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Temporal Conformity-aware Hawkes Graph Network for
Recommendations
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Abstract
Many existing recommender systems (RSs) assume user behavior

is governed solely by their interests. However, the peer effect often

influences individual decision-making, which leads to conformity

behavior. Conventional solutions that eliminate indiscriminately

such bias may cause RSs to neglect valuable information and deper-

sonalize the recommendation results. Also, conformity can trans-

form into user interest, e.g., discovering new tastes after a glance

at popular music. By better representing different forms of con-

formity influence, we can do a better job at interest mining and

debiasing. In certain extreme circumstances, the herd effect may be

exacerbated by user anxiety with uncertainty (e.g., panic buying

during the COVID-19 pandemic). RSs may thus fail to respond in

time due to sudden and dramatic changes. Moreover, many existing

studies potentially conflate conformity bias with popularity bias

and lump together various factors responsible for differences in

popularity. In this paper, we identify two distinct types of confor-

mity behavior: informational conformity and normative conformity.

To address this, we introduce the TCHN model, which utilizes at-

tentional Hawkes processes to disentangle user self-interest and

conformity in a personalized manner. Our approach incorporates

temporal graph attention networks to capture users’ stable and

volatile dynamics. We conduct experiments on three real-world

datasets, which uncover diverse levels of conformity among users.

The results show that TCHN excels in recommendation accuracy,

diversity, and fairness across various user groups
1
.
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1 Introduction
Recommender systems utilize user behavioral data to capture user

profiles and operate under the assumption that an individual’s ac-

tions are intrinsically motivated by their interests [51]. However, in

an informational cascade [5], people can frequently base their deci-

sions not only on their own information but also on the influence

of their peers within the same social community [39, 55]. Moreover,

in different situations, people will actively shift the importance of

the two factors to alleviate cognitive dissonance in their decision-

making process [2, 4, 45]. For instance, when choosing a music

album, users are more likely to rely on their own sensory experi-

ence than the opinions of others [49]; However, during extreme

events such as the COVID-19 pandemic, the Fear of Missing Out

(FOMO) phenomenon [46] comes into play, and people’s purchas-

ing behavior can be significantly influenced by others (e.g., panic

buying in COVID-19 pandemic) [38, 70]. Due to the aforementioned

fundamental assumption, traditional RSs are known to introduce

popularity and conformity biases [10, 73, 74], where the learning

process fails to differentiate between a user’s genuine interest and

the biased behavior.

Despite numerous studies [6, 33, 48, 50, 63, 73, 74] dedicated to

this issue, several challenges remain to be addressed. First, most of

the existing research views conformity behavior negatively as an

interfering factor in user profiling [6, 48, 50]. However, we argue

that conformity behavior reflects the combination of individuals’

cognition of their inner needs [1, 39–41] and their perception of

external circumstances [4, 45, 55, 70]. Eliminating behavioral data

indiscriminately can result in the loss of valuable information and

eventually lead to poor recommendations. Thus, we argue that a

personalized method is needed to handle people’s inner interest

and the conformity bias in the system for each individual. While it

is widely agreed that conformity causes users to blindly focus on

popular items [33, 63, 73, 74], we may be overlooking individual

differences in users’ attitudes toward such items based on their per-

sonalities. For example, some users, known as “deep divers” in this

research, have an unshakable interest in niche topics less influenced

by environmental changes or others’ opinions. While strategies

aimed at eliminating biases may benefit these “deep divers”, they

may have a detrimental effect on another group of people who tend

to prefer popular items and follow trends, denoted as “surfers” here.

Second, conformity bias and popularity bias are not equivalent.

As the former is hardly observed and measured explicitly, many

existing studies, e.g., [6, 63, 73, 74], have resorted to using popular-
ity to characterize conformity. However, we argue that conformity

behavior is only a sufficient but not necessary condition for popu-

larity. The latter has its own complicated causes, such as the high

quality of a product [7]. Individuals conform to peers either due to

a lack of relevant knowledge (informational conformity) or to avoid

isolation (normative conformity) [14, 16, 30]. This aligns with the

fundamental logic of RSs, which is to intervene only when users’

interests and behaviors do not match.

1
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Third, these studies treat conformity bias as a static factor inter-
fering with the operation of RSs. They learn conformity behavior

inflexibly and disregard its temporal sensitivity and volatility. A

potential interchange exists between user interest and conformity

behavior: spontaneous conformity may help users develop new in-

terests, whereas their enthusiasm for one item may potentially fade

over time when the external stimulus wears off [4, 70]. Therefore,

it is crucial to consider the temporal dimension of the relationship

and how it may evolve over time.

Finally, the intensity and scale of conformity matter due to the

fragility of information cascades [5, 22]. For example, some extreme

outlier events (e.g., pandemic-like events [38, 39]) can cause abrupt

population-scale concept drift in cascades. It further aggravates

popularity bias [39] and out-of-distribution (OOD) issues [25] in RSs.

Moreover, the population-scale concept drift might lead individuals

to rush to products that normally go unnoticed, e.g., hand sanitizer

during COVID-19. Conventional RSs are often unable to adapt to the

changes, resulting in failure to balance recommendation accuracy

and diversity [38, 39].

To tackle these challenges, we propose a Temporal Conformity-

aware Hawkes Network (TCHN), which decouples user behavior

patterns in RSs as a mutual excited Hawkes process combining user

interest and conformity. It draws inspiration from both Maslow’s

hierarchy of needs [40, 41] and social identity theory [55], which

posit that individuals’ decisions are influenced by their own inner

needs as well as the opinions of others in their social environment:

𝐷 = 𝜃𝐼 + (1 − 𝜃 )𝐶, (1)

where 𝐷 , 𝐼 and 𝐶 represent “decision”, “interest” and “conformity”

respectively; 𝜃 is used to balance the influence of the two. It is

worth noting that the motivation behind user behavior is a com-

plex and difficult-to-observe sociological issue. In this study, we

have only focused on the principal factors related to recommen-

dation behavior. We disentangle their representations at the scale

of the user-item interaction sequence graph. The resulting sequen-

tial embeddings are fed into customized attention-based Hawkes

processes for preference prediction. TCHN treats user interests as

stable information and conformity as a volatile and time-limited

signal. Both user interest and conformity guide how to make a new

decision, but only long-lasting user interest is stored in user repre-

sentation. It dissociates the influence of user conformity behavior

and personalizes its effect in the latest user profiling.

