
Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Hojoon Lee 1 * Youngdo Lee 1 * Takuma Seno 2 Donghu Kim 1 Peter Stone 2 3 Jaegul Choo 1

Abstract
Scaling up the model size and computation has
brought consistent performance improvements in
supervised learning. However, this lesson often
fails to apply to reinforcement learning (RL) be-
cause training the model on non-stationary data
easily leads to overfitting and unstable optimiza-
tion. In response, we introduce SimbaV2, a novel
RL architecture designed to stabilize optimization
by (i) constraining the growth of weight and fea-
ture norm by hyperspherical normalization; and
(ii) using a distributional value estimation with
reward scaling to maintain stable gradients un-
der varying reward magnitudes. Using the soft
actor-critic as a base algorithm, SimbaV2 scales
up effectively with larger models and greater com-
pute, achieving state-of-the-art performance on 57
continuous control tasks across 4 domains. The
code is available at dojeon-ai.github.io/SimbaV2.

1. Introduction
Over the past decade, a scaling law has emerged as the
cornerstone of supervised learning (SL), suggesting that
increasing model size, compute, and data consistently im-
prove performance (Kaplan et al., 2020; Dehghani et al.,
2023). This paradigm has driven significant breakthroughs,
from large language models (Gemini et al., 2023; Achiam
et al., 2023) to diffusion models (Ramesh et al., 2021; Rom-
bach et al., 2022), where bigger models reliably translate to
better performance.

In contrast, scaling laws often fail to apply in reinforcement
learning (RL) (Song et al., 2019; Li et al., 2023). Unlike
SL’s static data distributions, RL agents must contend with
continuously evolving data distributions and shifting ob-
jectives throughout their training process (Sutton & Barto,
2018). This fundamental non-stationarity creates a scaling
paradox: increasing model capacity or computational re-

*Equal contribution 1KAIST 2Sony AI 3UT Austin. Correspon-
dence to: Hojoon Lee <joonleesky@kaist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

4 8

1

2

10

1
2

4 8

1

1

2

Figure 1. Compute vs RL Performance. Performance scales with
increased compute when using Soft Actor-Critic with SimbaV2
architecture, outperforming other state-of-the-art RL algorithms.
SimbaV2 achieves 0.848 normalized return with an update-to-data
(UTD) ratio of 1, surpassing TD-MPC2 (0.749 at UTD=1), Simba
(0.818 at UTD=8), and BRO (0.807 at UTD=8). Grey numbers
below each point indicate the UTD ratio. Results are averaged
over 57 continuous control tasks from MuJoCo, DMC, MyoSuite,
and HumanoidBench, each trained on 1 million samples.

sources frequently leads to overfitting to earlier experiences
and reduced adaptability to new tasks (Lyle et al., 2022;
Dohare et al., 2023).

One of the root causes of RL’s scaling challenges lies in un-
controlled norm growth during training, which destabilizes
optimization in multiple ways. Feature norms grow uncon-
trollably due to the implicit bias of TD loss (Kumar et al.,
2022), where dominant dimensions cause overfitting and
loss of plasticity (Lyle et al., 2022; Ma et al., 2023). Parame-
ter norms grow unbounded, reducing effective learning rates
(gradient-to-parameter ratio) and making weight updates
increasingly difficult (Dohare et al., 2023; Lyle et al., 2024).
Gradient norms fluctuate due to varying reward scales and
outliers, further disrupting optimization. These instabilities
are compounded with an increased model size or update
frequency, making RL harder to scale than SL.

Previous work has addressed these norm instabilities
through separate, isolated approaches. Normalization lay-
ers such as ℓ2-normalization (Bjorck et al., 2021; Hussing
et al., 2024), layer normalization (Lei Ba et al., 2016; Lyle
et al., 2023), and RL-specific variants (Bhatt et al., 2024; Lee
et al., 2024c) control the growth of feature norm. Weight de-
cay (Farebrother et al., 2018) manages the growth of param-

1

https://dojeon-ai.github.io/SimbaV2/

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Figure 2. Benchmark Summary. (a) SimbaV2, with an update-to-data (UTD) ratio of 2, outperforms state-of-the-art RL algorithms
across diverse continuous control benchmarks using fixed hyperparameters across all domains. (b) SimbaV2 delivers competitive
performance in both online and offline RL while requiring significantly less training computation and offering faster inference times.

eter norm. Reward scaling and cross-entropy loss (Schaul
et al., 2021; Farebrother et al., 2024) were adopted to control
gradient norm fluctuations. However, these techniques are
applied individually without a unified framework, making
coordination and scaling difficult. Periodic weight reinitial-
ization (Nikishin et al., 2022; D’Oro et al., 2023; Schwarzer
et al., 2023) offers an alternative by completely retraining
networks periodically. While effective, this approach re-
quires additional training time and causes sharp performance
drops, making it impractical for safety-critical applications.

In response, we present SimbaV2, a novel RL architecture
that addresses these challenges by simultaneously stabiliz-
ing weight, feature, and gradient norms within a unified
framework. Building on the Simba architecture (Lee et al.,
2024c), which uses pre-layernorm residual blocks (Xiong
et al., 2020) and weight decay (Krogh & Hertz, 1991), Sim-
baV2 introduces three key modifications:

• Hyperspherical Feature Normalization: We replace all
layer normalization with hyperspherical normalization
(ℓ2-normalization).

• Hyperspherical Weight Normalization: We remove
weight decay and instead project weights onto the unit-
norm hypersphere after each gradient update (Loshchilov
et al., 2024). Combined with hyperspherical feature nor-
malization, this ensures consistent effective learning rates
across layers and eliminates the need for weight regular-
ization tuning.

• Distributional Value Estimation with Reward Scaling:
To address unstable gradient norms caused by varying
reward scales and outliers, we integrate a distributional
critic (Bellemare et al., 2017) and apply reward scaling to
maintain unit variance of the target throughout training.

Using Soft Actor-Critic (Haarnoja et al., 2018) as our base
algorithm, SimbaV2 effectively stabilizes all three types of
norms while maintaining consistent effective learning rates
throughout training (Section 5.2 and Figure 4). We eval-
uated SimbaV2 on four standard online RL benchmarks:
MuJoCo (Todorov et al., 2012), DMC Suite (Tassa et al.,
2018), MyoSuite (Caggiano et al., 2022), and Humanoid-
Bench (Sferrazza et al., 2024); as well as the D4RL MuJoCo
benchmark (Fu et al., 2020) for offline RL. As shown in Fig-
ures 1 and 2, SimbaV2 achieves state-of-the-art performance
without requiring algorithmic modifications or hyperparam-
eter tuning, and scales effectively with increased model size
and computation without using periodic reinitialization.

2. Related Work
2.1. Regularization in Deep Reinforcement Learning

Deep RL is particularly susceptible to overfitting due to its
inherently non-stationary optimization process (Song et al.,
2019). To address overfitting, researchers have adapted
regularization techniques from SL, including weight decay
(Farebrother et al., 2018), dropout (Hiraoka et al., 2021),
various normalization layers (Gogianu et al., 2021; Bjorck
et al., 2021; Lyle et al., 2023; Gallici et al., 2024; Bhatt et al.,
2024; Lee et al., 2024c; Elsayed et al., 2024; Palenicek et al.,
2025), and mixture of expert (Obando-Ceron et al., 2024;
Willi et al., 2024). However, these methods often prove in-
sufficient when scaling RL models, as larger computational
resources and increased model sizes can easily exacerbate
overfitting (Li et al., 2023; Nauman et al., 2024a).

To further scale computations and model sizes in RL, recent
studies have explored periodic weight reinitialization strate-
gies to rejuvenate learning and escape local minima (D’Oro

2

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

et al., 2023; Nauman et al., 2024b). These strategies include
reinitializing weights to their initial distributions (Nikishin
et al., 2022), interpolating between random and current
weights (Xu et al., 2023; Schwarzer et al., 2023), utilizing
momentum networks (Lee et al., 2024b), and selectively
reinitializing dormant weights (Sokar et al., 2023). While
promising, reinitialization has a notable limitation: it can
lead to the loss of useful information and incur significant
computational overhead as model size increases.

To address these limitations, we introduce SimbaV2, an
architecture that explicitly constrains parameter, feature, and
gradient norms throughout training. By constraining norms
through hyperspherical normalization, SimbaV2 stabilizes
an optimization process and eliminates the need for weight
decay or periodic weight reinitialization.

2.2. Hyperspherical Representations in Deep Learning

Hyperspherical representations are widely used in deep
learning across image classification (Salimans & Kingma,
2016; Liu et al., 2017b), face recognition (Wang et al., 2017;
Liu et al., 2017a), variational autoencoders (Xu & Durrett,
2018), and contrastive learning (Chen et al., 2020). Using
spherical embeddings is known to enhance feature sepa-
rability (Wang & Isola, 2020), improving performance in
tasks requiring precise discrimination. Recently, researchers
have applied the hyperspherical normalization to intermedi-
ate features and weights to stabilize training in large-scale
models such as diffusion models (Karras et al., 2024) and
transformers (Loshchilov et al., 2024).

In this work, we apply hyperspherical normalization to RL.
Unlike previous studies that focus on training the network on
stationary data distributions with discrete inputs and outputs,
we demonstrate their effectiveness on non-stationary data
distributions with continuous inputs and outputs.

3. Preliminaries
As background, we briefly explain the Soft Actor-Critic
(SAC) algorithm (Haarnoja et al., 2018) and the Simba
architecture (Lee et al., 2024c).

3.1. Soft Actor Critic

SAC is a prominent off-policy algorithm for continuous
control. It aims to maximize both expected cumulative re-
ward and policy entropy, where τ = (o, a, r, o′) represents a
transition tuple. SAC comprises a stochastic policy πθ(a|o),
a Q-function Qϕ(o, a), and an entropy coefficient α that
balances reward and entropy.

The policy network is optimized to maximize the expected
return while encouraging entropy, which is formalized as:

Lπ = Eā∼πθ
[α log πθ(ā|o)−Qϕ(o, ā)] . (1)

The Q-function Qϕ(o, a) is trained to minimize the Bellman
residual loss:

LQ = (Qϕ(o, a)−
(
r + γQϕ̄(o

′, a′)− α log πθ(a
′|o′)

)
)2,
(2)

where a′ ∼ πθ(·|o′), γ ∈ [0, 1) is the discount factor, and
Qϕ̄ represents the target Q-network updated via an expo-
nential moving average of ϕ.

3.2. Simba Architecture

Simba (Lee et al., 2024c) is an RL architecture with nor-
malization layers composed of the following stages:

Input Embedding. Given an input observation ot ∈ R|O|,
Simba applies Running Statistics Normalization (RSNorm)
to normalize each dimension to zero mean and unit variance.

At each timestep t, the running mean µt ∈ R|O| and vari-
ance σ2 ∈ R|O| are updated recursively as:

µt = µt−1 +
1

t
δt, σ2

t = σ2
t−1 +

1

t
(δ2t − σ2

t−1) (3)

where δt = ot − µt−1.

Given running statistics, the observation is normalized as:

ōt = RSNorm(ot) =
ot − µt√
σ2
t + ϵ

. (4)

Then, the normalized observation, ōt, is embedded with a
linear layer W 0

h ∈ R|O|×dh defined as:

h0
t = W 0

h ōt. (5)

Latent Encoding. Next, the embedding h0
t is encoded by a

stack of L residual blocks with pre-layer normalization. For
l ∈ {1, . . . , L}, each of the l-th block is defined as:

hl
t = hl−1

t + MLP(LayerNorm(hl−1
t)) (6)

After the final block, the output is normalized again to obtain
the latent feature:

zt = LayerNorm(hL
t). (7)

Output Prediction: Finally, to predict the policy or Q-
value, a linear layer Wo ∈ Rdh×do maps zt to:

pt = Wozt. (8)

4. SimbaV2
SimbaV2 builds on Simba by adding constraints on weights,
features, and gradients to enhance training stability, particu-
larly when scaling to larger models and more computation.
The modifications include:

3

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

×N

Scaler

Scaler

ReLU

Scaler

Linear

Linear

LERP

Linear

Linear

L2 Norm

Input

L2 Norm

Linear

L2 Norm

Output

L2 Norm

RSNorm

Shift

LERP

𝛂
𝟏−𝛂 𝑥!!"

𝑥#$%&'()*

Shift & Norm

L2 Normalization

Add a New Axis
New Axis

L2 Normalization

𝑥+#,-

Shift Upwards

LERP & Norm

+c

Figure 3. SimbaV2 architecture. The input observation is first
normalized using running statistics, then shifted along a new axis
with a constant cshift to preserve magnitude information before be-
ing projected onto the unit hypersphere. The projected observation
is passed through a linear layer, followed by a series of non-linear
blocks and refined with LERP, serving as a residual connection. A
final linear layer predicts the policy or value function.

• LayerNorm → ℓ2-Norm: Layer normalization is re-
placed with ℓ2-normalization, constraining intermediate
features to have unit norm.

• Linear → Linear + Scaler: Standard linear layer is
decoupled into a linear layer with weights constrained to
a unit norm hypersphere, without a bias, and a learnable
scaling vector that performs element-wise scaling.

• Residual Connection → LERP: Residual connection
is replaced with a learnable linear interpolation (LERP),
which combines raw and transformed features via a learn-
able interpolation vector.

• Weight Decay → Weight Projection: Weight decay
is replaced with direct weight projection onto the unit
hypersphere after each gradient update.

• MSE Loss → KL-divergence Loss: MSE-based Bell-
man loss is replaced with KL-divergence loss, using a
categorical critic (Bellemare et al., 2017).

• No Reward Scaling → Reward Scaling: Rewards are
normalized with running statistics to stabilize the scale of
both actor loss (Equation.1) and critic loss (Equation.2).

In the following subsections, we describe these modifica-
tions in detail.

4.1. Input Embedding

Following Simba, SimbaV2 first standardize the raw obser-
vations ot ∈ R|O| using RSNorm, yielding ōt. To further
stabilize training, we map ōt onto the unit hypersphere be-
fore applying a linear layer.

Shift + ℓ2-Norm. Direct ℓ2-normalization can discard
magnitude information (e.g., ōt = [1, 0] and [2, 0] both
map to [1, 0]). To retain magnitude information, we embed
ōt into an (|O|+ 1)-dimensional vector by concatenating a
positive constant cshift > 0, then apply ℓ2-normalization:

õt = ℓ2-Norm(
[
ōt; cshift

]
). (9)

As illustrated in Figure 3, this additional coordinate encodes
the original norm of ōt, preserving magnitude information.

Linear + Scaler. We then embed õt using a linear layer
W 0

h ∈ R(|O|+1)×dh and a scaling vector s0h ∈ Rdh as:

h0
t = ℓ2-Norm(s0h ⊙ (W 0

h Norm(õt)). (10)

where the ℓ2-normalization projects back to the hyper-
sphere.

4.2. Feature Encoding

Starting from the initial hyperspherical embedding h0
t , we

apply L consecutive blocks of non-linear transformations.
Each l-th block transforms hl

t into hl+1
t as follows:

MLP + ℓ2-Norm. Each block uses an inverted bottle-
neck MLP (Vaswani, 2017) followed by ℓ2-normalization
to project the output back onto the unit hypersphere.

h̃l
t = ℓ2-Norm(W l

h,2 ReLU
(
(W l

h,1 h
l
t)⊙ slh

)
). (11)

where W l
h,1 ∈ R4dh×dh and W l

h,2 ∈ Rdh×4dh are weight
matrices, and slh ∈ R4dh is a learnable scaling vector.

LERP + ℓ2-Norm. We then linearly interpolate between
the original input hl

t and its non-linearly transformed output
h̃l
t, followed by another ℓ2-normalization:

hl+1
t = ℓ2-Norm((1−αl)⊙ hl

t +αl ⊙ h̃l
t). (12)

where 1 ∈ Rdh and αl ∈ Rdh are one vector and a learnable
interpolation vector, respectively.

4

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

LERP acts analogous to a learnable residual connection
but can also be viewed as a first-order approximation of
a Riemannian retraction on the hypersphere (Absil et al.,
2008). Please refer to Appendix A.1 for further discussion.

4.3. Output Prediction

We use a linear layer to parameterize both the policy dis-
tribution and Q-value. Because Simba’s single Q-value
estimate with an MSE-based Bellman loss is susceptible to
outliers, we adopt a categorical critic with KL-divergence
loss (Bellemare et al., 2017), which provides smoother gra-
dients and more stable optimization (Imani & White, 2018).

Distributional Critic. We represent the Q-value as a cate-
gorical distribution over a discrete set of returns:

{
δi = Gmin + (i− 1)

Gmax −Gmin

natom − 1

∣∣ i = 1, ..., natom
}
,

(13)
where Gmin and Gmax denote the minimum and maximum
possible returns, and natom is the number of discrete atoms.

Given the encoded representation hL
t , we compute unnor-

malized logits zt ∈ R|A|×natom for all actions as follows:

zt = Wo,2(
(
Wo,1 h

L
t

)
⊙ so), (14)

where Wo,1 ∈ Rdh×dh , Wo,2 ∈ R|A|×natom×dh , and so ∈
Rdh are trainable parameters.

For each action a ∈ A, the categorical probability is repre-
sented by applying the softmax function to zt,a ∈ Rnatom :

pt,a = softmax
(
zt,a

)
. (15)

The resulting Q-value is the expected return under pt,a:

Q(ot,a) =

natom∑
i=1

δi pt,a,i. (16)

Reward Bounding and Scaling. To use a categorical critic,
we first bound the target returns within [Gmin, Gmax] and
then scale the reward to maintain unit variance, ensuring
stable gradients for both the actor and the critic. Unlike
previous work (Schaul et al., 2021), which scaled the critic
loss, we scale the reward itself, affecting both components
simultaneously. Moreover, unlike observation normaliza-
tion, we do not center the reward, as shifting the reward can
alter the optimal policy in episodic tasks (Naik et al., 2024).

Given a reward rt at time t and a discounted factor γ, we
track a running discounted return:

Gt ← γGt−1 + rt (17)

where Gt is re-initialized to 0 at the start of each episode.

Then, we track the running variance of Gt, denoted as σ2
t,G

and maintain a running maximum:

Gt,max ← max(Gt,max, Gt). (18)

We then scale the reward as follows:

r̄t ←
rt

max(
√

σ2
t,G + ϵ, Gt,max/Gmax)

. (19)

This formula stabilizes gradients for both high-variance and
low-variance returns, while thresholding with Gt,max/Gmax

ensures target returns remain within [Gmin, Gmax].

4.4. Initialization and Update

In this subsection, we outline how weight matrix W , scaler
s, and interpolation vector α are initialized and updated.

Weight. All weight vectors are initialized orthogonally and
then projected onto the unit hypersphere which forms an
orthonormal basis. At each gradient step, we re-project
them onto the unit sphere to maintain unit norm.

Formally, let W be the weight matrix before the update, and
let L denote the loss function. The update rule is defined as:

W ← ℓ2-Norm(W − η
∂L
∂W

) (20)

where η > 0 is a learning rate and ℓ2-Norm is the ℓ2-
normalization operator along the embedding axis.

Scaler. Following Loshchilov et al. (2024), we decouple
the initialization scale of s from its learning dynamics by
using two scalars, sinit and sscale. Although s is initialized
to sscale, it behaves as if it was initialized to sinit during the
forward pass by:

s← sscale ⊙ (sinit ⊘ sscale) (21)

where ⊙ and ⊘ are element-wise product and division,
respectively. This formulation lets sscale control the learning
rate of s independently from the global learning rate η.

When both the feature vector h ∈ Rdh and the randomly
orthonormal initialized weight matrix W ∈ Rdh×dh lie
on the unit hypersphere, each component of Wh ∈ Rdh

can be approximated by cos(θ) with Eθ[cos
2(θ)] = 1/2.

Therefore, we set sinit = sscale = (
√

2/dh)1 to maintain
unit norm after scaling at initialization. A detailed derivation
is in Appendix A.2.

Interpolation vector. Analogous to the scaler, the inter-
polation vector, α, also has αinit and αscale. Following
Loshchilov et al. (2024), we initialize αinit = 1/(L + 1)
and αscale = 1/

√
dh, to preserve residual feature and grad-

ually integrate non-linear features.

5

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

0 0.2 0.4 0.6 0.8 1.0
0.00
0.25
0.50
0.75
1.00

DM
C-

Ha
rd

(a) Average Return

0 0.2 0.4 0.6 0.8 1.0
1

60
120
180
240

(b) Feature Norm

0 0.2 0.4 0.6 0.8 1.0
0

20
40
60
80

(c) Parameter Norm

0 0.2 0.4 0.6 0.8 1.0
10 4
0.5
1.0
1.5
2.0

(d) Gradient Norm

0 0.2 0.4 0.6 0.8 1.0
0.01
0.25
0.50
0.75
1.00

×10 2

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0.00
0.25
0.50
0.75
1.00

HB
en

ch
-H

ar
d

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

1
25
50
75

100

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0
30
60
90

120

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

10 4
2
4
6
8

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0.01
0.25
0.50
0.75
1.00

×10 1

0.01
15.00
30.00
45.00
60.00

×10 2
(e) Effective LR

0.01
2.50
5.00
7.50
10.00

×10 1

SimbaV2 Simba SimbaV2 Encoder SimbaV2 Predictor Simba Encoder Simba Predictor

Figure 4. SimbaV2 vs. Simba Training Dynamics. We track 4 metrics during training to understand the learning dynamics of SimbaV2:
(a) Average normalized return across tasks. (b) Weighted sum of ℓ2-norms of all intermediate features in critic. (c) Weighted sum of
ℓ2-norms of all critic parameters (d) Weighted sum of ℓ2-norms of all gradients in critic (e) Effective learning rate (ELR) of the critic. On
both environments, SimbaV2 maintains stable norms and ELR, while Simba exhibits divergent fluctuations.

