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Abstract

Recently, very large language models (LLMs)
have shown exceptional performance on sev-
eral English language NLP tasks with just
in-context learning (ICL), but their utility in
other languages is still underexplored. We
investigate their effectiveness for NLP tasks
in low-resource languages (LRLs), especially
in the setting of zero-shot cross-lingual trans-
fer (0-CLT), where task-specific training data
for one or more related medium-resource lan-
guages (MRLs) is available. We introduce Self-
Supervised Prompting (SSP), a novel ICL ap-
proach for the 0-CLT setting.

SSP is based on the key observation that LLMs
output more accurate labels if in-context exem-
plars are from the target language (even if their
labels are slightly noisy). To operationalize
this, since target language training data is not
available in 0-CLT, SSP operates in two stages.
In Stage I, using source MRL training data, tar-
get language’s test data is noisily labeled. In
Stage II, these noisy test data points are used
as exemplars in ICL for further improved label-
ing. Additionally, our implementation of SSP
uses a novel Integer Linear Programming (ILP)-
based exemplar selection that balances similar-
ity, prediction confidence (when available) and
label coverage. Experiments on three tasks and
twelve LRLs (from three regions) demonstrate
that SSP strongly outperforms fine-tuned and
other prompting-based baselines.

1 Introduction

Very large language models (LLMs) such as GPT-
3.5-Turbo & GPT-4 (Ouyang et al., 2022; Achiam
et al., 2023) show exceptional performance on a
variety of NLP and reasoning tasks via In-Context
Learning (ICL) (Brown et al., 2020; Chowdhery
et al., 2022). ICL feeds a task-specific instruction
along with a few exemplars, appended with the test
input, to the LLM. As LLMs can be highly sensitive
to exemplars (Zhao et al., 2021), exemplar retrieval
is crucial for ICL.
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Figure 1: Llama2 70B, prompted with target LRL exem-
plars, along with artificially injected label noise (x-axis).
Dashed lines represent performances when prompted
with source MRL exemplars.

While LLMs have shown excellent performance
on English tasks, their utility on other languages
is relatively underexplored. In this work, we study
zero-shot cross-lingual transfer (0-CLT) to low-
resource languages (LRLs) — a setting where la-
beled task data from one or more related medium-
resource languages (MRLs) is available, but no
labeled training data exists for the target LRL.

Cross-lingual transfer has been addressed
through standard fine-tuning (Muller et al., 2021;
Alabi et al., 2022), and language adapters (Pfeif-
fer et al., 2020; Ustiin et al., 2020; Rathore et al.,
2023), but there is limited work on cross-lingual
ICL. There are two exceptions (Ahuja et al., 2023;
Asai et al., 2023), where ICL is employed with
exemplars from a source language, but they use
uniformly random sampling for exemplar selection,
resulting in performance inferior to cross-lingually
fine-tuned models, such as mBERT and XLM-R
(Devlin et al., 2019; Conneau et al., 2020).

In our preliminary experiments, we prompt the
Llama2-70B model with exemplars from source
MRLSs, and compare it’s performance with the same
LLM prompted with exemplars from the target



LRL. We vary the label noise on the target exem-
plars. Unsurprisingly, LLMs show better perfor-
mance with less label noise. More interestingly, we
find that a reasonably-sized noise region exists (see
Figure 1), such that if the exemplar noise is within
that range, then the overall performance is higher
than prompting with source language data.

Armed with this observation, we present Self-
Supervised Prompting (SSP) — a novel ICL frame-
work for 0-CLT to LRLs. Since the target LRL
training data is not available in 0-CLT, SSP oper-
ates in two stages. In Stage I, SSP labels all test
instances of LRL using training data from MRL.
This may be done by LLM prompting (as in the
experiment above), or using any other existing
approaches for 0-CLT, such as by fine-tuning or
adapters. Once (noisy) labels on target LRL are ob-
tained, in Stage II, SSP uses ICL using these noisy
test data points (except itself) as exemplars for fur-
ther performance improvement. Additionally, to
select the best exemplars, we develop a novel In-
teger Linear Programming (ILP) based selection
approach, which balances the various objectives
of (1) similarity of exemplar with test sentence,
(2) high confidence in label predictions, and (3)
coverage of the various labels for better task un-
derstanding. Figure 2 gives an overview of our
proposed pipeline.

We perform experiments on sequence labeling
tasks (POS and NER), and natural language infer-
ence (NLI) — a text classification task. Our datasets
encompass twelve low-resource languages from
typologically diverse language families and three
regions: African, Germanic and American. Our
experiments show consistent and substantial im-
provements over existing fine-tuning as well as
simpler ICL-based approaches. We will make both
our codebase and prompts publicly accessible.

Our contributions are summarized as follows:

1. We investigate ICL strategies for the task
of zero-shot cross-lingual transfer to low-
resource languages, utilizing the labeled data
from related languages.

2. We propose SSP, a two-stage self-adaptive
prompting paradigm for this task, where the
first stage may be done by an LLM or other
cross-lingual transfer models.

