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Abstract

Code-switching (CS) is the process of speak-001
ers interchanging between several languages.002
CS is a complex process. To better describe003
CS speech the Matrix Language Frame (MLF)004
theory introduces the concept of a Matrix Lan-005
guage (ML), which is the language that pro-006
vides the grammatical structure for a CS sen-007
tence. In this work several novel approaches008
for discovering system morphemes based on009
the MLF theory were introduced. Determin-010
istic and predictive variations of the System011
Morpheme Principle (SMP) were developed to012
discover system morphemes through the task013
of ML determination and prediction. Mor-014
pheme Order Principle (MOP) from the MLF015
theory was used to assess the ML determination016
performance from the two SMP implementa-017
tions. The deterministic approach revealed the018
correlation between the conventional system019
morphemes (pronouns, conjunctions, determin-020
ers, auxiliaries) and token frequencies averaged021
over Part of Speech (POS). Moreover, the deter-022
ministic approach has also revealed the ranking023
of the POS with respect to the ML determina-024
tion task, showing the importance of particles025
and adpositions. Using monolingual data for026
discovering the POS that act as system mor-027
pheme types has led to a 0.07 Matthew’s Cor-028
relation Coefficient (MCC) increase compared029
to the baseline for SEAME and a 0.04 increase030
for Miami. A predictive SMP was trained and031
has achieved 0.03 MCC increase demonstrating032
the advantages of the statistical analysis of the033
linguistic properties of data in the determinis-034
tic SMP. This study provides valuable insight035
into the properties of tokens in relation to their036
grammatical categories in CS data.037

1 Introduction038

Code-switching (CS) is the process of speakers039

switching between several languages in spoken or040

written language. CS data is typically scarce, there-041

fore models for processing CS often yield poor042

performance in comparison to monolingual mod- 043

els. Given that in many countries CS is widespread 044

(e.g India, South Africa, Nigeria) (Diwan et al., 045

2021; Ncoko et al., 2000; Rufai Omar, 1983), it is 046

essential to develop Natural Language Processing 047

(NLP) and Automatic Speech Recognition (ASR) 048

technologies for processing both CS speech and 049

text. 050

In order to better describe the process of code- 051

switching the Matrix Language Frame (MLF) the- 052

ory was formulated (Myers-Scotton, 1997). It in- 053

troduced the concept of a main, i.e. dominant lan- 054

guage and a secondary, inserted language to de- 055

scribe CS sentences. These languages are called 056

Matrix Language (ML) and Embedded Language 057

(EL), respectively. The MLF theory introduces two 058

methods for ML determination: The Morpheme 059

Order Principle (ML will provide the surface mor- 060

pheme order for a CS sentence if it consists of 061

singly occurring EL lexemes and any number of 062

ML morphemes) and The System Morpheme Prin- 063

ciple (all system morphemes which have grammat- 064

ical relations external to their head constituent will 065

come from ML). System morphemes are a type of 066

morpheme that primarily serve a grammatical func- 067

tion rather than carrying lexical meaning. Coordi- 068

nating and subordinating conjunctions, auxiliaries, 069

determiners and pronouns are actively discussed 070

as the main POS of the system morphemes but a 071

concise closed set is not given in the linguistic lit- 072

erature for a language variety. Furthermore, there 073

are no known methods for automatic detection or 074

determination of system morphemes. Bullock et al. 075

2018 explores if the same 5 POS can be used for 076

automatic ML determination, however, no impact 077

of the different combinations of POS was observed 078

for the ML determination task. 079

MLF sets the framework for identifying the 080

"main" or "dominant" language in a CS sentence 081

and may bring valuable insights for CS data such as 082

language or token distributions but has been rarely 083
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Figure 1: Example of CS simulation (original - left, synthetic - right).

