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ABSTRACT

Machine learning and computer vision have a major impact on the study of
natural animal behavior, as they enable automated action classification of large
bodies of videos. Mice are the standard mammalian model system in many fields
of research, but the open datasets that are currently available to refine machine
learning methods mostly focus on either simple or social behaviors. In this work,
we present a large video dataset of individual mice solving complex mechanical
puzzles, so-called lockboxes. The dataset consists of a total of well over 110 hours
of animal behavior, recorded with three cameras from different perspectives.
As a benchmark for frame-level action classification methods, we provide
human-annotated labels for all videos of two different mice, that equal 13% of our
dataset. The used keypoint (pose) tracking-based action classification framework
illustrates the challenges of automated labeling of fine-grained behaviors, such
as the manipulation of objects. We hope that our work will help accelerate the
advancement of automated action and behavior classification in the computational
neuroscience community. An anonymized preview of our dataset is available for
the reviewers of this manuscript at https://www.dropbox.com/scl/fo/
h7nkai8574h23qfq9m1b2/AP4gNZOpDJJ7z0yGtbWQiOc?rlkey=
w36jzxqjkghg0j0xva5zsxy2v&st=5r9msqjw&dl=0

1 INTRODUCTION

Ethology, the study of non-human behavior, (Tinbergen, 1961) is one of the cornerstones of under-
standing complex biological systems. In recent years, with the integration of machine learning into
the field, computational ethology (Anderson & Perona, 2014) emerged as a powerful new paradigm
offering new pathways for advancing both fields and beyond. For instance, it has significantly in-
fluenced neuroscience, enabling the development of computational frameworks that bridge neural
mechanisms with observations of behaviors (Datta et al., 2019; McCullough & Goodhill, 2021; von
Ziegler et al., 2021; Kennedy, 2022). In robotics, animal behavior datasets allow researchers to
learn artificial agents to navigate and interact autonomously in natural environments. The hypothe-
sized learning models used in this process can then be tested by comparing the performance of the
learned agents against that of natural agents (Baum et al., 2022). Furthermore, these datasets also
provide a source of inspiration for developing machine learning approaches capable of handling
high-dimensional, temporal, (Jia et al., 2022) and eventually multimodal data.

The available datasets of freely moving animals (Burgos-Artizzu et al., 2012; Dunn et al., 2021;
Pedersen et al., 2020; Eyjolfsdottir et al., 2021; Marshall et al., 2021; Segalin et al., 2021; Sun
et al., 2021a; Ng et al., 2022; Hu et al., 2023; Ma et al., 2023; Rogers et al., 2023; Zia et al., 2023;
Brookes et al., 2024; Duporge et al., 2024; Kholiavchenko et al., 2024; Li et al., 2024) provide
the foundation for the development of automated behavioral analysis tools, e.g., B-SOiD (Hsu &
Yttri, 2021), VAME (Luxem et al., 2022), and Keypoint-MoSeq (Weinreb et al., 2024). However,
all of these datasets and their descending methods focus on trivial and social behaviors, but neglect
the structure imposed by well-defined tasks that provoke complex behaviors. This absence limits
their applicability for studying goal-directed actions, problem-solving, and other behaviors critical
to understanding cognitive processes in neuroscience, robotics, and artificial intelligence.

Action classification is central for understanding behavior. For instance, based on a sequence of
actions researchers can analyze whether an animal has “understood” a task as it follows a policy
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that advances it towards a goal. Scientists can also study learning by focusing on policy changes
or by trying to infer goals, e.g., by the means of inverse reinforcement learning. Doing so requires
unbiased modeling of sequential data, identifying (unknown) patterns, and making predictions in
noisy, real-world environments. As of today, the state-of-the-art approaches in computational ethol-
ogy (Hsu & Yttri, 2021; Luxem et al., 2022; Weinreb et al., 2024) build upon predefined keypoints.
However, this may make meeting the stated requirements challenging as keypoints ignore possibly
high descriptive visual information other than location. Therefore, the field is in need of robust rep-
resentation learning that generates expressive features for complex behavioral data. They can help
capture the high-dimensional structure of actions and behaviors, offering generalizable insights that
are transferable across both tasks and species.

