be effectively extended to incremental learning:
467 SiM-ReduNet closely matches ReduNet’s robustness to catastrophic forgetting and delivers stronger
468 performance on earlier tasks.
469

470 4 CONCLUSION

471 We introduced SiMCoding, a framework that learns representations where each class is characterized
472 by a single, most discriminative component, in contrast to the maximal structural details favoured by
473 MCR². This shift yields strong empirical benefits: SiMCoding consistently matches or surpasses
474 cross-entropy in generalization while showing markedly stronger robustness to label and feature noise.
475 Compared to CRATE and MCR², it demonstrates superior fitting capacity, stability, and inter-class
476 separation across moderate-scale benchmarks. When adapted to incremental learning, SiMCoding
477 also shows robustness against catastrophic forgetting. Despite its computational complexity, these
478 results establish SiMCoding as a simple yet powerful alternative to cross-entropy and related coding-
479 based methods on moderate datasets, with strong potential for robust representation learning and
480 incremental learning.
481

482 Empirically, we observed that both CRATE and SiMCoding pursue minimal-dimensional, mutually
483 orthogonal subspaces. Establishing a rigorous connection between the two would be valuable for
484 both theoretical understanding and practical application, which we leave for future work.
485

486 REFERENCES
487

488 Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. Redunet: A
489 white-box deep network from the principle of maximizing rate reduction. *Journal of machine*
490 *learning research*, 23(114):1–103, 2022.

491 Hugh Chen, Ian C Covert, Scott M Lundberg, and Su-In Lee. Algorithms to estimate shapley value
492 feature attributions. *Nature Machine Intelligence*, 5(6):590–601, 2023.

493 Tianzhe Chu Chu, Shengbang Tong, Tianjiao Ding, Xili Dai, Benjamin Haeffele, René Vidal, and
494 Yi Ma. Image clustering via the principle of rate reduction in the age of pretrained models.
495 International Conference on Learning Representations (ICLR), 2024.

496 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.

497 Xili Dai, Shengbang Tong, Mingyang Li, Ziyang Wu, Michael Psenka, Kwan Ho Ryan Chan,
498 Pengyuan Zhai, Yaodong Yu, Xiaojun Yuan, Heung-Yeung Shum, et al. Ctrl: Closed-loop
499 transcription to an ldr via minimaxing rate reduction. *Entropy*, 24(4):456, 2022.

500 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
501 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
502 pp. 248–255. Ieee, 2009.

503 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
504 recognition. In *CVPR*, 2016.

505 Matthias Hein and Jean-Yves Audibert. Intrinsic dimensionality estimation of submanifolds in rd. In
506 *Proceedings of the 22nd international conference on Machine learning*, pp. 289–296, 2005.

507 Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March
508 2019. URL <https://github.com/fastai/imagenette>.

509 Shizhe Hu, Zhengzheng Lou, Xiaoqiang Yan, and Yangdong Ye. A survey on information bottleneck.
510 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

511 Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization. *arXiv*
512 *preprint arXiv:2206.04041*, 2022.

513 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

514 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

515 Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data via
516 lossy data coding and compression. *PAMI*, 2007.

517 Jorge Nocedal and Stephen Wright. *Numerical optimization*. Springer Science & Business Media,
518 2006.

519 Druv Pai, Ziyang Wu Wu, Sam Buchanan, Yaodong Yu, and Yi Ma. Masked completion via structured
520 diffusion with white-box transformers. International Conference on Learning Representations,
521 2023.

522 Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
523 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):24652–
524 24663, sep 2020. doi: 10.1073/pnas.2015509117. URL <https://doi.org/10.1073/pnas.2015509117>.

525 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
526 dimension of images and its impact on learning. *arXiv preprint arXiv:2104.08894*, 2021.

527 Jorma Rissanen. *Stochastic complexity in statistical inquiry*, volume 15. World scientific, 1998.

528 Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel methods:
529 empirical data vs teacher-student paradigm. *arXiv preprint arXiv:1905.10843*, 2019.

540 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *2015*
 541 *IEEE Information Theory Workshop (ITW)*, pp. 1–5. IEEE, 2015.
 542

543 Shengbang Tong, Xili Dai, Yubei Chen, Mingyang Li, Zengyi Li, Brent Yi, Yann LeCun, and Yi Ma.
 544 Unsupervised learning of structured representations via closed-loop transcription. *arXiv preprint*
 545 *arXiv:2210.16782*, 2022.

546 Shengbang Tong, Xili Dai, Ziyang Wu, Mingyang Li, Brent Yi, and Yi Ma. Incremental learning of
 547 structured memory via closed-loop transcription. 2023.

548 Peng Wang, Huikang Liu, Druv Pai, Yaodong Yu, Zhihui Zhu, Qing Qu, and Yi Ma. A global
 549 geometric analysis of maximal coding rate reduction. *arXiv preprint arXiv:2406.01909*, 2024.

550 John Wright and Yi Ma. *High-Dimensional Data Analysis with Low-Dimensional Models: Principles,*
 551 *Computation, and Applications*. Cambridge University Press, 2021.

552 Ziyang Wu, Christina Baek, Chong You, and Yi Ma. Incremental learning via rate reduction. In
 553 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1125–
 554 1133, 2021.

555 Ziyang Wu, Tianjiao Ding, Yifu Lu, Druv Pai, Jingyuan Zhang, Weida Wang, Yaodong Yu, Yi Ma,
 556 and Benjamin D Haeffele. Token statistics transformer: Linear-time attention via variational rate
 557 reduction. *arXiv preprint arXiv:2412.17810*, 2024.

558 Ziyang Wu, Jingyuan Zhang, Druv Pai, XuDong Wang, Chandan Singh, Jianwei Yang, Jianfeng Gao,
 559 and Yi Ma. Simplifying dino via coding rate regularization. *arXiv preprint arXiv:2502.10385*,
 560 2025.

561 Jinrui Yang, Xianhang Li, Druv Pai, Yuyin Zhou, Yi Ma, Yaodong Yu, and Cihang Xie. Scaling
 562 white-box transformers for vision. *Advances in Neural Information Processing Systems*, 37:
 563 36995–37019, 2024.

564 Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
 565 discriminative representations via the principle of maximal coding rate reduction. *Advances in*
 566 *Neural Information Processing Systems*, 33, 2020.

567 Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin
 568 Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. *Advances in Neural*
 569 *Information Processing Systems*, 36:9422–9457, 2023.

570 Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Hao Bai,
 571 Yuxiang Zhai, Benjamin D Haeffele, and Yi Ma. White-box transformers via sparse rate reduction:
 572 Compression is all there is? *Journal of Machine Learning Research*, 25(300):1–128, 2024a.

573 Yaodong Yu, Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, and Yi Ma.
 574 Emergence of segmentation with minimalistic white-box transformers. In *Conference on Parsimony*
 575 *and Learning*, volume 234 of *Proceedings of Machine Learning Research*, pp. 72–93. PMLR,
 576 2024b.

577 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
 578 *European Conference on Computer Vision*, pp. 818–833. Springer, 2014.

579 Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
 580 geometric analysis of neural collapse with unconstrained features. *Advances in Neural Information*
 581 *Processing Systems*, 34:29820–29834, 2021.

582

583

584

585

586

587

588

589

590

591

592

593