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ABSTRACT

Recent years have witnessed the rapid development of acceleration techniques for
diffusion models, especially caching-based acceleration methods. These studies
seek to answer two fundamental questions: “When to cache” and “How to use
cache”, typically relying on predefined empirical laws or dataset-level priors to
determine caching timings and adopting handcrafted rules for multi-step cache
utilization. However, given the highly dynamic nature of the diffusion process,
they often exhibit limited generalizability and fail to cope with diverse samples.
In this paper, a strong sample-specific correlation is revealed between the varia-
tion patterns of the shallow-layer feature differences in the diffusion model and
those of deep-layer features. Moreover, we have observed that the features from
different model layers form similar trajectories. Based on these observations, we
present DiCache, a novel training-free adaptive caching strategy for accelerating
diffusion models at runtime, answering both when and how to cache within a uni-
fied framework. Specifically, DiCache is composed of two principal components:
(1) Online Probe Profiling Scheme leverages a shallow-layer online probe to ob-
tain an on-the-fly indicator for the caching error in real time, enabling the model to
dynamically customize the caching schedule for each sample. (2) Dynamic Cache
Trajectory Alignment adaptively approximates the deep-layer feature output from
multi-step historical caches based on the shallow-layer feature trajectory, facilitat-
ing higher visual quality. Extensive experiments validate DiCache’s capability in
achieving higher efficiency and improved fidelity over state-of-the-art approaches
on various leading diffusion models including WAN 2.1, HunyuanVideo and Flux.
Our code is available at https://github.com/Bujiazi/DiCache.

1 INTRODUCTION

Over the past few years, diffusion models (Song & Ermon, 2019; Sohl-Dickstein et al., 2015; Ho
et al., 2020; Dhariwal & Nichol, 2021) have markedly advanced the frontiers of visual synthesis.
Initially grounded in the lightweight U-Net (Ronneberger et al., 2015) architecture, diffusion models
have achieved substantial progress in both image (Rombach et al., 2022; Podell et al., 2023) and
video synthesis Blattmann et al. (2023); Guo et al. (2023); Chen et al. (2024a). Recent efforts (Esser
et al., 2024; Labs, 2024; Chen et al., 2023) have integrated transformer-based architectures into
diffusion models for larger model capacity and improved performance, especially in the field of
video generation (Kong et al., 2024; Wan et al., 2025; HaCohen et al., 2024; Yang et al., 2024).
Despite their effectiveness, diffusion models often suffer from substantial inference costs and low
generation speed, primarily stemming from the rapid expansion in model scale and intricacy.

To mitigate these limitations, numerous approaches (Lu et al., 2022; Li et al., 2024; Liu et al.,
2025a) on accelerating diffusion models have been proposed. Most training-based acceleration
strategies (Meng et al., 2023; Sauer et al., 2024; Wang et al., 2023; Chen et al., 2025; Ma et al.,
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Figure 1: Comparison between our proposed DiCache and previous caching methods. (a) Pre-
vious studies typically rely on dataset priors or empirical laws to skip timesteps, and resort to hand-
crafted rules to utilize multi-step caches. (b) DiCache employs an online probe to adaptively adjust
its caching strategy at runtime. (c) A brief visual comparison between DiCache and existing state-
of-the-art methods, in which DiCache demonstrates superiority in both quality and efficiency.

2024; Li et al., 2024) entail significant training costs and require supplementary training data, which
are less suitable for broad deployment. Therefore, recent studies have focused on training-free ac-
celeration methods (Zhang et al., 2025b; Xi et al., 2025; Ren et al., 2025; Lu et al., 2022; Liu et al.,
2025a). Among them, caching-based methods (Chen et al., 2024b; Selvaraju et al., 2024; Xu et al.,
2018; Zhao et al., 2024; Lv et al., 2024) provide a lightweight choice for diffusion model accelera-
tion by leveraging the similarity between features at consecutive timesteps and reusing them strate-
gically to reduce computation redundancy. Early uniform caching strategies reuse cached features at
fixed intervals, which fail to adapt to the diffusion process’s time-varying behaviors, resulting in low
inference speed and degraded visual quality. Recently, AdaCache (Kahatapitiya et al., 2024) sug-
gests dynamically modifying the cache interval based on content complexity. TeaCache (Liu et al.,
2025a) employs a polynomial function calibrated on offline datasets to determine its cache schedule.
EasyCache (Zhou et al., 2025) replaces this polynomial estimator with an empirical transformation
rate law. TaylorSeer (Liu et al., 2025b) leverages multi-step caches under a Taylor expansion-based
forecast mechanism to predict current features for enhanced visual texture and details.

Caching-based acceleration confronts two core issues: “When to cache” and “How to use cache”.
Existing methods address these questions by (1) relying on predefined empirical laws or dataset-
level priors to make their cache schedules, and (2) resorting to manually crafted rules for multi-step
cache utilization, as shown in Fig. 1 (a). These key limitations hinder their flexibility to adapt to
diverse samples, leading to suboptimal inference efficiency and reduced similarity regarding original
results, as illustrated in Fig. 1 (c). Therefore, an adaptive paradigm wherein the model autonomously
determines its reuse strategy without recourse to external empirical priors is imperative.

In this paper, we uncover that (1) for a given sampling process, the difference in shallow-layer
features strongly correlates with that in deep-layer features on a sample-specific basis (Fig. 3),
enabling them to serve as an on-the-fly proxy for the final model output evolution. Since the optimal
moment to reuse cached features is governed by the difference between model outputs at consecu-
tive timesteps (Liu et al., 2025a), it is possible to employ an online shallow-layer probe to efficiently
obtain an indicator of output changes at runtime, thereby adaptively adjusting the caching strategy
for each individual sample. (2) the features from different DiT blocks form similar trajectories
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(Fig. 4), which allows for dynamically extrapolating the deep-layer feature output through combin-
ing multi-step historical caches based on the shallow-layer probe feature trajectory.

In light of these observations, we introduce DiCache, a novel plug-and-play adaptive caching strat-
egy for accelerating diffusion models at runtime, as depicted in Fig. 1 (b). Specifically, DiCache is
composed of two principal components: First, Online Probe Profiling Scheme is proposed to harness
shallow-layer features of the diffusion model to estimate the caching error in real-time, thereby more
accurately tailoring the cache schedule for each sample. Second, Dynamic Cache Trajectory Align-
ment is introduced to adaptively approximate the deep-layer feature output from multi-step caches
based on the probe feature trajectory, which further elevates visual quality. By integrating the above
two techniques, DiCache intrinsically answers when and how to cache within a unified framework.