implemented for NLP or ASR tasks. Some of the084

ideas from the MLF theory were implemented in085

Lee et al. 2019 and Hu et al. 2020 but the imple-086

mentations are limited due to the absence of ML087

annotated data. Otherwise the usage of the MLF088

theory, specifically in the context of ML determi-089

nation has been limited.090

In this paper, several novel approaches for dis-091

covering system morphemes based on the MLF092

theory are introduced. Deterministic and predic-093

tive variations of the System Morpheme Princi-094

ple (SMP) are developed to discover system mor-095

phemes through the task of ML determination and096

prediction. Morpheme Order Principle (MOP)097

from the MLF theory is used to assess the ML098

determination performance from the two SMP im-099

plementations. The correlation between the conven-100

tional system morphemes (pronouns, conjunctions,101

determiners, auxiliaries) and token frequencies av-102

eraged over Part of Speech (POS) are analysed.103

The deterministic approach was used to reveal the104

ranking of the POS with respect to the ML determi-105

nation task. A predictive SMP is also trained and106

compared to the performance of the deterministic107

SMP.108

The remainder of the paper is as follows. The109

next section provides a detailed description of the110

methods used. This is followed by a section on ex-111

periments, which provides information on datasets,112

detailed implementation, experiment descriptions113

as well as discussion of results. Conclusions sum-114

marise and complete the paper.115

2 Methods for ML determination116

Being called "principles for ML determination", the117

Morpheme Order Principle and the System Mor-118

pheme Principle in reality present three of the fea-119

tures of CS CP (projections of complementiser)120

which cannot be utilised to determine the ML di-121

rectly. Therefore, the principles need to be refor-122

mulated to perform only ML prediction based on123

a set of conditions. Let x = [x1, .., xn] be a CS124

CP as a sequence of morphemes, l = [l1, .., ln],125

li ∈ L1 ∪ L2 - a sequence of corresponding LID 126

tags, then: a) The Morpheme Order Principle: if 127

singly occurring xi:j lexemes (sequence of mor- 128

pheme constituents in a lexeme) come from the 129

same language L2 within a context of morphemes 130

from L1, then L1 is the ML and L2 is the EL (a 131

detailed description of the method can be found 132

in Iakovenko and Hain 2024 under the name of 133

P1.1); b) The System Morpheme Principle: if 134

xi, .., xj ∈ x system morphemes xi, .., xj ∈ Xsys 135

which have grammatical relations external to their 136

head constituent and li, .., lj ∈ L1, then L1 is the 137

ML and L2 is the EL. Below detailed descriptions 138

of the SMP method variations are presented. 139

2.1 System Morpheme Principle (SMP) 140

Compared to MOP, there are fewer issues in for- 141

mulating the principle when adapting SMP for ML 142

determination. However, as highlighted in the ear- 143

lier section, there are no computational methods 144

for determining system morphemes or a set of sys- 145

tem morphemes. Despite lacking the complete 146

system morpheme set, one can determine system 147

morphemes from a composition of context-free 148

probabilities of morphemes if an ML identity is 149

known for a CP. 150

2.1.1 Deterministic approach to SMP 151

Let’s first assume that system morphemes Xsys - 152

the morphemes that contribute to the grammatical 153

structure of the CS CP - are the morphemes that are 154

frequent in data. Then the amount of influence of a 155

morpheme x on the grammatical structure may be 156

approximated by the morpheme frequencies P (x): 157

x ∈ Xsys ≈ (P (x) > β) (1) 158

where β is threshold for determining the sys- 159

tem morpheme set Xsys. This approach may in- 160

clude the derivation of the system morphemes from 161

monolingual data. 162

For the approach to better generalise to a vari- 163

ety of morphemes, especially for ideographic lan- 164
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Table 1: Universal Dependencies 2.0 dataset statistics.