5. Experiments
We now present a series of experiments designed to evaluate
SimbaV2. Our investigation centers on four main setups:

• Optinmization Analysis (Section 5.2). Investigate
whether SimbaV2 stabilizes the optimization process.

• Scaling Analysis (Section 5.3). Investigate whether Sim-
baV2 allows scaling model capacity and computation.

• Comparisons (Sections 5.4). Compare SimbaV2 against
state-of-the-art RL algorithms.

• Design Study (Section 5.5.) Conducts ablation studies on
individual architectural components of SimbaV2.

5.1. Experimental Setup

Environment. A total of 57 continuous-control tasks are
considered across 4 domains: MuJoCo (Todorov et al.,
2012), DMC Suite (Tassa et al., 2018), MyoSuite (Caggiano
et al., 2022), and HumanoidBench (Sferrazza et al., 2024).
Also, two challenging subsets are defined for an empir-
ical analysis: DMC-Hard (7 tasks involving dog and
humanoid embodiments) and HBench-Hard (5 tasks:
run, balance-simple, sit-hard, stair, walk).

Baselines. Comparisons include a broad range of deep RL
algorithms, PPO (Schulman et al., 2017), SAC (Haarnoja
et al., 2018), TD3 (Fujimoto et al., 2018) TD3+OFE (Ota
et al., 2020), TQC (Kuznetsov et al., 2020), DreamerV3
(Hafner et al., 2023), TD7 (Fujimoto et al., 2023), TD-
MPC2 (Hansen et al., 2023), Cross-Q (Bhatt et al., 2024),
BRO (Nauman et al., 2024b), MAD-TD (Voelcker et al.,
2024), MR.Q (Fujimoto et al., 2025), and Simba (Lee et al.,
2024c). Whenever available, we report the results from
the original paper; otherwise, we run the authors’ official
code. In addition, to further compare performance before

and after scaling, we evaluate BRO, Simba, and SimbaV2
under both low UTD ratios (≤ 2) and high UTD ratios
(≤ 8). Additional details are described in Appendix E.

Metrics. To aggregate performance across diverse domains,
each environment’s return is normalized to a near [0, 1)
range. Specifically, MuJoCo performance is normalized by
TD3 (Fujimoto et al., 2018); DMC returns are divided by
1000; MyoSuite scores use success rates; and Humanoid-
Bench scores are normalized by their success score.

Training. If possible, we tried to closely follow Simba’s
training configuration aiming to provide an apples-to-apples
comparison. Unless otherwise specified, the actor and critic
have hidden dimensions of 128 and 512, respectively (ap-
proximately 5M parameters). The model is trained for
1M environment steps, using a UTD ratio 2. We used an
Adam (Kingma & Ba, 2014) optimizer without weight de-
cay and set the batch size to 256. The learning rate is linearly
decayed from 1× 10−4 to 3× 10−5. Full hyperparameter
configurations are provided in Appendix C.

5.2. Optimization Analysis

To understand the optimizatiom dynamics of SimbaV2, we
measure the feature norm, weight norm, gradient norm, and
the effective learning rate (ELR), defined as the ratio of the
gradient norm to the weight norm (Kodryan et al., 2022;
Lyle et al., 2024) (See Appendix G for details). We weighted
average each metric across layers where weights correspond
to each layer’s fraction of total parameters. Additionally,
we divide the layers into encoder layers (all layers before
the output prediction) and predictor layers (those after) to
analyze their respective dynamics.

Figure 4 compares SimbaV2 and Simba on DMC-Hard and
HBench-Hard. As shown in Figure 4.(b)-(d), Simba exhibits

6

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

128 256 512 1024
Hidden Dim of Critic (dh)

0.25

0.38

0.50

0.62

0.75

To
ta

l R
ew

ar
d

(K
)

DMC-Hard

128 256 512 1024
Hidden Dim of Critic (dh)

0.30

0.45

0.60

0.75

0.90

Su
ce

ss
-N

or
m

 S
co

re

HBench-Hard

SimbaV2 Simba

Figure 5. Width Scaling. We scale the number of model parame-
ters by increasing the width of the critic network. On DMC-Hard,
both Simba and SimbaV2 benefit from increased model size. On
HBench-Hard, however, Simba plateaus at larger model sizes,
whereas SimbaV2 continues to improve.

large, often divergent fluctuations in feature, weight, and
gradient norms between the encoder and predictor. Conse-
quently, Figure 4.(e) shows that the encoder’s ELR trending
upward while the predictor’s ELR declines.

In contrast, SimbaV2 enforces tighter constraints, stabiliz-
ing norms and ELRs throughout training. Although certain
parameters (e.g., scalers or interpolation vectors) can ex-
ceed the unit norm, the majority of parameters remain on
the hypersphere, resulting in more robust optimization. A
standalone visualization of SimbaV2 is in Appendix G.

5.3. Scaling Analysis

For this experiment, we investigate whether SimbaV2’s
stable training dynamics enable better scaling performance
as model parameters or computational resources increase,
while reducing overfitting compared to existing methods.

Experimental Setup. We conduct two types of scaling ex-
periments. For parameter scaling, we focus on scaling the
critic network, as prior studies indicate that scaling the ac-
tor provides limited benefits (Nauman et al., 2024b; Lee
et al., 2024c). We test two scaling approaches: width
scaling by varying the critic’s hidden dimension across
{128, 256, 512, 1024}, increasing parameters from 0.3M
to 17.8M ; and depth scaling by varying the number of critic
blocks L across {1, 2, 4, 8}, growing parameters from 2.2M
to 17.8M .

For compute scaling experiments, we vary the update-to-
data (UTD) ratio across {1, 2, 4, 8}. We compare results
both with and without periodic weight reinitialization, since
prior work suggests that compute scaling requires periodic
reinitialization to avoid overfitting (D’Oro et al., 2022).
Following Nauman et al. (2024b), we apply reinitialization
every 500,000 update steps when used.

Parameter Scaling. Figure 5 shows width scaling results
on DMC-Hard (left) and HBench-Hard (right). Both Simba
and SimbaV2 benefit from larger models on DMC-Hard.

1 2 4 8
Number of Critic Blocks (L)

0.50

0.57

0.65

0.73

0.80

To
ta

l R
ew

ar
d

(K
)

DMC-Hard

1 2 4 8
Number of Critic Blocks (L)

0.40

0.55

0.70

0.85

1.00

Su
ce

ss
-N

or
m

 S
co

re

HBench-Hard

SimbaV2 Simba

Figure 6. Depth Scaling. We scale the number of model parame-
ters by increasing the depth of the critic network. On both DMC-
Hard and HBench-Hard, SimbaV2 benefits from increased depth,
while Simba’s performance degrades beyond a shallow configura-
tion of L ≥ 2.

However, on the more challenging HBench-Hard bench-
mark, while both methods achieve comparable performance
at the smallest scale (dh = 128), their scaling behavior di-
verges significantly. Simba plateaus at larger scales with
peak performance at dh = 1024, while SimbaV2 continues
to improve with increased width. This demonstrates that
SimbaV2’s stabilized training dynamics effectively lever-
ages larger model capacity.

Figure 6 presents depth scaling results. In HBench-Hard,
SimbaV2 shows consistent performance improvements as
the depth of the critic L increases, successfully solving the
five complex tasks in L = 8. On DMC-Hard, SimbaV2’s
performance also improves with depth but begins saturating
around L = 4, likely due to task complexity limitations
rather than architectural constraints. In contrast, Simba’s
performance either plateaus around L = 2 or slightly de-
creases after initial improvement. This clear difference
demonstrates SimbaV2’s superior depth scalability, which
we attribute to its effective regularization mechanisms that
enable stable training of deeper networks.

Compute Scaling. We next explore compute scaling
through increased UTD ratios, a key factor in improving
sample efficiency in deep RL (Li et al., 2023). While higher
UTD ratios can enhance sample efficiency, they also in-
crease the risk of overfitting. Previous approaches address
this through ensembling (Chen et al., 2021b), periodic reini-
tialization (Lee et al., 2024a; D’Oro et al., 2023; Nauman
et al., 2024b), or both (Kim et al., 2023). We investigate
whether SimbaV2’s stable dynamics enable effective scaling
without these additional mechanisms.

Figure 7 shows the effect of varying the UTD ratio on DMC-
Hard (left) and HBench-Hard (right), comparing Simba and
SimbaV2 with and without reinitialization (solid lines: no
reinitialization; dashed lines: reinitialization). In Simba,
performance plateaus at a UTD ratio of 2 on DMC-Hard and
1 on HBench-Hard. When combined with reinitialization,
but further improves with reinitialization, consistent with

7

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Table 1. Online RL. Average final performance after 1M environment steps, where ± captures a 95% confidence interval (CI) computed
over all raw benchmark samples. For algorithms with only average scores for each task available, we approximate the CI using these
averages (†). Note that this estimation may be inaccurate. The highest performance is highlighted. Any performance that is not statistically
worse than the highest performance (according to Welch’s t-test with significance level 0.05) is highlighted.

Mujoco (5) DMC-Easy (21) DMC-Hard (7) MyoSuite (10) HBench (14) All (57)
Method TD3.Norm Return (1k) Return (1k) Success Rate Success.Norm -

(a) Low UTD (≤ 2)
PPO (Schulman et al., 2017) 0.447 ± 0.270† 0.327 ± 0.128† 0.033 ± 0.030† - - -
SAC (Haarnoja et al., 2018) 1.092 ± 0.081 0.762 ± 0.094† 0.136 ± 0.04 0.607 ± 0.088 0.279 ± 0.050 0.554 ± 0.057
TD3 (Fujimoto et al., 2018) 1.000 ± 0.000† - - - - -
TD3+OFE (Ota et al., 2020) 1.322 ± 0.263† - - - - -
TQC (Kuznetsov et al., 2020) 1.137 ± 0.125† - - - - -
TD7 (Fujimoto et al., 2023) 1.570 ± 0.030 0.689 ± 0.134† 0.182 ± 0.137† 0.356 ± 0.126 0.289 ± 0.083 0.617 ± 0.358†

TD-MPC2 (Hansen et al., 2023) 1.040 ± 0.115 0.889 ± 0.064† 0.465 ± 0.139† 0.650 ± 0.148 0.710 ± 0.149 0.749 ± 0.168†

CrossQ (Bhatt et al., 2024) 1.475 ± 0.141 - - - - -
MR.Q (Fujimoto et al., 2025) 1.448 ± 0.156 0.868 ± 0.026 0.723 ± 0.061 - - -
BRO (Nauman et al., 2024b) 1.101 ± 0.182 0.861 ± 0.036 0.693 ± 0.066 0.714 ± 0.076 0.468 ± 0.107 0.731 ± 0.039
Simba (Lee et al., 2024c) 1.147 ± 0.077 0.864 ± 0.024 0.706 ± 0.05 0.743 ± 0.079 0.606 ± 0.073 0.780 ± 0.028
SimbaV2 (ours) 1.617 ± 0.103 0.874 ± 0.025 0.729 ± 0.065 0.847 ± 0.066 0.776 ± 0.064 0.892 ± 0.032

(b) High UTD (≥ 8)
REDQ (Chen et al., 2021b) 1.160 ± 0.071 - - - - -
DroQ (Hiraoka et al., 2021) 1.134 ± 0.070 - - - - -
DreamerV3 (Hafner et al., 2023) 0.760 ± 0.095 0.714 ± 0.124† 0.009 ± 0.006† 0.482 ± 0.166 0.022 ± 0.023 0.397 ± 0.289†

MAD-TD (Voelcker et al., 2024) - - 0.708 ± 0.065 - - -
BRO (Nauman et al., 2024b) 1.150 ± 0.202 0.871 ± 0.034 0.767 ± 0.059 0.814 ± 0.066 0.619 ± 0.117 0.807 ± 0.037
Simba (Lee et al., 2024c) 1.175 ± 0.136 0.866 ± 0.036 0.720 ± 0.087 0.834 ± 0.098 0.657 ± 0.099 0.818 ± 0.043
SimbaV2 (ours) 1.598 ± 0.176 0.876 ± 0.035 0.769 ± 0.089 0.866 ± 0.090 0.822 ± 0.099 0.911 ± 0.044

1 2 4 8
UTD Ratio

0.60

0.65

0.70

0.75

0.80

To
ta

l R
ew

ar
d

(K
)

DMC-Hard

1 2 4 8
UTD Ratio

0.40

0.55

0.70

0.85

1.00

Su
ce

ss
-N

or
m

 S
co

re

HBench-Hard

SimbaV2 SimbaV2+Reset Simba Simba+Reset

Figure 7. Compute Scaling.. We scale compute by increasing the
UTD ratio. We compare Simba and SimbaV2, both with and with-
out periodic reset. Simba saturates at lower ratios without reset, but
improves with reset. In contrast, SimbaV2 scales smoothly even
without reset, where using reset slightly degrades its performance.

D’Oro et al. (2023). In contrast, SimbaV2 scales consis-
tently as the UTD ratio increases, even without reinitializa-
tion. Notably, reinitialization slightly degrades SimbaV2’s
performance, as it disrupts training and adds time to recover.

To verify the importance of hyperspherical weight and fea-
ture normalization for UTD scaling, we test a variant in
Appendix H.1 that includes distributional critics and re-
ward scaling on Simba. This variant fails to scale at higher
UTD ratios, confirming the critical role of hyperspherical
normalization for effective scaling.

5.4. Online RL

Having observed SimbaV2’s scalability, we now compare it
against standard model-free and model-based RL.

Table 1.(a) presents results at a UTD ratio below 2. Sim-
baV2 with UTD=2 attains an average normalized score of
0.892, exceeding the previous best of 0.780. Only except for
DMC-Easy suite, SimbaV2 outperforms leading model-free
(CrossQ (Bhatt et al., 2024), BRO (Nauman et al., 2024b),
Simba (Lee et al., 2024c)) and model-based (TD-MPC2
(Hansen et al., 2023), MR.Q (Fujimoto et al., 2025)) base-
lines, demonstrating superior sample efficiency.

Table 1.(b) evaluates higher UTD settings. Increasing Sim-
baV2’s UTD from 2 to 8 further elevates its average score
from 0.892 to 0.911. SimbaV2 also surpasses BRO with
UTD=10, which utilizes periodic reinitialization to avoid
overfitting at high update rates. These consistent gains at
larger UTD ratios underscore the efficacy of hyperspherical
normalization in stabilizing training.

For offline RL, we simply add a behavioral cloning loss
during training with using identical configurations to the
online RL. Despite minimal changes, SimbaV2 performs
competitively with existing baselines (Appendix D).

5.5. Design Study

Table 2 presents the results from ablation studies isolating
the contributions of various architectural choices.

Input Projection. Projecting observations onto a hyper-
sphere before passing them through the linear layer is crucial
for performance (Table 2.(a)), where omitting this step leads
to a significant performance drop. Equally important de-
sign is preserving the original magnitude during projection

8

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Table 2. Design Study. We report the final performance for each design choice in the online RL benchmarks, averaged over 3 random
seeds. Performance changes relative to the default SimbaV2 are highlighted according to their percentile difference: mild positive
changes [0.02, 0.05) and mild negative changes (−0.05,−0.02] are highlighted lightly, damaging changes (−0.1,−0.05] are highlighted
moderately, and catastrophic changes (−1.0,−0.1] are highlighted boldly.

Design Mujoco (5) DMC-Easy (21) DMC-Hard (7) MyoSuite (10) HBench (14) All (57)
(idx) Original → Changed TD3.Norm Return (1k) Return (1k) Success Rate Success.Norm -

Input Projection
(a) L2 Normalize → No L2 Normalize 1.370 ± 0.220 0.779 ± 0.053 0.700 ± 0.094 0.815 ± 0.100 0.711 ± 0.123 0.809 ± 0.059
(b) Shifting → No Shifting 1.406 ± 0.233 0.771 ± 0.056 0.724 ± 0.088 0.800 ± 0.105 0.700 ± 0.125 0.810 ± 0.061
(c) cshift : 3 → 1 1.558 ± 0.167 0.862 ± 0.039 0.718 ± 0.089 0.870 ± 0.085 0.791 ± 0.130 0.888 ± 0.058
(d) Shift Projection → Resize Projection 1.623 ± 0.176 0.842 ± 0.043 0.720 ± 0.093 0.852 ± 0.083 0.779 ± 0.122 0.884 ± 0.058

Output Prediction
(e) Categorical Loss → MSE Loss 1.343 ± 0.097 0.868 ± 0.034 0.708 ± 0.097 0.757 ± 0.130 0.767 ± 0.129 0.846 ± 0.062
(f) Reward Scaling → No Scaling 1.395 ± 0.151 0.852 ± 0.034 0.712 ± 0.092 0.840 ± 0.077 0.735 ± 0.085 0.852 ± 0.042
(g) Reward Bounding → No Bounding 1.620 ± 0.142 0.824 ± 0.033 0.733 ± 0.072 0.805 ± 0.121 0.787 ± 0.128 0.868 ± 0.051
(h) Soft Target → Hard Target 1.589 ± 0.175 0.878 ± 0.037 0.746 ± 0.081 0.848 ± 0.086 0.770 ± 0.094 0.890 ± 0.051

Initialization & Update
(i) LR Decay → No LR Decay 1.562 ± 0.162 0.858 ± 0.042 0.719 ± 0.065 0.810 ± 0.114 0.754 ± 0.119 0.863 ± 0.064

(j) sinit :
√
2/

√
dh → 1 1.571 ± 0.105 0.873 ± 0.022 0.718 ± 0.052 0.855 ± 0.062 0.781 ± 0.074 0.890 ± 0.032

(k) sscale :
√
2/

√
dh → 1 1.594 ± 0.102 0.870 ± 0.025 0.706 ± 0.055 0.836 ± 0.053 0.789 ± 0.072 0.887 ± 0.033

(l) αinit : 1/(L+ 1) → 0.5 1.583 ± 0.172 0.866 ± 0.038 0.728 ± 0.084 0.843 ± 0.068 0.745 ± 0.102 0.877 ± 0.057

(m) αscale : 1/
√
dh → 1 1.520 ± 0.177 0.856 ± 0.034 0.714 ± 0.089 0.875 ± 0.079 0.792 ± 0.125 0.885 ± 0.059

SimbaV2 1.617 ± 0.103 0.874 ± 0.025 0.729 ± 0.064 0.847 ± 0.066 0.776 ± 0.071 0.892 ± 0.032

(Table 2.(b)). We also explore an alternative “resize” pro-
jection, where inputs are first divided by cshift

√
dh before

being projected onto an (n+ 1)-dimensional hypersphere.
The resize projection yields comparable performance as it
can also retain magnitude information (Table 2.(d)).

Output Projection. Incorporating a distributional critic
and reward scaling improves performance, especially in
environments with high reward variance like MuJoCo (Ta-
ble 2.(e)–(f)). Bounding target returns proves essential for
easier tasks (Table 2.(g)), such as cartpole in the DMC-
Easy suite (Table 25). Without bounding, consistent high
returns can diminish return variance, and scaling returns
push target values beyond the range of the distributional
critic, leading to collapse in the TD loss.

Initialization & Update. Gradually decaying the learning
rate is critical. Without decay, the model may struggle to re-
fine its predictions during later training stages, as SimbaV2
maintains an effective constant learning rate throughout
training (Table 2.(i)). Tuning initial scaler values has mini-
mal impact on performance where the architecture remains
stable by these changes (Table 2.(j)–(m)).

6. Lessons and Opportunities
Lessons. Historically, RL research has relied on complex
regularizations to address overfitting and scalability issues
(Klein et al., 2024). Our findings suggest that suitably cho-
sen constraints, exemplified by SimbaV2, can simplify these
design complexities while retaining strong performance.

Opportunities. Future opportunities include deploying
SimbaV2 in real-world robotics (Hwangbo et al., 2019),

where sample efficiency is crucial, and extending it to
model-based (Hansen et al., 2023) or visual RL (Kostrikov
et al., 2020). Furthermore, with increasing interest in RL
for training large language models (Ouyang et al., 2022;
Guo et al., 2025), the potential benefits of using stricter
normalization for large models remain an exciting open
question.

Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning. There are many potential societal con-
sequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
We would like to express our gratitude to Dongyoon Hwang
and Hawon Jeong for their valuable feedback on this paper.

This work was supported by Institute for Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (RS-2019-
II190075, Artificial Intelligence Graduate School Program
(KAIST)). This work was supported by the National Re-
search Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. RS-2025-00555621) This
work was mainly supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.RS-
2021-II212068, Artificial Intelligence Innovation Hub).