To sum up, the contributions of our research are as follows:

• We propose a Hawkes process-based attention graph net-

work to disentangle interest and conformity in user decision-

making. It delicately utilizes user conformity behavior in a

personalized way instead of simply eliminating the bias.

• We model two forms of conformity behavior dynamically

so that the model can differentiate the two and discover

deep user interest during the interaction.

• We conduct extensive experiments on three real-world

datasets that contain diverse population scales of confor-

mity behavior. The results demonstrate that our model

benefits both “surfers” and “deep divers” regarding recom-

mendation accuracy and diversity.

2 Related Work
2.1 Conformity in User Interactions
Conformity pertains to the conduct of individuals who adhere

to group norms in the presence of a non-conforming group that

does not share their beliefs [13]. It is intrinsically motivated by

individuals trusting the wisdom of crowds to make better decisions

even though it may run counter to their own beliefs [55].

In the context of RSs, this behavior is manifested as users opting

for popular products instead of ones that genuinely pique their in-

terest. Besides, since the intrinsic motivation of conformity cannot

be directly observed, several studies have reformulated the issue as

a popularity bias. Schnabel et al. [50] and Saito et al. [48] propose

inverse propensity scoring (IPS) based methods to eliminate pop-

ularity bias and distill user interests. Bonner and Vasile [6] guide

the biased training process using a small set of unbiased interven-

tion data. Zhang et al. [73] believe that the popularity of items

can be a valuable indicator for learning user preferences. How-

ever, their approach treats popularity uniformly across all users

without considering individual differences in preference. Zheng

et al. [74] perceive popularity as an observable outcome of people’s

conformity and employ this signal to disentangle the causes of user

decisions with finer granularity, i.e., user interests and conformity,

by using causal mechanisms [26, 28]. However, it is not possible to

discern the underlying motivation solely from the observed data.

We argue that “conformity” is not a necessity for “popularity”, i.e.,

it is too arbitrary to assert that users choose popular items out of

conformity.

Deutsch and Gerard [16] elaborate on the two forms of confor-

mity in social networks: informational and normative conformity.

The former drives individuals to conform when they genuinely be-

lieve that the group is more knowledgeable or has better judgment

in a particular situation, while the latter occurs when individuals

conform to a group’s beliefs or behaviors to gain social approval,

avoid rejection, or fit in with the group [14]. Although conformity

can sometimes be solely based on information or norms, it usually

involves both factors simultaneously [30]. We believe this actually

coincides with the underlying logic of RSs. Therefore, it is essential

to leverage conformity behavior gently and intervene only when

there are deviations in interest and behavior.

2.2 Sequential Recommendations
Information is disseminated in users’ interactions with RSs. The

interaction does not occur in isolation; it is an aggregation of the

user’s own needs and the influence exerted by preceding behav-

iors of peers [5]. While conformity is often seen as antithetical

to user interests, it may turn into user interest in certain circum-

stances. Thus, we approach this issue in the framework of sequential

recommendations. Sequential RSs model user temporal dynamics

from their historical interactions. More recently, recurrent neural

networks (RNNs) have become popular for sequential recommen-

dations [17, 54, 75]. GRUs are typical implementations of RNNs to

model user interactions by maintaining a memory of past inputs.

Zhou et al. [75] proposes a two-layer GRU-based network to extract

and model the evolution of users’ deep interests. They innovatively

introduce auxiliary loss to augment samples to alleviate the data

sparsity problem. Transformer models are another prevalent class

2
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of sequential neural network models that have achieved state-of-

the-art performance in recommendation tasks [11, 54]. Attention

mechanisms [57] can allow models to focus on specific parts of the

input depending on the attributes of targets. Ying et al. [69] propose

a hierarchical attention network for next-item recommendation

tasks that balances user long-term preference evolution and new

characteristics in their short-term preference.

2.3 Hawkes Process
Conventional sequential models can effectively capture ordinal

dependencies between user behaviors but potentially neglect the

time interval between two successive actions [35]. Temporal point

processes (TPP) [15, 18] are mathematical abstractions of stochastic

counting processes for realizations of asynchronous events that

occur in continuous time. A TPP is denoted by 𝑁 (𝑡), which is

the number of events before time 𝑡 . TPP has been widely applied

in seismology [44], crime analysis [43] and user modeling [76]

due to its predictive and explanatory abilities. Hawkes process

(HP), a self-exciting variant of TPP, proposed by [24], assumes the

arrival of an event stimulates subsequent events in the near future

with various intensities. The mutual excitation property of HP

facilitates user influence inference in social interactions. Recently,

the misspecification in HP models has caused concern due to their

pre-assumed intensity functions that do not fit the law of events

[68]. Many researchers attempt to adapt sequential neural networks

to TPP learning. The work in [42] extends HP by a long short-term

memory (LSTM) network that relaxes the excitation constraint

so as to simulate elevated or inhibited offspring events. Zhang

et al. [72] and Zuo et al. [77] simultaneously and independently

propose attention-based HPs which further extend classical HPs to

capture deep timing dependencies between events and alleviate the

gradient explosion and vanishing issues in RNNs. Besides, many

studies devote to addressing various problems in RSs based on

these fundamental models, e.g., preference evolution [3], repeat

consumption modeling [59], adaptability in user long/short-term

preferences [60].

2.4 Graph Representation Learning
To study the mutual excitation of user interaction events in Hawkes

processes, it is essential to understand the topological structure of

information diffusion in interactions. RSs, especially collaborative

filtering (CF) models, often exhibit properties of social networks.

This allows us to effortlessly convert user interactions into a graph

structure. Leveraging recently popularized graph neural network

(GNN) techniques in sequential RSs, we can learn the deep repre-

sentations of user nodes in the social graph and understand the

influence of neighboring nodes on their decision-making in infor-

mation cascades. Li et al. [36] introduces a gated graph sequence

neural network (GGNN) that can proficiently capture information

propagation on directed graphs utilizing GRU components to fil-

ter pertinent information from neighboring nodes. However, the

permutation-invariant aggregation function used by GGNN and its

subsequent models in this paradigm [9, 62] during message passing

can potentially result in the loss of valuable ordering information

within the neighborhood [12]. Since the graph attention network

(GAT) [58] was proposed, many applications in RSs have embraced

GAT as a solution for addressing sequential graph recommendation

problems (e.g., [61, 64]). In a GAT, attention mechanisms play a

crucial role in determining the significance of each neighboring

node with respect to a specific target node [58]. This allows the

network to selectively attend to relevant neighbors and aggregate

information from them while ignoring irrelevant nodes.