Sentence count Token count
Language train dev test train dev test
English 32179 5110 7798 523806 76180 7798

Mandarin 7994 3054 3555 859067 93318 3555
Spanish 28474 1000 3147 197232 25326 3147

guages, one can use morpheme frequencies aver-165

aged over its grammatical category:166

x ∈ Xsys ≈ (
1

|TG(x)|
∑

x̂∈TG(x)

P (x̂) > β) (2)167

where x̂ ∈ TPOS(x) are the tokens of the same168

grammatical category G as x. Once the Xsys sys-169

tem morpheme set is obtained the ML can be pre-170

dicted effortlessly using the expression from the171

beginning of the Section 2.172

2.2 Predictive approach to SMP173

Alternatively, a predictive approach to predicting174

ML can be defined. Two more sequences can be175

derived from CS CP x: grammatical categories176

of morphemes g = [g1, .., gn], gi ∈ G and mor-177

pheme types following the 4-M model (Myers-178

Scotton, 2002) t = [t1, .., tn], ti ∈ Tsys ∪ Tcont.179

All sequences can be obtained using token clas-180

sification algorithms and have the same length181

|x| = |g| = |t| = |l|. The following holds true:182

x → g → t and x → l, where the arrow denotes183

sole dependency. The textual representation x is184

language-dependent, while g and t are language-185

independent. Since morpheme types can be unam-186

biguously derived from the grammatical category187

of a morpheme, t can be substituted with g when188

trying to recognise the ML L:189

P (L|t, l, θ) = P (L|g, l, θ) (3)190

With a trained model Pt(L|g, l, θt) one can try191

to recognise the ML identity from the number of192

occurrences of a singular grammatical category and193

language combination |(gt, lt)|. Then, for a test CS194

dataset Dt = [(g1, l1, L1), .., (gm, lm, Lm)] one195

can calculate feature importance ft for the task196

of ML determination:197

ft =

|D|∏
i=1

Pt(L = Li|gi, li, θ) (4)198

Once calculated for all (gt, lt) combinations re-199

sulting in feature importances [f1, .., ft] = F may200

then be used as the "content-system" morpheme 201

scale for a specific language mix and approximate 202

morpheme types Tsys ∪ Tcont. 203

3 Experiments 204

In this section the efforts towards discovering the 205

system morphemes are described. It is important 206

to highlight that the experiments in this section are 207

carried out on a word-level as an approximation of 208

morpheme-level tokenisation. This is done because 209

grammatical categories of morphemes (e.g. POS 210

tag) are ambiguous and there are no existing tools 211

or methods to reliably determine grammatical cate- 212

gories of morphemes. As a result the objective is to 213

find system morphemes which are equal to whole 214

words that act as ML markers. Furthermore, the 215

ML determination is carried out on the sentence 216

level as an approximation of the CP-level analysis. 217

This is also related to the limitation of resources 218

and tools for reliable CP segmentation of texts. 219

3.1 Datasets 220

Both monolingual and CS datasets are used for 221

the experiments below. For the joint POS+LID 222

tagger training the Universal Dependencies 2.0 223

(Nivre et al., 2017) dataset is used for Mandarin, 224

English and Spanish languages following Soto and 225

Hirschberg 2018. The token distributions for the 226

training, validating and testing of the model are 227

given in Table 1. To discover system morphemes 228

from monolingual data the train sets from the 229

Fleurs dataset (Conneau et al., 2022) are used, and 230

the statistics for the tokens are presented in Table 231

2. 232

Table 2: Fleurs dataset statistics.

Language Sentence count Token count
English 2518 52602

Mandarin 3246 60622
Spanish 2796 68285

In order to train, test and validate an automatic 233

ML detector from POS+LID tags data is simu- 234
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lated using the 15349 semantically aligned mono-235

lingual sentences from the GALE corpus (Liu et al.,236

2010). Finally, real CS data: SEAME and Miami237

is used for testing and probability estimations. Sen-238

tences that contain tokens from two languages: En-239

glish/Mandarin or English/Spanish accordingly are240

chosen for the analysis. The statistics for the two241

CS datasets is given in Table 3242

Table 3: CS datasets statistics.