9

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

References
Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

algorithms on matrix manifolds. Princeton University
Press, 2008. (Cited on page 5, 15)

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. (Cited on page 1)

Ball, P. J., Smith, L., Kostrikov, I., and Levine, S. Ef-
ficient online reinforcement learning with offline data.
In International Conference on Machine Learning, pp.
1577–1594. PMLR, 2023. (Cited on page 21)

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Inter-
national conference on machine learning, pp. 449–458.
PMLR, 2017. (Cited on page 2, 4, 5)

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Ami-
ranashvili, A., Brox, T., and Peters, J. Crossq: Batch
normalization in deep reinforcement learning for greater
sample efficiency and simplicity. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=PczQtTsTIX. (Cited on page 1, 2, 6, 8, 22)

Bjorck, N., Gomes, C. P., and Weinberger, K. Q. Towards
deeper deep reinforcement learning with spectral nor-
malization. Advances in neural information processing
systems, 34:8242–8255, 2021. (Cited on page 1, 2)

Bonnabel, S. Stochastic gradient descent on riemannian
manifolds. IEEE Transactions on Automatic Control,
58(9):2217–2229, September 2013. ISSN 1558-2523.
doi: 10.1109/tac.2013.2254619. URL http://dx.
doi.org/10.1109/TAC.2013.2254619. (Cited
on page 16)

Boumal, N. An introduction to optimization on smooth
manifolds. Cambridge University Press, 2023. (Cited on
page 15)

Brockman, G. Openai gym. arXiv preprint
arXiv:1606.01540, 2016. (Cited on page 24)

Caggiano, V., Wang, H., Durandau, G., Sartori, M., and
Kumar, V. Myosuite–a contact-rich simulation suite
for musculoskeletal motor control. arXiv preprint
arXiv:2205.13600, 2022. (Cited on page 2, 6, 24)

Cai, T. T., Fan, J., and Jiang, T. Distributions of angles in
random packing on spheres. Journal of Machine Learning
Research, 14(136):1837–1864, 2013. (Cited on page 17)

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021a. (Cited on page 21)

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020. (Cited on page
3)

Chen, X., Wang, C., Zhou, Z., and Ross, K. Randomized
ensembled double q-learning: Learning fast without a
model. arXiv preprint arXiv:2101.05982, 2021b. (Cited
on page 7, 8, 22)

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., et al. Scaling vision transformers
to 22 billion parameters. In International Conference on
Machine Learning, pp. 7480–7512. PMLR, 2023. (Cited
on page 1)

Do Carmo, M. P. and Flaherty Francis, J. Riemannian
geometry, volume 2. Springer, 1992. (Cited on page 15)

Dohare, S., Hernandez-Garcia, J. F., Rahman, P., Sutton,
R. S., and Mahmood, A. R. Maintaining plasticity in deep
continual learning. arXiv preprint arXiv:2306.13812,
2023. (Cited on page 1)

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier. In
Deep Reinforcement Learning Workshop NeurIPS 2022,
2022. (Cited on page 7)

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning
Representations, 2023. (Cited on page 2, 7, 8)

Elsayed, M., Vasan, G., and Mahmood, A. R. Streaming
deep reinforcement learning finally works. arXiv preprint
arXiv:2410.14606, 2024. (Cited on page 2)

Farebrother, J., Machado, M. C., and Bowling, M. Gen-
eralization and regularization in dqn. arXiv preprint
arXiv:1810.00123, 2018. (Cited on page 1, 2)

Farebrother, J., Orbay, J., Vuong, Q., Taı̈ga, A. A., Cheb-
otar, Y., Xiao, T., Irpan, A., Levine, S., Castro, P. S.,
Faust, A., et al. Stop regressing: Training value func-
tions via classification for scalable deep rl. arXiv preprint
arXiv:2403.03950, 2024. (Cited on page 2)

10

https://openreview.net/forum?id=PczQtTsTIX
https://openreview.net/forum?id=PczQtTsTIX
http://dx.doi.org/10.1109/TAC.2013.2254619
http://dx.doi.org/10.1109/TAC.2013.2254619

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Feller, W. An introduction to probability theory and its
applications, Volume 2, volume 81. John Wiley & Sons,
1991. (Cited on page 17)

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020. (Cited
on page 2, 21)

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021. (Cited on
page 21)

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018. (Cited on page 6, 8, 22)

Fujimoto, S., Chang, W.-D., Smith, E. J., Gu, S. S., Precup,
D., and Meger, D. For sale: State-action representation
learning for deep reinforcement learning. arXiv preprint
arXiv:2306.02451, 2023. (Cited on page 6, 8, 21, 22, 24,
38)

Fujimoto, S., D’Oro, P., Zhang, A., Tian, Y., and Rabbat,
M. Towards general-purpose model-free reinforcement
learning. arXiv preprint arXiv:2501.16142, 2025. (Cited
on page 6, 8, 22, 23, 38)

Gallici, M., Fellows, M., Ellis, B., Pou, B., Masmitja, I.,
Foerster, J. N., and Martin, M. Simplifying deep temporal
difference learning. arXiv preprint arXiv:2407.04811,
2024. (Cited on page 2)

Garg, D., Hejna, J., Geist, M., and Ermon, S. Extreme
q-learning: Maxent rl without entropy. arXiv preprint
arXiv:2301.02328, 2023. (Cited on page 21)

Gemini, Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023. (Cited on page
1)

Gogianu, F., Berariu, T., Rosca, M. C., Clopath, C., Bu-
soniu, L., and Pascanu, R. Spectral normalisation for
deep reinforcement learning: an optimisation perspec-
tive. In International Conference on Machine Learning,
pp. 3734–3744. PMLR, 2021. (Cited on page 2)

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.
(Cited on page 9)

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.
(Cited on page 2, 3, 6, 8, 22)

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023. (Cited on page 6, 8, 22, 38)

Hansen, N., Su, H., and Wang, X. Td-mpc2: Scalable, ro-
bust world models for continuous control. arXiv preprint
arXiv:2310.16828, 2023. (Cited on page 6, 8, 9, 20, 22,
38)

Hansen-Estruch, P., Kostrikov, I., Janner, M., Kuba, J. G.,
and Levine, S. Idql: Implicit q-learning as an actor-
critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023. (Cited on page 21)

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., and
Tsuruoka, Y. Dropout q-functions for doubly efficient re-
inforcement learning. arXiv preprint arXiv:2110.02034,
2021. (Cited on page 2, 8)

Hussing, M., Voelcker, C. A., Gilitschenski, I., Farahmand,
A.-m., and Eaton, E. Dissecting deep rl with high update
ratios: Combatting value divergence. In Reinforcement
Learning Conference, 2024. (Cited on page 1)

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsou-
nis, V., Koltun, V., and Hutter, M. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26):eaau5872, 2019. (Cited on page 9)

Imani, E. and White, M. Improving regression performance
with distributional losses. In International conference on
machine learning, pp. 2157–2166. PMLR, 2018. (Cited
on page 5)

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020. (Cited on page
1)

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila, T.,
and Laine, S. Analyzing and improving the training
dynamics of diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24174–24184, 2024. (Cited on page 3)

Kim, W., Shin, Y., Park, J., and Sung, Y. Sample-
efficient and safe deep reinforcement learning via re-
set deep ensemble agents. In Thirty-seventh Con-
ference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=bTidcHIK2t. (Cited on page 7)

11

https://openreview.net/forum?id=bTidcHIK2t
https://openreview.net/forum?id=bTidcHIK2t

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.
(Cited on page 6)

Klein, T., Miklautz, L., Sidak, K., Plant, C., and Tschi-
atschek, S. Plasticity loss in deep reinforcement learning:
A survey. arXiv preprint arXiv:2411.04832, 2024. (Cited
on page 9)

Kodryan, M., Lobacheva, E., Nakhodnov, M., and Vetrov,
D. P. Training scale-invariant neural networks on the
sphere can happen in three regimes. Advances in Neural
Information Processing Systems, 35:14058–14070, 2022.
(Cited on page 6, 28)

Kostrikov, I., Yarats, D., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. arXiv preprint arXiv:2004.13649, 2020.
(Cited on page 9)

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021. (Cited on page 21)

Krogh, A. and Hertz, J. A simple weight decay can im-
prove generalization. Advances in neural information
processing systems, 4, 1991. (Cited on page 2)

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020. (Cited on page 21)

Kumar, A., Agarwal, R., Ma, T., Courville, A., Tucker,
G., and Levine, S. DR3: Value-based deep reinforce-
ment learning requires explicit regularization. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=POvMvLi91f. (Cited on page 1)

Kuznetsov, A., Shvechikov, P., Grishin, A., and Vetrov, D.
Controlling overestimation bias with truncated mixture
of continuous distributional quantile critics. In Interna-
tional Conference on Machine Learning, pp. 5556–5566.
PMLR, 2020. (Cited on page 6, 8, 22)

Lee, H., Cho, H., Kim, H., Gwak, D., Kim, J., Choo, J.,
Yun, S.-Y., and Yun, C. Plastic: Improving input and la-
bel plasticity for sample efficient reinforcement learning.
Advances in Neural Information Processing Systems, 36,
2024a. (Cited on page 7)

Lee, H., Cho, H., Kim, H., Kim, D., Min, D., Choo, J., and
Lyle, C. Slow and steady wins the race: Maintaining
plasticity with hare and tortoise networks. arXiv preprint
arXiv:2406.02596, 2024b. (Cited on page 3)

Lee, H., Hwang, D., Kim, D., Kim, H., Tai, J. J., Sub-
ramanian, K., Wurman, P. R., Choo, J., Stone, P., and
Seno, T. Simba: Simplicity bias for scaling up param-
eters in deep reinforcement learning. arXiv preprint
arXiv:2410.09754, 2024c. (Cited on page 1, 2, 3, 6,
7, 8, 22, 23, 30, 38)

Lee, J. M. Riemannian manifolds: an introduction to cur-
vature, volume 176. Springer Science & Business Media,
2006. (Cited on page 15)

Lei Ba, J., Kiros, J. R., and Hinton, G. E. Layer normal-
ization. ArXiv e-prints, pp. arXiv–1607, 2016. (Cited on
page 1)

Li, Q., Kumar, A., Kostrikov, I., and Levine, S. Efficient
deep reinforcement learning requires regulating overfit-
ting. arXiv preprint arXiv:2304.10466, 2023. (Cited on
page 1, 2, 7)

Li, S. Concise formulas for the area and volume of a hyper-
spherical cap. Asian Journal of Mathematics & Statistics,
4(1):66–70, 2010. (Cited on page 17)

Lillicrap, T. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015. (Cited
on page 22, 30)

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L.
Sphereface: Deep hypersphere embedding for face recog-
nition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 212–220, 2017a.
(Cited on page 3)

Liu, W., Zhang, Y.-M., Li, X., Yu, Z., Dai, B., Zhao, T.,
and Song, L. Deep hyperspherical learning. Advances in
neural information processing systems, 30, 2017b. (Cited
on page 3)

Loshchilov, I., Hsieh, C.-P., Sun, S., and Ginsburg, B. ngpt:
Normalized transformer with representation learning on
the hypersphere. arXiv preprint arXiv:2410.01131, 2024.
(Cited on page 2, 3, 5, 16)

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. Proc.
the International Conference on Learning Representa-
tions (ICLR), 2022. (Cited on page 1)

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu,
R., and Dabney, W. Understanding plasticity in neural
networks. Proc. the International Conference on Machine
Learning (ICML), 2023. (Cited on page 1, 2)

Lyle, C., Zheng, Z., Khetarpal, K., Martens, J., van Hasselt,
H., Pascanu, R., and Dabney, W. Normalization and
effective learning rates in reinforcement learning. arXiv
preprint arXiv:2407.01800, 2024. (Cited on page 1, 6)

12

https://openreview.net/forum?id=POvMvLi91f
https://openreview.net/forum?id=POvMvLi91f

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Ma, G., Li, L., Zhang, S., Liu, Z., Wang, Z., Chen, Y.,
Shen, L., Wang, X., and Tao, D. Revisiting plasticity in
visual reinforcement learning: Data, modules and training
stages. arXiv preprint arXiv:2310.07418, 2023. (Cited
on page 1)

Naik, A., Wan, Y., Tomar, M., and Sutton, R. S. Reward
centering. arXiv preprint arXiv:2405.09999, 2024. (Cited
on page 5)

Nauman, M., Bortkiewicz, M., Ostaszewski, M., Miłoś, P.,
Trzciński, T., and Cygan, M. Overestimation, overfitting,
and plasticity in actor-critic: the bitter lesson of reinforce-
ment learning. arXiv preprint arXiv:2403.00514, 2024a.
(Cited on page 2)

Nauman, M., Ostaszewski, M., Jankowski, K., Miłoś, P., and
Cygan, M. Bigger, regularized, optimistic: scaling for
compute and sample-efficient continuous control. arXiv
preprint arXiv:2405.16158, 2024b. (Cited on page 3, 6,
7, 8, 23)

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. Proc. the International Conference on Machine
Learning (ICML), 2022. (Cited on page 2, 3)

Obando-Ceron, J., Sokar, G., Willi, T., Lyle, C., Farebrother,
J., Foerster, J., Dziugaite, G. K., Precup, D., and Castro,
P. S. Mixtures of experts unlock parameter scaling for
deep rl. arXiv preprint arXiv:2402.08609, 2024. (Cited
on page 2)

Ota, K., Oiki, T., Jha, D., Mariyama, T., and Nikovski,
D. Can increasing input dimensionality improve deep
reinforcement learning? In International conference on
machine learning, pp. 7424–7433. PMLR, 2020. (Cited
on page 6, 8, 22)

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray,
A., et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022. (Cited on
page 9)

Palenicek, D., Vogt, F., and Peters, J. Scaling off-policy
reinforcement learning with batch and weight normaliza-
tion. arXiv preprint arXiv:2502.07523, 2025. (Cited on
page 2)

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. In International conference on ma-
chine learning, pp. 8821–8831. Pmlr, 2021. (Cited on
page 1)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022. (Cited on page 1)

Salimans, T. and Kingma, D. P. Weight normalization: A
simple reparameterization to accelerate training of deep
neural networks. Advances in neural information pro-
cessing systems, 29, 2016. (Cited on page 3)

Scannell, A., Kujanpää, K., Zhao, Y., Nakhaei, M., Solin,
A., and Pajarinen, J. iqrl–implicitly quantized represen-
tations for sample-efficient reinforcement learning. arXiv
preprint arXiv:2406.02696, 2024. (Cited on page 23)

Schaul, T., Ostrovski, G., Kemaev, I., and Borsa, D. Return-
based scaling: Yet another normalisation trick for deep rl.
arXiv preprint arXiv:2105.05347, 2021. (Cited on page
2, 5)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017. (Cited on page
6, 8)

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, better,
faster: Human-level atari with human-level efficiency.
In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023. (Cited on page 2, 3)

Sferrazza, C., Huang, D.-M., Lin, X., Lee, Y., and Abbeel,
P. Humanoidbench: Simulated humanoid benchmark for
whole-body locomotion and manipulation. arXiv preprint
arXiv:2403.10506, 2024. (Cited on page 2, 6, 25)

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
arXiv preprint arXiv:2302.12902, 2023. (Cited on page
3)

Song, X., Jiang, Y., Tu, S., Du, Y., and Neyshabur, B.
Observational overfitting in reinforcement learning. arXiv
preprint arXiv:1912.02975, 2019. (Cited on page 1, 2)

Spivak, M. D. A comprehensive introduction to differential
geometry. (No Title), 1970. (Cited on page 15)

Sutti, M. and Yueh, M.-H. Riemannian gradient descent
for spherical area-preserving mappings. arXiv preprint
arXiv:2403.11726, 2024. (Cited on page 16)

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018. (Cited on page 1)

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,

13

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018. (Cited on page 2, 6, 24)

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ in-
ternational conference on intelligent robots and systems,
pp. 5026–5033. IEEE, 2012. (Cited on page 2, 6, 24)

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U.,
De Cola, G., Deleu, T., Goulão, M., Kallinteris, A., Krim-
mel, M., KG, A., et al. Gymnasium: A standard interface
for reinforcement learning environments. arXiv preprint
arXiv:2407.17032, 2024. (Cited on page 24)

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. (Cited on page 4)

Voelcker, C. A., Hussing, M., Eaton, E., Farahmand, A.-
m., and Gilitschenski, I. Mad-td: Model-augmented
data stabilizes high update ratio rl. arXiv preprint
arXiv:2410.08896, 2024. (Cited on page 6, 8, 23)

Wang, F., Xiang, X., Cheng, J., and Yuille, A. L. Norm-
face: L2 hypersphere embedding for face verification. In
Proceedings of the 25th ACM international conference
on Multimedia, pp. 1041–1049, 2017. (Cited on page 3)

Wang, T. and Isola, P. Understanding contrastive repre-
sentation learning through alignment and uniformity on
the hypersphere. In International conference on machine
learning, pp. 9929–9939. PMLR, 2020. (Cited on page
3)

Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an
expressive policy class for offline reinforcement learning.
arXiv preprint arXiv:2208.06193, 2022. (Cited on page
21)

Weisstein, E. W. Hypersphere. https://mathworld. wolfram.
com/, 2002. (Cited on page 17)

Weisstein, E. W. Solid angle. https://mathworld. wolfram.
com/, 2005. (Cited on page 17)

Willi, T., Obando-Ceron, J., Foerster, J., Dziugaite, K., and
Castro, P. S. Mixture of experts in a mixture of rl settings.
arXiv preprint arXiv:2406.18420, 2024. (Cited on page
2)

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020. (Cited on page 2)

Xu, G., Zheng, R., Liang, Y., Wang, X., Yuan, Z., Ji, T.,
Luo, Y., Liu, X., Yuan, J., Hua, P., et al. Drm: Master-
ing visual reinforcement learning through dormant ratio

minimization. arXiv preprint arXiv:2310.19668, 2023.
(Cited on page 3)

Xu, J. and Durrett, G. Spherical latent spaces for stable vari-
ational autoencoders. arXiv preprint arXiv:1808.10805,
2018. (Cited on page 3)

Zhou, Z., Peng, A., Li, Q., Levine, S., and Kumar, A. Effi-
cient online reinforcement learning fine-tuning need not
retain offline data. arXiv preprint arXiv:2412.07762,
2024. (Cited on page 21)

14

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Appendix

A. Architectural Details
A.1. LERP: A Retraction-based Approximation on Riemannian Manifolds.

During the feature encoding stage in SimbaV2, the input h and its non-linearly transformed output h̃ are linearly interpolated
using a learnable interpolation vector α ∈ Rdh :

h← ℓ2-Norm((1−α)⊙ h+α⊙ h̃), (22)

followed by ℓ2-normalization.

Intuitively, this can be interpreted as a first-order (retraction-based) approximation of the Riemannian update formula
on the hypersphere. This section provides a brief introduction to the differential geometry concepts that underpin the
Riemannian optimization perspective of α. For brevity, we omit the mathematical definitions, derivations, and proofs here.
The comprehensive introduction to differential geometry and Riemannian optimization can be found in Spivak (1970),
Do Carmo & Flaherty Francis (1992), and Boumal (2023).

Let Sn−1 denote the n-dimensional hypersphere embedded in Rn, i.e., Sn−1 = {h ∈ Rn | ∥h∥2 = 1}.

Manifold. A manifoldM of dimension n is a space that can locally be approximated by a Euclidean space Rn. The simplest
examples of a manifold include the open ball U = {x ∈ Rn | ∥x∥2 < r} for r ∈ R>0, and the hypersphere Sn−1 is also a
manifold in Rn.

Tangent Spaces. At each point x ∈M, the tangent space TxM is an n-dimensional vector space that locally approximates
M near x. Tangent vectors generalize the concept of directional derivatives. For the hypersphere Sn−1, the tangent space at
a point p consists of all vectors orthogonal to p:

TpSn−1 = {h ∈ Rn | ⟨p,h⟩ = 0} (23)

where ⟨·, ·⟩ denotes the Euclidean inner product.

Riemannian Metrics and Manifolds. The tangent space TxM is not inherently equipped with an inner product. A
Riemannian metric ρ provides a collection of inner products ρx(·, ·) : TxM × TxM → R on the tangent spaces,
ρ := (ρx)x∈M, which locally define the geometry of M. A Riemannian manifold (M, ρ) is a smooth manifold M
equipped with such a metric. This enables us to define geometric notions such as distance, angle, length, volume, and
curvature of manifold. For a detailed explanation of geometrics on Riemannian manifolds, refer to Lee (2006).

Exponential Mapping and Retraction. Under some conditions (Do Carmo & Flaherty Francis, 1992), the exponential
map expx : TxM→M can be defined at a point x ∈ M. expx(v) maps a tangent vector v ∈ TxM to a point on the
manifold along the geodesic from x in the direction of v. Therefore, for small t ∈ R, expx(tv) represents the shortest path
onM starting at x with initial direction v. In Euclidean space (Rn, In), the exponential map expx(v) = x+ v is simply
defined as a straight path. In practice, for computational efficiency (e.g., the mappings do not have closed-form), we often
approximate the exponential map expx by a retraction (Absil et al., 2008) Rx:
Definition A.1 (Retraction). A retraction R on a manifoldM is a smooth map:

R :
⋃

x∈M
TxM→M

(x,v) 7→ Rx(v)

with the following properties:
Rx(0) = x and (dRx)0 = id

where Rx denotes the restriction of R to TxM, (dRx)0 denotes the differential of Rx at 0, and id is the identity map.

Intuitively, a retraction Rx(v) provides a first-order approximation of the exponential map expx(v) (Boumal, 2023).
Figure 8 illustrates the difference between the exponential map and retraction on S2. For the hypersphere Sn−1, the
retraction of a tangent vector ξ ∈ ThSn−1 onto Sn−1 is given by (Absil et al., 2008):

Rh(ξ) = ℓ2-Norm(h+ ξ) =
h+ ξ

∥h+ ξ∥2
(24)

15

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Figure 8. Exponential Map vs. Retraction on 3-dimensional sphere. Comparison of the exponential map expx and the retraction Rx

on the 3-dimensional sphere S2. The exponential mapping sends a tangent vector g ∈ TxS2 exactly along the geodesic from x to a point
on the manifold, while the retraction locally approximates this mapping to first order. Figure adapted from Sutti & Yueh (2024).

Riemannian Optimization. On Riemannian manifolds, gradient updates ideally follow the curved geodesics, rather than
straight lines as in Euclidean space. To this end, Bonnabel (2013) introduce Riemannian SGD that generalizes SGD to
Riemannian manifolds using exponential map:

h← exph(−αg) (25)

where α > 0 is the global learning rate and g ∈ ThM denotes the Riemannian gradient.