3 Methodology
Prior to elaborating on our approach, we aim to clarify the problem

through the visual aid of Fig. 1a. The figure encapsulates three

distinct user archetypes interacting with the hat, each driven by

unique motivations. User 𝐴, characterized as a “deep diver”, ex-

hibits a self-motivated interaction with the hat (i.e., self-excitation);

In contrast, user 𝐵 consults information from neighboring nodes

with shared interests, culminating in the selection of the hat (i.e.,

informational conformity). Meanwhile, user𝐶 , typified as a “surfer”,

demonstrates a propensity for emulating peers and pursuing trend-

ing items (i.e., normative conformity). Our research endeavor is

dedicated to a solution capable of discerning and accommodating

3
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these heterogeneous motivations to provide adaptive recommenda-

tions.

3.1 Problem Formulation
Given a user set U (𝑀 = |U|) and an item set I (𝑁 = |I |), let
𝑆𝑢 (𝑡) = [𝑠1, 𝑠2, · · · , 𝑠𝑘 ], with 𝑠𝑘 = (𝑖𝑡 , 𝑟𝑖,𝑡 , 𝑡), be a historical se-

quence of length 𝑘 for user 𝑢 and her recent 𝑘 engagements with

the item set I up to time 𝑡 , where 𝑟𝑖,𝑡 is the feedback
2
of item 𝑖 at

time 𝑡 given by user 𝑢. To elaborate further, we augment available

data by reframing the historical sequence into a sequence matrix.

This matrix includes supplementary paired samples structured as[〈
𝑆𝑢 (𝑡), 𝑖+𝑡+1

, 𝑖−
𝑡+1

〉]𝑘−1

𝑡=1
. Here, 𝑖+

𝑡+1
is the next item that user 𝑢 in-

teracts with after 𝑆𝑢 (𝑡) while 𝑖−𝑡+1
is a hypothetical negative or

unobserved instance for the same user. This allows us to capture

the sequential nature of user behavior and model the evolution of

user preferences over time [56].

Our final goal is to recommend a set of items for user 𝑢 that

strike a balance between accuracy and diversity. Here, we present

a Hawkes process based graph attention network TCHN (as shown

in Fig. 1b) to address the problem of temporal evolution in user

interests and conformity, which includes the following four main

components: 1) self-excitation component to extract deep interest

from users’ own interaction history; 2) informational conformity
modeling to aggregate influence of users’ neighboring branches in

an information cascade; 3) normative conformity modeling to

measure the acceptance level of individuals on popular fashion; 4)

recommendation generation component to fuse the three infor-

mation signals to produce the final personalized recommendations.

Before diving into the details of the model, we first introduce the

preliminaries and the temporal relative position encoding method.

3.2 Preliminaries
3.2.1 Hawkes Process From a point process perspective, we treat

the interaction (𝑠𝑡 ) given by a user on an item as an event and
the sequence involving the same user (𝑆𝑢 (𝑡)) as a realization of a

Hawkes process. Formally, in an infinitesimal time window [𝑡, 𝑡 +
Δ𝑡), the conditional intensity function 𝜆∗ (𝑡) [68] is:

𝜆∗ (𝑡) = 𝜆(𝑡 | 𝑆𝑢 (𝑡)) = lim

Δ𝑡→0

E[Δ𝑁 (𝑡) | 𝑆𝑢 (𝑡)]
Δ𝑡

, (2)

where E[Δ𝑁 (𝑡) | 𝑆𝑢 (𝑡)] is the expected number of events occurred

in (𝑡+Δ𝑡] conditional on 𝑆𝑢 (𝑡). Also, we assume two events coincide

with probability 0, i.e., Δ𝑁 (𝑡) ∈ {0, 1} [47]. The intensity 𝜆∗ (𝑡)
denotes the occurrence rate of future events.

In this paper, we season the intensity function with the mu-

tual excitation property of the Hawkes process. Also, we define an

𝑀-dimensional Hawkes process for all user interaction sequences

where a single event in one dimension can excite or inhibit the in-

tensities of all dimensions. The intensity function of𝑢-th dimension

can be updated as:

𝜆𝑢 (𝑡) = 𝜇𝑢 (𝑡) +
∑︁
𝑣∈𝑈

∑︁
𝑡𝑣,𝑖<𝑡

𝛼𝑢,𝑣 (𝑡)𝜅𝑢,𝑣 (𝑡 − 𝑡𝑣,𝑖 ), (3)

where 𝜇𝑢 (𝑡) is the base intensity of user 𝑢 at time 𝑡 triggered by

their own intent. For the process, this arrival is spontaneous and

2
w.l.o.g, the feedback can be explicit (e.g., ratings) or implicit (e.g., click).

independent of preceding events (a.k.a exogenous intensity). 𝑡𝑣,𝑖
is the time when user 𝑣 interacted with item 𝑖 . 𝛼𝑢,𝑣 (𝑡) describes
the strength of influence that user 𝑣 exerts on user 𝑢. Note that

𝛼𝑢,𝑣 (𝑡) is unidirectional and not symmetrical, i.e., 𝛼𝑢,𝑣 (𝑡) ≠ 𝛼𝑣,𝑢 (𝑡).
𝜅𝑢,𝑣 (𝑡 − 𝑡𝑣,𝑖 ) is the triggering kernel that quantifies the rate of oc-
currence after the realization 𝑡𝑣,𝑖 . The most commonly used form of

this kernel is the exponential kernel function:𝜅𝑢,𝑣 (Δ𝑡) = 𝑒−𝛽𝑢,𝑣 (Δ𝑡 ) ,
where 𝛽𝑢,𝑣 controls the decay rate. The second addend in Eq. (3)

captures the aggregated influence of other point processes (a.k.a

endogenous intensity). A typical HP [24] only supports positive ex-

citation, but here we relax such constraint and enable the inhibition

effect [42, 60, 77], i.e., 𝛼𝑢,𝑣 (𝑡), 𝜇𝑢 (𝑡) ∈ R.
In the context of RSs, the intensity function 𝜆𝑢 (𝑡) neatly crystal-

lizes the user’s decision-making process in Eq. (1). Users’ intrinsic

interest activates their base intensity; meanwhile, preceding events

(interactions) from other individuals excite (or inhibit) the target

user as a reference signal.