Our contributions can be summarized as follows: (1) Shallow-Layer Probe Paradigm: We intro-
duce an innovative probe-based approach that leverages signals from shallow model layers to predict
the caching error and effectively utilize multi-step caches. (2) DiCache: We present DiCache, a
novel caching strategy that employs online shallow-layer probes to achieve more accurate caching
schedules and superior multi-step cache utilization. (3) Superior Performance: Comprehensive
experiments demonstrate that DiCache consistently delivers higher efficiency and enhanced visual
fidelity compared with existing state-of-the-art methods on leading diffusion models including WAN
2.1 (Wan et al., 2025), HunyuanVideo (Kong et al., 2024), and Flux (Labs, 2024).

2 RELATED WORK

Diffusion Model. Diffusion models (Song & Ermon, 2019; Sohl-Dickstein et al., 2015; Ho et al.,
2020; Dhariwal & Nichol, 2021) have demonstrated exceptional capability to synthesize content
with superb quality and rich diversity. Early pioneers like Stable Diffusion (Rombach et al., 2022)
and SDXL (Podell et al., 2023) achieved high-fidelity image generation with the U-Net (Ron-
neberger et al., 2015) architecture, which also inspired subsequent video diffusion models (Guo
et al., 2023; Chen et al., 2024a; Blattmann et al., 2023). Despite its success, the U-Net architecture
possesses limited scalability, hindering the training and deployment of large-scale models with im-
proved performance. To overcome this constraint, recent diffusion models (Esser et al., 2024; Labs,
2024; Chen et al., 2023; Peebles & Xie, 2023) have widely adopted diffusion transformers (DiT)
as their backbones for better scalability and flexibility, delivering superior outcomes across various
domains (Wu et al., 2025; Wan et al., 2025; Kong et al., 2024; Yang et al., 2024).

Diffusion Model Acceleration. Despite the striking achievements drawn by diffusion models, their
inference cost increases substantially with model capacity and complexity, posing challenges to
practical applications. Accordingly, acceleration techniques (Dao et al., 2022; Li et al., 2024; Liu
et al., 2025a) have emerged and gradually become a key research field in the realm of diffusion
models, with existing studies generally falling into the following categories: efficient attention (Dao
et al., 2022; Zhang et al., 2025b), sparse attention (Xi et al., 2025; Ren et al., 2025), model dis-
tillation (Meng et al., 2023; Sauer et al., 2024; Wang et al., 2023), model quantization (Li et al.,
2024), improved SDE or ODE solvers (Lu et al., 2022), and caching-based feature reuse strate-
gies (Liu et al., 2025a;b; Zhou et al., 2025). Among them, caching-based methods (Liu et al.,
2025a; Zhao et al., 2024) have recently gained increasing attention due to their lightweight nature.
For instance, DeepCache (Xu et al., 2018) and Faster Diffusion (Li et al., 2023) reuse the U-Net
feature across timesteps to reduce computation redundancy. FORA (Selvaraju et al., 2024) and ∆-
DiT (Chen et al., 2024b) extend this idea to transformer-based backbones. PAB (Zhao et al., 2024)
broadcasts attention features to subsequent steps in a pyramid style based on different block charac-
teristics. AdaCache (Kahatapitiya et al., 2024) dynamically modifies residual reuse strategies based
on the content complexity. FasterCache (Lv et al., 2024) proposes to cache for both the conditional
branch and unconditional branch of Classifier-Free Guidance (CFG) (Ho & Salimans, 2022). Tea-
Cache (Liu et al., 2025a) leverages a calibrated polynomial estimator to predict output changes from
input differences. EasyCache (Zhou et al., 2025) replaces this polynomial function with an empirical
transformation rate law. TaylorSeer (Liu et al., 2025b) suggests combining multi-step cached fea-
tures in a Taylor-expansion-like manner. Unlike existing methods that rely on predefined empirical
laws or dataset-level priors, we enable the diffusion model to autonomously determine the caching
timings and adaptively utilize multi-step caches according to an online probe at runtime, thereby
better adapting to the highly dynamic diffusion process and the diverse sample distribution.
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Figure 2: Overview of DiCache. The proposed DiCache consists of Online Probe Profiling Scheme
and Dynamic Cache Trajectory Alignment. The former dynamically determines the caching timing
with an online shallow-layer probe at runtime, while the latter combines multi-step caches based on
the probe feature trajectory to adaptively approximate the feature at the current timestep.

3 METHOD

3.1 PRELIMINARY

Flow Matching. Flow Matching (Lipman et al., 2022) and Rectified Flow (Liu et al., 2022) are de-
signed to simplify the construction of Ordinary Differential Equation (ODE) models by delineating a
linear mapping between disparate probability distributions. Given samples x1 drawn from the noise
distribution π1 and x0 from the clean data distribution π0, the transition from x1 to x0 is modeled
as a linear trajectory in the direction of the vector (x0 − x1), with the intermediate state at timestep
t (t ∈ [0, 1]) denoted as xt = tx1 + (1− t)x0. Hence, the ODE governing xt can be formulated as
dxt = (x0 − x1)dt. Since x0 is unknown during denoising, a learned velocity field vθ(xt, t, c) is
employed to approximate the direction (x0 − x1), thereby constructing a neural ODE model:

dx̂t = vθ(xt, t, c)dt, (1)

where c stands for extra input conditions such as textual or image prompts.

Diffusion Transformer. The Diffusion Transformer (DiT) (Peebles & Xie, 2023; Esser et al., 2024)
architecture adopts a tiered layout with M cascaded blocks, in which self-attention (SA), cross-
attention (CA), and a multilayer perceptron (MLP) are integrated as a unified module. Let Bi denote
the i-th DiT block (i ∈ [1,M ]), yit the output of the i-th DiT block at timestep t, the transformation
between yit and model input latent xt can be formulated as:

yit = Bi ◦ Bi−1 ◦ · · · ◦ B2 ◦ B1(xt, t, c), (2)

in which yMt represents the final model output at timestep t, i.e. the predicted velocity vθ(xt, t, c).