In this work, we provide the first large-scale labeled, single-agent, multi-perspective video dataset
of mice showing intelligent behavior as they learn to solve mechanical puzzles, so-called lockboxes.
Every lockbox consists of a single or a combination of four different mechanisms, which can only
be solved by a specific sequence, and is baited with a food reward. Once a mouse succeeds to open
a lockbox, it gains access to the food reward. To provide a benchmark for novel representation
learning methods, we provide labels for 13% of the video data, including mechanism state, mouse-
to-mechanism proximity, and both mouse-mechanism and mouse-reward actions. This amounts to
about 15 hours and 25 minutes, i.e., more than 1.6 million frames. In doing so, we increase the
longest total video playtime, i.e., the number of perspectives multiplied by the real time recorded,
available through any dataset showing mice from 88 hours (Burgos-Artizzu et al., 2012) before by
more than 33% to now 117 hours and 52 minutes.

To guarantee a high quality of labeled data, each labeled video is annotated by two skilled human
raters who have been instructed prior to annotating. The consistency between raters is assessed by
their inter-rater reliability (McHugh, 2012), providing an objective and well-established measure of
agreement. We regard such rigorous and transparent annotation protocols as essential for creating
datasets that allows assessing the performance of future machine learning approaches.

We use a keypoint-based approach as an initial benchmark for our dataset (Boon et al., 2024) that
aligns with the well-established three-parted pipeline introduced by (Anderson & Perona, 2014),
i.e., animal tracking, action classification, and behavioral analysis. Furthermore, we compare our
human-human agreement against its human-machine agreement. In the absence of established
benchmark methods for the interaction of natural agents with their environment, this will allow
others to assess the performance of their approaches.

In summary, we contribute a new, multi-perspective, video dataset that consists of mice learning
to solve lockboxes. We hope that our dataset will serve three purposes. First, we hope that it will
promote the advancement and adoption of more diverse machine learning approaches in computa-
tional neuro-/ethology. Second, it may provide interesting challenges to the representation learning
community, as behavioral action classification requires both large-scale pose and fine-level visual
information, e.g., the position of mouth and teeth. And third, we hope that a broader analysis of the
dataset by the research community will advance our understanding of how natural agents learn to
solve complex problems.

2 RELATED WORK

The general three-parted structure of automated behavioral analysis—animal tracking, i.e., localiza-
tion of keypoints (poses) of individual animals and tracking them over time; action classification,
i.e., identification of time intervals when relevant action patterns are performed; and behavior analy-
sis, i.e., estimating behavioral patterns assembled from sequences of actions—(Anderson & Perona,
2014) largely persists in state-of-the-art approaches (Datta et al., 2019; von Ziegler et al., 2021; Kuo
et al., 2022; Luxem et al., 2023; Fazzari et al., 2024), albeit with increasingly advanced methods. It
is the most common approach to first detect animal poses (Mathis et al., 2018; Alameer et al., 2020;
Dunn et al., 2021; Brattoli et al., 2021; Segalin et al., 2021; Pereira et al., 2022; Russello et al.,
2022; Biderman et al., 2024) and further process them to trajectories (Alameer et al., 2020; Hsu &
Yttri, 2021; Segalin et al., 2021; Sun et al., 2021b; Luxem et al., 2022; Biderman et al., 2024; Boon
et al., 2024) or feature representations (Brattoli et al., 2021; Zhou et al., 2023), while only few of the
available works (Batty et al., 2019; Bohnslav et al., 2021; Brattoli et al., 2021; Jia et al., 2022) shift
towards encoding videos as abstract spatiotemporal features. Both pose trajectories (Alameer et al.,
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Table 1: Overview of some distinguishing properties of available video datasets showing rodents.
The listed durations, i.e., real time recorded and calculated total playtime, are rounded values. The
20 (intelligent) behaviors we report reflect the composition of five labeled interactions that the mice
may perform on the four distinct lockbox mechanisms.