In our case, −(h̃−h) can be viewed as the gradient g in the Euclidean space. Then, we project the gradient onto the tangent
space ThSn−1:

gproj = g − ⟨g,h⟩h (26)

= −(h̃− h)− ⟨−h̃+ h,h⟩h (27)

= −h̃+ ⟨h̃,h⟩h (28)

Applying the retraction exph(−αgproj) ≈ Rh(−αgproj):

h← ℓ2-Norm
(
h+ α(h̃− ⟨h̃,h⟩h)

)
(29)

= ℓ2-Norm
(
(1− α⟨h̃,h⟩)h+ αh̃

)
(30)

Thus, the LERP operation in SimbaV2 can be interpreted as a retraction-based approximation of the Riemannian update
rule on the hypersphere, where the learning rate α is replaced by a learnable vector α and the inner product ⟨h̃,h⟩ term is
neglected. Also, Loshchilov et al. (2024) empirically show that neglecting the inner product term has no significant impact
on performance.

16

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

A.2. Scaler Initialization

In our algorithm, the scaler s ∈ Rdh is a learnable vector that element-wise scales the output z of the linear layer:

z = s⊙Wh ∈ Rdh (31)

where W ∈ Rdh×n is the weight matrix of the linear layer, and h ∈ Rn is the input vector. To ensure that z (approximately)
maintains unit norm at initialization, we initialize s as s =

√
2
dh
· 1. The following section provides the derivation for this

initialization.

We assume that each normalized embedding wl ∈ Rn of W , and a random n-dimensional normalized vector h ∈ Rn,
are uniformly distributed on the n-dimensional hypersphere Sn−1. Furthermore, we assume that the vectors wl and h
are mutually independent (Feller, 1991). We denote the angle between wl and h by θl, such that cos θl = wl · h since
∥wl∥2 = ∥h∥2 = 1.

Distribution of the Cosine of the Angle. For simplicity, assume that wl is fixed. Since h is uniformly distributed on the
hypersphere, the distribution of the angle θl depends on the solid angle (Weisstein, 2005) subtended by h with respect to wl.
The surface area An−2 of an (n− 1)-dimensional hyperspherical cap (Li, 2010) leads to the probability density function
f(θl) (Cai et al., 2013):

f(θl) =
An−1

Sn−1
=

2π(n−1)/2

Γ(n−1
2)

2πn/2

Γ(n
2)

sinn−2(θl) =
Γ(n2)√
πΓ(n−1

2)
sinn−2(θl) (32)

where θl ∈ [0, π], Γ is the gamma function and Sn−1 is the surface area of Sn−1 = 2πn/2

Γ(n
2) (Weisstein, 2002).

Norm of Output Vector. Let z = s⊙Wh ∈ Rdh be the output of the linear layer. Each element of z and s, denoted by zl
and sl, respectively, corresponds to the scaled cosine of the angle θl between wl and h:

z = s⊙Wh =


s1(w1 · h)
s2(w2 · h)

...
sdh

(wdh
· h)

 =


s1 cos θ1
s2 cos θ2

...
sdh

cos θdh

 (33)

The expected squared norm of z is then given by:

E[∥z∥22] =
dh∑
l=1

s2lE[cos2 θl] (34)

Using the trigonometric identity cos2(θ) = 1+cos(2θ)
2 and the following integrals:∫ π

0

sinn−2(θ) dθ =
Γ(n−1

2)Γ(12)

Γ(n2)
=

√
πΓ(n−1

2)

Γ(n2)
(35)∫ π

0

cos(2θ) sinn−2(θ) dθ = 0 (36)

where the second integral vanishes due to the symmetry of cos(2θ) about θ = π
2 , we compute the expectation:

E[cos2(θl)] =
∫ π

0

cos2(θl)
Γ(n2)√
πΓ(n−1

2)
sinn−2(θl)︸ ︷︷ ︸

f(θl)

dθl (37)

=
Γ(n2)√
πΓ(n−1

2)

∫ π

0

cos2(θl) sin
n−2(θl)dθ (38)

=
Γ(n2)

2
√
πΓ(n−1

2)
×
√
πΓ(n−1

2)

Γ(n2)
=

1

2
(39)

Thus, by setting sl =
√

2
dh

for all ℓ ∈ {1, · · · , dh}, we expect that the expected norm E[∥z∥22] is 1 at initialization.

17

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

B. Implementation Details
Listings 1, 2 and 3 provide the Google JAX implementation of scaling vector (Section 4.4), input embedding (Section 4.1),
and MLP block (Section 4.2), respectively.

1 import flax.linen as nn
2

3 class Scaler(nn.Module):
4 dim: int
5 init: float
6 scale: float
7

8 def setup(self):
9 self.scaler = self.param(

10 nn.initializers.constant(1.0 * self.scale),
11 self.dim,
12)
13 self.forward_scaler = self.init / self.scale
14

15 def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
16 return self.scaler * self.forward_scaler * x

Listing 1. A JAX implementation of Scaler (Section 4.4)

1 import jax.numpy as jnp
2 import flax.linen as nn
3

4 class InputEmbedding(nn.Module):
5 observation_dim: int
6 hidden_dim: int
7 shift_const: float
8 input_scaler_init: float
9 input_scaler_scale: float

10

11 def setup(self):
12 self.obs_rms = RunningMeanStd(
13 shape=self.observation_dim
14)
15 self.w0 = nn.Dense(
16 features=self.hidden_dim,
17 use_bias=False
18)
19 self.input_scaler = Scaler(
20 dim=self.observation_dim,
21 init=input_scaler_init,
22 scale=input_scaler_scale
23)
24

25 def __call__(self, observation: jnp.ndarray) -> jnp.ndarray:
26 # RSNorm
27 o = (observations - self.obs_rms.mean) / jnp.sqrt(
28 self.obs_rms.var + self.epsilon
29)
30 # Shift + l2-Norm
31 new_axis = jnp.ones((o.shape[:-1] + (1,))) * self.shift_const
32 o = jnp.concatenate([o, new_axis], axis=-1)
33 o = l2normalize(o, axis=-1)
34 # Linear + Scaler
35 h = self.w0(o)
36 h = self.input_scaler(h)
37 h = l2normalize(h, axis=-1)
38 return h

Listing 2. A JAX implementation of Input Embedding (Section 4.1).

18

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

1 import flax.linen as nn
2

3 class SimbaV2Block(nn.Module):
4 hidden_dim: int
5 ffn_scaler_init: float
6 ffn_scaler_scale: float
7 alpha_scaler_init: float
8 alpha_scaler_scale: float
9

10 def setup(self):
11 self.w1 = nn.Dense(
12 features=4*self.hidden_dim,
13 use_bias=False
14)(x)
15 self.mlp_scaler = Scaler(
16 dim=4*self.hidden_dim,
17 init=ffn_scaler_init,
18 scale=ffn_scaler_scale
19)
20 self.w2 = nn.Dense(
21 features=self.hidden_dim,
22 use_bias=False
23)
24 self.alpha = Scaler(
25 dim=self.hidden_dim,
26 init=alpha_scaler_init,
27 scale=alpha_scaler_scale
28)
29

30 def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
31 residual = x
32 # MLP + l2-Norm
33 x = self.w1(x)
34 x = self.mlp_scaler(x)
35 x = nn.relu(x)
36 x = self.w2(x)
37 x = l2normalize(x, axis=-1)
38 # LERP + l2-Norm
39 x = l2normalize(residual + self.alpha(x - residual), axis=-1)
40 return x

Listing 3. A JAX implementation of MLP block (Section 4.2).

19

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

C. Hyperparameters
For all experiments, we use consistent hyperparameters across benchmarks. The default settings are listed in Table 3.

Table 3. Hyperparameters Table. The hyperparameters listed below are used consistently across all tasks using SimbaV2, unless stated
otherwise. For the discount factor γ, we set it automatically using heuristics used by TD-MPC2 (Hansen et al., 2023).

Hyperparameter Notation Value

Input Shift constant cshift 3.0

Output
Number of return bins natoms 101
Support of return [Gmin, Gmax] [−5, 5]
Reward scaler epsilon ϵ 1e−8

Training

Input scaler (s0
h,init, s

0
h,scale) (

√
2/

√
dh,

√
2/

√
dh)

MLP scaler (sl
h,init, s

l
h,scale) (

√
2/

√
4dh,

√
2/

√
4dh)

Output scaler (so,init, so,scale) (
√
2/

√
dh,

√
2/

√
dh)

LERP vector (αinit,αscale) (1/(L+ 1), 1/
√
dh)

Behavior cloning weight λ Online: 0.0
Offline: 0.1

Common

Discount factor γ Heuristic (Hansen et al., 2023)
Replay buffer capacity - 1M
Buffer sampling - Uniform
Batch size - 256
Update-to-data (UTD) ratio - 2
TD steps k 1

Actor

Number of blocks L 1
Hidden dimension dh 128
Initial temperature α0 1e−2
Target entropy H∗ |A|/2

Critic

Number of blocks L 2
Hidden dimension dh 512
Number of atoms natoms 101
Target critic momentum τ 5e−3
Clipped double Q - Has Failure Termination (Mujoco, HBench): True

No Failure Termination (DMC, MyoSuite): False

Optimizer

Optimizer - Adam
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight Decay - 0.0
Learning rate init η 1e−4
Learning rate final - 3e−4

20

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

D. Offline RL
In this section, we assess whether the SimbaV2 architecture also provide benefits in offline RL, training from a stationary
distribution. We adopt the minimalist offline RL method from (Fujimoto & Gu, 2021), where the behavioral cloning loss is
integrated into the reinforcement learning objective. The objective is defined as:

π ≈ argmax
π

E(s,a)∼D

[
Q(s, π(s))− λ |Es∼D[Q(s, π(s))]| · (π(s)− a)2

]
(40)

where we used λ = 0.1, as in (Fujimoto et al., 2023), and no parameter tuning is performed.

D.1. Experimental Setup

Environment. We use 9 MuJoCo tasks from the D4RL (Fu et al., 2020) benchmark, covering 3 environments
(HalfCheetah, Hopper, Walker2d) and 3 difficulty levels (Medium, Medium-Replay, Medium-Expert).

Baselines. We compare SimbaV2 against standard offline RL methods: Percentile BC, Decision Transformer (DT, (Chen
et al., 2021a)), Diffusion Q-Learning (DQL, (Wang et al., 2022)), Implicit Diffusion Q-Learning (IDQL, (Hansen-Estruch
et al., 2023)), Conservative Q-Learning (CQL, (Chen et al., 2021a)), TD3+BC (Fujimoto & Gu, 2021), Implicit Q-Learning
(IQL, (Kostrikov et al., 2021)), Extreme Q-Learning (X -QL, (Garg et al., 2023)), and TD7+BC (Fujimoto et al., 2023).

The results for Percentile BC, DT, DQL, and IDQL is from (Hansen-Estruch et al., 2023), while CQL, TD3+BC, IQL,
X -QL, and TD7 results come from (Fujimoto et al., 2023).

Metrics. Following the standard offline RL protocol (Fu et al., 2020), we normalize the score of each environment based on
the expert trajectory in the dataset.

Training. We use the same training configuration as in online RL (Appendix C), with a learning rate decaying linearly from
1× 10−4 to 1× 10−5 over 100 epochs, and include an additional behavioral cloning loss.

D.2. Results

Table 4 reports the performance of SimbaV2 + BC, averaged over 10 random seeds.

Table 4. Offline RL. Average final performance on the D4RL mujoco benchmark, averaged over 10 trials. Methods are listed in
chronological order. For a fair comparison, we used a unified hyperparameter configuration for each method. The highest performance is
highlighted. Any performance that is not statistically worse than the highest performance (according to Welch’s t-test with significance
level 0.05) is highlighted. The environment’s average variance was used for the statistical test for methods without reported variance.

HalfCheetah Hopper Walker2d Average
Method m m-r m-e m m-r m-e m m-r m-e -

CQL (Kumar et al., 2020) 46.7±0.3 45.5±0.3 76.8±7.4 59.3±3.3 78.8±10.9 79.9±19.8 81.4±1.7 79.9±3.6 108.5±1.2 73.0±2.7

Percent BC (Chen et al., 2021a) 48.4 40.6 92.9 56.9 75.9 110.9 75.0 62.5 109.0 74.0
DT (Chen et al., 2021a) 42.6 36.6 86.8 67.6 82.7 110.9 74.0 66.6 108.1 74.7
TD3+BC (Fujimoto & Gu, 2021) 48.1±0.1 44.6±0.4 93.7±0.9 59.1±3.0 52.0±10.6 98.1±10.7 84.3±0.8 81.0±3.4 110.5±0.4 74.6±1.7

IQL (Kostrikov et al., 2021) 47.4±0.2 43.9±1.3 89.6±3.5 63.9±4.9 93.4±7.8 64.2±32.0 84.2±1.6 71.2±8.3 108.9±1.4 74.1±3.8

DQL (Wang et al., 2022) 50.6 45.8 93.3 75.2 94.5 102.1 83.4 86.7 109.6 82.4
X -QL (Garg et al., 2023) 47.4±0.1 44.2±0.7 90.2±2.7 67.7±3.6 82.0±14.9 92.0±10.0 79.2±4.0 61.8±7.7 110.3±0.2 75.0±2.3

IDQL (Hansen-Estruch et al., 2023) 49.7 45.1 94.4 63.1 82.4 105.3 80.2 79.8 111.6 79.1
TD7+BC (Fujimoto et al., 2023) 58.0±0.4 53.8±0.8 104.6±1.6 76.1±5.1 91.1±8.0 108.2±4.8 91.1±7.8 89.7±4.7 111.8±0.6 87.2±1.6

SimbaV2+BC (ours) 54.8±0.5 48.6±0.8 92.2±1.4 98.1±2.4 99.9±0.6 106.2±1.5 82.7±10.3 87.7±2.1 110.6±0.6 86.7±1.6

With minimal changes, SimbaV2 performs highly competitively with existing offline RL algorithms, with statistically
significantly better performance on Hopper. Again, this experimental results reinforces the importance of architectural
design over complex algorithmic modifications. We believe our architectural approach offers exciting future potential for
bridging offline and online RL (Ball et al., 2023; Zhou et al., 2024).

21

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

E. Baselines
PPO (Lillicrap, 2015). Proximal Policy Optimization (PPO) is an on-policy policy gradient method that constrains updated
policies to remain proximal to the old policies to circumvent performance collapse. Results for Gym - MuJoCo and DMC
were obtained from Fujimoto et al. (2025), which are averaged over 10 seeds.

SAC (Haarnoja et al., 2018). Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm in which the actor simultaneously
maximizes expected return and entropy, encouraging both stability and exploration. For the MuJoCo tasks, results averaged
over 10 random seeds were obtained directly from the Bhatt et al. (2024) authors, with the update-to-data (UTD) ratio set to
1. For DMC, MyoSuite, and HBench tasks, we use the results from Lee et al. (2024c) which were obtained by running the
official repository for 10 random seeds, with the update-to-data (UTD) ratio set to 2.

TD3 (Fujimoto et al., 2018). Twin Delayed DDPG (TD3) is an off-policy actor-critic algorithm that mitigates Q-
overestimation bias via three key techniques: (i) clipped double Q-learning, (ii) delayed policy updates, (iii) target
policy smoothing. Results for Gym-MuJoCo were obtained from Table 1 of Fujimoto et al. (2023). These scores are
averaged over 10 random seeds.

TD3+OFE (Ota et al., 2020). By replacing the encoder with an Online Feature Extractor (OFE)—trained via a dynamics
prediction task to produce high-dimensional representations of observation-action pairs—TD3+OFE outperforms the original
TD3 without requiring any hyperparameter adjustments. Results for Gym-MuJoCo were obtained from Table 1 of Fujimoto
et al. (2023). These scores are averaged over 10 random seeds. We attach these results into Table 1 by TD3-normalizing the
scores as outlined in Appendix F.1.

TQC (Kuznetsov et al., 2020). Truncated Quantile Critic (TQC) proposes to truncate the return distribution of the
distributional critics to flexibly balance between under- and overestimation bias of Q-value. Results for Gym-MuJoCo were
taken directly from Table 1 of Fujimoto et al. (2023). We attach these results into Table 1 by TD3-normalizing the scores as
described in Appendix F.1.

REDQ (Chen et al., 2021b). Randomized Ensembled Double Q-Learning (REDQ) expands clipped double Q-learning
from two Q-networks to an ensemble of ten to control estimation bias and variance, and enhance training stability. For the
MuJoCo tasks, results averaged over 10 random seeds were obtained directly from the Bhatt et al. (2024) authors, with the
update-to-data (UTD) ratio set to 20.

DroQ (Chen et al., 2021b). Dropout Q-Function (DroQ) reduces the computational burden of REDQ by using a smaller
ensemble of Q functions while employing Dropout and Layer Normalization to stabilize training against Dropout-induced
noise. For the MuJoCo tasks, results averaged over 10 random seeds were obtained directly from the Bhatt et al. (2024)
authors, with the update-to-data (UTD) ratio set to 20.

DreamerV3 (Hafner et al., 2023). DreamerV3 encodes sensory inputs into categorical representations to build a learned
world model, enabling long-horizon behavior learning in its compact latent space. Results for Gym-MuJoCo and DMC
were obtained from Fujimoto et al. (2025), which are averaged over 10 seeds. For MyoSuite, and HBench tasks, we use
the results from Lee et al. (2024c) which were obtained by running the official repository (https://github.com/
SonyResearch/simba) over 3 random seeds.

TD7 (Fujimoto et al., 2023). TD7 improves TD3 by combining TD3 with four key improvements: (i) state-action
representation learning (SALE), (ii) prioritized experience replay, (iii) policy checkpoints, and (iv) additional behavior
cloning loss for offline RL. Results for Gym-MuJoCo and DMC were obtained from Fujimoto et al. (2025), which are
averaged over 10 seeds. For MyoSuite, and HBench tasks, we use the results from Lee et al. (2024c) which were obtained
by running the official repository (https://github.com/SonyResearch/simba) over 5 random seeds.

TD-MPC2 (Hansen et al., 2023). TD-MPC2 is a model-based algorithm that learns an implicit (decoder-free) world model
through multiple dynamics prediction tasks and performs local trajectory optimization within the learned latent space.
Results for Gym-MuJoCo and DMC were obtained from Fujimoto et al. (2025), which are averaged over 10 seeds. For
MyoSuite, and HBench tasks, we use the results from Lee et al. (2024c) which were obtained by running the official
repository (https://github.com/SonyResearch/simba) over 3 random seeds.

CrossQ (Bhatt et al., 2024). CrossQ achieves superior performance and sample efficiency with low replay ratio, by removing
target networks and employing careful batch normalization. Results for Gym-MuJoCo were obtained by running the official
repository (https://github.com/adityab/CrossQ) for 10 random seeds,

22

https://github.com/SonyResearch/simba
https://github.com/SonyResearch/simba
https://github.com/SonyResearch/simba
https://github.com/SonyResearch/simba
https://github.com/adityab/CrossQ

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

iQRL (Scannell et al., 2024). Implicitly Quantized Reinforcement Learning (iQRL) is a representation learning technique
of model-free RL that prevents representation collapse and improve sample-efficiency via latent quantization. For the DMC
hard tasks, results averaged over 3 random seeds were obtained directly from the authors.

BRO (Nauman et al., 2024b). Bigger, Regularized, Optimistic (BRO) scales the critic network of SAC by integrating
distributional Q-learning, optimistic exploration, and periodic resets. Results for Gym-MuJoCo and DMC Easy were obtained
by running the official repository (https://github.com/naumix/BiggerRegularizedOptimistic) for 5
random seeds. For DMC hard, MyoSuite, and HBench tasks, we use the results from Lee et al. (2024c) which were
obtained by running the official repository (https://github.com/SonyResearch/simba) over 5 random seeds
for HBench tasks and 10 random seeds for DMC hard and MyoSuite tasks. Unless stated otherwise, we set update-to-data
(UTD) ratio to be 2.

MAD-TD (Voelcker et al., 2024). Model-Augmented Data for Temporal Difference learning (MAD-TD) aims to stabilize
high UTD training by mixing a small fraction α of model-generated on-policy data with real off-policy replay data. For the
DMC hard tasks, results averaged over 10 random seeds were obtained directly from the authors using the best algorithm
setting (UTD = 8, α = 0.05).

MR.Q (Fujimoto et al., 2025). Model-based Representations for Q-learning (MR.Q) is a model-free algorithm that uses
model-based objectives, such as dynamics and reward prediction, to obtain rich representation for actor-critic agent. We use
the results for Gym-MuJoCo and DMC from Fujimoto et al. (2025) which were obtained by running the official repository
(https://github.com/facebookresearch/MRQ) over 10 random seeds.

Simba (Lee et al., 2024c). SimBa is an architecture designed to scale up parameters in deep reinforcement learning by
injecting a simplicity bias with observation normalizer, residual blocks, and layer normalizations. For Gym-MuJoCo,
DMC, MyoSuite, and HBench tasks, we use the results from Lee et al. (2024c) which were obtained by running the
official repository (https://github.com/SonyResearch/simba) over 15 random seeds for DMC hard tasks and
10 random seeds otherwise. Unless stated otherwise, we set update-to-data (UTD) ratio to be 2.

23

https://github.com/naumix/BiggerRegularizedOptimistic
https://github.com/SonyResearch/simba
https://github.com/facebookresearch/MRQ
https://github.com/SonyResearch/simba

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Table 5. Environment details. We list the episode length, action repeat for each domain, total environment steps, and performance
metrics used for benchmarking SimbaV2.

Gym DMC MyoSuite HumanoidBench

Episode length 1, 000 1, 000 100 500 - 1, 000
Action repeat 1 2 2 2
Effective length 1, 000 500 50 250 - 500
Total env. steps 1M 1M 1M 1M
Performance metric Average Return Average Return Average Success Average Return

F. Environment Details
This section outlines the benchmark environments used in our evaluation. A complete list of all tasks from each benchmark,
including their observation and action dimensions, is provided at the end of this section. Additionally, Table 5 outlines the
episode length, action repeat, total number of environment steps, and performance metrics for each task domain.