Residual in DiT. The residual between the output of the i-th DiT block yit and the initial model
input latent xt at timestep t can be expressed as:

rit = yit − xt, (3)

in which rMt = yMt −xt = vθ(xt, t, c)−xt represents the difference between the model’s predicted
velocity and its input, i.e. the residual of the entire diffusion transformer. Since the residual effec-
tively captures the evolution of features across DiT blocks, we choose to cache for model residuals.
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Figure 3: Variation of feature differences between consecutive timesteps (Mean & Variance).
(a) Output differences L1rel(yt, yt+1). It exhibits large variances, indicating sample-specific nature.
(b) Input differences L1rel(xt, xt+1). It increases monotonically with timesteps, failing to capture
the variations in output differences. (c) Shallow-layer feature differences L1rel(y

m
t , ymt+1) (5-th layer

in this figure). It exhibits a strong correlation with the variations in output differences. (d) Spearman
correlation coefficient between L1rel(y

m
t , ymt+1) and L1rel(yt, yt+1). They already exhibit a high

correlation coefficient (around 0.8) with a shallow probe depth (1∼3 layers).

3.2 DICACHE

Instead of resorting to data-driven or empirical metrics, DiCache employs an online shallow-layer
probe to efficiently obtain an indicator of diffusion dynamics, offering guidance for both caching
timing determination and multi-step cache utilization. Specifically, we propose Online Probe Profil-
ing Scheme to address “When to cache” and Dynamic Cache Trajectory Alignment to answer “How
to use Cache”, respectively. The overall framework of DiCache is illustrated in Fig. 2.

Online Probe Profiling Scheme. We begin by analyzing the caching error. Given that the optimal
moment to reuse cached features depends on the evolution of model outputs over timesteps (Liu
et al., 2025a), the ideal caching error ϵt,t+1 can be defined as the difference between model outputs
at adjacent timesteps t and t+ 1:

ϵt,t+1 = L1rel(yt, yt+1) =
||yt − yt+1||1
||yt+1||1

, (4)

where yt denotes the model output at timestep t and the relative L1 distance (L1rel(·)) is adopted to
measure feature differences. Once ϵt,t+1 is known, it is able to determine whether the cache should
be used at timestep t. However, previous studies seek to anticipate these output variations using of-
fline priors (Liu et al., 2025a) or empirical heuristics (Zhou et al., 2025), overlooking the specificity
of individual samples, thus resulting in suboptimal generalizability on outlier instances. Unlike
existing works, we discover that: for a specific sample, the variation patterns of its shallow-
layer feature differences remain consistent with those of its deep-layer feature, demonstrat-
ing that an efficient indicator for caching error can be obtained without delving deep into
the model. Consider a diffusion model with M blocks/layers, let xt denote the input and ymt the
output of the m-th layer (m ∈ [1,M ], yMt = yt, i.e. the final model output) at timestep t, we
demonstrate that L1rel(y

m
t , ymt+1) can reflect the dynamics of L1rel(y

M
t , yMt+1) with m << M . As

shown in Fig. 3 (a)-(c), while L1rel(xt, xt+1) fails to capture the variation pattern of L1rel(y
M
t , yMt+1),

L1rel(y
m
t , ymt+1)|m=5 effectively characterizes it with only m = 5. Moreover, as depicted in Fig. 3

(d), the Spearman correlation coefficient between L1rel(y
m
t , ymt+1) and L1rel(y

M
t , yMt+1) reaches a

significant level (around 0.8) even when m is very small (m ∈ [1, 3]).

Motivated by this insight, L1rel(y
m
t , ymt+1) can be utilized as an estimated caching error with a m-th

layer online probe:

ϵ̂t,t+1 = L1rel(y
m
t , ymt+1) =

||ymt − ymt+1||1
||ymt+1||1

. (5)

Based on the above analysis, we propose an Online Probe Profiling Scheme to efficiently and accu-
rately determine caching timings at inference time, as detailed in Algorithm 1. Instead of relying
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Figure 4: Observation and analysis regarding Dynamic Cache Trajectory Alignment.

on pre-trained estimators or other empirical metrics, we only infer the first m (m << M ) layers of
the model as a shallow-layer probe at each timestep to obtain a proxy of L1rel(y

M
t , yMt+1) and com-

pute estimated caching error ϵ̂t,t+1 via Eq. 5. An accumulated caching error is maintained across
timesteps as a metric for caching error tolerance:

t2+1∑
t=t1

ϵ̂t,t+1 ≤ δ <

t2∑
t=t1

ϵ̂t,t+1, (6)

in which δ is a user-specified threshold. Specifically, after computing and caching the model residual
at timestep t1, we accumulate the estimated caching error ϵ̂t,t+1 and reuse the cached residual for
each subsequent timestep. When the accumulated error exceeds the threshold δ at timestep t2 (t2 <
t1), the residual is recomputed to refresh the cache and the accumulated caching error is reset to
zero. It is noteworthy that our strategy inherently supports resuming computation from the probed
layer, thereby incurring no additional cost at timesteps requiring recomputation.

Algorithm 1 Online Probe Profiling Scheme

1: Inputs: Model input xT , Sampling steps T , DiT blocks Bi (i ∈ [1,M ]), Extra conditions c
2: Parameters: Reuse threshold δ, Probe depth m (m << M )
3: Initialize accumulated estimated caching error Σerror ← 0, cached residual R← None
4: for t = T to 0 do
5: if t == T then
6: yt ← BM ◦ · · · ◦ B1(xt, t, c) # Calculate for the first step
7: R← yt − xt # Initialize cache from None
8: else
9: ymt ← Bm ◦ · · · ◦ B1(xt, t, c) # Probe the first m layers

10: Σerror ← Σerror + L1rel(y
m
t , ymt+1) # Accumulate caching error

11: if Σerror ≤ δ then
12: yt ← xt +R # Reuse cached residual
13: else
14: yt ← BM ◦ · · · ◦ Bm+1(y

m
t ) # Resume from the probed layer

15: R← yt − xt,Σerror ← 0 # Refresh cache and error accumulator
16: end if
17: end if
18: end for

Dynamic Cache Trajectory Alignment. While Online Probe Profiling Scheme resolves “When
to Cache”, the generation quality is still limited by insufficient cache utilization. To this end, we
further propose a simple yet effective Dynamic Cache Trajectory Alignment (DCTA) strategy to
answer “How to use cache”. Previous works (Lv et al., 2024; Liu et al., 2025b) usually employ
fixed handcrafted rules such as Taylor expansion for utilizing multi-step caches, lacking adaptability
and risking deviation from original results, as depicted in Fig. 1 (c)(3). In this work, we discover
that features from different model layers exhibit similar trajectories. As shown in Fig. 4 (a),
the shallow-layer probe residual from the m-th layer rmt (m = 5 here) and the residual of the
entire model rt display analogous dynamic trends. Since the residual represents the transformation
direction from the latent space input to the velocity space output, for a well-trained DiT, these
directions are generally aligned across different blocks. Therefore, a reliable signal can be derived
from the shallow-layer probe to guide the utilization of multi-step cached residuals for a better
approximation of the current residual.
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(a) Effects of Dynamic Cache Trajectory Alignment on Flux

Vanilla w/o DCTAw/ DCTA (DiCache)

ID Preserved + Better Texture ID Changed + Degraded Texture“a beautiful girl in the garden.”