# PERSPECTIVES
CONTEXT LABELS × REAL TIME

CRIM13 Mice, social 13 (social) behaviors 2× 44h ≈ 88h

Rat 7M Rats, individual 20 keypoint markers 6× 11h ≈ 65h

PAIR-R24M Rats, social 14 (social) behaviors 24× 9h ≈ 220h

MARS Mice, social 3 social behaviors 2× 14h ≈ 28h

CalMS21 Mice, social 3 social behaviors 1× 70h ≈ 70h

Ours Mice, individual 20 (intelligent) behaviors 3× 40h ≈ 120h

2020; Brattoli et al., 2021; Hsu & Yttri, 2021; Segalin et al., 2021; Sun et al., 2021b; Luxem et al.,
2022; Biderman et al., 2024; Weinreb et al., 2024) as well as abstract spatiotemporal features (Batty
et al., 2019; Bohnslav et al., 2021; Brattoli et al., 2021; Jia et al., 2022) then form the basis for the
next analysis steps, the quantification of actions and behaviors.

To refine these methods, various video datasets are available to the community today. We limit the
following overview to those that show rodents, because various rodent species can potentially be
used in domain transfer settings, due to their largely similar visual appearance and motor apparatus.
Table 1 summarizes some of their distinguishing properties discussed below. A full survey on (both
video and image) datasets showing animals would substantially exceed the scope of this work.

Burgos-Artizzu et al. (2012) presented with CRIM13 the up to now largest dataset with a total of
88 hours (44 hours of recorded real time) of video data showing mice from two (top-down and
side) perspectives in resident-intruder contexts. They provide 13 human-annotated (social) behavior
labels—approach, attack, coitus, chase, circle, drink, eat, clean, human, sniff, up, walk, and other—
for each of the 237 pairs of 10 minute long videos. For these labels, they report a 70% agreement
among human raters while the method they propose reaches 61.2% human-machine agreement for
behavior classification.

Dunn et al. (2021) presented Rat 7M, a dataset consisting of 65 hours (11 hours of recorded real
time) worth of videos of rats with 20 markers pierced to their bodies. The rats were recorded using
six cameras, and 12 motion capture cameras were used to record the markers’ coordinates in space.
Behavior labels are not provided. They report that the pose tracking approach they proposed is
robust in domain transfer settings where the species of the tracked agent changes from rat to mouse.

Marshall et al. (2021) presented PAIR-R24M, a dataset consisting of 220 hours (9 hours of recorded
real time) worth of videos of rats from 24 perspectives. They provide 14 human-annotated (social)
behavior labels—amble, crouch, explore, head tilt, idle, investigate, locomotion, rear down, rear
up, small movement, sniff, groom, as well as close to, explore, and chase—for the entire dataset.
It is the most perspective-diverse, the largest by total playtime, but also the shortest by real time
recorded.

Segalin et al. (2021) presented MARS, a dataset consisting of 28 hours (14 hours of recorded real
time) worth of videos of mice from two (top-down and front) perspectives. They provide three
human-annotated social behavior labels—attack, investigation, and mount—for 3 hours (1.5 hours in
real time) worth of video data in 10 videos. They do not only propose a method that reaches human-
level performance in behavior classification but also a graphical user interface that will accelerate
computer-aided research in neuroscience labs that do not employ machine learning experts.

Sun et al. (2021a) presented CalMS21, a 70 hour long video dataset showing pairs of mice from a
top-down perspective. They provide three human-annotated social behavior labels—attack, investi-
gate, and mount—for 10 hours worth of video data.
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2.1 BENCHMARK METHOD

Since methods based on keypoint (pose) estimation and tracking are currently state-of-the-art, our
benchmark experiments are based on the pose-tracking approach used by Boon et al. (2024). The
method consists of 3 steps: the use of DeepLabCut (DLC) for 2-dimensional pose tracking, 3-
dimensional reconstruction and the refinement of keypoint data using (Extended) Kalman filtering,
and the detection of action labels. A high-level description of steps is given below.