Language Sentence count Token count
SEAME 57052 766525
Miami 292 3589

3.2 Joint POS and LID training243

It has been shown before that POS tagger models244

trained on monolingual data can generalise to CS in245

token classification tasks. Therefore for joint POS246

and LID training monolingual English, Mandarin247

and Spanish datasets from the Universal Dependen-248

cies 2.0 are used. The statistics for the splits are249

given in Section 3.1. For each token in the source250

sentence a POS tag and the LID are recognised251

simultaneously.252

To train an English/Mandarin POS+LID predic-253

tor a pretrained multilingual BERT (Devlin et al.,254

2018) with 12 attention heads is finetuned on the255

train subset of the data mentioned above. The256

model is finetuned for 3 epochs with cross-entropy257

loss. The accuracies on the validation and test258

subsets are 94% and 93% respectively, while the259

F1-scores are 94% and 92%. Calculating the per-260

formance metrics on Miami gives F1 score of 80%261

which supports the earlier claims of relative appli-262

cability of monolingual POS systems to CS.263

3.3 Data-driven discovery of system264

morphemes265

3.3.1 Average token probabilities from266

monolingual267

For the first experiment the method from Section268

2.1.1 is applied to monolingual Fleurs data for the269

three languages: English, Mandarin and Spanish.270

POS tags are recognised for each of the sentences271

in the corpora using the joint POS+LID tagger272

described above. The token probabilities are es-273

timated and average token probabilities are cal-274

culated based on the POS tag. Finally, the av-275

erage probabilities are summed across the three276

languages and sorted to demonstrate the similarity277

with the conventional system morpheme set men- 278

tioned in linguistic and some NLP literature (Figure 279

2). 280

From Figure 2 it can be observed that the con- 281

ventional grammatical categories that are typi- 282

cally represented by system morphemes auxil- 283

iaries (AUX), determiners (DET), coordinating con- 284

junctions (CCONJ), subordinating conjunctions 285

(SCONJ) and pronouns (PRON) seem to be lo- 286

cated in the top half of the sorted list. Apart from 287

the conventional aforementioned grammatical cat- 288

egories particles (PART) and adpositions (ADP) 289

seem to have average probabilities which are com- 290

parable to those of the conventional grammatical 291

probabilities. 292

Suppose that the expectation of the token prob- 293

ability that belongs to a certain POS can be used 294

as an indicator for the ML which is present in a 295

CS sentence, then the top N POS can be extracted 296

for each of the three languages from the estimated 297

rankings. Examples of the extracted POS sets are 298

given in Table 4 which will be discussed later in 299

more detail. 300

3.3.2 Average token probabilities from CS 301

The same approach as above can be applied to 302

a subset of real CS data where the ML can be 303

determined using the MOP method described in 304

Iakovenko and Hain 2024. Similar to Fleurs, to- 305

ken probabilities are estimated and then averaged 306

over POS, but contrary to the experiment above 307

averaging of the probabilities is carried out only 308

for the tokens for which the LID is equal to the ML 309

determined using MOP. The resulting rankings of 310

POS are displayed in Figures 3 and 4 for SEAME 311

and in Figures 5 and 6 for Miami. 312

Although in the case of CS the POS which are 313

conventionally represented by system morphemes 314

are less aligned with average probability rankings, 315

some conventional system POS still lead in the 316

rankings such as CCONJ for SEAME when the 317

ML is Mandarin and SCONJ for Miami when ML 318

is Spanish. Furthermore, some similarities with 319

the monolingual data are observed, for example the 320

leading tendencies of PART and ADP which may 321

be a reason enough to consider morphemes which 322

belong to these POS as system morphemes. 323

3.3.3 Measurement of performance on the ML 324

determination task 325

To measure if the extracted POS can indicate the 326

ML in a CS sentence they are tested as the Xsys set 327
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Figure 2: Average word probabilities grouped by POS and sorted by the sum of the average across languages.
POS highlighted in red are the POS which are conventionally believed to be represented by system morphemes in
linguistics and NLP (Myers-Scotton, 2002; Bullock et al., 2018).