Vanilla w/ DCTA (DiCache) w/o DCTA

(b) Effects of Dynamic Cache Trajectory Alignment on WAN 2.1

“Sunset view of a city with mountains in the background.” Detail Preserved + Motion Preserved Detail Changed + Motion Changed

Vanilla w/ DCTA (DiCache) w/o DCTA

“cowboy chopping a tree with an axe” Detail Preserved + No Artifact Detail Changed + Artifact Emergence

Figure 5: Effects of Dynamic Cache Trajectory Alignment (DCTA). Best viewed zoomed in.

Assuming the two most recent recomputation timesteps are tα and tβ with tα < tβ , and they cache
model residuals rtα and rtβ , respectively. We compute the current residual in the following form:

rt = rtβ + γt(rtα − rtβ ), (7)

where γt stands for the residual trajectory parameter at timestep t. It characterizes the dynamic trend
of the residual’s feature trajectory at each timestep. By emphasizing such trends of residual changes
across timesteps, Eq. 7 enables a more precise approximation of the current residual compared to
directly using the most recent cache rtα . More discussion on the design of Eq. 7 can be found in
Section F in the appendix. Nevertheless, since the diffusion process is unpredictable, the optimal
value of γt is unknown before the model is inferred at timestep t. Here, we propose to leverage the
online probe feature trajectory to dynamically estimate γt value at each timestep. Specifically, after
computing the probe feature ymt , its corresponding probe residual is calculated as:

rmt = ymt − xt. (8)

Since the probe is computed at each timestep, the ground-truth values of rmt , rmtα and rmtβ are already
available. Therefore, the ideal feature trajectory can be established among them:

rmt = rmtβ + γ̂t(r
m
tα − rmtβ ), (9)

in which the probe residual trajectory parameter γ̂t can be directly solved by:

γ̂t =
L1rel(r

m
t , rmtβ )

L1rel(rmtα , r
m
tβ
)
. (10)

Given the similarity between the probe residual trajectory and the full residual trajectory, γ̂t exhibits
high consistency with γt even under small m values, as shown in Fig. 4 (b). Consequently, γ̂t can
be utilized as an efficient substitute for γt in Eq. 7:

rt = rtβ + γ̂t(rtα − rtβ ) = rtβ +
L1rel(r

m
t , rmtβ )

L1rel(rmtα , r
m
tβ
)
(rtα − rtβ ), (11)

which allows for adaptive adjustment of the trajectory parameter, thereby more accurately estimating
the full residual with multi-step caches and facilitating better visual quality, as illustrated in Fig. 5.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Experimental Settings. We conduct our experiments on three leading DiT-based diffusion models:
WAN 2.1-1.3B (Wan et al., 2025) and HunyuanVideo (Kong et al., 2024) for video generation, and
Flux.1.0-dev (Labs, 2024) for image generation. For hyperparameters, we set probe depth m = 1 for
all three models, while reuse threshold is set as δ = 0.2 for WAN 2.1, δ = 0.1 for HunyuanVideo,
and δ = 0.4 for Flux, respectively. If not specified, experiments are conducted on a single NVIDIA
A800 80GB GPU. More implementation details can be found in Section B in the appendix.
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Baselines. The compared methods encompass (i) two naive acceleration strategies (directly reduc-
ing the number of timesteps by 50% and uniform caching with different static cache intervals) as
well as (ii) various state-of-the-art caching-based methods, including TeaCache (Liu et al., 2025a),
TaylorSeer (Liu et al., 2025b), EasyCache (Zhou et al., 2025) and ToCa (Zou et al., 2024).

Evaluation Metrics. We collect 300 high-quality text prompts from VideoDPO (Liu et al., 2025c)
and VideoFeedback (He et al., 2024) datasets (polished by GPT-4o (Hurst et al., 2024)) for video
generation and 1K captions sourced from the LAION-5B (Schuhmann et al., 2022) dataset for image
generation. Following previous works (Liu et al., 2025a; Zhou et al., 2025), speedup ratio and
latency are reported to measure inference efficiency, while LPIPS (Zhang et al., 2018), PSNR, and
SSIM regarding original results are adopted to assess visual quality.

4.2 COMPARISON TO EXISTING METHODS

Quantitative Evaluation. The quantitative assessments are presented in Tab. 1. We begin by com-
paring DiCache with two basic cache strategies: direct step reduction and uniform caching with a
static caching interval I . Despite their simplicity, they fail to adapt to the dynamic diffusion process,
resulting in considerable quality loss (about 30% SSIM reductions and 40% PSNR loss compared
to DiCache on WAN 2.1). While TaylorSeer achieves an impressive 3.43× speedup on WAN 2.1,
its generation results deviate significantly from the original with an LPIPS of 0.5214. Moreover,
its long-range feature forecast mechanism imposes a severe burden on GPU memory, even encoun-
tering out-of-memory issues on HunyuanVideo when using a single A800 GPU. TeaCache overly
relies on data priors and is prone to overfitting to training prompts, leading to unstable performance
on unseen cases. Though TeaCache-slow maintains relatively acceptable quality at a low acceler-
ation rate, a notable performance drop occurs once pushing acceleration further to TeaCache-fast
(with an LPIPS of 0.2898, a SSIM of 0.8015 and a PSNR of 22.01 on HunyuanVideo). EasyCache
yields suboptimal efficiency across various models due to its inability to precisely capture the dif-
fusion dynamics with an empirical transformation rate metric. In contrast, our proposed DiCache
dynamically determines its caching timings and effectively utilizes multi-step caches based on online
probes, achieving a unification of rapid inference speed and high visual fidelity (e.g., LPIPS 0.1492,
SSIM 0.9396, PSNR 32.79 and 2.34× speedup on HunyuanVideo). On the image generation back-
bone Flux.1.0-dev, the benefits of DiCache become even more pronounced, with markedly superior
performance in efficiency and quality across all evaluated baselines. In addition, DiCache can be
integrated with other acceleration methods to offer even higher speed (detailed in Section 4.3).

Table 1: Quantitative comparison with baselines. The best result is highlighted in bold, while the
second-best result is underlined. “OOM” indicates CUDA out of memory on the A800 80GB GPU.