F.1. Gym - MuJoCo

Gym (Brockman, 2016; Towers et al., 2024) is a suite of benchmark environments spanning finite MDPs to Multi-Joint
dynamics with Contact (Todorov et al., 2012, MuJoCo) simulations. It offers a diverse range of tasks, including classic Atari
games, small-scale tasks such as Toy Text and classic controls, as well as physics-based continuous robot control. For our
experiments, we focus on 5 locomotion tasks within MuJoCo environments, which simulate complex physical interactions
involving multi-body dynamics and contact forces. A complete list of these tasks is provided in Table 6. Note that we use
the v4 version.

For comparison across different score scales of each task, all MuJoCo scores are normalized using TD3 and the random
score for each task, as provided in TD7 (Fujimoto et al., 2023).

TD3-Normalized(x) :=
x− random score

TD3 score− random score

Task Random TD3

Ant-v4 −70.288 3942
HalfCheetah-v4 −289.415 10574
Hopper-v4 18.791 3226
Humanoid-v4 120.423 5165
Walker2d-v4 2.791 3946

F.2. DeepMind Control Suite

DeepMind Control Suite (Tassa et al., 2018, DMC) is a standard continuous control benchmarks, encompassing a variety
of locomotion and manipulation tasks with varying levels of complexity. These tasks range from simple low-dimensional
settings (O ∈ R3, A ∈ R1) to highly complex scenarios (O ∈ R223, A ∈ R38). Our evaluation includes 27 DMC tasks,
divided into two categories: DMC-Easy&Medium and DMC-Hard. All Humanoid and Dog tasks are grouped as DMC-Hard,
while the rest are fall under DMC-Easy&Medium. Comprehensive lists of DMC-Easy&Medium and DMC-Hard are
available in Tables 7 and 8, respectively.

F.3. MyoSuite

MyoSuite (Caggiano et al., 2022) models human motor control using musculoskeletal simulations of the human elbow,
wrist, and hand, focusing on physiologically accurate movements. It provides benchmarks for intricate real-world object
manipulation, ranging from simple posing tasks to the simultaneous manipulation of two Baoding balls. Our evaluation

24

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

focuses on 10 MyoSuite tasks involving the hand. As defined by the authors, each task is categorized as hard when the
goal is randomized; otherwise the goal is fixed. The full list of MyoSuite tasks is presented in Table 9.

F.4. HumanoidBench

HumanoidBench (Sferrazza et al., 2024) serves as a high-dimensional simulated robot learning benchmark, leveraging
the Unitree H1 humanoid robot equipped with dexterous hands. It encompasses a diverse set of whole-body control
tasks, spanning from fundamental locomotion to complex human-like activities that require refined manipulation. In our
experiments, we concentrate on 14 locomotion tasks. A comprehensive list of tasks is provided in Table 10.

Note that the locomotion tasks do not necessitate hand dexterity. Therefore, to reduce the complexity arising from high
degrees of freedom (DoF) and complex dynamics, we streamline the environments setup by excluding the hands of humanoid.
For example, in case of walk, this drastically declines the dimension of the observation and action spaces by approximately
66%.

walk Without hand With 2 hand

Observation dim |O| 51 151
Action dim |A| 19 61
DoF (body) 25 25
DoF (two hands) 0 50

For comparison across different score scales of each task, all HumanoidBench scores are normalized using each task’s target
success score provided by the authors and random score. Random scores are measured by the average undiscounted returns
over 10 episodes of random agent. Each measurement is repeated over 10 seeds.

Success-Normalized(x) :=
x− random score

Target success score− random score

Task Random Target Success

h1-balance-simple 9.391 800
h1-balance-hard 9.044 800
h1-crawl 272.658 700
h1-hurdle 2.214 700
h1-maze 106.441 1200
h1-pole 20.09 700
h1-reach 260.302 12000
h1-run 2.02 700
h1-sit-simple 9.393 750
h1-sit-hard 2.448 750
h1-slide 3.191 700
h1-stair 3.112 700
h1-stand 10.545 800
h1-walk 2.377 700

25

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Table 6. Gym-MuJoCo. We evaluate a total of 5 continuous control tasks from the Gym-MuJoCo benchmark.
Below, we provide a list of all the tasks considered. The baseline performance for each task is reported at 1M
environment steps.

Task Observation dim |O| Action dim |A|
Ant-v4 27 8
HalfCheetah-v4 17 6
Hopper-v4 11 3
Humanoid-v4 376 17
Walker2d-v4 17 6

Table 7. DMC-Easy Complete List. We evaluate a total of 21 continuous control tasks from the DMC-Easy
benchmark. Below, we provide a list of all the tasks considered. The baseline performance for each task is
reported at 1M environment steps.

Task Observation dim |O| Action dim |A|
acrobot-swingup 6 1
ball-in-cup-catch 6 1
cartpole-balance 5 1
cartpole-balance-sparse 5 1
cartpole-swingup 5 1
cartpole-swingup-sparse 5 1
cheetah-run 17 6
finger-spin 9 2
finger-turn-easy 12 2
finger-turn-hard 12 2
fish-swim 24 5
hopper-hop 15 4
hopper-stand 15 4
pendulum-swingup 3 1
quadruped-run 78 12
quadruped-walk 78 12
reacher-easy 6 2
reacher-hard 6 2
walker-run 24 6
walker-stand 24 6
walker-walk 24 6

Table 8. DMC-Hard Complete List. We evaluate a total of 7 continuous control tasks from the DMC-Hard
benchmark. Below, we provide a list of all the tasks considered. The baseline performance for each task is
reported at 1M environment steps.

Task Observation dim |O| Action dim |A|
dog-run 223 38
dog-trot 223 38
dog-stand 223 38
dog-walk 223 38
humanoid-run 67 24
humanoid-stand 67 24
humanoid-walk 67 24

26

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Table 9. MyoSuite Complete List. We evaluate a total of 10 continuous control tasks from the MyoSuite
benchmark including both fixed-goal and randomized-goal (hard) settings. Below, we provide a list of all the
tasks considered. The baseline performance for each task is reported at 1M environment steps.

Task Observation dim |O| Action dim |A|
myo-key-turn 93 39
myo-key-turn-hard 93 39
myo-obj-hold 91 39
myo-obj-hold-hard 91 39
myo-pen-twirl 83 39
myo-pen-twirl-hard 83 39
myo-pose 108 39
myo-pose-hard 108 39
myo-reach 115 39
myo-reach-hard 115 39

Table 10. HumanoidBench Complete List. We evaluate a total of 14 continuous control locomotion tasks
from the HumanoidBench benchmark that simulates the UniTree H1 humanoid robot. Below, we provide a list
of all the tasks considered. The baseline performance for each task is reported at 1M environment steps.

Task Observation dim |O| Action dim |A|
h1-balance-hard 77 19
h1-balance-simple 64 19
h1-crawl 51 19
h1-hurdle 51 19
h1-maze 51 19
h1-pole 51 19
h1-reach 57 19
h1-run 51 19
h1-sit-simple 51 19
h1-sit-hard 64 19
h1-slide 51 19
h1-stair 51 19
h1-stand 51 19
h1-walk 51 19

27

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

G. Training Stability
In Section 5.2, we investigated the training dynamics of SimbaV2 on DMC-Hard and HBench-Hard via four metrics: feature
norm, parameter norm, gradient norm, and effective learning rate (ELR) of neural networks. This section presents these
standalone metrics for SimbaV2 to highlight its stable behavior throughout training.

Effective Learning Rate. We base our notion of ELR on the effective step size of Kodryan et al. (2022), omitting the
global learning rate η and using dimension-based weighting wi =

|θi|∑N
j=1 |θj |

instead of squared-parameter-norm weighting

wi =
∥θi∥2∑N

j=1 ∥θj∥2 .

Definition G.1 (Effective Learning Rate). Let θ = {θi}Ni=1 be the parameter set of a neural network, and gi be the
back-propagated gradient associated with θi. The (total) effective learning rate ELR of the network is defined as:

ELR ≜

√√√√ N∑
i=1

wi
∥gi∥2
∥θi∥2

(41)

where wi =
|θi|∑N

j=1 |θj |
. Intuitively, our ELR measures the “effective” gradient step—per parameter dimension—before

scaled by the global learning rate.

Metrics. To reflect dimensional contributions across layers, we also apply the same weighting wi when computing the
feature norm, parameter norm, and gradient norm. For instance, our gradient norm is defined as:

∥gi∥2 ≜
N∑
i=1

wi∥gi∥22 (42)

where ∥ · ∥2 is the standard ℓ2-norm (Frobenius norm ∥ · ∥F in case of matrices). Analogous expressions are applied for
feature and parameter norms. We separate encoder layers (all layers preceding the output) from predictor layers (all layers
after) to capture their distinct roles in the network. Average returns are normalized by maximum score 1000 for DMC-Hard,
by success and random scores for HBench-Hard (Appendix F.4).

Results. Figure 9 shows the tracked metrics over 1 million training steps. Certain features (e.g., logits) and parameters (e.g.,
scalers and interpolation vectors) may occasionally exceed unit norm, the overall parameter norms are tightly controlled
(Figure 9.(b)-(c)), and gradient magnitudes are consistently balanced across modules (Figure 9.(d)). This leads to the
consistent trend and scales of their ELRs over time. We hypothesize that this stable behavior contributes to SIMBAV2’s
improved performance and scalability.

0 0.2 0.4 0.6 0.8 1.0
0.00
0.25
0.50
0.75
1.00

DM
C-

Ha
rd

(a) Average Return

0 0.2 0.4 0.6 0.8 1.0
1

10
20
30
40

(b) Feature Norm

0 0.2 0.4 0.6 0.8 1.0
20
25
30
35
40

(c) Parameter Norm

0 0.2 0.4 0.6 0.8 1.0
0.01
0.25
0.50
0.75
1.00

×10 2
(d) Gradient Norm

0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4

×10 4
(e) Effective LR

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0.00
0.25
0.50
0.75
1.00

HB
en

ch
-H

ar
d

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

1
10
20
30
40

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

20
30
40
50
60

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0.01
2.50
5.00
7.50

10.00
×10 2

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0
1
2
3
4

×10 3

SimbaV2 SimbaV2 Encoder SimbaV2 Predictor

Figure 9. SimbaV2 Training Dynamics. We track 4 metrics during training to understand the learning dynamics of SimbaV2: (a)
Average normalized return across tasks. (b) Weighted sum of ℓ2-norms of all intermediate features in critic. (c) Weighted sum of ℓ2-norms
of all critic parameters (d) Weighted sum of ℓ2-norms of all gradients in critic (e) Effective learning rate (ELR) of the critic. On both
environments, SimbaV2 maintains feature and parameter norms aligned, producing consistent gradient norms and ELRs.

28

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

H. Additional Experiments
This section complements Section 5.2 by presenting further experiments probing the properties and robustness of SimbaV2:

• Scalability Effect of Hyperspherical Normalization (Section H.1). Investigate the necessity of hyperspherical normal-
ization for achieving SimbaV2’s scalability.

• Effectiveness beyond SAC (Section H.2.) Assess SimbaV2’s broader applicability by substituting SAC with DDPG.

H.1. Scalability Effect of Hyperspherical Normalization

In Section 5.3, we observe that SimbaV2 consistently scales with an increasing update-to-data (UTD) ratio, even with-
out reinitialization, while Simba saturates at a ratio of 2. However, this raises the question of whether hyperspherical
normalization is critical for UTD scaling. This section investigates the effectiveness of hyperspherical normalization in
scalability.

Experimental Setup. In this experiment, we examine a “Simba-like” variant, named Simba+, which incorporates distribu-
tional critic and reward scaling but only excludes the hyperspherical normalization. In other words, Simba+ is identical
to SimbaV2 except that it excludes hyperspherical normalization. On DMC-Hard tasks, we compare SimbaV2, Simba,
and Simba+ under varying model sizes and UTD ratios to determine the role of hyperspherical normalization in scaling
performance.

Result. Figure 10 shows the scaling results. In Figure 10 (left), all three methods benefit from increased model capacity,
but Simba+ slightly underperforms at larger parameter counts. More critically, Simba and Simba+ both plateau when the
UTD ratio surpasses 2 in Figure 10 (right), while SimbaV2 continues to improve. These results confirm that hyperspherical
normalization is truly indispensable for UTD scaling.

0.3 1.1 4.5 17.8
Parameters (M)

0.25

0.38

0.50

0.62

0.75

To
ta

l R
ew

ar
d

(K
)

1 2 4 8
UTD Ratio

0.60

0.65

0.70

0.75

0.80

SimbaV2 Simba+ Simba
Figure 10. Performance Scaling under DMC-Hard. We compare SimbaV2, Simba+, and Simba as scaling the number of model
parameters by increasing the critic network width and UTD ratio. Simba+ fails to scale effectively at higher UTD ratios, highlighting the
essential role of the hyperspherical normalization for scalability.

29

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

H.2. Effectiveness beyond SAC

In Section 5.2, we observe that replacing the neural network of SAC with SimbaV2 consistently improves the performance
of a wide range of domains. To assess the broader applicability and robustness of SimbaV2’s architectural advantages
beyond a single algorithm, we conducted additional experiments using Deep Deterministic Policy Gradient (Lillicrap, 2015,
DDPG), another widely adopted off-policy algorithm for continuous control.

Experimental Setup. We evaluated SimbaV2 against the original Simba (Lee et al., 2024c) and a standard MLP baseline
on two challenging continuous control benchmark suites: DMC-Hard and HBench-Hard. All methods utilized the DDPG
algorithm as their underlying learning framework. The MLP architecture we adopted consists of a sequence of linear layers
followed by ReLU non-linearities.

Result. Comparative results are presented in Figure 11. On the DMC-Hard benchmark, SimbaV2 achieved performance
competitive with the original Simba, with both significantly outperforming the MLP baseline. More notably, on the more
complex HBench-Hard benchmark, SimbaV2 demonstrated a clear improvement over Simba. These results indicate that
SimbaV2 not only generalizes to the DDPG algorithm but also exhibits enhanced stability and generalization capabilities in
more demanding environments, likely attributable to its refined architecture and regularization mechanisms.

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0.00

0.18

0.36

0.54

0.72

To
ta

l R
ew

ar
d

(K
)

DMC-Hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0.00

0.18

0.36

0.54

0.72
Su

ce
ss

-N
or

m
 S

co
re

HBench-Hard

SimbaV2 + DDPG Simba + DDPG MLP + DDPG

Figure 11. DDPG with SimbaV2. Learning curves of SimbaV2, Simba (Lee et al., 2024c), and the MLP baseline on DMC-Hard and
HBench-Hard benchmarks using DDPG (Lillicrap, 2015). SimbaV2 performs competitively with Simba on DMC-Hard, both significantly
outperforming the MLP baseline. In the more challenging HBench-Hard, SimbaV2 shows clear improvements over Simba, indicating
enhanced stability and generalization beyond SAC.

30

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

I. Complete UTD Scaling Results
I.1. Gym - MuJoCo

Table 11. Gym - MuJoCo UTD Scaling Results. Final average performance at 1M environment steps for each of the 5 locomotion
tasks in the Gym - MuJoCo benchmark. The number of evaluated random seeds for each update-to-data (UTD) ratio is 5. The values in
[brackets] represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are computed over
the TD3-normalized score as described in Appendix F.1.

Task UTD = 1 UTD = 2 UTD = 4 UTD = 8

Ant-v4 7405 [7315, 7496] 7429 [7209, 7649] 7230 [6968, 7492] 6940 [6431, 7449]
HalfCheetah-v4 11425 [10798, 12052] 12022 [11640, 12404] 12007 [11458, 12557] 11592 [9956, 13229]
Hopper-v4 3579 [3311, 3847] 4053 [3928, 4178] 4003 [3647, 4359] 4151 [4033, 4269]
Humanoid-v4 7696 [4385, 11008] 10545 [10195, 10896] 11133 [10908, 11358] 11703 [11282, 12125]
Walker2d-v4 6069 [5724, 6414] 6938 [6691, 7185] 6804 [6459, 7148] 6163 [4522, 7804]

IQM 1.433 [1.225, 1.648] 1.637 [1.471, 1.788] 1.617 [1.402, 1.83] 1.581 [1.358, 1.82]
Median 1.468 [1.269, 1.625] 1.616 [1.491, 1.743] 1.615 [1.438, 1.809] 1.602 [1.377, 1.821]
Mean 1.418 [1.264, 1.569] 1.617 [1.513, 1.719] 1.62 [1.47, 1.773] 1.598 [1.419, 1.78]

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-2K

3K

8K

13K

18K

Av
er

ag
e

Re
tu

rn
 (1

K)

HalfCheetah-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-1K

0K

1K

2K

4K

Hopper-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-1K

1K

3K

5K

8K

Walker2d-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-2K

2K

6K

10K

Ant-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-2K

1K

5K

8K

12K

Av
er

ag
e

Re
tu

rn
 (1

K)

Humanoid-v4

UTD = 1 UTD = 2 UTD = 4 UTD = 8

Figure 12. Gym-MuJoCo UTD Scaling Learning Curves. Average episode return (1k) for the Gym-MuJoCo environment. Results are
averaged over 5 random seeds, and the shaded areas indicate 95% bootstrap confidence intervals.

31

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

I.2. Deepmind Control Suite - Easy

Table 12. DMC-Easy UTD Scaling Results. Final average performance at 1M environment steps for each of the 21 tasks of the
DMC-Easy benchmark. The number of evaluated random seeds for each update-to-data (UTD) ratio is provided 5. The values in [brackets]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are reported in units of 1k.

Task UTD = 1 UTD = 2 UTD = 4 UTD = 8

acrobot-swingup 413 [376, 450] 436 [391, 482] 458 [359, 558] 477 [438, 516]
ball-in-cup-catch 981 [977, 985] 982 [980, 984] 982 [979, 986] 982 [979, 985]
cartpole-balance 999 [999, 999] 999 [999, 999] 999 [999, 999] 999 [999, 999]
cartpole-balance-sparse 1000 [1000, 1000] 967 [904, 1030] 1000 [1000, 1000] 1000 [1000, 1000]
cartpole-swingup 881 [881, 881] 880 [876, 883] 880 [879, 881] 881 [880, 882]
cartpole-swingup-sparse 845 [843, 848] 848 [848, 849] 848 [848, 849] 841 [824, 858]
cheetah-run 917 [913, 920] 920 [918, 922] 902 [868, 937] 916 [912, 920]
finger-spin 940 [895, 985] 891 [810, 972] 762 [608, 915] 910 [790, 1030]
finger-turn-easy 951 [916, 987] 953 [925, 980] 954 [917, 992] 936 [857, 1014]
finger-turn-hard 928 [885, 972] 951 [925, 977] 902 [866, 939] 950 [910, 990]
fish-swim 818 [779, 856] 826 [806, 846] 815 [780, 850] 807 [778, 836]
hopper-hop 379 [224, 535] 290 [233, 348] 326 [243, 410] 317 [230, 404]
hopper-stand 845 [704, 986] 944 [926, 962] 781 [449, 1112] 932 [898, 967]
pendulum-swingup 817 [776, 858] 827 [805, 849] 820 [781, 859] 821 [784, 859]
quadruped-run 931 [922, 940] 935 [928, 943] 943 [936, 949] 935 [930, 940]
quadruped-walk 962 [955, 970] 962 [955, 969] 964 [958, 971] 965 [958, 972]
reacher-easy 963 [927, 1000] 983 [979, 986] 975 [958, 992] 983 [981, 985]
reacher-hard 975 [971, 980] 967 [946, 987] 976 [972, 980] 974 [970, 978]
walker-run 813 [806, 819] 817 [812, 821] 821 [819, 823] 802 [774, 831]
walker-stand 986 [980, 992] 987 [984, 990] 988 [984, 992] 987 [984, 991]
walker-walk 977 [976, 979] 976 [974, 978] 976 [973, 979] 976 [972, 981]

IQM 0.928 [0.906, 0.948] 0.933 [0.918, 0.948] 0.925 [0.9, 0.946] 0.935 [0.91, 0.956]
Median 0.876 [0.834, 0.912] 0.875 [0.846, 0.904] 0.866 [0.818, 0.905] 0.878 [0.835, 0.917]
Mean 0.873 [0.838, 0.905] 0.874 [0.848, 0.897] 0.861 [0.823, 0.896] 0.876 [0.841, 0.908]

32

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000
Av

er
ag

e
Re

tu
rn

acrobot-swingup

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

ball-in-cup-catch

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cartpole-balance

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cartpole-balance-sparse

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

cartpole-swingup

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cartpole-swingup-sparse

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cheetah-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

finger-spin

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

finger-turn-easy

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

finger-turn-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

fish-swim

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

hopper-hop

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

hopper-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

pendulum-swingup

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

quadruped-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

quadruped-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

reacher-easy

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

reacher-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

walker-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

walker-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

walker-run

UTD = 1 UTD = 2 UTD = 4 UTD = 8

Figure 13. DMC-Easy UTD Scaling Learning Curves. Average episode return for the DMC-Easy environment. Results are averaged
over 5 random seeds, and the shaded areas indicate 95% bootstrap confidence intervals.

33

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

I.3. Deepmind Control Suite - Hard

Table 13. DMC-Hard UTD Scaling Results. Final average performance at 1M environment steps for each of the 7 tasks of the DMC-Hard
benchmark. The number of evaluated random seeds for each update-to-data (UTD) ratio is provided 5. The values in [brackets] represent
a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are reported in units of 1k.