3. We introduce an exemplar selection approach
that utilizes an ILP. The ILP incorporates sim-
ilarity to test input along with confidence of
prediction (when available), and enforces la-
bel coverage constraints for better selection.

4. Experiments on 3 tasks and 11 languages
show that SSP outperforms existing fine-
tuning, adapter and LLM-based SoTA models.

2 Related Work

An ICL prompt consists of (1) task description:
to facilitate the understanding of task, (2) labeled
input-output pairs: Written sequentially in order of
their relevance to input query, and (3) input itself.
Cross-lingual ICL: In general, cross-lingual ICL
has not been systematically explored in literature.
In existing works, prompting is primarily done in a
high-resource language, typically English. This is
called cross-lingual (CL) prompting. This differs
from in-language (IL) prompting, where examples
are retrieved from the candidate pool of the target
language itself. This assumes the availability of
labeled data for target LRL, which is not true in our
zero-shot setting. In response, we develop novel
techniques making use of both CL prompting and
IL prompting, while not utilizing the gold labels
during IL prompting stage.

Most existing cross-lingual ICL methods use
uniformly random input-output pairs for exem-
plar selection (Zhang et al., 2021; Winata et al.,
2021; Ahuja et al., 2023; Asai et al., 2023). Re-
cent approaches (Agrawal et al., 2022; Tanwar
et al., 2023) address this gap by utilizing semantic
similarity for cross-lingual retrieval from a high-
resource language’s labeled data, given the target
LRL’s instance as query. This is facilitated by
embedding-based multilingual retrievers such as
multilingual sentence-transformers (Reimers and
Gurevych, 2020). More recently, OpenAl-based
embeddings such as Ada-002' have been used ef-
fectively for cross-lingual retrieval (Nambi et al.,
2023). We extend this line of work by also in-
corporating label confidence and label coverage in
exemplar selection.

Self-Adaptive Prompting: Wan et al. (2023) pro-
posed Universal Self-Adaptive (USP) framework,
which has been explored only for monolingual (En-
glish) setting. USP uses an external unlabeled
dataset of instances and labels them using LLM in
Stage . It then samples multiple Chain-of-thought
(CoT) paths to estimate the logits using the same
LLM, and then utilizes the entropy of logits for
exemplar selection for Stage 2. Our work has simi-
larities to USP in that both methods are two-stage
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prompting approaches. USP is different from SSP
in that the former is much more expensive, since it
requires multiple LLM runs to estimate logits. USP
also does not use any exemplars (and only uses task
description), which are quite important for better
performance. Finally, USP has only been applied
for English tasks, and has not been explored for
cross-lingual tasks.

Fine-tuning approaches for Cross-lingual Trans-
fer: Most approaches rely on fine-tuning a Pre-
trained LM (PLM) such as BERT or XLM-R on
one or more source languages ((Muller et al., 2021;
Alabi et al., 2022)) and deploying on an unseen tar-
get language. Recently, Language-Adapter based
approaches have been found more effective (Ustiin
et al., 2020) for cross-lingual transfer settings.
For sequence labeling tasks (NER and POS tag-
ging), ZGUL (Rathore et al., 2023) is a recent
SOTA method that leverages ensembling Language
Adapters from multiple MRLs to label each word in
a target language. We leverage this in our proposed
SSP pipeline.

3 Self-Supervised Prompting

We define the setting of zero-shot cross-lingual
transfer (0-CLT) as follows. We are given
source training data for a specific task: D =
{(x4,1g:,yi)}, where z; is the input text in lan-
guage lg;, and the output is y;. We are additionally
given a set of unlabeled test data points 7' = {g; }
from a target language lg;. Our goal is to train a
model/create a protocol, using D, T" and a large
pre-trained LLM, that outputs good predictions on
T for the task, assuming that /g, is a low-resource
language, due to which its training data is not avail-
able, and that languages lg; are related to lg;.

Our solution approach, Self-Supervised Prompt-
ing (SSP), comprises two key stages as follows. In
Stage I, it proposes a noisy labeling for all data
points in 7" using source data . This may be done
in different ways, as described next. In Stage II, it
uses the LLM and noisy labeling on 7" from Stage
I as exemplars to improve the labelings. Further-
more, SSP uses a novel integer-linear programming
based exemplar selection. We now describe each
component of our system.

3.1 Stage I: initial labeling using source data

To create a first labeling for all test points, SSP
can use any existing approaches for 0-CLT, such as
fine-tuning a multilingual language model for the

task, or use of language adapters or using our LLM
with in-context exemplars from source language.
In our experiments, we experiment with adapters
and ICL, which we briefly describe next.

Cross-Lingual ICL: In the method, we use ICL
over LLM for obtaining Stage I labelings. First,
we retrieve a set of top-K exemplars from D using
each test instance g; as query. This selection is
based on cosine similarity between their Ada-002
embeddings. The selected exemplars are arranged
in descending order of similarity scores, and in-
cluded in the prompt between the task description
(TD) and the input test instance. This approach has
two drawbacks. First, since the LLM will typically
be a large expensive model — this will require an
LLM call per test data point in Stage I. Second,
generally, these LLMs do not expose their logits,
hence, we will not have access to prediction confi-
dences from Stage I labelings.