Model Method LPIPS ↓ SSIM ↑ PSNR ↑ Speedup ↑ Latency (sec) ↓

WAN 2.1

Vanilla (100% steps) - - - 1.00× 192.47
Vanilla (50% steps) 0.4143 0.6304 16.19 1.83× 105.25

Uniform Cache (I = 2) 0.4740 0.5927 15.16 2.39× 80.44
TeaCache-slow (Liu et al., 2025a) 0.1939 0.8374 22.60 1.82× 105.83
TeaCache-fast (Liu et al., 2025a) 0.2161 0.8226 20.97 2.20× 87.58

TaylorSeer (Liu et al., 2025b) 0.5214 0.5485 14.32 3.43× 56.05
EasyCache (Zhou et al., 2025) 0.2013 0.8562 24.80 2.21× 86.96

DiCache (Ours) 0.1734 0.8885 26.45 2.45× 78.42

HunyuanVideo

Vanilla (100% steps) - - - 1.00× 1186.32
Vanilla (50% steps) 0.4138 0.7134 17.90 1.98× 599.65

Uniform Cache (I = 2) 0.4111 0.7132 17.92 1.91× 622.45
TeaCache-slow (Liu et al., 2025a) 0.2762 0.8114 22.41 1.65× 717.21
TeaCache-fast (Liu et al., 2025a) 0.2898 0.8015 22.01 2.20× 538.49

TaylorSeer (Liu et al., 2025b) OOM OOM OOM OOM OOM
EasyCache (Zhou et al., 2025) 0.1558 0.9270 30.71 2.12× 558.71

DiCache (Ours) 0.1492 0.9396 32.79 2.34× 507.24

Flux

Vanilla (100% steps) - - - 1.00× 15.11
Vanilla (50% steps) 0.3679 0.7370 18.04 1.98× 7.63

Uniform Cache (I = 3) 0.4034 0.7013 17.09 2.55× 5.92
TeaCache-slow (Liu et al., 2025a) 0.2810 0.8036 21.81 1.71× 8.86
TeaCache-fast (Liu et al., 2025a) 0.4053 0.7219 18.01 2.82× 5.36

ToCa (Zou et al., 2024) 0.3837 0.7592 20.60 1.52× 9.92
TaylorSeer (Liu et al., 2025b) 0.4709 0.6721 16.63 3.13× 4.83
EasyCache (Zhou et al., 2025) 0.3049 0.7527 19.75 2.49× 6.06

DiCache (Ours) 0.2704 0.8211 22.39 3.22× 4.69

8



Published as a conference paper at ICLR 2026

Out of Memory
on A800 GPU

(a) WAN 2.1 (b) HunyuanVideo (c) Flux

Va
ni
lla

Te
aC
ac
he

Ta
yl
or
Se
er

Ea
sy
C
ac
he

D
iC
ac
he

(a) “A dog walking through the streets of New Orleans.” (b) “a video game maintenance technician arranges a game on the counter.” (c) “racoon eating mango on the beach at the sunset.”“a young girl practicing yoga under a large tree.” 
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Figure 6: Qualitative comparison with previous acceleration methods. Best viewed zoomed in.

Qualitative Comparison. Fig. 6 presents the visual comparison between the proposed DiCache and
other baselines. While TeaCache achieves a notable speedup, the visual quality suffers a significant
degradation. For instance, compared with the vanilla results, the textures of the dog and the road
surface generated by TeaCache exhibit a marked loss. TaylorSeer employs a Taylor expansion-based
feature forecast mechanism to explicitly enhance texture details. However, it often manifests low
similarity to the original results and exhibits abnormal color contrast (especially with Flux). Easy-
Cache adopts a predefined cache law, suffering from inaccurate caching timing determination and
insufficient cache utilization. The results produced by EasyCache deviate from the original results in
critical details such as the dog’s ears and human hands. Moreover, such a heuristic rule sometimes
leads to generation collapse, resulting in degraded outputs (e.g., the “raccoon” case generated by
EasyCache with Flux). In comparison, the proposed DiCache consistently outperforms the base-
lines in terms of both visual quality and similarity to the original results across diverse scenarios and
generation backbones. More visual comparison results are presented in Section C in the appendix.

4.3 COMPATIBILITY WITH OTHER ACCELERATION TECHNIQUES

We analyze the proposed DiCache’s compatibility with other acceleration techniques like sparse
attention and model distillation to demonstrate its flexibility and versatility. Experiments in this
section are conducted on a single NVIDIA H200 140GB GPU.

Compatibility with Sparse Attention. We integrate DiCache with the advanced sparse attention
method Sparse VideoGen (SVG) (Xi et al., 2025) on HunyuanVideo (720 × 1280 resolution, 129
frames). As depicted in Fig. 14 in the appendix, by combining DiCache with SVG, we achieve a
3.08× speedup with negligible loss in visual quality. Moreover, as shown in Tab. 2, the incorporation
of DiCache into SVG leads to a significant improvement in efficiency compared to using SVG alone
(from 1.67× speedup to 3.08× speedup), without a noticeable degradation in quantitative metrics.

Table 2: DiCache’s compatibility with the sparse attention method Sparse VideoGen (SVG).

Model Method LPIPS ↓ SSIM ↑ PSNR ↑ Speedup ↑ Latency (sec) ↓

HunyuanVideo
Vanilla - - - 1.00× 1747.30

+ SVG (Xi et al., 2025) 0.1760 0.9034 28.18 1.67× 1047.63
+ SVG (Xi et al., 2025) + DiCache 0.2051 0.8882 27.20 3.08× 567.45

Compatibility with Model Distillation. We combine DiCache with the distilled version of WAN
2.1-14B (by AccVideo (Zhang et al., 2025a), with 10 sampling steps), achieving a notable accelera-
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tion without compromising visual quality. The quantitative evaluation is presented in Tab. 3, while
the qualitative results are shown in Fig. 16 in the appendix.

Table 3: DiCache’s compatibility with the model distillation method AccVideo.
Model Method LPIPS ↓ SSIM ↑ PSNR ↑ Speedup ↑ Latency (sec) ↓

WAN 2.1-14B AccVideo (Zhang et al., 2025a) - - - 1.00× 48.24
AccVideo (Zhang et al., 2025a)+ DiCache 0.2737 0.7432 19.72 1.56× 30.98

4.4 ABLATION AND ANALYSIS

We conducted ablation studies on the video generation model HunyuanVideo, as shown in Tab. 4.