3.3 Embedding Representation
In our proposed model, we define three key entities within the

latent embedding space: users, items, and time. To begin, the model

initially maps one-hot representations of items to a unified low-

dimensional embedding space, denoted as 𝑖 ∈ I ↦→ i ∈ R𝑑 , where
𝑑 is the embedding dimension, and it is constrained such that 𝑑 ≪
min {𝑀, 𝑁 }. Further, given two timestamps ⟨𝑡𝑎, 𝑡𝑏⟩, we translate
their time difference into a temporal relative positional embedding,

i.e., |𝑡𝑏 − 𝑡𝑎 | ↦→ z𝑎,𝑏 . Consequently, the interaction sequence 𝑆𝑢 (𝑡)
can be encoded as latent vectors 𝑆𝑢 (𝑡) ↦→ S𝑢 (𝑡) =

[
Θ

(
i𝜏 , z𝜏,𝑡

) ]𝑡
𝜏=1

,

where Θ(·) is a differentiable, permutation-invariant function, such

as element-wise summation or concatenation.

Remarkably, we do not explicitly encode user profiles, but instead

aggregate their historical interaction sequences 𝑆𝑢 (𝑡) to serve as

user representations. Formally, user 𝑢 is mapped to the embedding

u B Φ (S𝑢 (𝑡)), where Φ(·) is a differentiable function. The imple-

mentation details of Θ(·) and Φ(·) will be discussed in subsequent

sections.

3.4 Temporal Relative Position Encoding
As outlined in Sec. 3.2.1, our approach involves scrutinizing the

user’s interaction history within the Hawkes point process frame-

work. This methodology entails observing how new interactive

events can either excite or inhibit the intensity of ongoing events,

with these effects gradually diminishing over time according to the

specified kernel function 𝜅𝑢,𝑣 (Δ𝑡) in Eq. (3). In contrast to RNN

networks, standard attention-based transformer models lack the

capability to discern position differences in the input sequence

[52, 57]. Consequently, our learning model necessitates the inclu-

sion of supplementary positional representations within the input

data. Traditional order-position encoding [57] or absolute value of

time cannot disclose rigorous time transition information as effec-

tively as relative timespan [67]. In this work, we revamp the ap-

proach proposed by [52, 67] into our model to expose the pairwise

temporal relationships between different interactions. Formally,

we first establish a positive semi-definite (PSD) temporal kernel

𝜅 (𝑡𝑎, 𝑡𝑏 ) that complies with Bochner’s theorem assumption (proof
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is supplied in Appx. A). Then, the kernel value is quantized to an

integer, serving as the relative position for events at time 𝑡𝑎 and 𝑡𝑏 :

𝜅 (𝑡𝑎, 𝑡𝑏 ) = 𝜃𝑧 ln (𝛽𝑎,𝑏 ( |𝑡𝑏 − 𝑡𝑎 |) + 1) (4)

𝑧𝑎,𝑏 = ⌈𝜅 (𝑡𝑎, 𝑡𝑏 )⌉, (5)

where 𝜃𝑧 > 0 is a hyper-parameter to manage the granularity and

capacity for the positional embedding space. 𝛽𝑎,𝑏 > 0 governs

the decay rate for different events. We stipulate that 𝜃𝑧 = 10 and

the time unit of 𝑡𝑎 and 𝑡𝑏 are days in our experiment settings.

Additionally, we postulate that different individuals share the same

sensitivity to time differences for simplicity; hence, we set 𝛽𝑎,𝑏 =

𝛽 = 1. This assumption implies that recent events exert a more

subtle influence on their immediate decisions, while events more

distant from the present have a diminishing and less pronounced

impact. Finally, we encode the relative positional information into

a position-embedding matrix, where 𝑧𝑎,𝑏 ∈ R+ ↦→ z𝑎,𝑏 ∈ R𝑑 .
In the following sections, we will provide detailed insights into

the various components of our methodology as integrated within

the context of the Hawkes process and a graph neural network

framework.

3.5 Self-excitation Graph
Intuitively, the base intensity 𝜇𝑢 (𝑡) of a user on a specific item

at time 𝑡 is primarily determined by their intrinsic interest. In

addition, individuals’ interests are subject to change over time as

their inner needs evolve [31, 39]. We derive nutritional value from

the user’s historical interaction sequence. Additionally, more recent

interactions carry greater weight in determining the user’s current

interests and needs.

To implement this concept, we transform each interaction se-

quence 𝑆𝑢 (𝑡) into a user-specific graph. This enables the acquisition
of item-transition patterns within the sequence 𝑆𝑢 (𝑡) by utilizing

a time-aware graph attention network (TGAT). Given 𝑆𝑢 (𝑡), let
𝐺𝑢 (𝑡) = (𝑉𝑢 (𝑡), 𝐸𝑢 (𝑡)) represent a directed user-specific graph,

where 𝑉𝑢 (𝑡) ⊂ I denotes the set of interacted items in 𝑆𝑢 (𝑡), and
𝐸𝑢 (𝑡) is the edge set. Each edge connects two adjacent items (𝑖𝑎, 𝑖𝑏 )
in 𝑆𝑢 (𝑡) and points from 𝑖𝑎 to 𝑖𝑏 if 𝑡𝑏 > 𝑡𝑎 . Next we introduce

TGAT.

3.5.1 Time-aware Graph Attention Layer Analogous to GAT [58],

the TGAT layer can be conceived as a local aggregation operator.

It takes as input the hidden representations and temporal relative

position embeddings of the neighborhood surrounding the target

node. The output is the time-aware representation for the target

node at the current time 𝑡 .