First, 2-dimensional poses of the mice and lockbox mechanisms are extracted from the videos on
a frame-level by learning DLC models under supervision. We learn one DLC model to locate key-
points of mice, and two that locate keypoints of lockbox mechanisms—one for the single-mechanism
lockboxes, and one for the lockbox combining them—using default parameters (Mathis et al., 2018;
Nath et al., 2019) (see Appendix A.2). Next, the scene is reconstructed by utilizing the known
3-dimensional locations of the lockbox mechanisms given by their CAD models. We linearly map
the known 3-dimensional locations onto the corresponding triplets of 2-dimensional keypoints using
the random sample consensus (RANSAC) algorithm and construct a triangulation matrix for each
video. Each of these triangulation matrices is then used as an observation matrix for a(n) (Extended)
Kalman filter to refine the observed triplet of 2-dimensional keypoints into a common 3-dimensional
space. The head and the tail of the mouse are inferred using a skeletal model, while the keypoints
of the mechanisms and the paws of the mouse are inferred as single keypoints. Finally, the inter-
actions of the mice with the lockbox mechanisms are detected based on the 3-dimensional poses of
the mouse and predefined bounding boxes spanned by the 3-dimensional keypoint locations. For the
proximity labels, the snout of mouse is used to detect the actions: each frame in which the snout
of the mouse is inside of a bounding box, the corresponding action label (e.g., proximity lever) is
detected. Biting is detected using the mouth of the mouse, which location is computed from the
rigid body model of the mouse head. And the touch labels are deteced using the locations of the
front paws. Note that the bite and touch labels have different predefined bounding boxes than the
proximity labels, as these actions have a finer level of granularity than proximity labels.

3 DATASET

In this section, we describe our dataset in detail. This includes a description of the mice, the arena
as part of the home cage and schematics of the lockboxes that the mice are presented with, the
camera setup, the schedule at which mice were presented with the lockboxes, the preprocessing of
the recorded videos in order to refine them to a dataset suitable for computer vision and machine
learning approaches, the annotation of behavior labels including our ethogram, statistics on videos
and labels, benchmark results, and known limitations.

3.1 DATA COLLECTION AND PREPROCESSING

To create this video dataset, 12 female C57BL/6J mice obtained from Charles River Laboratories
(Sulzfeld, Germany) were recorded in a free-standing Makrolon type III cage, that was connected
to another cage of the same type by a tube. The mice were housed in groups of 4 animals in a
12/12-hour light/dark cycle of artifical light. During the trials with the lockboxes that took place in
light phases, only one animal at a time could enter the cage in which the lockboxes were presented.
The cage was closed with a top grid that was partially removed (cutout) to allow for unobstructed
view on the lockbox. Three Basler acA1920-40um cameras (LM25HC7 lens, f = 25mm, k = 1.4;
Kowa, Nagoya, Japan) were setup to record the grayscale videos at a 1936×1216px resolution (the
highest possible) with a 30fps frame rate. Additionally, we used two infrared lights (Synergy 21
IR-Strahler 60W, ALLNET GmbH Computersysteme, Germering, Germany) to illuminate the cage.
The advantages of infrared lights were that they enhanced the quality of recordings captured by the
infrared-sensitive cameras we used, while also not being aversive to the animals.

Figure 1a depicts the setup described before. All cameras were connected to a single computer and
controlled by a common software program to synchronize frame capturing. The mice were presented
with five different lockboxes: a combined lockbox consisting of four interlocked mechanisms (Fig-
ure 1b), and four simpler lockboxes presenting these mechanisms individually (Figure 1c). A hidden
food reward (oatmeal flake) was used to bait the mice to solve the lockbox. It is important to note
that the mice were not subjected to food or water deprivation. They had ad libitum access to food
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Dataset used
Mice solving lockboxes

• In other datasets mice are usually 
filmed from a single perspective.


• Our dataset consists of 
370 experiments (scenes) that are 10–
20 minutes long and were recorded 
from 3 perspectives each. The 
grayscale video triplets are pseudo-
synchronized.


• Multi-class action labels are available 
for 4 scenes; actions are interaction 
with either of the 4 lockbox 
mechanisms.


• Data samples are 64 frame long, non-
overlapping clips from these videos.