Choice of Probe Depth m. m determines the number of DiT blocks/layers that are probed at each
sampling step. Empirically, a larger m leads to more accurate cache timing decisions but also incurs
a higher probe time cost. However, as illustrated in Fig. 3 (d), L1rel(y

m
t , ymt+1) and L1rel(y

M
t , yMt+1)

already exhibit a strong correlation when m is very small (m ∈ [1, 3]). Therefore, m = 1 is chosen
to offer higher efficiency. Ablation results on probe depth m are presented in Tab. 4 (a).

Choice of Reuse Threshold δ. The value of δ stands for the tolerance level for caching errors (i.e.,
the trade-off between quality and efficiency). As depicted in Tab. 4 (b), adopting a smaller δ yields
superior visual quality, yet concurrently results in increased latency, as the model is inferred at more
timesteps. Conversely, a larger δ facilitates higher inference speed but entails a certain degree of
quality loss. δ = 0.1 is chosen in our experiments to strike a balance between quality and efficiency.

Effects of Dynamic Cache Trajectory Alignment (DCTA). Dynamic Cache Trajectory Alignment
aims at better approximating features at the current timestep through combining multi-step caches
based on shallow-layer probe feature trajectory. As shown in Fig. 5 and Tab. 4 (c), Dynamic Cache
Trajectory Alignment leads to improved visual quality and similarity regarding original results. Ad-
ditional visual ablation results of DCTA are presented in Fig. 15 in the appendix.

Table 4: Ablation experiments on DiCache components and hyperparameters.

Components Values & Choices LPIPS ↓ SSIM ↑ PSNR ↑ Speedup ↑ Latency (sec) ↓

(a) Probe Depth m
m = 5 0.1367 0.9495 33.47 2.10× 563.68
m = 3 0.1397 0.9472 33.30 2.20× 539.83
m = 1 0.1492 0.9396 32.79 2.34× 507.24

(b) Reuse Threshold δ

δ = 0.20 0.1886 0.8980 29.81 2.90× 408.62
δ = 0.15 0.1665 0.9131 30.92 2.62× 452.33
δ = 0.10 0.1492 0.9396 32.79 2.34× 507.24
δ = 0.08 0.1305 0.9433 34.03 2.10× 564.73
δ = 0.05 0.1047 0.9584 35.45 1.76× 672.20

(c) DCTA w/o 0.1517 0.9314 31.98 2.34× 506.82
w/ 0.1492 0.9396 32.79 2.34× 507.24

5 CONCLUSION

We present DiCache, a novel training-free adaptive caching strategy for accelerating diffusion mod-
els at runtime. DiCache consists of Online Probe Profiling Scheme and Dynamic Cache Trajectory
Alignment, the former dynamically determines caching timings based on a shallow-layer online
probe, while the latter adaptively utilizes multi-step caches according to the probe feature trajectory.
Extensive experiments validate the effectiveness of DiCache on various leading diffusion models.
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A APPENDIX

In the appendix, we present additional implementation details (Section B), additional qualitative
results (Section C), text prompts used in both the main paper and appendix (Section D), more anal-
ysis on the choice of reuse threshold (Section E), more discussion on Dynamic Cache Trajectory
Alignment (Section F), the limitations of our method (Section G), the ethical statement (Section H),
the reproducibility statement (Section I), the declaration on LLM usage (Section J), as well as the
description of supplementary material K, as a supplement to the main paper.

B ADDITIONAL IMPLEMENTATION DETAILS

The detailed configurations adopted by each model in the main experiments are as follows: (832×
480 resolution, 81 frames, 50 sampling steps) for WAN 2.1, (544 × 960 resolution, 129 frames, 50
sampling steps) for HunyuanVideo, and (1024× 1024 resolution, 30 sampling steps) for Flux.

C ADDITIONAL QUALITATIVE RESULTS

In this section, we present more visual comparison results between DiCache and existing caching-
based methods in Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12, along with accelerated results
using the same prompts and different random seeds (0/1/2) presented in Fig. 13.

D TEXT PROMPTS

All text prompts used to generate images or videos in this paper are listed in Tab. 8.

E MORE ANALYSIS ON THE CHOICE OF REUSE THRESHOLD

Admittedly, the recommended value of the reuse threshold δ varies across models, but the differences
are relatively minor. These variations arise from the differences among DiT models with different
training data and architectures (e.g., Flux is a T2I model with 57 layers and 12B parameters, while
WAN 2.1-1.3B is a T2V model with 30 layers and 1.3B parameters). A potential way to calibrate
δ for a new model is to perform a simple one-dimensional sweep over a commonly used threshold
range (e.g., a δ ∈ [0.1, 0.5] is recommended since it has shown effectiveness across most tested
models) using a step size of 0.05 or 0.1. Furthermore, once the value of δ is determined, it exhibits
strong stability across different samples within the same model. Specifically, we sample 1K diverse
prompts (the same evaluation set as the main paper) from the LAION-5B dataset and use Flux for
image generation. The results demonstrate that DiCache not only maintains the lowest LPIPS but
also exhibits the lowest LPIPS variance compared to state-of-the-art methods (as shown in Tab. 5),
indicating its stable performance across diverse samples and strong generalization capability.

Table 5: Mean and Variance of LPIPS on Flux
Method Mean (LPIPS)↓ Variance (LPIPS)↓
TeaCache (Liu et al., 2025a) 0.4053 0.010
TaylorSeer (Liu et al., 2025b) 0.4709 0.007
EasyCache (Zhou et al., 2025) 0.3049 0.008
DiCache (Ours) 0.2704 0.004

F MORE DISCUSSION ON DYNAMIC CACHE TRAJECTORY ALIGNMENT

In this section, we provide a deeper analysis on the design of Dynamic Cache Trajectory Alignment.
As described in the main paper, considering the two most recent cached model residuals rtα and rtβ
with corresponding timesteps tα < tβ , we estimate the current model residual rt as:

rt = rtβ + γt(rtα − rtβ ), (12)

in which γt stands for the residual trajectory parameter which we dynamically obtained from Eq. 10.
Actually, Eq. 12 is in the form of a first-order approximation (with respect to directly using rt = rtα ,
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i.e. a zero-order approximation adopted by previous works (Liu et al., 2025a; Zhou et al., 2025)).
Since the model residual rt is a continuously timestep-varying feature with a stable trajectory (as
shown in Fig. 4 (a)), utilizing multi-order historical caches for estimation can effectively improve
the accuracy of the approximation, as evidenced by the visual comparison results in Fig. 5 and the
quantitative ablation results in Tab. 4 (c). Given the effectiveness of Eq. 12, a natural extension
is to scale this approach to higher orders. Assuming the recomputation timesteps for a diffusion
process form a sequence t0, t1, t2, · · · , tk (t0 < t1 < t2 < · · · < tk), the k-th order Dynamic Cache
Trajectory Alignment can be formulated as:

rt = rt0 +

k∑
i=1

γt · ξi−1 · (rt0 − rti), (13)

in which rti denotes the cached model residual at timestep ti (i ∈ [0, k]) and ξ ∈ [0, 1] is a decay
factor that controls the weights of different historical caches in the combination. Similarly, such a
relationship can also be established among k-th order probe residuals rmt0 , r

m
t1 , r

m
t2 , · · · , r

m
tk

with a
probe depth m:

rmt = rmt0 +

k∑
i=1

γ̂t · ξi−1 · (rmt0 − rmti ), (14)

in which γ̂t represents the probe residual trajectory parameter. Since rmt0 , r
m
t1 , r

m
t2 , · · · , r

m
tk

and rmt
are already computed, γ̂t can be solved by:

γ̂t =
L1rel(r

m
t , rmt0 )∑k

i=1 ξ
i−1 · L1rel(rmt0 , r

m
ti )

. (15)

Following the main paper, γ̂t is substituted into Eq. 13 to replace γt:

rt = rt0 +

∑k
i=1 ξ

i−1 · L1rel(r
m
t , rmt0 ) · (rt0 − rti)∑k

i=1 ξ
i−1 · L1rel(rmt0 , r

m
ti )

. (16)

To evaluate the benefits of increasing the order of multi-step cache utilization, we randomly sam-
pled 500 prompts from the LAION-5B (Schuhmann et al., 2022) dataset and conducted quantitative
ablation experiments on Flux (1024 × 1024 resolution). Similar to Section 4.3, experiments in this
section are conducted on a single NVIDIA H200 140GB GPU. The decay factor ξ is set as 0.5. As
can be observed in Tab. 6, the benefits of further increasing the cache utilization order k are relatively
minor compared to the performance gain from zero-order to first-order approximation. In addition,
storing features at more timesteps can impose a greater memory burden, especially for video gen-
eration models with a large number of frames (e.g., HunyuanVideo). Considering both simplicity
and efficiency, we adopt the first-order approximation for Dynamic Cache Trajectory Alignment.

Table 6: Ablation study on the order of multi-step cache utilization in Dynamic Cache Trajec-
tory Alignment. The performance gain is measured using the reduction ratio of LPIPS.

Model Components Values & Choices LPIPS ↓ SSIM ↑ PSNR ↑ Performance Gain (w.r.t. k = 0)

Flux Cache Order k

k = 0 0.2930 0.8166 21.83 0.00%
k = 1 0.2691 0.8245 22.43 8.16% (+8.16%)
k = 2 0.2686 0.8228 22.16 8.33% (+0.17%)
k = 4 0.2710 0.8269 22.55 7.51% (-0.82%)

G LIMITATION AND FUTURE WORKS

Despite the advancements of DiCache in accelerating diffusion models, it faces certain constraints.
Specifically, the two principal components of DiCache both rely on the online probe at runtime.
Even though we have validated that probing shallow layers is sufficient (e.g., for the 57-layer Flux
model, probe only the first layer with a probing rate of 1/57 ≈ 0.018) , the current probing paradigm
still incurs a certain amount of time cost. Future works can focus on exploring ways to further reduce
the probing cost, thereby more efficiently obtaining the output dynamics in the diffusion process.

In addition, we provide a comparison of the probing cost Tprobe across different architectures, as well
as the ratio of the probing cost to the total inference time with DiCache (Tprob/Tall), as shown in
Tab. 7. Since DiT models are typically deep while DiCache introduces only shallow-layer probing,
the overall additional cost incurred by the probing operation is relatively minimal.
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Table 7: Probing cost of different models.
Model Tprobe (sec) Tprobe/Tall

Flux 0.19 4%
WAN 2.1-1.3B 3.98 5%
HunyuanVideo 11.47 2%

H ETHICAL STATEMENT

In this research, we affirm our commitment to upholding ethical standards in research and promoting
responsible innovation. As far as we are aware, our study does not entail any data, methodologies,
or applications that pose ethical issues. All experiments and analyses were carried out in accordance
with established ethical guidelines, thereby ensuring the integrity and transparency of our research.

I REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our research and to contribute to the broader academic community,
we will publicly release the source code of DiCache. At the current stage, a code implementation of
DiCache (for HunyuanVideo and Flux) is available in the zip archive included in the supplementary
material. We hope these resources will provide a reference for future caching-based acceleration
studies, thereby fostering innovation and accelerating progress within the community.

J DECLARATION ON LLM USAGE

In this paper, we use LLMs only for minor language polishing.

K SOURCE CODE AND DEMO VIDEO

We provide the code implementation (for HunyuanVideo and Flux) and a demo video of DiCache
for reference in the zip archive included in the supplementary material.
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“A woman is holding a stick in front of a group of people with smoke and fire in the background.”
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“Eagle Is Flying Over The Largest City Of Moldova.”
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“A man is driving a sports car.” Zoomed In

Figure 7: More qualitative comparison results on HunyuanVideo (1/2). Best viewed zoomed in.
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“black and white cat scratches itself with foot.”
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“A 3D anime hamster drives a go-kart in a zoo.”

Zoomed In
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“a child putting together a puzzle.” Zoomed In

Figure 8: More qualitative comparison results on HunyuanVideo (2/2). Best viewed zoomed in.
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“Iron Man flies in the sky.”
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“Gandalf relaxing on a beach, huge tropical drink in hand, cinematic shot, 35 mm lens.”
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“A child standing and talking to his three brothers.”

Figure 9: More qualitative comparison results on WAN 2.1 1.3B. Best viewed zoomed in.
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“a anime fight between the character goku from dragon ball z and saitama from one punch man.”
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“An asian man in a red suit is talking to the camera and gesturing with his hands.”
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“A fishing boat is sailing on the sea with an industrial plant in the background.”

Figure 10: More qualitative comparison results on WAN 2.1 14B. Best viewed zoomed in.
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Vanilla
1.00× Speedup

DiCache (Ours)
𝟑. 𝟐𝟐× Speedup

TaylorSeer
3.13× Speedup

EasyCache
2.49× Speedup

TeaCache
2.82× Speedup

“Low-angle shot of a 
2004 chrysler 300 pulling 

up to a curb.”

“miama retro style, an 
apartment which 

overlooks the city and 
outside the window are 
palm trees, the city and 

the ocean.”