As mentioned in Sec. 3.3, given current timestamp 𝑡 , the hidden

representation of 𝐺𝑢 (𝑡) is specified by

H𝑢 (𝑡) = Θ (I𝑢 (𝑡),Z𝑢 (𝑡))⊤ = [i𝑡1 + z𝑡1,𝑡 , · · · , i𝑡𝑘 + z𝑡𝑘 ,𝑡 ]⊤ (6)

where I𝑢 (𝑡) = [i𝑡𝑘 ]𝑖∈𝐺𝑢 (𝑡 ) is the node embedding matrix of 𝐺𝑢 (𝑡),
and Z𝑢 (𝑡) = [z𝑡𝑘 ,𝑡 ]𝑡𝑘 ∈𝐺𝑢 (𝑡 ) is the temporal embedding matrix

of relative positions between nodes in 𝐺𝑢 (𝑡). Θ(·) is chosen as

element-wise summation.

Subsequently, we pass H𝑢 (𝑡) and the embedding of the target

item i𝑡 into the self-attention module. And the attention output

will be treated as the base intensity of user 𝑢 on item 𝑖:

�̃�𝑢,𝑖 (𝑡) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(H𝑢 (𝑡), i𝑡 ) = softmax

(
H𝑢 (𝑡)i⊤𝑡√

𝑑

)
(7)

Finally, Eq. (7) models the evolution of the interest of user 𝑢, and

captures her intrinsic preference on the target item 𝑖 .

3.6 Conformity Graphs
The classical Hawkes process inherently captures the strength of

unidirectional influence from the predecessors to the target user,

i.e., 𝛼𝑢,𝑣 (𝑡) in Eq. (3). However, we speculate that this influence

entangles the conformity of individuals. In other words, interac-

tions between individuals are impacted not only by their shared

preferences but also by peer effects. We extend the classical model

to disentangle various forms of conformity, namely informational

conformity and normative conformity [16]. As aforementioned, the

two forms of conformity often occur concurrently [30], and their

influences usually vary given different users and items. Therefore,

inspired by [34], we disentangle the influence strength 𝛼𝑢,𝑣 (𝑡) into
two additive terms:

𝛼𝑢,𝑣 (𝑡) = 𝜃 𝐼𝑢,𝑣 (𝑡)𝛼𝐼𝑢,𝑣 (𝑡) + 𝜃𝑁𝑢,𝑣 (𝑡)𝛼𝑁𝑢,𝑣 (𝑡), (8)

where 𝛼𝐼𝑢,𝑣 (𝑡) and 𝛼𝑁𝑢,𝑣 (𝑡) are the two forms of conformity re-

spectively. The time-varying coefficients 𝜃 𝐼𝑢,𝑣 (𝑡) and 𝜃𝑁𝑢,𝑣 (𝑡) bal-
ance their contributions at time 𝑡 . The intensity function of the

conformity-aware Hawkes process can be updated as follows by

substituting it to Eq. (3):

𝜆𝑢 (𝑡) = 𝜇𝑢 (𝑡)+
∑︁
𝑣∈𝑈

∑︁
𝑡𝑣,𝑖<𝑡

(
𝜃 𝐼𝑢,𝑣 (𝑡)𝛼𝐼𝑢,𝑣 (𝑡) + 𝜃𝑁𝑢,𝑣 (𝑡)𝛼𝑁𝑢,𝑣 (𝑡)

)
𝜅𝑢,𝑣 (𝑡−𝑡𝑣,𝑖 )

(9)

Next, we describe how to quantify the two forms of conformity

in RSs. Before that, we need to establish a clear scope and definition

for both within the framework of RSs.

3.6.1 Informational Conformity In the context of RSs, informa-

tional conformity could manifest itself when users rely on the

recommendations of the system because they believe that the sys-

tem has more information and knowledge about the items being

recommended. Formally, we define informational conformity
as the extent to which users adopt the aggregated preferences of

other like-minded users (neighbors) in the system [51].

We formulate the modeling of informational conformity in a

GNN, allowing for effective learning of mutual influences between

nodes. Given the user setU, we build a conformity graph based on

the social connections between users. Without loss of generality,

in the framework of RSs, we infer the social connection between

users through the interaction between users and items instead of

introducing additional social information, such as social actions

(e.g., following and liking) [64]. This is because merely understand-

ing the structure of a social action-based topology is inadequate

to tackle this issue, as the connections between individuals do not

always imply the occurrence of social interactions among them,

whereas they can be affected by some strangers unintentionally

[34]. For example, suppose both users 𝑢 and 𝑣 interacted with the

same item 𝑖 at time 𝑡𝑢 and 𝑡𝑣 . We build an edge pointing from 𝑢

to 𝑣 if 𝑡𝑣 > 𝑡𝑢 that indicates user 𝑢’s action can potentially affect
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(excite or inhibit) user 𝑣 ’s decision even though they do not know

each other. Thus the social network is formulated as a user-user

directed graph: 𝐺 =< U, 𝐸 >, where 𝐸 is the set of social connec-

tions amongU. Particularly, the weight of the edge between 𝑢 and

𝑣 indicates the social influence of user 𝑢 on user 𝑣 . According to

social psychology theories [2, 16, 71], the degree of influence ex-

erted by user 𝑢 positively correlates with the level of informational

conformity exhibited by user 𝑣 towards user 𝑢. Based on this, it

can be inferred that if individuals 𝑣 and 𝑢 interact frequently, it is
advisable to enhance their informational influence. Additionally,

we hypothesize that user 𝑣 will likely conform to user 𝑢 when user

𝑣 consistently agrees with user 𝑢 (opinion polarity w.r.t an item).

Thus, given a historical interaction sequence 𝑆𝑢 (𝑡) (resp. 𝑆𝑣 (𝑡)) of
user 𝑢 (resp. 𝑣) the weight of edge 𝑢 → 𝑣 can be quantified as:

𝑤𝑢,𝑣 =

∑
(𝑟,𝑡 ) ∈Λ(𝑢,𝑣) (𝑟𝑢 − 𝑟𝑢 ) (𝑟𝑣 − 𝑟𝑣) exp

(
−𝛽𝑢,𝑣 (𝑡𝑣 − 𝑡𝑢 )

)√︁∑ (𝑟𝑢 − 𝑟𝑢 )2
∑ (𝑟𝑣 − 𝑟𝑣)2

(10)

where Λ(𝑢, 𝑣) = {𝑆𝑢 (𝑡) ∩ 𝑆𝑣 (𝑡) | 𝑖𝑢 = 𝑖𝑣 ∧ 𝑡𝑣 >𝑢 } is the intersec-

tion of ratings of items interacted by both 𝑢 and 𝑣 ; meanwhile,

𝑡𝑣 > 𝑡𝑢 in each interaction. Besides, in line with the definition of

the Hawkes process in Eq. (3), we penalize the opinion polarity far

from the present by the decay function. That is, the weight reveals

how likely it is that the decision of user 𝑣 is infected by user 𝑢 in

the presence of informational conformity.