Task UTD = 1 UTD = 2 UTD = 4 UTD = 8

dog-run 477 [429, 525] 562 [516, 608] 655 [620, 691] 555 [523, 587]
dog-stand 967 [959, 974] 981 [977, 985] 967 [960, 974] 972 [967, 976]
dog-trot 850 [810, 890] 861 [772, 950] 846 [782, 910] 898 [888, 909]
dog-walk 921 [912, 930] 935 [927, 944] 923 [905, 941] 949 [945, 953]
humanoid-run 183 [164, 203] 194 [182, 207] 272 [230, 313] 253 [228, 278]
humanoid-stand 660 [585, 734] 916 [886, 945] 928 [926, 930] 933 [924, 941]
humanoid-walk 568 [533, 603] 651 [590, 713] 818 [751, 885] 819 [762, 877]

IQM 0.713 [0.598, 0.809] 0.808 [0.725, 0.88] 0.851 [0.755, 0.916] 0.849 [0.727, 0.924]
Median 0.666 [0.563, 0.774] 0.729 [0.655, 0.81] 0.771 [0.678, 0.868] 0.767 [0.652, 0.861]
Mean 0.669 [0.581, 0.753] 0.729 [0.663, 0.791] 0.769 [0.687, 0.845] 0.759 [0.67, 0.84]

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

humanoid-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

humanoid-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

humanoid-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

dog-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

dog-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

dog-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

dog-trot

UTD = 1 UTD = 2 UTD = 4 UTD = 8

Figure 14. DMC-Hard UTD Scaling Learning Curves. Average episode return for the DMC-Hard environment. Results are averaged
over 5 random seeds, and the shaded areas indicate 95% bootstrap confidence intervals.

34

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

I.4. MyoSuite

Table 14. MyoSuite UTD Scaling Results. Final average performance at 1M environment steps across each of the 10 continuous control
tasks in the MyoSuite benchmark, including both fixed-goal and randomized-goal (hard) settings. The number of evaluated random
seeds for each update-to-data (UTD) ratio is 5. The values in [brackets] represent a 95% bootstrap confidence interval. Performance is
measured by the average success rate of each task.

Task UTD = 1 UTD = 2 UTD = 4 UTD = 8

myo-pen-twirl-hard 76.0 [57.8, 94.2] 93.0 [88.8, 97.2] 92.0 [84.7, 99.3] 98.0 [94.1, 101.9]
myo-pen-twirl 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]
myo-key-turn-hard 46.0 [8.5, 83.5] 62.0 [42.7, 81.3] 70.0 [34.9, 105.1] 80.0 [49.6, 110.4]
myo-key-turn 80.0 [40.8, 119.2] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]
myo-obj-hold-hard 100.0 [100.0, 100.0] 98.0 [95.4, 100.6] 98.0 [94.1, 101.9] 92.0 [84.7, 99.3]
myo-obj-hold 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]
myo-pose-hard 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
myo-pose 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]
myo-reach-hard 92.0 [84.7, 99.3] 94.0 [87.3, 100.7] 98.0 [94.1, 101.9] 96.0 [91.2, 100.8]
myo-reach 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]

IQM 96.9 [85.8, 100.0] 99.0 [96.8, 100.0] 99.2 [96.2, 100.0] 99.6 [96.9, 100.0]
Median 79.0 [67.0, 91.0] 84.5 [78.0, 93.0] 87.0 [76.0, 98.0] 88.0 [77.0, 98.0]
Mean 79.4 [68.6, 88.8] 84.7 [78.3, 90.6] 85.8 [76.4, 94.0] 86.6 [77.4, 94.6]

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

myo-reach

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-reach-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-pose

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-pose-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

myo-obj-hold

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-obj-hold-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-key-turn

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-key-turn-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

myo-pen-twirl

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-pen-twirl-hard

UTD = 1 UTD = 2 UTD = 4 UTD = 8

Figure 15. MyoSuite UTD Scaling Learning Curves. Average episode success rate (%) for the MyoSuite environment. Results are
averaged over 5 random seeds, and the shaded areas indicate 95% bootstrap confidence intervals.

35

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

I.5. Humanoid Bench
Table 15. HumanoidBench UTD Scaling Results. Final average performance at 1M environment steps for each of the 14 locomotion
tasks in the HumanoidBench benchmark. The number of evaluated random seeds for each update-to-data (UTD) ratio is 5. The values in
[brackets] represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are computed over
the success normalized score as described in Appendix F.4.

Task UTD = 1 UTD = 2 UTD = 4 UTD = 8

h1-sit-hard-v0 681 [506, 857] 679 [548, 811] 719 [664, 773] 810 [784, 836]
h1-walk-v0 732 [522, 941] 845 [840, 850] 846 [841, 851] 844 [840, 847]
h1-stair-v0 473 [444, 503] 493 [467, 518] 546 [541, 550] 532 [512, 552]
h1-run-v0 247 [152, 342] 415 [307, 524] 318 [176, 461] 425 [293, 558]
h1-balance-simple-v0 806 [773, 839] 723 [651, 795] 775 [719, 831] 813 [797, 828]
h1-pole-v0 769 [758, 780] 791 [785, 797] 799 [780, 817] 827 [787, 868]
h1-slide-v0 412 [279, 544] 487 [404, 571] 544 [500, 588] 534 [505, 563]
h1-balance-hard-v0 135 [111, 160] 143 [128, 157] 128 [118, 139] 167 [157, 178]
h1-sit-simple-v0 873 [868, 879] 875 [870, 880] 908 [861, 955] 867 [839, 894]
h1-maze-v0 350 [332, 368] 313 [287, 340] 343 [327, 359] 338 [325, 351]
h1-crawl-v0 923 [884, 962] 946 [933, 959] 939 [927, 951] 954 [923, 984]
h1-hurdle-v0 193 [171, 215] 202 [167, 236] 244 [230, 259] 246 [206, 287]
h1-reach-v0 4166 [3706, 4627] 3850 [3272, 4427] 4003 [3614, 4392] 3449 [2541, 4358]
h1-stand-v0 771 [669, 873] 814 [770, 857] 765 [695, 835] 855 [828, 882]

IQM 0.734 [0.574, 0.887] 0.799 [0.685, 0.905] 0.813 [0.657, 0.958] 0.873 [0.706, 1.002]
Median 0.71 [0.612, 0.859] 0.781 [0.691, 0.863] 0.782 [0.665, 0.914] 0.824 [0.699, 0.944]
Mean 0.737 [0.637, 0.836] 0.776 [0.704, 0.846] 0.791 [0.687, 0.893] 0.822 [0.72, 0.92]

36

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-walk-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-stand-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-run-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

2500

5000

7500

10000

12500

15000

Success

h1-reach-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-hurdle-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-crawl-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

1250

1500

Success

h1-maze-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-sit-simple-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-sit-hard-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-balance-simple-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-balance-hard-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-stair-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-slide-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-pole-v0

UTD = 1 UTD = 2 UTD = 4 UTD = 8

Figure 16. Humanoidbench UTD Scaling Learning Curves. Average episode return for the HumanoidBench environment. Results are
averaged over 5 random seeds, and the shaded areas indicate 95% bootstrap confidence intervals. The black dotted line indicates the
success score of each tasks (Appendix F.4)

37

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

J. Complete Main Results
This section provides learning curves and final performance for each online RL task across the evaluated algorithms.

Learning Curve. For visibility of learning curve, we focus on DreamerV3 (Hafner et al., 2023), TD7 (Fujimoto et al.,
2023), TD-MPC2 (Hansen et al., 2023), MR.Q (Fujimoto et al., 2025), and Simba (Lee et al., 2024c) as main baselines,
selected for their strong performance and community adoption. We omit curves for algorithms with unavailable raw samples
at each task.

Confidence Interval. The light-colored area in the figures and the gray-shaded, bracketed terms in the tables represent 95%
bootstrap confidence intervals. For each task evaluated over n random seeds, the 95% bootstrap confidence interval CI is
computed as:

CI =

[
µ− 1.96× σ√

n
, µ+ 1.96× σ√

n

]
where µ and σ are the sample mean and standard deviation (with Bessel’s correction) of the evaluation, respectively. For
aggregated scores (mean, median, and interquartile mean), confidence intervals are computed over all n× T raw samples,
where n and T are the number of evaluated random seeds and tasks in the benchmark, respectively. For algorithms with
only average scores for each task available, we approximate the CI of aggregated scores using these averages (denoted with
gray-colored †). We caution that this estimation may be inaccurate.

38

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

J.1. Gym - MuJoCo

Table 16. Gym - MuJoCo. Final average performance at 1M environment steps for each of the 5 locomotion tasks in the Gym - MuJoCo
benchmark. The number of evaluated random seeds for each algorithm is provided in Appendix E. The values in [brackets] represent a
95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are computed over the TD3-normalized
score as described in Appendix F.1.

Task DreamerV3 TD7 TD-MPC2 MR.Q Simba SimbaV2

Ant-v4 1947 [1076, 2813] 8509 [8168, 8844] 4751 [2988, 6145] 6989 [6203, 7617] 5882 [5354, 6411] 7429 [7209, 7649]
HalfCheetah-v4 5502 [3717, 7123] 17433 [17301, 17559] 15078 [14065, 15932] 13305 [11841, 14140] 9422 [8745, 10100] 12022 [11640, 12404]
Hopper-v4 2666 [2106, 3210] 3511 [3236, 3736] 2081 [1197, 2921] 2684 [2154, 3269] 3231 [3004, 3458] 4054 [3929, 4179]
Humanoid-v4 4217 [2785, 5523] 7428 [7304, 7553] 6071 [5770, 6333] 7259 [5080, 9336] 6513 [5634, 7392] 10546 [10195, 10897]
Walker2d-v4 4519 [3692, 5244] 6096 [5621, 6547] 3008 [1706, 4321] 6629 [5816, 7493] 4290 [3864, 4716] 6938 [6691, 7185]

IQM 0.720 [0.620, 0.850] 1.540 [1.500, 1.580] 1.050 [0.890, 1.190] 1.450 [1.270, 1.580] 1.114 [1.043, 1.200] 1.637 [1.470, 1.791]
Median 0.810 [0.580, 0.930] 1.550 [1.450, 1.630] 1.180 [0.830, 1.220] 1.420 [1.190, 1.710] 1.143 [1.063, 1.227] 1.616 [1.49, 1.744]
Mean 0.760 [0.670, 0.860] 1.570 [1.540, 1.600] 1.040 [0.920, 1.150] 1.390 [1.270, 1.490] 1.147 [1.075, 1.223] 1.617 [1.513, 1.718]

Task PPO SAC TD3 TD3+OFE TQC REDQ DroQ CrossQ BRO

Ant-v4 1584 [1360, 1815] 5733 [5316, 6151] 3942 [2912, 4972] 7398 [7280, 7516] 3582 [2489, 4675] 5314 [4539, 6090] 5965 [5560, 6370] 6980 [6834, 7126] 7027 [6710, 7343]
HalfCheetah-v4 1744 [1523, 2118] 11320 [10634, 12007] 10574 [9677, 11471] 13758 [13214, 14302] 12349 [11471, 13227] 11505 [10213, 12798] 11070 [10272, 11867] 12893 [11771, 14015] 13747 [12621, 14873]
Hopper-v4 3022 [2633, 3339] 2787 [2249, 3325] 3226 [2911, 3541] 3121 [2615, 3627] 3526 [3302, 3750] 3299 [2730, 3869] 2797 [2387, 3208] 2467 [1855, 3079] 2122 [1655, 2588]
Humanoid-v4 477 [436, 518] 4825 [3784, 5866] 5165 [5020, 5310] 6032 [5698, 6366] 6029 [5498, 6560] 5278 [5127, 5430] 5380 [5353, 5407] 10480 [10307, 10653] 4757 [3139, 6376]
Walker2d-v4 2487 [1907, 3022] 4536 [4229, 4843] 3946 [3654, 4238] 5195 [4683, 5707] 5321 [4999, 5643] 5228 [4836, 5620] 4781 [4539, 5024] 6257 [5277, 7237] 3432 [2064, 4801]

IQM 0.410 [0.110, 0.834]† 1.097 [1.050, 1.155] 1.000 [1.000, 1.000]† 1.261 [1.035, 1.680]† 1.143 [0.971, 1.290]† 1.135 [1.086, 1.194] 1.108 [1.055, 1.170] 1.565 [1.394, 1.710] 1.071 [0.828, 1.333]
Median 0.412 [0.071, 0.936]† 1.093 [1.028, 1.180] 1.000 [1.000, 1.000]† 1.293 [0.967, 1.861]† 1.163 [0.910, 1.349]† 1.188 [1.086, 1.241] 1.133 [1.068, 1.199] 1.489 [1.317, 1.643] 1.071 [0.884, 1.322]
Mean 0.447 [0.186, 0.725]† 1.092 [1.013, 1.166] 1.000 [1.000, 1.000]† 1.322 [1.090, 1.615]† 1.137 [1.012, 1.261]† 1.160 [1.096, 1.224] 1.134 [1.067, 1.205] 1.475 [1.330, 1.608] 1.101 [0.927, 1.278]

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-2K

3K

8K

13K

18K

Av
er

ag
e

Re
tu

rn
 (1

K)

HalfCheetah-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-1K

0K

1K

2K

4K

Hopper-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-1K

1K

3K

5K

8K

Walker2d-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-2K

2K

6K

10K

Ant-v4

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

-2K

1K

5K

8K

12K

Av
er

ag
e

Re
tu

rn
 (1

K)

Humanoid-v4

MR.Q Simba SimbaV2
Figure 17. Gym-MuJoCo Learning Curves. Average episode return (1k) for the Gym-MuJoCo environment. Results are averaged over
random seeds of each algorithm, and the shaded areas indicate 95% bootstrap confidence intervals.

39

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

J.2. Deepmind Control Suite - Easy

Table 17. DMC Easy. Final average performance at 1M environment steps for each of the 21 tasks of the DMC Easy benchmark. The
number of evaluated random seeds for each algorithm is provided in Appendix E. The values in [brackets] represent a 95% bootstrap
confidence interval. The aggregate mean, median and interquartile mean (IQM) are reported in units of 1k.

Task DreamerV3 TD7 TD-MPC2 MR.Q BRO Simba SimbaV2

acrobot-swingup 230 [193, 266] 58 [38, 75] 584 [551, 615] 567 [523, 616] 529 [504, 555] 431 [379, 482] 436 [391, 482]
ball-in-cup-catch 968 [965, 973] 984 [982, 986] 983 [981, 985] 981 [979, 984] 982 [981, 984] 981 [978, 983] 982 [980, 984]
cartpole-balance 998 [997, 1000] 999 [998, 1000] 996 [995, 998] 999 [999, 1000] 999 [998, 999] 998 [998, 999] 999 [999, 999]
cartpole-balance-sparse 1000 [1000, 1000] 999 [1000, 1000] 1000 [1000, 1000] 1000 [1000, 1000] 852 [563, 1141] 991 [973, 1008] 967 [904, 1030]
cartpole-swingup 736 [591, 838] 869 [866, 873] 875 [870, 880] 866 [866, 866] 879 [877, 882] 876 [871, 881] 880 [876, 883]
cartpole-swingup-sparse 702 [560, 792] 573 [333, 806] 845 [839, 849] 798 [780, 818] 840 [827, 852] 825 [795, 854] 848 [848, 849]
cheetah-run 917 [915, 920] 699 [655, 744] 914 [911, 917] 877 [849, 905] 863 [822, 904] 920 [918, 922] 821 [642, 913]
finger-spin 666 [577, 763] 335 [99, 596] 986 [986, 988] 937 [917, 956] 988 [987, 989] 849 [758, 939] 891 [810, 972]
finger-turn-easy 906 [883, 927] 912 [774, 983] 979 [975, 983] 953 [931, 974] 957 [923, 992] 935 [903, 968] 953 [925, 980]
finger-turn-hard 864 [812, 900] 470 [199, 727] 947 [916, 977] 950 [910, 974] 957 [920, 993] 915 [859, 972] 951 [925, 977]
fish-swim 813 [808, 819] 86 [64, 120] 659 [615, 706] 792 [773, 810] 618 [523, 713] 823 [799, 846] 826 [806, 846]
hopper-hop 116 [66, 165] 87 [25, 160] 425 [368, 500] 251 [195, 301] 295 [273, 316] 385 [322, 449] 290 [233, 348]
hopper-stand 747 [669, 806] 670 [466, 829] 952 [944, 958] 951 [948, 955] 949 [941, 957] 929 [900, 957] 944 [926, 962]
pendulum-swingup 774 [740, 802] 500 [251, 743] 846 [830, 862] 748 [597, 829] 829 [795, 864] 737 [575, 899] 827 [805, 849]
quadruped-run 130 [92, 169] 645 [567, 713] 942 [938, 947] 947 [940, 954] 859 [824, 895] 928 [916, 939] 935 [928, 943]
quadruped-walk 193 [137, 243] 949 [939, 957] 963 [959, 967] 963 [959, 967] 958 [949, 967] 957 [951, 963] 962 [955, 969]
reacher-easy 966 [964, 970] 970 [951, 982] 983 [980, 986] 983 [983, 985] 983 [983, 984] 983 [981, 986] 983 [979, 986]
reacher-hard 919 [864, 955] 898 [861, 936] 960 [936, 979] 977 [975, 980] 974 [970, 978] 966 [947, 984] 967 [946, 987]
walker-run 510 [430, 588] 804 [783, 825] 854 [851, 859] 793 [765, 815] 790 [776, 805] 796 [792, 801] 817 [812, 821]
walker-stand 941 [934, 948] 983 [974, 989] 991 [990, 994] 988 [987, 990] 990 [986, 994] 985 [982, 989] 987 [984, 990]
walker-walk 898 [875, 919] 977 [975, 980] 981 [979, 984] 978 [978, 980] 979 [975, 983] 975 [972, 978] 976 [974, 978]

IQM 0.813 [0.621, 0.899]† 0.771 [0.570, 0.907]† 0.941 [0.880, 0.973]† 0.927 [0.858, 0.966]† 0.928 [0.899, 0.952] 0.922 [0.905, 0.938] 0.933 [0.918, 0.948]
Median 0.813 [0.702, 0.917]† 0.804 [0.573, 0.949]† 0.952 [0.875, 0.981]† 0.950 [0.866, 0.977]† 0.872 [0.819, 0.906] 0.870 [0.841, 0.896] 0.875 [0.847, 0.905]
Mean 0.714 [0.584, 0.832]† 0.689 [0.548, 0.816]† 0.889 [0.819, 0.946]† 0.871 [0.788, 0.935]† 0.861 [0.823, 0.896] 0.864 [0.84, 0.887] 0.874 [0.849, 0.897]

40

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000
Av

er
ag

e
Re

tu
rn

acrobot-swingup

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

ball-in-cup-catch

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cartpole-balance

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cartpole-balance-sparse

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

cartpole-swingup

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cartpole-swingup-sparse

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

cheetah-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

finger-spin

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

finger-turn-easy

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

finger-turn-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

fish-swim

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

hopper-hop

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

hopper-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

pendulum-swingup

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

quadruped-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

quadruped-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

reacher-easy

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

reacher-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

walker-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

walker-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

walker-run

MR.Q Simba SimbaV2

Figure 18. DMC-Easy Learning Curves. Average episode return for the DMC-Easy environment. Results are averaged over random
seeds of each algorithm, and the shaded areas indicate 95% bootstrap confidence intervals.

41

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

J.3. Deepmind Control Suite - Hard

Table 18. DMC Hard. Final average performance at 1M environment steps for each of the 7 tasks of the DMC Hard benchmark. The
number of evaluated random seeds for each algorithm is provided in Appendix E. The values in [brackets] represent a 95% bootstrap
confidence interval. The aggregate mean, median and interquartile mean (IQM) are reported in units of 1k.

Task DreamerV3 TD7 TD-MPC2 MR.Q Simba SimbaV2

dog-run 4 [4, 5] 69 [36, 101] 265 [166, 342] 569 [547, 595] 544 [525, 564] 562 [516, 608]
dog-stand 22 [20, 27] 582 [432, 741] 506 [266, 715] 967 [960, 975] 960 [951, 969] 981 [977, 985]
dog-trot 10 [6, 17] 21 [13, 30] 407 [265, 530] 877 [845, 898] 824 [773, 876] 861 [772, 950]
dog-walk 17 [15, 21] 52 [19, 116] 486 [240, 704] 916 [908, 924] 916 [905, 928] 935 [927, 944]
humanoid-run 0 [1, 1] 57 [23, 92] 181 [121, 231] 200 [170, 236] 181 [171, 191] 194 [182, 207]
humanoid-stand 5 [5, 6] 317 [117, 516] 658 [506, 745] 868 [822, 903] 846 [801, 890] 916 [886, 945]
humanoid-walk 1 [1, 2] 176 [42, 320] 754 [725, 791] 662 [610, 724] 668 [608, 728] 651 [590, 713]

IQM 0.008 [0.002, 0.016]† 0.134 [0.047, 0.343]† 0.464 [0.305, 0.632]† 0.778 [0.500, 0.911]† 0.773 [0.713, 0.83] 0.808 [0.726, 0.879]
Median 0.005 [0.001, 0.018]† 0.069 [0.052, 0.317]† 0.486 [0.265, 0.658]† 0.868 [0.569, 0.916]† 0.706 [0.647, 0.772] 0.729 [0.655, 0.808]
Mean 0.009 [0.003, 0.015]† 0.182 [0.062, 0.336]† 0.465 [0.329, 0.606]† 0.723 [0.516, 0.886]† 0.706 [0.656, 0.755] 0.729 [0.664, 0.791]

Task PPO SAC iQRL BRO MAD-TD

dog-run 26 [26, 28] 36 [3, 69] 380 [336, 424] 374 [338, 411] 437 [396, 478]
dog-stand 129 [122, 139] 102 [39, 164] 926 [897, 955] 966 [956, 977] 967 [952, 982]
dog-trot 31 [30, 34] 29 [6, 52] 713 [516, 909] 783 [717, 848] 867 [805, 929]
dog-walk 40 [37, 43] 38 [11, 65] 866 [827, 905] 931 [920, 942] 924 [906, 943]
humanoid-run 0 [1, 1] 116 [89, 144] 188 [167, 210] 204 [186, 223] 200 [180, 220]
humanoid-stand 5 [5, 6] 352 [225, 479] 727 [655, 799] 920 [909, 931] 870 [840, 901]
humanoid-walk 1 [1, 2] 273 [128, 418] 688 [642, 735] 672 [619, 725] 684 [609, 759]

IQM 0.021 [0.003, 0.069]† 0.069 [0.042, 0.114] 0.694 [0.528, 0.805] 0.772 [0.662, 0.854] 0.787 [0.691, 0.865]
Median 0.026 [0.001, 0.040]† 0.159 [0.08, 0.183] 0.64 [0.516, 0.766] 0.694 [0.615, 0.774] 0.707 [0.634, 0.786]
Mean 0.033 [0.009, 0.068]† 0.136 [0.098, 0.175] 0.642 [0.531, 0.747] 0.693 [0.625, 0.757] 0.708 [0.642, 0.771]

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

humanoid-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

humanoid-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

humanoid-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

dog-stand

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

Av
er

ag
e

Re
tu

rn

dog-walk

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

dog-run

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1,000

dog-trot

MR.Q Simba SimbaV2

Figure 19. DMC-Hard Learning Curves. Average episode return for the DMC-Hard environment. Results are averaged over random
seeds of each algorithm, and the shaded areas indicate 95% bootstrap confidence intervals.