“lebron james scores a 
beautiful goal in a 
football match.”

“Close up of a 
hamburger and potatoes 

on a plate.”

“An angel with white 
wings sits in the 

background of a field of 
flowers.”

“Spider man travelling in 
assam in a full flood 

situation.”

“A man and woman are 
sitting on a blue couch 
with a dog in front of a 

television.”

“lua explodindo.”

“The person wearing 
square glasses, 

accompanied by a garden 
dog.”

“ancient fright text that 
glows purple in a black 

light. horror like 
atmosphere. 2d Indie 

game vibe.”

Figure 11: More qualitative comparison results on Flux (1/2). Best viewed zoomed in.
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Vanilla
1.00× Speedup

DiCache (Ours)
𝟑. 𝟐𝟐× Speedup

TaylorSeer
3.13× Speedup

EasyCache
2.49× Speedup

TeaCache
2.82× Speedup

“a cinematic realistic 
scene of an boy 

wondering in the forest.”

“Display the princess 
forming alliances with a 

diverse group of 
characters.”

“Show a beautiful baby 
pigeon fledgling perched 

on a rooftop.”

“A group of people 
taking pictures of a 

yellow porsche car.”

“logo with ninja in it, 
with a cinematic look, 

high resolution, blend of 
blue and white color.”

“a short red fuzzy 
cyclops with a purple 
bandana around neck 

walking through the new 
mexico desert.”

“fiddler on the roof.”

“a beautiful sleek black  
jaguar taking a leap into 

the jungle.”

“A robot is solving a 
Rubik's cube.”

“trading countdown of 5 
seconds.”

Figure 12: More qualitative comparison results on Flux (2/2). Best viewed zoomed in.
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“A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red 
dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and 

reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about”
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“A cat walks on the grass, realistic style.”

Figure 13: Generated results using same prompts and different seeds on WAN 2.1 14B.
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“A young man is talking into a microphone at night.”
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“A cute kitten playing in a cat bed.”

Figure 14: DiCache can be integrated with the sparse attention method Sparse VideoGen.
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(a) Ablation Study of Dynamic Cache Trajectory Alignment on Flux

Vanilla w/o DCTAw/ DCTA (DiCache)

Detail Preserved + Better Texture Detail Changed + Degraded Texture“Photo of a double beef cheeseburger.”

Vanilla w/ DCTA (DiCache) w/o DCTA

(b) Ablation Study of Dynamic Cache Trajectory Alignment on WAN 2.1

“a diver encounters large manta ray under water.” Motion Preserved + Detail Preserved Motion Changed + Degraded Detail

Vanilla w/ DCTA (DiCache) w/o DCTA

“lions are running on the ocean surface” ID Preserved + Pose Preserved ID Changed + Pose Changed

“Beautiful girl walking in the snow.” ID Preserved + Motion Preserved ID Changed + Motion Changed

Figure 15: Additional ablation experiments on Dynamic Cache Trajectory Alignment (DCTA).
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A cute Pikachu emerges from a snow pile.

The young monk is sitting and reading scriptures.

A red sports car is speeding along a road surrounded by trees.

Figure 16: Performance of DiCache on the distilled WAN 2.1 14B model.
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Table 8: The text prompts for each figure are listed sequentially, following the order from left to
right and top to bottom.

Figure Text Prompt

Figure 1

A teddy bear is playing drum kit in Times Square.
Harry Potter is talking to his classmate.
Christmas village, cute, snowing, nighttime, cinematic illumination, starry night
a long eared cat with stripes walking and blinking towards the camera on a hill

Figure 5
cowboy chopping a tree with an axe
a beautiful girl in the garden.
Sunset view of a city with mountains in the background.

Figure 6

A dog walking through the streets of New Orleans.
a video game maintenance technician arranges a game on the counter.
racoon eating mango on the beach at the sunset.
a young girl practicing yoga under a large tree.

Figure 7
A woman is holding a stick in front of a group of people with smoke and fire in the background.
Eagle Is Flying Over The Largest City Of Moldova.
A man is driving a sports car.

Figure 8
black and white cat scratches itself with foot.
A 3D anime hamster drives a go-kart in a zoo.
a child putting together a puzzle.

Figure 9
Iron Man flies in the sky.
Gandalf relaxing on a beach, huge tropical drink in hand, cinematic shot, 35 mm lens.
A child standing and talking to his three brothers.

Figure 10

A fishing boat is sailing on the sea with an industrial plant in the background.
action movie of a female super hero with short hair in a vampire castle.
a anime fight between the character goku from dragon ball z and saitama from one punch man.
An asian man in a red suit is talking to the camera and gesturing with his hands.

Figure 11

Low-angle shot of a 2004 chrysler 300 pulling up to a curb.
miama retro style, an apartment which overlooks the city and outside the window are palm trees, the city
and the ocean.
lebron james scores a beautiful goal in a football match.
Close up of a hamburger and potatoes on a plate.
An angel with white wings sits in the background of a field of flowers.
Spider man travelling in assam in a full flood situation.
A man and woman are sitting on a blue couch with a dog in front of a television.
lua explodindo.
The person wearing square glasses, accompanied by a garden dog.
ancient fright text that glows purple in a black light. horror like atmosphere. 2d Indie game vibe.

Figure 12

a cinematic realistic scene of an boy wondering in the forest.
Display the princess forming alliances with a diverse group of characters.
Show a beautiful baby pigeon fledgling perched on a rooftop.
A group of people taking pictures of a yellow porsche car.
logo with ninja in it, with a cinematic look, high resolution, blend of blue and white color.
a short red fuzzy cyclops with a purple bandana around neck walking through the new mexico desert.
fiddler on the roof.
a beautiful sleek black jaguar taking a leap into the jungle.
A robot is solving a Rubik’s cube.
trading countdown of 5 seconds.

Figure 13

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage.
She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears
sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating
a mirror effect of the colorful lights. Many pedestrians walk about
A cat walks on the grass, realistic style.

Figure 14

video of santa clause tired drinking coffee nescafe.
a little girl looking to a hedgehog with love and trying to hug the hedgehog in the arm.
A young man is talking into a microphone at night.
A cute kitten playing in a cat bed.

Figure 15

lions are running on the ocean surface
Photo of a double beef cheeseburger.
a diver encounters large manta ray under water.
Beautiful girl walking in the snow.

Figure 16
A cute Pikachu emerges from a snow pile.
The young monk is sitting and reading scriptures.
A red sports car is speeding along a road surrounded by trees.
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