We apply a GAT on the social influence graph to learn about the

informational conformity strength in the ego social network of the

target user. The GAT layer utilizes a multi-head masked attention

mechanism to aggregate the influence of neighboring nodes on the

target node. Firstly, the attention coefficient between the target

node 𝑣 and one of its neighboring nodes 𝑢 at the 𝑘-th head is:

h𝑢 = Φ (H𝑢 (𝑡)) =
1

𝑘

∑︁ (
i𝑡𝑘 + z𝑡𝑘

)
, h𝑣 = Φ (H𝑣 (𝑡)) (11)

𝑐𝑘𝑢,𝑣 = 𝜙
( [
𝑤𝑢,𝑣 (W𝑘 · h𝑢 ) | | (W𝑘 · h𝑣)

] )
, (12)

𝛼𝑘𝑢,𝑣 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

(
𝑐𝑘𝑢,𝑣

)
= softmax

(
𝑐𝑘𝑢,𝑣√
𝑑

)
, (13)

where 𝜙 (·) is the LeakyReLU activation function,𝑤𝑢,𝑣 is the weight

of edge 𝑢 → 𝑣 ,W𝑘 is the shared parameter matrix and h𝑢 ) (resp.
h𝑣)) is the node embedding of 𝑢 and 𝑣 , which is aggregated from

self-excitation graph 𝐺𝑢 (𝑡); [·| |·] is the concatenation operation of

embeddings.

Its node representation is computed by aggregating the influence

from the neighboring nodes:

h′𝑣 (𝐾) =
1

𝐾

𝐾∑︁
𝑘=1

𝜎
©«

∑︁
𝑢∈N𝑣

𝛼𝑘𝑢,𝑣W𝑘h𝑢
ª®¬, (14)

where 𝜎 (·) is the Sigmoid activation function. We apply a mean-
pooling operation to fuse the 𝐾-head output. The informational

influence strength will be:

𝛼𝐼𝑢,𝑣 (𝑡) =
1

𝐾

𝐾∑︁
𝑘=1

𝛼𝑘𝑢,𝑣 . (15)

3.6.2 Normative Conformity Normative conformity refers to the

phenomenon in which individuals unconsciously conform to the

norms of a particular social group, suppressing their rational think-

ing [55]. In the context of RSs, this is evident when users change

their usual behavior habits and preferences to align with those of

the crowd (e.g., panic buying [70]), or adjust their own evaluations

to adhere to the average opinion [20]. Formally, we define norma-
tive conformity as the extent to which users adopt the aggregated

preference on recently popular items within the system. Specifically,

we speculate that more popular items and recent interactions can

convey stronger conformity signals to the target user. Then, the

target user can respond to the signals by shifting their original

intentions. For instance, online shopping users refer to the sale

promotion on the home page (e.g., “Best sellers” in Amazon [51])

to place an order; music platform users add recent hits to their

playlists [49].

Following this definition, to quantify the attractiveness of fashion

to a user during the decision-making process, we gather the most

popular items 𝑃 (𝑡) in the system within the recent time window.

The width of the time window is denoted as 𝜏 , meaning that the

interactions considered must have occurred at a time 𝑡 such that

𝑡 ≥ (𝑡𝑑 − 𝜏). Here, 𝑡𝑑 represents the time at which the user makes

a decision or receives a recommendation.

We first map the items in the collection 𝑃 (𝑡) to their embedding

space: 𝑃 (𝑡) ∈ R𝑛 ↦→ P(𝑡) ∈ R𝑛×𝑑 , where 𝑛 = |𝑃 (𝑡) |. Next, we
compute the popularity-weighted attention score, which can be

treated as the normative conformity strength:

𝑐 (P(𝑡), 𝑖) =
𝑛

| |
𝑗=1

𝜙

(
𝑝 𝑗

𝑝𝑖
·W · j

)
, (16)

𝛼 (𝑐 (P(𝑡), 𝑖)) = softmax

(
𝑐 (P(𝑡), 𝑖) i⊤

√
𝑑

)
, (17)

where

𝑛

| |
𝑗=1

(·) is 𝑛 concatenation operations, 𝜙 is the ReLu activation

function. Importantly, we inject a relative popularity weight to the

attention coefficient 𝑐 (P(𝑡), 𝑖), i.e., 𝑝 𝑗/𝑝𝑖 , where 𝑝 𝑗 (resp. 𝑝𝑖 ) is the
number of interactions of item 𝑗 (resp. 𝑖) within the time window

𝜏 . Specifically, the attention score amplifies the impact of more

popular items while suppressing the influence of less popular items,

which will be treated as the normative influence strength in our

model: 𝛼𝑁
𝑖
(𝑡) = 𝛼 (𝑐 (P(𝑡), 𝑖)).

3.7 Recommendation Generation
Through the analysis of the above models and sociological research

[2, 13, 71], we believe that the two forms of conformity play dif-

ferent roles in shaping individuals’ beliefs and behavior patterns.

Specifically, informational conformity has the potential to induce

genuine and enduring alterations in beliefs. The result of informa-

tional influence is normally private acceptance: the development

of the interest of individuals. Instead, normative conformity is less

likely to cause lasting change and more of a coping mechanism peo-

ple use to avoid isolation. Once the external stimulus diminishes,

individuals consciously correct this behavior. However, prior to

that, this conformity signal plays an important role in influencing

people’s decision-making.