Side Front

Top-down

(a) Schematic of the camera setup
including the perspective names.

(b) Lockbox of combined mechanisms
baited with a food reward underneath the
sliding door.

(c) Single-mechanism lockboxes baited with a food reward underneath each mechanisms.

Figure 1: Camera setup used for recording the videos, as well as lockboxes and their mechanisms:
lever (yellow), stick (red), ball (gray), and sliding door (green). Each lockbox is baited with a
food reward underneath the (last) mechanism. Appendix A.1 provides figures of the lockboxes with
unlocked mechanisms.

pellets (LASvendi, LAS QCDiet, Rod 16, autoclavable) and tap water. Therefore it can be assumed
that they were not hungry when entering the arena. However, the food reward was exclusively pro-
vided within the lockboxes. To familiarize the mice with the food reward, they were habituated
over three consecutive days prior to the start of lockbox training by placing eight oat flakes at the
location where the lockbox would be introduced during the training sessions. The freely behaving
mice were presented with the combined lockbox for at total of 6 and with the single-mechanism
lockboxes 11 trials. In each trial, the mice were first exposed to the combined lockbox followed
by a randomized order of single-mechanism lockboxes. The videos end shortly after the reward is
reached, or if a trial reached the maximum duration of 30 minutes for combined and 15 minutes for
single-mechanism lockboxes.

We manually cut the videos to remove disturbances, such as the experimenter’s hands switching
lockboxes. Any videos where the lockboxes could not be seen entirely were filtered out. This
resulted in a dataset with a total playtime of 117 hours and 52 minutes.

3.2 LABEL ANNOTATION

We provide human annotations of the mechanism state, mouse-to-mechanism proximity, and both
mouse-mechanism and mouse-reward action labels. To do so while also preventing any kind of
information leakage between labeled and unlabeled data splits, we labeled all videos of two specific
mice (mouse numbers 291 and 324) that have a combined total playtime of about 15 hours and
25 minutes in 270 videos, i.e., more than 1.6 million frames in 90 trials. This equals about 13% of
our dataset’s total size.

Table 2 defines the ethogram we used to instruct our nine skilled human raters. Appendix A.3 pro-
vides example frames for the different labels. We used these labels that express trivial truths in
order to minimize anthropomorphic biases, that would otherwise distort the evaluation of exper-
iments and the conclusions drawn from their results. These biases are especially apparent when
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Table 2: Ethogram used for label annotation.

LABEL DEFINITION

Proximity The mouse’s snout is within a distance of 1cm to a specific mechanism.

Touch The mouse touches a specific mechanism with one or both of its front paws.

Bite The mouse bites into a specific mechanism.

Unlock The state of a specific mechanism changes to unlocked. This may make
the reward accessible or enabling the next mechanism to be unlocked. State
changes may occur without the mouse manipulating a mechanism directly.

Lock The state of a specific mechanism changes to locked. This may make the
reward inaccessible or preventing the next mechanism from being unlocked.
State changes may occur without the direct manipulation of a mechanism.

Reach reward The mouse is in first contact with the reward with any of its body parts.

using more high-level labels, such as exploring and deliberately manipulating lockbox mechanisms,
that strongly depend on subjective human interpretation. Using more explicit labels not only leads
to higher label quality but also lowers the risk of computer vision and machine learning models
learning said biases before reintroducing them as noise to any analysis based on their outputs.

For annotating the labels, we merged every video triplet (top-down, side, and front perspective)
into a combined video.1 All labels have been annotated by a random pair of raters with a temporal
accuracy of ±100 milliseconds, i.e., ±3 frames using BORIS (Friard & Gamba, 2016). It took each
of our raters about 6.2 to 11.5 times longer than the actual playtime to annotate the labels in a video.
This matches with the factor of 5 to upmost 10 that is reported throughout the available literature.
We account our slightly higher efforts to the multitude of mouse body parts and lockbox mechanisms
that needed to be observed at the same time.