Figure 3: Average SEAME token probabilities grouped
by POS for when the ML is English according to MOP.

in the deterministic SMP method (Section 2.1.1).328

The outcomes of the deterministic SMP method329

with different sets Xsys were compared to the330

baseline approach where system morphemes are331

represented by 5 conventional POS (DET, AUX,332

CCONJ, SCONJ, PRON) following Myers-Scotton333

2002 and Bullock et al. 2018. The results are pre-334

sented in Figure 7 for SEAME and Figure 8 for335

Miami where the top N selected POS varies from 1336

to 14. The metric for measuring the performance is337

Matthew’s Correlation Coefficient (MCC) because338

the outcomes of deterministic SMP are compared to339

outcomes of MOP. It is not appropriate to use such340

measures as Accuracy or F1 in this task because341

MOP outputs are also machine generated, although342

Figure 4: Average SEAME token probabilities grouped
by POS for when the ML is Mandarin according to
MOP.

it is highly accurate and the outputs rarely deviate 343

from human judgment (Iakovenko and Hain, 2024). 344

In the figure one can see how MCC first increases 345

as the top N increases: this is due to SMP becoming 346

more accurate as the number of top POS for anal- 347

ysis increase. Around 6-9 top N the SMP imple- 348

mentations reach their optimal performance which 349

means that the top N selected usually do not get 350

translated into the EL. After the best 6-9 top N a 351

slight decrease in the MCC values can be observed 352

due to the rest of POS (e.g. nouns or verbs) being 353

used in both ML and EL more frequently and there- 354

fore influencing the decision in SMP less or even 355

cause errors. 356

From the line plots it can be observed that the 357
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Figure 5: Average Miami token probabilities grouped
by POS for when the ML is English according to MOP.

Figure 6: Average Miami token probabilities grouped
by POS for when the ML is Spanish according to MOP.

best results are obtained using monolingual data358

to extract grammatical categories that system mor-359

phemes belong to. The best performing top N are360

9 for SEAME and 8 for Miami. The ability to361

utilise monolingual data to estimate system mor-362

phemes provides advantages when dealing with363

low-resource or zero-resource data. The extracted364

POS which provide the system morphemes for the365

ML are displayed in Table 4. The best MCC val-366

ues are obtained using these POS which are 0.22367

for SEAME with top 9 extracted POS (a 0.07 in-368

crease from the conventional 5-POS baseline) and369

0.33 for Miami with top 8 extracted POS (a 0.03370

improvement from the baseline).371

3.4 Model-driven discovery of system372

morphemes373

In this section a trained approach towards SMP374

is described. The components are described be-375

low in detail as well as the datasets used and their376

construction.377

There is no ML annotated dataset available,378

therefore a possible option is to generate a synthetic379

dataset following the Equivalence Constraint (EC)380

method described in Rizvi et al. 2021. In order to381

be able to use the method a dependency-level align-382

Figure 7: MCC for different SMP implementations for
the SEAME dataset. The green dashed line represents
the maximum MCC that could have been possible for
the SMP implementation: it is not equal to 1 because
MOP does not have 100% coverage. The red dashed
line is the baseline implementation with 5 conventional
POS.

Figure 8: MCC for different SMP implementations for
the Miami dataset.

ment of translations is needed, which is present in 383

the GALE corpus for NMT. For each sentence pair 384

alignments with semantic links are used to trans- 385

late parts of sentences from ML to EL. A sentence 386

may have more than one substitution of such sub- 387

stitutions from ML to EL. 100974 simulated CS 388

sentences are generated from the original 15349 389

sentences of the GALE corpus. The resulting simu- 390

lated CS sentences are then split into train (114832) 391

and test (26283) subsets. POS tags are generated 392

for all of the above subsets using the POS+LID 393

tagger described previously (Section 3.2) and used 394

as an input for the SMP ML predictor below. 395

The same baseline determiner as in Section 3.3 396

that follows the deterministic approach to SMP 397

(Section 2.1.1) and determines the ML based on 398

the 5 conventional POS in a CS sentence is ap- 399

plied to the test subset of the simulated CS data. 400

The system yields 74% accuracy with 24% of CS 401

sentences determined as an "unknown language". 402

24% test sentences are marked with the "unknown 403

language" label because the SMP method does not 404
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Table 4: Extracted grammatical categories of system morphemes for English, Mandarin and Spanish.