6
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Table 1: Statistics of Datasets

Dataset #Users #Items #Interactions

Diginetica 72,013 29,453 580,490

Kuai 7,176 10,612 1,153,787

Yelp 78,163 57,718 1,856,942

1 2 3 4 5 6 7 8 9
Stage t

0.2

0.4

0.6

Po
pu

la
rit

y 
D

rif
t (

t, 
t+

1)

Popularity Drift between two successive stages

Dataset
Yelp
Kuai
Diginetica

Figure 2: Popularity Drift between 𝑡 and 𝑡 + 1

Therefore, when training the model, we only update the repre-

sentations of users and items in self-excitation and informational
conformity components. Normative conformity only participates in

decision-making without affecting the deep representations.

The preference of the target user 𝑢 on the target item 𝑖 at time

𝑡 is quantified as the intensity of the conformity-aware Hawkes

process:

˜𝜆𝑢,𝑖 (𝑡) = �̃�𝑢 (𝑡) +
∑︁
𝑣∈𝑈

𝜃 𝐼𝑢,𝑣 (𝑡)𝛼𝐼𝑢,𝑣 (𝑡) + 𝜃𝑁𝑢,𝑣 (𝑡)𝛼𝑁𝑖 (𝑡). (18)

L2 regularization is employed on the parameters of the mapping

function to address overfitting, although it is not demonstrated here

for brevity.

We apply a contrastive learning scheme to train the model. Given

the sequence

[
< 𝑆𝑢 (𝑡), 𝑖+𝑡+1

, 𝑖−
𝑡+1

>
]𝑘−1

𝑡=1
, the loss function can be

computed as:

𝐿 = − 1

𝑘

𝑘∑︁
𝑡=1

(
𝑦 log

˜𝜆𝑢,𝑖+ (𝑡) + (1 − 𝑦) log(1 − ˜𝜆𝑢,𝑖− (𝑡))
)

(19)

4 Experiments
4.1 Experiment Settings
4.1.1 Datasets We evaluate the proposed model on three real-

world datasets: Diginetica
3
, Kuai [21] and Yelp

4
, because: 1) their

degrees of sparsity vary and are collected from different domains;

2) their users have different degrees of interest and conformity drift.

We map the labels of all positive interactions to “1”, and others to

3
https://competitions.codalab.org/competitions/11161

4
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset

“0”. Following [65, 66], we extract a 5-core dense subset covering

years 2018-2021 for Yelp datasets, including only users and items

with more than 5 interactions. Its users potentially experienced

drastic changes in the outlier environment [53]. To show such drift,

we divide these datasets evenly into 10 stages in chronological

order and measure the popularity drift between successive stages

[73]. We firstly collect the relative popularity of items in each stage

[𝑝𝑖
1
, 𝑝𝑖

2
, · · · , 𝑝𝑖𝑡 ]. Then we apply Jensen-Shannon Divergence (JSD)

[19, 73] to measure the similarity between two distributions in

different stages. The trends in Fig. 2 show Yelp contains a larger

scale of drift while Diginetica and Kuai can be seen as normal

situations. The statistics of these datasets are summarized in Table 1.

We partitioned the datasets into three sets - training, validation,

and testing - in chronological order using Leave-one-out for each

user, applied to all baselines.

4.1.2 Baselines Nine baselines from four main categories are se-

lected in our experiments, including: Conventional: MF [32]; Debi-
ased: MF_REL [48], DICE [74], PDA [73]; Sequential: GRU4Rec [27],
SASRec [29]; Graph based: LESSR [12], GCEGNN [62], NISER [23].

4.1.3 Metrics 𝑛DCG is applied to measure the accuracy of rec-

ommendations; and Mean Intra User Distance (MIUD) [8], Tail

Percentage (Tail) [37] are used to measure intra-user and inter-user
diversity. We collect top-𝑘 = 2 and 10 recommendation results to

calculate these metrics.

4.2 Performance Comparison
As shown in Table 2, the proposed TCHN outperforms all baselines

in both accuracy and diversity from multiple perspectives.

4.2.1 Performance in Normal Situations The results on Diginetica

and Kuai datasets demonstrate the advantage of sequential and

GNN-based models over debiased models. However, the proposed

TCHN achieves great improvement when compared with baselines.

This is because TCHN disentangles users’ interest and conformity

signals from their historical interactions, allowing them to play

distinct roles in prediction based on their unique characteristics. As

a result, TCHN can recommend niche items that align with users’

interests rather than solely popular ones. It is particularly evident

in short video datasets (Kuai), as social attributes are prevalent on

these platforms, making users more susceptible to influence and

potentially leading to the development of new interests and tastes.

4.2.2 Performance in Unusual Situations The Yelp (2018-2021) dataset

effectively captures the population-scale shift in user behavior dur-

ing the pandemic [53]. Conventional debiased methods falter in

generating personalized recommendations in such context, due to

outdated user preferences [39]. Specifically, all baseline methods en-

counter difficulties in offering diverse recommendations when users

exhibit homogeneous behavioral patterns. However, our model sus-

tains optimal diversity without compromising accuracy. It adeptly

capitalizes on users’ conformity behavior and aligns their previous

interests to deliver effective personalized recommendations.

4.3 Ablation Studies
Given the four components demonstrated in Section 3, we conduct

several ablation studies by insulating different components.

7
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Table 2: Performance on Three Datasets: Best results are highlighted in bold, while the second-best results are underlined.

Normal Situations Unusual Situations (e.g., Pandemic)

Model Diginetica Kuai Yelp

nDCG@2 nDCG@10 MIUD@10 Tail@10 nDCG@2 nDCG@10 MIUD@10 Tail@10 nDCG@2 nDCG@10 MIUD@10 Tail@10

MF 0.0574 0.1730 0.583 0.0051 0.1856 0.2102 0.660 0.0059 0.0041 0.0076 0.601 0.0045

MF_REL 0.0659 0.1785 0.578 0.0058 0.1904 0.2212 0.656 0.0065 0.0045 0.0085 0.703 0.0049

DICE 0.0984 0.1989 0.588 0.0089 0.2168 0.2503 0.655 0.0099 0.0062 0.0101 0.703 0.0054

PDA 0.1172 0.2004 0.566 0.0095 0.2203 0.2565 0.623 0.0101 0.0058 0.0095 0.699 0.0056

GRU4Rec 0.1271 0.2142 0.604 0.0154 0.2545 0.2850 0.697 0.0250 0.0134 0.0278 0.693 0.0171

SASRec 0.1406 0.2312 0.604 0.0166 0.2587 0.2878 0.693 0.0280 0.0158 0.0332 0.697 0.0174