3.3 DATASET STATISTICS

In this section, we give an overview over various data statistics for both the labeled and unlabeled
videos. It is worth mentioning that the unevenly distributed playtime shares of different mechanisms
as well as active labels is rooted in the mice behaving freely in the arena. Their inherent preference
for different actions and mechanisms is naturally occurring and reflected in the statistics we report.

3.3.1 PLAYTIME STATISTICS

Our dataset has a total playtime of 117 hours and 52 minutes, i.e., almost 13 million frames, that
show 39 hours and 17 minutes of real experimental time recorded from 3 perspectives. The dataset
consists of a total of 1629 videos, i.e., 543 trials. Table 3 gives a detailed overview of the playtime
shares for both mice and lockbox mechanisms. Figure 2 shows a histogram of videos playtimes.
The videos in our dataset have a mean playtime of 4 minutes and 21 seconds.

3.3.2 LABEL STATISTICS

We provide human-annotated mechanism state, mouse-to-mechanism proximity, and both mouse-
mechanism and mouse-reward action labels for mouse numbers 291 and 324, to avoid information
leakage between labeled and unlabeled data splits. This totals to 15 hours and 25 minutes, i.e., more
than 1.6 million frames of video data, as Table 3 shows.

Figure 3 shows the inter-rater reliability, i.e., Cohen’s kappa coefficients, (McHugh, 2012) for all
pairs of human raters. On average our human raters annotate almost all proximity and touch labels

1Merging the video triplets into combined videos was necessary as BORIS version 8.27 suffers from a
software issue that occurs more frequently when using it with multiple videos opened at once, and that causes
to the software to crash only minutes into using it. The published dataset does not include the merged videos.
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Table 3: Playtime shares of both different mice and mechanisms in our dataset in percent. The
column names identify the mice while the rows specify the mechanisms.

52 68 70 80 162 192 258 285 291 324 336 389
∑

Lever 1.0 1.9 0.8 1.8 2.0 0.7 2.3 0.3 1.4 1.0 0.4 0.6 14.2

Stick 0.9 1.1 1.2 1.0 1.1 0.5 0.7 0.4 0.9 0.5 0.5 1.4 10.1

Ball 0.6 0.8 0.6 0.9 2.3 1.4 0.5 0.4 0.8 0.3 0.8 0.4 9.7

Sl.Door 1.3 3.6 2.0 0.7 0.5 0.5 1.1 0.4 0.4 0.3 2.7 0.5 13.9

Comb. 3.2 7.6 4.9 3.6 3.1 4.6 3.9 3.8 2.4 5.2 6.0 3.9 52.0∑
6.9 15.1 9.4 7.9 9.0 7.7 8.5 5.3 5.8 7.3 10.3 6.7 100

0–30 seconds

30–60 seconds

1–2 minutes

2–5 minutes

5–10 minutes

10–30 minutes

0 125 250 375 500
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153

66

39

27
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63

105

87

45

Lever Stick Ball Sliding door Combined

Figure 2: Histogram of the video playtime distribution with pseudo-logarithmically scaled bins.
The lower limits of the bins are excluded while the upper limits are included, and the different
mechanisms are color coded. The different lockbox mechanisms are color coded.

with a moderate or even strong agreement, but have a lower agreement for the stick mechanism. In
contrast, they annotate bite labels with only minimal to weak agreement. We account this to the bite
label being particularly hard to annotate as it is not always directly visible in the videos.

Table 4 shows the playtime shares of different action label classes. It gives an overview of the density
of active behavior labels for the different lockbox mechanisms relative to the total labeled playtime.
It furthers gives the density of either behavior label being active for any of the mechanisms.

Table 4: Playtime shares of different action labels relative to the total playtime of the labeled videos
in percent.

Lever Stick Ball Sl.Door Any

Proximity 15.73 19.05 13.41 18.97 55.39

Touch 7.06 4.07 7.00 9.32 25.50

Bite 1.81 1.50 3.41 1.42 8.12

3.4 BENCHMARK RESULTS

Next to manually annotating the trials of two mice, we used our keypoint tracking pipeline to auto-
matically generate labels on a frame-to-frame basis, which are used here as a benchmark method.
The trials of the two mice are considered to be the test set for our benchmark method and are there-
fore not used in its training procedure. Analogous to the inter-rater reliability of the previous section,
we compare the resulting action labels from our benchmark to both human raters in Figure 3.
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Figure 3: Inter-rater reliability measured using Cohen’s kappa coefficients, to assess both human-
human and human-machine agreement in label annotation for both different action classes and mech-
anisms. The human-human inter-rater reliability is colored purple while the human-machine inter-
rater reliability is colored yellow.