Language Tsys

English [PART, DET, SCONJ, CCONJ, AUX, INTJ, ADP, PRON, NUM]
Mandarin [AUX, DET, PRON, CCONJ, ADP, SCONJ, NUM, ADV, ADJ]
Spanish [ADP, CCONJ, SCONJ, PART, DET, INTJ, PRON, NUM]

have 100% coverage due to some CS sentences con-405

taining system morphemes from both languages or406

not having any system morphemes from any lan-407

guages. Therefore one of the goals of applying408

a predictive approach to SMP is to maximise the409

number of CS sentences for which ML can be de-410

termined.411

In contrast to the baseline system, a decision tree412

classifier (DT) is trained to determine pseudo-ML413

identity (the language of the original non-translated414

sentence) from POS tags generated from simulated415

CS data. The classifier yields 98% accuracy on416

the simulated CS test set while maintaining 100%417

coverage rate.418

3.4.1 Agreement analysis419

In order to analyse the properties of the imple-420

mented SMP predictor on real CS data agreement421

analysis for SMP and MOP is carried out. In this422

experiment only the SEAME dataset is analysed423

because no English/Spanish translation dataset is424

manually aligned by dependency groups. Similarly425

to the prior experiments, the agreement is measured426

by MCC. The obtained MCC of 0.18 is higher in427

comparison to the baseline (MCC=0.15), which428

appears to show the usefulness of the predictive429

method for real CS data. However the method does430

not seem to outperform the deterministic SMP ap-431

proach when the POS that are typically represented432

by system morphemes are derived from monolin-433

gual data (MCC=0.22 when top 10 POS are used).434

3.4.2 Feature importance analysis435

While in Section 3.3 dataset statistics were esti-436

mated separately and explicitly for the determinis-437

tic SMP approach, in the predictive SMP approach438

the importance of POS are determined implicitly439

from task execution performance (Section 2.2). A440

trained DT-based SMP predictor is used to com-441

pute Gini importances for the (POS, lang) feature442

pairs of the classifier. The highest value of Gini im-443

portance is yielded by Mandarin coordinating con-444

junctions (CCONJ, Gini importance=0.86), while445

the remaining features have little or no impact446

(e.g. Mandarin adjectives=0.1, Mandarin numer- 447

als=0.02). This is to be expected because CCONJ 448

are rarely aligned in dependency-aligned GALE 449

data and therefore rarely translated following the 450

EC-based CS simulation method. In this setup the 451

Gini importance thus appears to tell more about 452

the synthetic data generation process and not the 453

actual influence of the POS tag on the ML identity 454

decision. 455

A better strategy for determining the importance 456

of specific (POS, lang) pairs generated from CS 457

text is to train several separate ML classifiers for 458

each of the (POS, lang) features. Having multiple 459

classifiers one can calculate the feature that obtains 460

the best accuracy on simulated data (Figure 9) and 461

the highest agreement measured in MCC on real 462

CS data (Figure 10). 463

Upon looking at the accuracy values from Fig- 464

ure 9 one can observe the dominating role of the 465

CCONJ for the ML prediction, in a similar fashion 466

to the Gini importance analysis. The individual fea- 467

ture accuracies, unlike the Gini importances, indi- 468

cate that Mandarin adjectives (ADJ) lead to almost 469

the same amount of correctly recognised ML values 470

as the aforementioned Mandarin CCONJ. Judging 471

by the accuracies obtained on test CS GALE data, 472

the most impactful English features for recognising 473

ML are particles (PART) and adverbs (ADV). 474

Unlike the accuracy on synthetic GALE data, 475

MCC values for the two ML determination ap- 476

proaches executed on real CS data show a different 477

picture (Figure 10). The overall importance for 478

each of the individual features seem to form three 479

groups with noticeable step-changes in MCC. This 480

is visible between Mandarin adverbs (ADV) and 481

English verbs (VERB), and also between English 482

CCONJ and English PRON. However the same 483

tendencies of the conventional system morpheme 484

grammatical categories being important for ML 485

prediction task cannot be observed to the same 486

extent as with deterministic SMP: while English 487

SCONJ and DET, and Mandarin DET and AUX 488

seem to have a big impact on the ML prediction 489

7



Figure 9: ML classification accuracy on the test subset of synthetic CS data. Predictive SMP uses single feature
input.