LESSR 0.1391 0.2297 0.603 0.0143 0.2618 0.2907 0.696 0.0276 0.0154 0.0303 0.688 0.0079

NISER 0.1506 0.2432 0.603 0.0131 0.2576 0.2862 0.696 0.0274 0.0153 0.0314 0.688 0.0077

GCEGNN 0.1555 0.2489 0.603 0.0178 0.2569 0.2891 0.696 0.0268 0.0177 0.0350 0.688 0.0174

THN-si 0.1546 0.2452 0.603 0.0171 0.2646 0.2902 0.696 0.0424 0.0183 0.0354 0.658 0.0077

THN-sn 0.1323 0.2132 0.611 0.0146 0.2577 0.2871 0.706 0.0373 0.0144 0.0328 0.698 0.0177

TCHN 0.1615 0.2510 0.624 0.0196 0.2686 0.2989 0.703 0.0476 0.0197 0.0366 0.724 0.0182
𝑝-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.001 <0.001

Table 3: Comparison of position encoding methods

Diginetica Kuai Yelp

nDCG@10 nDCG@10 nDCG@10

TRP 0.2510 0.2989 0.0366
OP 0.2340 0.2901 0.0345

RP 0.2485 0.2920 0.0350

4.3.1 Impact Temporal Relative Position Encoding Inspired by the

Hawkes process, we introduce the temporal relative position (TRP)

encoding method, which enhances the temporal awareness capa-

bilities of traditional attention mechanisms. To validate the effec-

tiveness of this approach, we substitute our position encoding with

other commonly employed techniques such as order-position (OP)

encoding in [29] and reversed position (RP) encoding in [62]. Ta-

ble 3 illustrates the performance of various methods across three

datasets. Clearly, the temporal relative position encoding surpasses

other comparative settings, as it adeptly captures the temporal

dependencies within interaction sequences.

4.3.2 Conformity Modeling This section demonstrates the effect

of informational conformity and normative conformity components.

We eliminate the normative conformity layer, denoted as “THN-

si”, and the informational conformity layer, denoted as “THN-sn”

respectively. As shown in Table 2, “THN-si” can still outperform

other baselines w.r.t accuracy and diversity on Diginetica and Kuai

datasets, which reveals the feasibility and effectiveness of integrat-

ing the informational conformity model into TCHN. However, it

is unable to detect irrational user behaviors in interactions due to

similar limitations as conventional RS models. As a result, it loses

too much diversity score in the Yelp dataset, potentially misinter-

preting normative conformity behavior as users’ genuine interest.

On the other hand, “THN-sn” fails to generate comparable rec-

ommendations as baselines due to its failure to acknowledge the

positive impact of like-minded neighbors on the user in question.

In “THN-sn”, users cannot get nourishment and develop new inter-

ests from those who they think are knowledgeable predecessors.

In summary, TCHN can significantly improve upon incomplete

models, particularly in short-video data and unusual situations.
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Figure 3: Performance on Different User Groups in Yelp

4.4 Studies on Different User Groups
As aforementioned, we define two groups of users: “surfers” and

“deep divers” based on their perception of conformity and taste

for popular items. As shown in Fig. 3, we evaluate our model on

different user groups to confirm that the recommended items can

benefit all users with various perceptions of conformity and taste for

popular items. Here, we divided users into ten groups according to

the normalized average popularity of the items they interacted with.

For each group, wemeasure the𝑛DCG@10 of the recommendations.

We can see that TCHN achieves consistent performance across all

groups of users, while other baselines clearly favor “surfers” who

like popular items.

5 Conclusion
Aiming at the problem that conventional RSs potentially ignore the

positive effect of users’ conformity behavior, we propose a TCHN

for disentangling user interest and conformity based on attentional

Hawkes process networks. This paper investigates how to model

the user interest and the conformity evolution at the individual

level to maximize their effect for recommendation purposes, and

the experiment results show that modeling in this way leads to

better recommendations in terms of accuracy and diversity.
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A Appendix: Proof of Positive Definiteness of
the Kernel Function

In this appendix, we provide a proof that the kernel function 𝜅 =

𝜃𝑧 ln (𝛽𝑎,𝑏 ( |𝑡𝑏 − 𝑡𝑎 |) + 1) is positive definite, given 𝜃 > 0 and 𝛽 > 0,

thus satisfying the assumption of Bochner’s theorem.

First, let us recall the definition of Bochner’s theorem:

Definition A.1 (Bochner’s Theorem). A complex-valued function

𝑓 on a locally compact abelian group 𝐺 is positive definite if and

only if 𝑓 is the Fourier transform of a positive measure on the dual

group 𝐺 .

Proof. Let 𝑁 ∈ N and 𝑡1, 𝑡2, . . . , 𝑡𝑁 ∈ R+ be arbitrary. We must

show that the matrix [𝜅 (𝑡𝑖 − 𝑡 𝑗 )]𝑁𝑖,𝑗=1
is positive semi-definite. This

means for any vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) ∈ R𝑁 , we have

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑥𝑖𝑥 𝑗𝜅 (𝑡𝑖 − 𝑡 𝑗 ) ≥ 0.

Substituting the expression for 𝜅, we get

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑥𝑖𝑥 𝑗𝜃𝑧 ln (𝛽𝑎,𝑏
(
|𝑡𝑖 − 𝑡 𝑗 |

)
+ 1) ≥ 0.

Since 𝜃𝑧 > 0 and ln (𝑥 + 1) is increasing for 𝑥 ≥ 0, it suffices to

show that

∑𝑁
𝑖=1

∑𝑁
𝑗=1

𝑥𝑖𝑥 𝑗 𝛽𝑎,𝑏
(
|𝑡𝑖 − 𝑡 𝑗 |

)
≥ 0.

This follows from the fact that the function |𝑡𝑖 − 𝑡 𝑗 | is non-

negative, and the product of non-negative numbers is non-negative.

Hence, the kernel function 𝜅 = 𝜃𝑧 ln (𝛽𝑎,𝑏 ( |𝑡𝑏 − 𝑡𝑎 |) + 1) is positive
definite. □

This confirms that our kernel function satisfies the assumptions

of Bochner’s theorem, and can therefore be used in the context of

harmonic analysis and related mathematical fields.
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