The benchmark method performs well for proximity labels. This becomes apparent when com-
paring the human-machine against the human-human inter-rater reliability, where our benchmark
method mostly reaches human-level performance. In contrast, for both touch and bite labels it is
outperformed by our human raters. These two action labels require a higher accuracy in the detec-
tion of the pose of the mouse as well as the reconstruction of the bounding box of the mechanisms.
Therefore, the reliability for touch and bite labels are naturally lower than for proximity.

Interestingly, the proximity and touch action labels for both the ball and sliding door have a higher
inter-rater reliability than the lever and the stick. We assume that this difference originates from the
ball and the sliding door mechanisms being more easily approximated by bounding boxes than the
lever and the stick.

3.5 LIMITATIONS

Our dataset has three limitations. First, since the video recording was pseudo-synchronized by our
recording software, the frames of different cameras have been captured with a temporal desynchro-
nization. We sampled the average asynchronicity to be 1.39 frames with a standard deviation of
1.50 frames. We do not expect this to cause any issues other than in settings that would, e.g., require
3-dimensional keypoints to be tracked with an accuracy much higher than the accuracy we annotated
our labels with. Second, not all videos share the same exact positioning of the cameras as the videos
have been recorded over the course of several months so our setup had to be rearranged over time.
And third, due to technical issues during the data acquisition, i.e., insufficient lighting conditions
and severe camera dislocation, some trials had to be discarded from the dataset which lead to an
imbalanced number of videos per mouse.

4 CONCLUSION

In this work, we presented the—to the best of our knowledge—first available single-agent, multi-
perspective video dataset of mice showing intelligent behavior as they learn to solve mechanical
puzzle mechanisms. These so-called lockboxes consist of either one of four mechanisms or their
combination, and are baited with a food reward. As a benchmark for novel approaches, we provide a
range of human-annotated labels—the mechanism states, the proximity of a mouse to a mechanism,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

if a mouse is touching or biting a mechanism, and when the mouse reaches the food reward—for
13% of our 117 hours and 52 minutes long video dataset. This equals an increase of over 33% in
total video playtime available through any mouse dataset available today.

As an initial comparison of human annotations with automated methods, we provide labels gen-
erated from a state-of-the-art keypoint-based pose tracking approach as a benchmark method. We
compare the human-human against the human-machine inter-rater reliability and find that the auto-
matic detection of the proximity of a mouse to the lockbox mechanisms can be considered robust,
while the more fine-grained action labels touching and biting require more precise keypoint localiza-
tion rendering the benchmark results unreliable. However, since these labels are indispensable for
studying the complex behavior of an animal and to understand how this contributes to learning, we
are convinced that approaches beyond keypoint (pose) tracking, e.g., representations learnt without
any or under self-supervision, are crucial to future advancements in neuroscience. We hope that our
dataset will contribute to this advancement by challenging and inspiring others.

An anonymized preview of our dataset is available for the reviewers of this
manuscript at https://www.dropbox.com/scl/fo/h7nkai8574h23qfq9m1b2/
AP4gNZOpDJJ7z0yGtbWQiOc?rlkey=w36jzxqjkghg0j0xva5zsxy2v&st=
5r9msqjw&dl=0
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A APPENDIX

A.1 LOCKBOXES WITH UNLOCKED MECHANISMS

Figure 4 shows the opened lockboxes with symbolized food baits; see Figures 1b and 1c for refer-
ence.

(a) Unlocked lockbox of combined mechanisms baited with a symbolized food re-
ward underneath the sliding door.

(b) Unlocked single-mechanism lockboxes baited with a symbolized food reward under-
neath each mechanisms.