Figure 10: MCC of MOP and predictive SMP outputs on SEAME data. Predictive SMP uses single feature input.

task, the rest of the POS show little to no impact.490

The little impact of Mandarin CCONJ and491

PRON, and English AUX, PRON and CCONJ in492

the predictive SMP can be attributed to the dif-493

ference in the training data and the model used.494

Although EC can facilitate the creation of natural-495

looking CS sentences, it might not necessarily be496

representative of the real CS data. Using both EC497

and MLF theory inspired data simulations would498

improve the scores beyond the deterministic SMP499

performance.500

4 Conclusion501

This study introduces several novel approaches for502

identifying system morphemes in code-switched503

text based on the Matrix Language Frame (MLF)504

theory. Deterministic and predictive variations of505

the System Morpheme Principle (SMP) are devel-506

oped to discover system morphemes through the507

task of ML determination and prediction. To assess508

ML determination performance across different fea-509

ture sets the Morpheme Order Principle (MOP)510

from MLF theory is utilised.511

The proposed deterministic approach highlights512

a correlation between conventional system mor-513

phemes—such as pronouns, conjunctions, deter-514

miners, and auxiliaries—and token frequency av-515

erages across Part-of-Speech (POS) categories. It516

also ranks POS in terms of their importance for517

ML determination, emphasizing the significance of 518

particles and adpositions. Utilizing monolingual 519

data to identify POS categories functioning as sys- 520

tem morphemes resulted in a 0.07 improvement 521

in Matthew’s Correlation Coefficient (MCC) for 522

SEAME (from 0.15 to 0.22) and a 0.04 increase 523

for Miami (from 0.29 to 0.33). Additionally, an 524

alternative predictive SMP model achieved a 0.03 525

MCC improvement (from 0.15 to 0.18), demon- 526

strating the benefits of linguistic analysis in the 527

deterministic SMP method leading to higher MCC 528

increase. 529

Overall, this study provides valuable insights 530

into the relationship between token properties and 531

their grammatical roles in code-switched data. The 532

presented findings contribute to a deeper under- 533

standing of system morphemes and their role in 534

ML determination, paving the way for more accu- 535

rate computational models in multilingual language 536

processing. 537
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data availability: there is no ML-annotated CS data 543

available to date. therefore it is problematic to as- 544
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sess the quality of ML classification and therefore545

the feature importance. ML identity can be deter-546

mined in CS data using the MOP principle which547

has a high accuracy but the principle can only be548

applied in case of singleton EL insertions. Since549

there is no ML annotation, simulated data has to be550

leveraged but its usage is limited as shown in the551

paper and additionally requires dependency aligned552

parallel data.553
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Thi. Minh, Vitaly Nikolaev, Hanna Nurmi, Stina 640
Ojala, Petya Osenova, Lilja Øvrelid, Elena Pascual, 641
Marco Passarotti, Cenel-Augusto Perez, Guy Perrier, 642
Slav Petrov, Jussi Piitulainen, Barbara Plank, Mar- 643
tin Popel, Lauma Pretkalnin, a, Prokopis Prokopidis, 644
Tiina Puolakainen, Sampo Pyysalo, Alexandre Rade- 645
maker, Loganathan Ramasamy, Livy Real, Laura 646
Rituma, Rudolf Rosa, Shadi Saleh, Manuela San- 647
guinetti, Baiba Saulı̄te, Sebastian Schuster, Djamé 648
Seddah, Wolfgang Seeker, Mojgan Seraji, Lena 649
Shakurova, Mo Shen, Dmitry Sichinava, Natalia Sil- 650
veira, Maria Simi, Radu Simionescu, Katalin Simkó, 651
Mária Šimková, Kiril Simov, Aaron Smith, Alane 652
Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji, 653
Takaaki Tanaka, Reut Tsarfaty, Francis Tyers, Sumire 654
Uematsu, Larraitz Uria, Gertjan van Noord, Viktor 655
Varga, Veronika Vincze, Jonathan North Washing- 656
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