42

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

J.4. MyoSuite

Table 19. MyoSuite. Final average performance at 1M environment steps across each of the 10 continuous control tasks in the MyoSuite
benchmark, including both fixed-goal and randomized-goal (hard) settings. The number of evaluated random seeds for each algorithm is
provided in Appendix E. The values in [brackets] represent a 95% bootstrap confidence interval. Performance is measured by the average
success rate of each task.

Task DreamerV3 TD7 TD-MPC2 Simba SimbaV2

myo-pen-twirl-hard 53.3 [29.8, 76.9] 12.0 [2.4, 21.6] 40.0 [40.0, 40.0] 77.0 [66.4, 87.6] 93.0 [88.8, 97.2]
myo-pen-twirl 96.7 [90.1, 103.2] 100.0 [100.0, 100.0] 70.0 [11.2, 128.8] 80.0 [53.9, 106.1] 100.0 [100.0, 100.0]
myo-key-turn-hard 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 7.0 [-3.1, 17.1] 62.0 [42.7, 81.3]
myo-key-turn 88.9 [67.1, 110.7] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]
myo-obj-hold-hard 9.4 [8.4, 10.5] 10.0 [-0.7, 20.7] 56.7 [39.4, 74.0] 96.0 [92.8, 99.2] 98.0 [95.4, 100.6]
myo-obj-hold 33.3 [-32.0, 98.7] 20.0 [-19.2, 59.2] 100.0 [100.0, 100.0] 90.0 [70.4, 109.6] 100.0 [100.0, 100.0]
myo-pose-hard 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
myo-pose 100.0 [100.0, 100.0] 0.0 [0.0, 0.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]
myo-reach-hard 0.0 [0.0, 0.0] 14.0 [0.7, 27.3] 83.3 [66.0, 100.6] 93.0 [86.4, 99.6] 94.0 [87.3, 100.7]
myo-reach 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]

IQM 46.6 [16.7, 76.9] 22.3 [4.2, 46.2] 77.5 [50.6, 94.4] 95.2 [82.6, 98.8] 99.0 [96.8, 100.0]
Median 47.0 [29.0, 67.0] 34.0 [21.0, 51.0] 65.0 [47.0, 82.0] 77.0 [66.5, 85.5] 84.5 [78.0, 93.0]
Mean 48.2 [31.8, 64.6] 35.6 [23.8, 48.0] 65.0 [50.3, 78.7] 74.3 [66.3, 81.7] 84.7 [78.2, 90.6]

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

myo-reach

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-reach-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-pose

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-pose-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

myo-obj-hold

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-obj-hold-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-key-turn

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-key-turn-hard

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

myo-pen-twirl

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

25

50

75

100

myo-pen-twirl-hard

DreamerV3 TD7 TD-MPC2 Simba SimbaV2

Figure 20. MyoSuite Learning Curves. Average episode success rate (%) for the MyoSuite environment. Results are averaged over
random seeds of each algorithm, and the shaded areas indicate 95% bootstrap confidence intervals.

43

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

J.5. Humanoid Bench
Table 20. HumanoidBench. Final average performance at 1M environment steps for each of the 14 locomotion tasks in the Humanoid-
Bench benchmark. The number of evaluated random seeds for each algorithm is provided in Appendix E. The values in [brackets]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are computed over the success
normalized score as described in Appendix F.4.

Task DreamerV3 TD7 TD-MPC2 Simba SimbaV2

h1-pole-v0 41 [28, 54] 441 [320, 563] 744 [609, 879] 716 [667, 765] 791 [785, 797]
h1-slide-v0 11 [7, 15] 39 [26, 53] 334 [304, 364] 277 [252, 303] 487 [404, 571]
h1-stair-v0 7 [2, 12] 52 [31, 74] 378 [108, 648] 269 [153, 385] 493 [467, 518]
h1-balance-hard-v0 11 [7, 15] 79 [51, 107] 31 [5, 56] 75 [71, 80] 143 [128, 157]
h1-balance-simple-v0 9 [6, 12] 69 [58, 80] 42 [14, 70] 337 [193, 482] 723 [651, 795]
h1-sit-hard-v0 15 [-4, 35] 235 [154, 315] 723 [660, 786] 512 [354, 670] 679 [548, 811]
h1-sit-simple-v0 19 [9, 28] 874 [869, 879] 790 [772, 809] 833 [814, 853] 875 [870, 880]
h1-maze-v0 113 [107, 118] 147 [137, 156] 244 [106, 383] 354 [342, 366] 313 [287, 340]
h1-crawl-v0 248 [176, 319] 582 [563, 600] 962 [959, 965] 923 [904, 942] 946 [933, 959]
h1-hurdle-v0 4 [3, 5] 60 [18, 102] 387 [254, 519] 175 [150, 201] 202 [167, 236]
h1-reach-v0 3203 [2824, 3581] 1409 [998, 1821] 2654 [1951, 3357] 3874 [3220, 4527] 3850 [3272, 4427]
h1-run-v0 4 [2, 6] 91 [54, 128] 778 [763, 793] 232 [185, 279] 415 [307, 524]
h1-stand-v0 15 [7, 22] 433 [138, 727] 798 [779, 817] 772 [701, 843] 814 [770, 857]
h1-walk-v0 8 [1, 16] 33 [22, 45] 814 [813, 815] 550 [391, 709] 845 [840, 850]

IQM 0.007 [0.004, 0.012] 0.134 [0.088, 0.245] 0.734 [0.510, 0.936] 0.521 [0.413, 0.633] 0.799 [0.686, 0.908]
Median 0.021 [0.000, 0.047] 0.284 [0.183, 0.392] 0.696 [0.536, 0.881] 0.598 [0.514, 0.692] 0.781 [0.693, 0.865]
Mean 0.022 [0.000, 0.046] 0.289 [0.207, 0.375] 0.710 [0.562, 0.858] 0.606 [0.536, 0.678] 0.776 [0.705, 0.849]

44

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-walk-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-stand-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-run-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

2500

5000

7500

10000

12500

15000

Success

h1-reach-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-hurdle-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-crawl-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

1250

1500

Success

h1-maze-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-sit-simple-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-sit-hard-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-balance-simple-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-balance-hard-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-stair-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

Success

h1-slide-v0

0 0.2 0.4 0.6 0.8 1.0
Env steps (M)

0

250

500

750

1000

Success

h1-pole-v0

DreamerV3 TD7 TD-MPC2 Simba SimbaV2

Figure 21. Humanoidbench Learning Curves. Average episode return for the HumanoidBench environment. Results are averaged over
random seeds of each algorithm, and the shaded areas indicate 95% bootstrap confidence intervals. The black dotted line indicates the
success score of each tasks (Appendix F.4)

45

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

K. Complete Ablation Results
This section presents a per-environment analysis of the design variations discussed in Section 5.5. Each table includes raw
scores for individual environments, with [bracketed values] indicating 95% bootstrap confidence intervals. The aggregate
mean, median, and interquartile mean (IQM) are calculated based on the differences in normalized scores. To illustrate the
magnitude of these differences, we use the following highlight scale:

• (≥ 0.1)

• [0.05, 0.1)

• [0.02, 0.05)

• [−0.02,−0.05)
• [−0.05,−0.1)
• (≤ −0.05)

K.1. Gym - MuJoCo

Table 21. Mujoco (Input Design). Final average performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are computed over the
TD3-normalized score as described in Appendix F.1.

Task SimbaV2 No L2 Normalize No Shifting cshift : 1 Resize Projection

Ant-v4 7429 [7209, 7649] 7267 [7065, 7469] 7203 [6765, 7641] 7367 [7302, 7433] 7834 [7374, 8294]
HalfCheetah-v4 12022 [11640, 12404] 5386 [4901, 5870] 5464 [5178, 5750] 11913 [11241, 12584] 12047 [11315, 12778]
Hopper-v4 4053 [3928, 4178] 3764 [3550, 3978] 3676 [3619, 3734] 3703 [3217, 4189] 3788 [3602, 3974]
Humanoid-v4 10545 [10195, 10896] 9820 [8982, 10658] 10655 [10050, 11259] 10680 [10586, 10775] 10530 [10308, 10753]
Walker2d-v4 6938 [6691, 7185] 5560 [4757, 6364] 5750 [5368, 6131] 6192 [5986, 6399] 6985 [6378, 7591]

IQM 1.637 [1.471, 1.792] 1.448 [1.102, 1.715] 1.463 [1.115, 1.746] 1.552 [1.304, 1.809] 1.645 [1.34, 1.919]
Median 1.616 [1.495, 1.746] 1.364 [1.122, 1.618] 1.411 [1.14, 1.67] 1.573 [1.372, 1.749] 1.623 [1.434, 1.813]
Mean 1.617 [1.514, 1.72] 1.37 [1.137, 1.591] 1.406 [1.164, 1.644] 1.558 [1.39, 1.728] 1.623 [1.45, 1.796]

Table 22. Mujoco (Output Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values] represent
a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are computed over the TD3-normalized
score as described in Appendix F.1.

Task SimbaV2 MSE Loss No Reward Scaling No Return Bounding Hard Target

Ant-v4 7429 [7209, 7649] 6195 [5459, 6931] 7087 [6935, 7239] 7622 [7486, 7757] 7373 [7342, 7405]
HalfCheetah-v4 12022 [11640, 12404] 12222 [11753, 12691] 12775 [12608, 12941] 12724 [12133, 13315] 11986 [11434, 12538]
Hopper-v4 4053 [3928, 4178] 3507 [3333, 3682] 2932 [2007, 3858] 4113 [3999, 4228] 3623 [3445, 3800]
Humanoid-v4 10545 [10195, 10896] 7764 [7227, 8302] 8265 [5867, 10664] 10583 [10506, 10660] 9973 [9763, 10184]
Walker2d-v4 6938 [6691, 7185] 5267 [4667, 5866] 5786 [5116, 6456] 6442 [6112, 6772] 7428 [6463, 8393]

IQM 1.637 [1.474, 1.792] 1.334 [1.162, 1.5] 1.405 [1.236, 1.597] 1.612 [1.367, 1.864] 1.624 [1.32, 1.874]
Median 1.616 [1.495, 1.745] 1.341 [1.202, 1.483] 1.426 [1.201, 1.609] 1.616 [1.453, 1.79] 1.593 [1.399, 1.771]
Mean 1.617 [1.516, 1.719] 1.343 [1.225, 1.462] 1.395 [1.247, 1.544] 1.62 [1.471, 1.773] 1.589 [1.414, 1.757]

Table 23. Mujoco (Training Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values] represent
a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean (IQM) are computed over the TD3-normalized
score as described in Appendix F.1.

Task SimbaV2 No LR Decay sinit : 1 sscale : 1 αinit : 0.5 αscale : 1

Ant-v4 7429 [7209, 7649] 7553 [6914, 8192] 7429 [7237, 7621] 7296 [7146, 7447] 7552 [7323, 7781] 7258 [6959, 7556]
HalfCheetah-v4 12022 [11640, 12404] 12227 [11760, 12694] 12090 [11758, 12422] 11548 [10470, 12626] 12538 [12472, 12604] 11982 [11585, 12378]
Hopper-v4 4053 [3928, 4178] 3635 [3000, 4269] 4046 [3944, 4148] 4008 [3869, 4146] 3568 [3279, 3857] 4023 [3830, 4216]
Humanoid-v4 10545 [10195, 10896] 9907 [8412, 11401] 9819 [8615, 11023] 10636 [10465, 10807] 10828 [10426, 11229] 8624 [6418, 10831]
Walker2d-v4 6938 [6691, 7185] 6661 [6010, 7311] 6583 [5893, 7274] 6770 [6541, 6998] 6328 [5726, 6929] 6744 [6476, 7013]

IQM 1.637 [1.478, 1.789] 1.556 [1.31, 1.81] 1.588 [1.418, 1.749] 1.613 [1.456, 1.767] 1.563 [1.29, 1.848] 1.53 [1.296, 1.746]
Median 1.616 [1.494, 1.743] 1.541 [1.374, 1.745] 1.605 [1.451, 1.709] 1.606 [1.467, 1.721] 1.584 [1.388, 1.78] 1.546 [1.362, 1.681]
Mean 1.617 [1.518, 1.718] 1.562 [1.393, 1.73] 1.571 [1.467, 1.675] 1.594 [1.488, 1.699] 1.583 [1.405, 1.757] 1.52 [1.377, 1.659]

46

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

K.2. Deepmind Control Suite - Easy

Table 24. DMC-Easy (Input Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 No L2 Normalize No Shifting cshift : 1 Resize Projection

acrobot-swingup 436 [391, 482] 385 [364, 406] 399 [276, 522] 466 [402, 530] 293 [184, 401]
ball-in-cup-catch 982 [980, 984] 564 [92, 1036] 586 [145, 1026] 983 [979, 987] 983 [979, 986]
cartpole-balance 999 [999, 999] 999 [999, 999] 999 [999, 999] 999 [999, 999] 999 [999, 999]
cartpole-balance-sparse 967 [904, 1030] 1000 [1000, 1000] 992 [978, 1007] 1000 [1000, 1000] 1000 [1000, 1000]
cartpole-swingup 880 [876, 883] 881 [881, 882] 881 [880, 882] 882 [881, 882] 799 [646, 951]
cartpole-swingup-sparse 848 [848, 849] 838 [829, 846] 829 [796, 862] 846 [843, 848] 803 [719, 888]
cheetah-run 920 [918, 922] 499 [426, 572] 519 [477, 560] 919 [914, 924] 917 [914, 920]
finger-spin 891 [810, 972] 699 [485, 913] 620 [404, 836] 855 [674, 1036] 883 [737, 1030]
finger-turn-easy 953 [925, 980] 922 [858, 986] 924 [831, 1017] 922 [874, 970] 925 [866, 985]
finger-turn-hard 951 [925, 977] 888 [796, 980] 937 [895, 979] 870 [861, 879] 917 [864, 970]
fish-swim 826 [806, 846] 450 [316, 584] 442 [326, 558] 806 [783, 830] 758 [706, 811]
hopper-hop 290 [233, 348] 347 [270, 424] 208 [132, 284] 212 [79, 345] 350 [191, 509]
hopper-stand 944 [926, 962] 804 [578, 1031] 680 [444, 915] 925 [883, 967] 753 [440, 1066]
pendulum-swingup 827 [805, 849] 610 [208, 1011] 620 [213, 1026] 810 [762, 859] 678 [453, 902]
quadruped-run 935 [928, 943] 937 [923, 950] 917 [902, 932] 900 [850, 949] 935 [927, 943]
quadruped-walk 962 [955, 969] 962 [949, 975] 963 [958, 967] 960 [945, 974] 957 [947, 967]
reacher-easy 983 [979, 986] 949 [905, 992] 970 [952, 989] 984 [982, 985] 982 [980, 985]
reacher-hard 967 [946, 987] 881 [707, 1054] 935 [890, 979] 973 [966, 979] 975 [972, 978]
walker-run 817 [812, 821] 762 [672, 853] 793 [778, 809] 816 [811, 820] 813 [809, 816]
walker-stand 987 [984, 990] 987 [984, 990] 987 [983, 991] 986 [978, 995] 979 [967, 991]
walker-walk 976 [974, 978] 974 [968, 981] 978 [975, 981] 976 [973, 980] 969 [963, 975]

IQM 0.933 [0.918, 0.948] 0.874 [0.795, 0.922] 0.871 [0.789, 0.921] 0.919 [0.891, 0.942] 0.92 [0.888, 0.946]
Median 0.875 [0.847, 0.905] 0.787 [0.717, 0.839] 0.781 [0.712, 0.837] 0.867 [0.818, 0.905] 0.844 [0.792, 0.892]
Mean 0.874 [0.849, 0.898] 0.779 [0.722, 0.832] 0.771 [0.713, 0.826] 0.862 [0.819, 0.9] 0.842 [0.794, 0.885]

47

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Table 25. DMC-Easy (Output Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 MSE Loss No Reward Scaling No Return Bounding Hard Target

acrobot-swingup 436 [391, 482] 384 [273, 494] 383 [329, 438] 439 [386, 492] 423 [350, 496]
ball-in-cup-catch 982 [980, 984] 982 [979, 985] 981 [978, 984] 983 [979, 986] 983 [979, 986]
cartpole-balance 999 [999, 999] 999 [998, 1000] 999 [999, 999] 694 [659, 730] 999 [999, 999]
cartpole-balance-sparse 967 [904, 1030] 1000 [1000, 1000] 970 [913, 1027] 998 [994, 1001] 1000 [1000, 1000]
cartpole-swingup 880 [876, 883] 881 [880, 882] 881 [880, 881] 758 [737, 779] 881 [880, 882]
cartpole-swingup-sparse 848 [848, 849] 845 [843, 847] 715 [493, 937] 844 [839, 849] 846 [844, 848]
cheetah-run 920 [918, 922] 796 [563, 1030] 869 [813, 925] 887 [829, 946] 905 [873, 937]
finger-spin 891 [810, 972] 959 [937, 980] 824 [684, 963] 774 [632, 916] 954 [919, 989]
finger-turn-easy 953 [925, 980] 973 [965, 981] 916 [873, 959] 970 [964, 976] 970 [964, 977]
finger-turn-hard 951 [925, 977] 886 [793, 978] 853 [761, 945] 917 [861, 972] 966 [958, 973]
fish-swim 826 [806, 846] 838 [827, 849] 844 [834, 853] 819 [790, 847] 809 [792, 826]
hopper-hop 290 [233, 348] 380 [198, 561] 294 [237, 350] 211 [114, 309] 316 [293, 339]
hopper-stand 944 [926, 962] 920 [858, 982] 928 [897, 959] 710 [464, 956] 918 [862, 973]
pendulum-swingup 827 [805, 849] 773 [754, 792] 814 [776, 852] 809 [763, 854] 809 [760, 858]
quadruped-run 935 [928, 943] 938 [914, 962] 929 [901, 956] 923 [903, 944] 943 [930, 956]
quadruped-walk 962 [955, 969] 955 [943, 967] 968 [960, 976] 959 [949, 968] 964 [953, 974]
reacher-easy 983 [979, 986] 968 [944, 992] 966 [938, 994] 983 [981, 985] 983 [982, 985]
reacher-hard 967 [946, 987] 978 [977, 979] 976 [972, 981] 976 [972, 981] 969 [949, 989]
walker-run 817 [812, 821] 795 [793, 797] 818 [815, 820] 732 [687, 777] 817 [812, 821]
walker-stand 987 [984, 990] 992 [990, 993] 987 [983, 991] 945 [912, 978] 986 [979, 994]
walker-walk 976 [974, 978] 977 [974, 980] 974 [970, 978] 972 [966, 979] 978 [976, 981]

IQM 0.933 [0.918, 0.948] 0.928 [0.894, 0.954] 0.914 [0.89, 0.937] 0.887 [0.843, 0.922] 0.938 [0.911, 0.96]
Median 0.875 [0.846, 0.905] 0.866 [0.813, 0.918] 0.853 [0.808, 0.896] 0.823 [0.777, 0.871] 0.878 [0.836, 0.918]
Mean 0.874 [0.848, 0.898] 0.868 [0.821, 0.909] 0.852 [0.814, 0.888] 0.824 [0.78, 0.865] 0.878 [0.838, 0.913]