Figure 4: Unlocked lockboxes and their mechanisms: lever (yellow), stick (red), ball (gray), and
sliding door (green). This depiction contains symbolized food baits.

A.2 KEYPOINT TRACKING

The DLC trackers are trained using human-annotated frames from the videos for which no action
labels are available. The test sets of the trackers consist of labeled frames from the videos for which
action labels are available (i.e. mouse 324 and 291).

Figure 5 shows examples of the keypoints used for training a DLC model that tracks the 2-
dimensional locations of both a mouse and the lockbox mechanisms.
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Figure 5: Examples of the keypoints used for tracking mice and lockbox mechanisms.

Table 5: The training and test errors for the keypoints used for mouse-tracker and the lockbox-
trackers using DLC. The number in brackets represent the test errors for which the confidence of
the tracker was above a threshold value of 0.6

Mouse tracker Training Test
nose 9.4 45.2 (7.8)
ear left 14.0 20.1 (18.5)
ear right 11.8 25.1 (18.1)
tail base 4.8 17.1 (8.1)
front paw left 74.2 87.1 (8.7)
front paw right 54.9 102.6 (30.2)
back paw left 65.6 66.1 (70.0)
back paw right 50.6 75.0 (69.6)

Combined lb Training Test
lever tip 3.6 20.9 (5.6)
other lever tip 3.6 68.8 (39.9)
stick head 3.6 7.7 (7.2)
ball 3.6 18.7 (7.3)
sliding door 3.5 25.3 (11.7)

Single lb Training Test
lever tip 8.1 5.3 (5.3)
other lever tip 3.2 100.8 (93.1)
stick head 2.1 52.3 (52.3)
ball 2.4 5.6 (5.6)
sliding door 2.4 110.7 (6.0)

The training and test error (RMSE of the xy-coordinates in pixels) of the DLC trackers are shown
in Table 5. In addition to outputting the locations of the keypoints, DLC additionally provides a
confidence score between 0 and 1 for its predictions. This is often used for further analysis, for
example by filtering certain predictions before using the keypoints as input to a Kalman filter. To
provide a better idea on how the confidence influences the error, we additionally provide the RMSE
for the test set at a threshold value of 0.6 (in brackets).

We have published the DLC tracks we created alongside our dataset.
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A.3 EXAMPLE FRAMES FOR LABELS

Figure 6 shows a selection of examples for our different label classes.

(a) Frame example with mouse in proximity to lever and touching the sliding door.

(b) Frame example with mouse in proximity to and biting the lever.

(c) Frame example with mouse in proximity to the stick.

(d) Frame example with no action label active while the ball mechanism is unlocked.

(e) Frame example with mouse in proximity to the sliding door while the sliding door mechanism is unlocked.

Figure 6: Example frames from labeled videos showing mice performing different actions.
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A.4 DISCLOSURE OF OUR APPROACH TO LITERATURE RESEARCH

We have decided to silently add this section to our appendix as we consider it good practice to
disclose all aspects of a scientific work, and we hope that it is useful to aspiring scientists.

For our rigorous literature research we mainly relied on the Google Scholar (https://scholar.
google.com) and Semantic Scholar (https://www.semanticscholar.org) search en-
gines using keywords and phrases relevant to our work. To further bolster the reliability of our
literature research, we adopted a Markov blanket-like search pattern: for all of our references that
we consider central to our work, we have filtered for further relevant work among their references,
citations, and—depending on the context—both the references and citations of their citations. This
allows us to search a highly contextualized corpus of several thousand publications in a structured,
semantically meaningful, and thereby laborsaving way, significantly decreasing the risk of missing
any relevant work.

16

https://scholar.google.com
https://scholar.google.com
https://www.semanticscholar.org

	Introduction
	Related Work
	Benchmark Method

	Dataset
	Data Collection and Preprocessing
	Label Annotation
	Dataset Statistics
	Playtime Statistics
	Label Statistics

	Benchmark Results
	Limitations

	Conclusion
	Appendix
	Lockboxes with Unlocked Mechanisms
	Keypoint tracking
	Example Frames for Labels
	Disclosure of Our Approach to Literature Research