Table 26. DMC-Easy (Training Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 No LR Decay sinit : 1 sscale : 1 αinit : 0.5 αscale : 1

acrobot-swingup 436 [391, 482] 393 [269, 517] 490 [453, 527] 448 [408, 488] 452 [359, 545] 449 [391, 506]
ball-in-cup-catch 982 [980, 984] 982 [978, 986] 982 [980, 984] 982 [980, 984] 983 [979, 987] 983 [979, 987]
cartpole-balance 999 [999, 999] 999 [999, 999] 999 [999, 999] 999 [999, 999] 999 [999, 999] 999 [999, 999]
cartpole-balance-sparse 967 [904, 1030] 1000 [1000, 1000] 999 [997, 1000] 1000 [1000, 1000] 1000 [1000, 1000] 1000 [1000, 1000]
cartpole-swingup 880 [876, 883] 880 [878, 882] 881 [881, 882] 882 [881, 882] 881 [881, 882] 881 [881, 882]
cartpole-swingup-sparse 848 [848, 849] 699 [409, 989] 847 [846, 848] 787 [697, 878] 848 [847, 849] 847 [845, 849]
cheetah-run 920 [918, 922] 917 [913, 922] 917 [913, 921] 914 [903, 925] 918 [914, 921] 866 [758, 974]
finger-spin 891 [810, 972] 871 [716, 1025] 957 [941, 973] 895 [813, 977] 950 [921, 979] 928 [852, 1004]
finger-turn-easy 953 [925, 980] 895 [846, 943] 945 [904, 986] 955 [931, 979] 864 [794, 934] 878 [800, 956]
finger-turn-hard 951 [925, 977] 869 [755, 982] 941 [910, 971] 959 [937, 981] 939 [895, 983] 943 [898, 988]
fish-swim 826 [806, 846] 805 [766, 844] 819 [804, 834] 821 [792, 850] 806 [759, 853] 825 [814, 835]
hopper-hop 290 [233, 348] 321 [305, 338] 282 [217, 347] 304 [265, 343] 171 [59, 283] 313 [293, 333]
hopper-stand 944 [926, 962] 922 [882, 963] 840 [705, 976] 879 [730, 1027] 929 [882, 976] 622 [240, 1004]
pendulum-swingup 827 [805, 849] 810 [763, 858] 827 [806, 848] 820 [797, 843] 811 [766, 857] 812 [767, 857]
quadruped-run 935 [928, 943] 940 [923, 958] 929 [921, 937] 929 [910, 948] 931 [911, 952] 930 [922, 938]
quadruped-walk 962 [955, 969] 967 [962, 973] 966 [962, 971] 954 [939, 969] 953 [946, 961] 954 [948, 959]
reacher-easy 983 [979, 986] 982 [979, 985] 983 [980, 985] 983 [981, 986] 983 [980, 985] 984 [981, 986]
reacher-hard 967 [946, 987] 977 [971, 982] 949 [920, 977] 958 [933, 983] 973 [968, 979] 970 [958, 982]
walker-run 817 [812, 821] 816 [810, 822] 814 [810, 818] 819 [817, 821] 819 [817, 822] 819 [817, 821]
walker-stand 987 [984, 990] 987 [986, 989] 990 [988, 991] 988 [987, 990] 989 [985, 992] 990 [988, 993]
walker-walk 976 [974, 978] 976 [969, 984] 975 [972, 979] 977 [973, 981] 975 [974, 976] 977 [974, 981]

IQM 0.933 [0.918, 0.948] 0.923 [0.894, 0.947] 0.932 [0.916, 0.947] 0.934 [0.918, 0.949] 0.927 [0.901, 0.949] 0.922 [0.892, 0.947]
Median 0.875 [0.847, 0.904] 0.858 [0.811, 0.902] 0.878 [0.847, 0.906] 0.871 [0.842, 0.902] 0.863 [0.818, 0.911] 0.859 [0.809, 0.902]
Mean 0.874 [0.849, 0.897] 0.858 [0.813, 0.896] 0.873 [0.848, 0.897] 0.87 [0.843, 0.894] 0.866 [0.819, 0.905] 0.856 [0.812, 0.895]

48

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

K.3. Deepmind Control Suite - Hard

Table 27. DMC-Hard (Input Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 No L2 Normalize No Shifting cshift : 1 Resize Projection

dog-run 562 [516, 608] 573 [515, 632] 530 [415, 644] 610 [575, 645] 541 [418, 664]
dog-stand 981 [977, 985] 953 [931, 975] 963 [955, 971] 964 [939, 989] 977 [970, 985]
dog-trot 861 [772, 950] 813 [747, 878] 823 [753, 892] 772 [640, 904] 875 [842, 907]
dog-walk 935 [927, 944] 895 [868, 922] 902 [894, 909] 938 [933, 943] 914 [899, 929]
humanoid-run 194 [182, 207] 189 [173, 205] 236 [213, 259] 182 [169, 196] 204 [177, 231]
humanoid-stand 916 [886, 945] 716 [341, 1092] 913 [895, 932] 876 [794, 958] 904 [886, 921]
humanoid-walk 651 [590, 713] 756 [695, 817] 700 [553, 846] 683 [541, 824] 621 [585, 658]

IQM 0.808 [0.726, 0.88] 0.789 [0.65, 0.868] 0.805 [0.667, 0.893] 0.783 [0.663, 0.882] 0.795 [0.659, 0.894]
Median 0.729 [0.655, 0.808] 0.732 [0.595, 0.816] 0.73 [0.619, 0.826] 0.717 [0.606, 0.823] 0.724 [0.61, 0.825]
Mean 0.729 [0.665, 0.79] 0.7 [0.6, 0.795] 0.724 [0.629, 0.814] 0.718 [0.619, 0.809] 0.72 [0.619, 0.811]

Table 28. DMC-Hard (Output Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 MSE Loss No Reward Scaling No Return Bounding Hard Target

dog-run 562 [516, 608] 545 [450, 639] 478 [402, 554] 617 [537, 696] 676 [654, 699]
dog-stand 981 [977, 985] 976 [959, 993] 967 [956, 978] 969 [958, 981] 980 [971, 989]
dog-trot 861 [772, 950] 841 [796, 886] 737 [614, 859] 884 [803, 964] 848 [763, 934]
dog-walk 935 [927, 944] 905 [883, 928] 925 [915, 935] 922 [899, 945] 928 [891, 964]
humanoid-run 194 [182, 207] 173 [146, 200] 237 [181, 293] 182 [154, 209] 209 [159, 260]
humanoid-stand 916 [886, 945] 786 [612, 960] 879 [821, 936] 851 [744, 958] 928 [920, 937]
humanoid-walk 651 [590, 713] 729 [577, 880] 754 [643, 865] 706 [563, 849] 645 [602, 689]

IQM 0.808 [0.728, 0.881] 0.78 [0.62, 0.877] 0.778 [0.655, 0.871] 0.812 [0.69, 0.901] 0.814 [0.706, 0.902]
Median 0.729 [0.655, 0.809] 0.705 [0.57, 0.836] 0.715 [0.61, 0.817] 0.731 [0.621, 0.84] 0.746 [0.641, 0.847]
Mean 0.729 [0.665, 0.79] 0.708 [0.586, 0.813] 0.712 [0.626, 0.792] 0.733 [0.632, 0.824] 0.746 [0.648, 0.833]

Table 29. DMC-Hard (Training Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 No LR Decay sinit : 1 sscale : 1 αinit : 0.5 αscale : 1

dog-run 562 [516, 608] 516 [407, 625] 586 [550, 621] 543 [488, 598] 556 [420, 691] 546 [493, 599]
dog-stand 981 [977, 985] 957 [933, 980] 976 [970, 982] 972 [964, 979] 951 [912, 989] 979 [969, 989]
dog-trot 861 [772, 950] 770 [663, 878] 836 [756, 916] 850 [798, 901] 870 [842, 898] 814 [692, 937]
dog-walk 935 [927, 944] 927 [919, 935] 938 [921, 955] 949 [937, 960] 924 [903, 945] 931 [921, 942]
humanoid-run 194 [182, 207] 221 [165, 277] 187 [178, 196] 194 [177, 211] 193 [170, 217] 182 [172, 192]
humanoid-stand 916 [886, 945] 932 [916, 948] 874 [812, 936] 823 [749, 897] 900 [877, 924] 918 [892, 944]
humanoid-walk 651 [590, 713] 706 [590, 822] 624 [592, 656] 610 [589, 630] 697 [583, 812] 622 [611, 633]

IQM 0.808 [0.725, 0.879] 0.798 [0.658, 0.895] 0.783 [0.708, 0.851] 0.766 [0.687, 0.838] 0.819 [0.685, 0.892] 0.781 [0.642, 0.891]
Median 0.729 [0.655, 0.808] 0.716 [0.616, 0.822] 0.719 [0.646, 0.794] 0.711 [0.634, 0.782] 0.724 [0.62, 0.833] 0.715 [0.603, 0.823]
Mean 0.729 [0.664, 0.791] 0.719 [0.623, 0.809] 0.718 [0.656, 0.777] 0.706 [0.644, 0.767] 0.728 [0.627, 0.819] 0.714 [0.61, 0.81]

49

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

K.4. Myosuite

Table 30. Myosuite (Input Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values] represent
a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 No L2 Normalize No Shifting cshift : 1 Resize Projection

myo-key-turn 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-key-turn-hard 0.62 [0.427, 0.813] 0.325 [-0.009, 0.659] 0.25 [-0.044, 0.544] 0.8 [0.661, 0.939] 0.85 [0.752, 0.948]
myo-obj-hold 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-obj-hold-hard 0.98 [0.954, 1.006] 0.975 [0.926, 1.024] 0.975 [0.926, 1.024] 1.0 [1.0, 1.0] 0.975 [0.926, 1.024]
myo-pen-twirl 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-pen-twirl-hard 0.93 [0.888, 0.972] 0.9 [0.82, 0.98] 0.875 [0.689, 1.061] 0.975 [0.926, 1.024] 0.8 [0.604, 0.996]
myo-pose 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-pose-hard 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
myo-reach 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-reach-hard 0.94 [0.873, 1.007] 0.95 [0.893, 1.007] 0.9 [0.82, 0.98] 0.925 [0.831, 1.019] 0.9 [0.82, 0.98]

IQM 0.99 [0.968, 1.0] 0.98 [0.885, 1.0] 0.98 [0.86, 1.0] 1.0 [0.955, 1.0] 0.975 [0.925, 1.0]
Median 0.845 [0.78, 0.925] 0.815 [0.695, 0.935] 0.805 [0.68, 0.92] 0.875 [0.765, 0.975] 0.86 [0.75, 0.955]
Mean 0.847 [0.782, 0.906] 0.815 [0.702, 0.915] 0.8 [0.682, 0.905] 0.87 [0.77, 0.953] 0.852 [0.75, 0.938]

Table 31. Myosuite (Output Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 MSE Loss No Reward Scaling No Return Bounding Hard Target

myo-key-turn 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-key-turn-hard 0.62 [0.427, 0.813] 0.2 [-0.192, 0.592] 0.76 [0.66, 0.86] 0.225 [-0.153, 0.603] 0.675 [0.417, 0.933]
myo-obj-hold 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-obj-hold-hard 0.98 [0.954, 1.006] 0.933 [0.868, 0.999] 0.98 [0.941, 1.019] 1.0 [1.0, 1.0] 0.975 [0.926, 1.024]
myo-pen-twirl 1.0 [1.0, 1.0] 0.667 [0.013, 1.32] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-pen-twirl-hard 0.93 [0.888, 0.972] 0.867 [0.605, 1.128] 0.98 [0.941, 1.019] 0.9 [0.82, 0.98] 0.9 [0.82, 0.98]
myo-pose 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 0.8 [0.408, 1.192] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-pose-hard 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
myo-reach 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-reach-hard 0.94 [0.873, 1.007] 0.9 [0.787, 1.013] 0.88 [0.766, 0.994] 0.925 [0.831, 1.019] 0.925 [0.831, 1.019]

IQM 0.99 [0.968, 1.0] 0.944 [0.712, 1.0] 0.985 [0.931, 1.0] 0.985 [0.87, 1.0] 0.98 [0.93, 1.0]
Median 0.845 [0.78, 0.93] 0.77 [0.58, 0.94] 0.85 [0.74, 0.96] 0.79 [0.68, 0.93] 0.845 [0.74, 0.955]
Mean 0.847 [0.783, 0.906] 0.757 [0.613, 0.887] 0.84 [0.746, 0.922] 0.805 [0.685, 0.912] 0.848 [0.745, 0.938]

Table 32. Myosuite (Training Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.
Task SimbaV2 No LR Decay sinit : 1 sscale : 1 αinit : 0.5 αscale : 1

myo-key-turn 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 0.9 [0.704, 1.096] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-key-turn-hard 0.62 [0.427, 0.813] 0.65 [0.345, 0.955] 0.74 [0.585, 0.895] 0.69 [0.502, 0.878] 0.675 [0.581, 0.769] 0.85 [0.662, 1.038]
myo-obj-hold 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-obj-hold-hard 0.98 [0.954, 1.006] 1.0 [1.0, 1.0] 0.95 [0.897, 1.003] 0.98 [0.954, 1.006] 0.95 [0.893, 1.007] 1.0 [1.0, 1.0]
myo-pen-twirl 1.0 [1.0, 1.0] 0.75 [0.26, 1.24] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-pen-twirl-hard 0.93 [0.888, 0.972] 0.775 [0.451, 1.099] 0.89 [0.81, 0.97] 0.88 [0.816, 0.944] 0.925 [0.831, 1.019] 1.0 [1.0, 1.0]
myo-pose 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-pose-hard 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
myo-reach 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
myo-reach-hard 0.94 [0.873, 1.007] 0.925 [0.831, 1.019] 0.97 [0.928, 1.012] 0.91 [0.848, 0.972] 0.875 [0.752, 0.998] 0.9 [0.82, 0.98]

IQM 0.99 [0.968, 1.0] 0.985 [0.875, 1.0] 0.99 [0.964, 1.0] 0.982 [0.948, 1.0] 0.975 [0.905, 1.0] 1.0 [0.97, 1.0]
Median 0.845 [0.78, 0.925] 0.84 [0.7, 0.94] 0.865 [0.785, 0.935] 0.84 [0.77, 0.92] 0.85 [0.735, 0.945] 0.875 [0.77, 0.98]
Mean 0.847 [0.782, 0.906] 0.81 [0.698, 0.908] 0.855 [0.792, 0.913] 0.836 [0.77, 0.896] 0.842 [0.742, 0.928] 0.875 [0.772, 0.96]

50

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

K.5. Humanoid Bench

Table 33. HumanoidBench (Input Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 No L2 Normalize No Shifting cshift : 1 Resize Projection

h1-balance-hard-v0 143 [128, 157] 113 [62, 164] 94 [80, 109] 89 [74, 104] 150 [105, 194]
h1-balance-simple-v0 723 [651, 795] 760 [666, 854] 512 [236, 789] 799 [744, 854] 760 [658, 861]
h1-crawl-v0 946 [933, 959] 901 [870, 932] 838 [813, 864] 948 [927, 968] 884 [723, 1044]
h1-hurdle-v0 202 [167, 236] 177 [168, 187] 172 [162, 183] 191 [160, 222] 218 [152, 285]
h1-maze-v0 313 [287, 340] 337 [313, 361] 302 [230, 374] 341 [337, 345] 338 [311, 365]
h1-pole-v0 791 [785, 797] 746 [722, 769] 759 [754, 764] 784 [781, 786] 805 [795, 816]
h1-reach-v0 3850 [3272, 4427] 4564 [3107, 6020] 3263 [2743, 3783] 5415 [4354, 6475] 3722 [2105, 5339]
h1-run-v0 415 [307, 524] 212 [208, 217] 218 [196, 240] 365 [115, 614] 585 [377, 792]
h1-sit-hard-v0 679 [548, 811] 493 [227, 758] 721 [499, 944] 757 [667, 847] 667 [402, 933]
h1-sit-simple-v0 875 [870, 880] 829 [783, 874] 803 [745, 860] 869 [858, 880] 890 [872, 909]
h1-slide-v0 487 [404, 571] 518 [499, 537] 497 [483, 511] 520 [467, 573] 435 [318, 551]
h1-stair-v0 493 [467, 518] 477 [460, 494] 475 [433, 517] 540 [480, 600] 515 [504, 525]
h1-stand-v0 814 [770, 857] 821 [786, 856] 835 [833, 837] 848 [845, 851] 764 [661, 867]
h1-walk-v0 845 [840, 850] 675 [560, 789] 832 [814, 850] 842 [830, 853] 845 [835, 855]

IQM 0.799 [0.684, 0.907] 0.709 [0.525, 0.881] 0.708 [0.509, 0.908] 0.833 [0.635, 0.997] 0.808 [0.61, 0.977]
Median 0.781 [0.69, 0.862] 0.698 [0.566, 0.851] 0.698 [0.552, 0.85] 0.801 [0.639, 0.944] 0.801 [0.631, 0.934]
Mean 0.776 [0.704, 0.847] 0.711 [0.589, 0.833] 0.7 [0.578, 0.825] 0.791 [0.66, 0.921] 0.779 [0.653, 0.905]

51

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning

Table 34. HumanoidBench (Output Design). Final performance at 1M environment steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 MSE Loss No Reward Scaling No Return Bounding Hard Target

h1-balance-hard-v0 143 [128, 157] 89 [73, 106] 92 [82, 101] 136 [117, 155] 173 [133, 213]
h1-balance-simple-v0 723 [651, 795] 765 [664, 865] 779 [680, 877] 832 [825, 839] 739 [553, 924]
h1-crawl-v0 946 [933, 959] 945 [921, 969] 953 [934, 971] 942 [896, 989] 938 [913, 964]
h1-hurdle-v0 202 [167, 236] 243 [241, 245] 140 [105, 174] 192 [132, 252] 207 [186, 228]
h1-maze-v0 313 [287, 340] 324 [282, 367] 273 [220, 327] 320 [291, 350] 339 [309, 370]
h1-pole-v0 791 [785, 797] 774 [773, 776] 724 [625, 823] 796 [791, 800] 787 [786, 788]
h1-reach-v0 3850 [3272, 4427] 5044 [2733, 7355] 4032 [2583, 5480] 4396 [2059, 6732] 3984 [2231, 5738]
h1-run-v0 415 [307, 524] 485 [199, 771] 359 [150, 568] 360 [234, 487] 341 [175, 508]
h1-sit-hard-v0 679 [548, 811] 611 [350, 873] 729 [648, 811] 727 [681, 773] 684 [362, 1005]
h1-sit-simple-v0 875 [870, 880] 869 [864, 875] 871 [859, 883] 868 [863, 872] 871 [870, 871]
h1-slide-v0 487 [404, 571] 352 [260, 445] 410 [313, 506] 534 [484, 583] 581 [550, 613]
h1-stair-v0 493 [467, 518] 512 [470, 554] 450 [382, 517] 510 [495, 526] 515 [495, 536]
h1-stand-v0 814 [770, 857] 742 [621, 862] 775 [684, 865] 751 [570, 933] 645 [251, 1038]
h1-walk-v0 845 [840, 850] 851 [840, 863] 742 [556, 928] 845 [834, 855] 838 [835, 842]

IQM 0.799 [0.684, 0.907] 0.778 [0.594, 0.95] 0.745 [0.584, 0.896] 0.819 [0.623, 0.977] 0.778 [0.572, 0.965]
Median 0.781 [0.692, 0.863] 0.762 [0.614, 0.917] 0.722 [0.605, 0.864] 0.776 [0.636, 0.933] 0.772 [0.614, 0.923]
Mean 0.776 [0.704, 0.848] 0.767 [0.637, 0.894] 0.735 [0.629, 0.842] 0.787 [0.658, 0.915] 0.77 [0.64, 0.897]

Table 35. HumanoidBench (Training Design). Final performance at 1M env steps averaged over 3 seeds. The [bracketed values]
represent a 95% bootstrap confidence interval. The aggregate mean, median and interquartile mean are computed over the default reward.

Task SimbaV2 No LR Decay sinit : 1 sscale : 1 αinit : 0.5 αscale : 1

h1-balance-hard-v0 143 [128, 157] 118 [86, 150] 139 [119, 159] 139 [116, 162] 152 [140, 164] 139 [119, 159]
h1-balance-simple-v0 723 [651, 795] 812 [758, 867] 815 [794, 836] 813 [793, 833] 763 [620, 907] 732 [645, 820]
h1-crawl-v0 946 [933, 959] 955 [933, 977] 956 [947, 965] 946 [929, 963] 933 [911, 954] 962 [954, 970]
h1-hurdle-v0 202 [167, 236] 150 [64, 235] 228 [218, 238] 188 [159, 218] 203 [187, 219] 209 [204, 214]
h1-maze-v0 313 [287, 340] 283 [150, 417] 347 [339, 355] 337 [318, 356] 367 [352, 382] 333 [324, 342]
h1-pole-v0 791 [785, 797] 736 [625, 847] 774 [760, 788] 767 [736, 798] 791 [777, 804] 792 [785, 798]
h1-reach-v0 3850 [3272, 4427] 5986 [3542, 8430] 4295 [3423, 5167] 4988 [4251, 5724] 4312 [2719, 5905] 5495 [3782, 7207]
h1-run-v0 415 [307, 524] 424 [172, 675] 357 [277, 436] 351 [246, 457] 234 [209, 259] 337 [171, 503]
h1-sit-hard-v0 679 [548, 811] 678 [382, 975] 686 [575, 796] 734 [604, 863] 507 [257, 757] 702 [493, 911]
h1-sit-simple-v0 875 [870, 880] 845 [793, 897] 875 [869, 881] 877 [871, 882] 868 [852, 885] 870 [868, 872]
h1-slide-v0 487 [404, 571] 388 [268, 507] 486 [420, 553] 525 [475, 574] 447 [380, 514] 533 [512, 554]
h1-stair-v0 493 [467, 518] 512 [499, 525] 507 [491, 523] 504 [483, 525] 513 [505, 521] 503 [468, 538]
h1-stand-v0 814 [770, 857] 603 [434, 773] 751 [697, 804] 789 [700, 879] 793 [707, 878] 799 [720, 877]
h1-walk-v0 845 [840, 850] 843 [832, 855] 843 [837, 849] 839 [828, 850] 834 [829, 839] 827 [802, 851]

IQM 0.799 [0.683, 0.908] 0.764 [0.578, 0.93] 0.796 [0.688, 0.901] 0.823 [0.709, 0.927] 0.725 [0.532, 0.917] 0.817 [0.615, 0.978]
Median 0.781 [0.69, 0.862] 0.769 [0.599, 0.912] 0.776 [0.7, 0.866] 0.792 [0.705, 0.876] 0.746 [0.595, 0.893] 0.802 [0.64, 0.938]
Mean 0.776 [0.704, 0.847] 0.754 [0.625, 0.883] 0.781 [0.711, 0.852] 0.789 [0.719, 0.861] 0.745 [0.619, 0.872] 0.792 [0.659, 0.916]

52