Training smaller model(s) using D: Another
possibility is to fine-tune a smaller multilingual
LM, such as mBERT or mDeBerta-v3 (He et al.,
2021) on D for NLI task. For sequence labeling,
we can use ZGUL (Rathore et al., 2023), which
trains source language adapters using D, and uses
inference-time fusion of source adapters for label-
ing test data points. These approaches can provide
Stage I labelings for 7" along with prediction confi-
dences, without making any expensive LLM calls.

3.2 Stage II: in-language ICL using
ILP-based exemplar selection

After Stage I predictions for target instances 7" are
obtained, SSP prompts the LLM to label each test
data point ¢ € T, but uses in-context exemplars
in target language using Stage I labelings. For ex-
emplar selection, SSP implements a novel integer
linear program (ILP) that balances semantic simi-
larity, prediction confidence (when available) and
label coverage.

Our primary objective is to maximize the aggre-
gated semantic similarity of the selected exemplars,
which is obtained using cosine similarity score be-
tween their OpenAl Ada-v2 embeddings. In addi-
tion, we impose two constraints:

» Label Coverage: The ILP tries to ensure the
coverage of all labels for the given task in
the selected exemplars — this has been found
effective for ICL (Min et al., 2022).

* Confidence: In case Stage I predictions are
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Figure 2: SSP Paradigm for Cross-Lingual Transfer to target low-resource language

made by a model whose logits are accessible
(unlike the OpenAl LLMs), the ILP prefers
selection of more confident exemplars. Our
hypothesis is that confident predictions are
also accurate (assuming the model is well-
calibrated), and previous work has shown that
performance of LLMs can be sensitive to cor-
rectness of exemplars (Wei et al., 2023)

SSP formulates these three factors into an ILP as
follows. For a dataset D with n examples indexed
from Z = {1...n}, given a test data point ¢;, let
2; be a binary variable denoting whether i test
instance g; is selected as an exemplar. We use a
semantic similarity function sim(g;, ¢;) to get the
similarity between two examples. K is the number
of exemplars to be selected. Since g; cannot be
an exemplar for itself, we select exemplars from
T\ {;} only.

Let the set of all labels in the task be £, and the
multiset of all labels predicted (using argmax) for
example ¢; be L;. The Stage I prediction confi-
dence for label [ in g; is denoted as g)f This confi-
dence is computed as average of probability scores
across all predictions of label [ in i** sentence (de-
tails in Appendix A). The ILP uses a threshold 7
for prediction confidence for a label {. Intuitively,
the ILP maximizes the semantic similarity of K
chosen exemplars, subject to each label [ being
present at least once in the exemplars, and average
prediction confidence of each data point for each
label being greater than 7;.>

2Although we express constraints (3) and (4) as a hard
constraint, they are implemented as soft constraints (added in
the primary objective) following standard practices of approx-
imate solvers such as Gurobi

Formally, the ILP is formulated as

max Z z; - sim(g;, q;) €))
i€\ {j}
such that Z zi=K )
i€T\{j}
zi- (9 —m) >0VieZ\{j},YIieL; (3)
Z zi-count(L;, 1) > 1VIe L (G

i€Z\{j}

Here count(L;,[l) denotes the number of oc-
curences of [ in L;. In our experiments, we set
K = 8, and 7; = 80" percentile threshold of the
set {g)l’ i, for a particular label /. The idea is to
have label-specific threshold since the fine-tuned
model may not have same calibration for all labels.

Since logits are not accessible for OpenAl LLMs
GPT-3.5 and GPT-4x, in case Stage I labeling is
done by either of these models using ICL, we skip
the confidence thresholding constraint of ILP. This
means that for this variant of SSP, the selection is
made based on only similarity and label coverage.

4 Experiments

Our main experiments assess SSP performance
compared to existing state-of-the-art models for
0-CLT. We also wish to compare various SSP vari-
ants, and estimate the value of the ILP-based exem-
plar selection.

4.1 Tasks and Datasets

We experiment on three tasks — POS tagging, NER
and Natural Language Inference (NLI). We use
the Universal Dependency dataset (Nivre et al.,
2020) for POS tagging over Germanic languages,



Model Hau 1Ibo Kin Lug Luo | Avg. || Fo Got Gsw | Avg
Full Fine-Tuning (FFT) 499 549 554 563 402 | 513 || 776 178 62 52.5
CPG (Ustiin et al., 2020) 48.6 504 526 543 386|489 || 773 169 639 | 52.7
ZGUL 522 56 537 545 444 | 522 || 772 21.1 65 54.4
ICL-Llama-2-70b 643 612 592 60.1 473 | 584 || 79.1 360 71.8 | 623
ICL-GPT-3.5-turbo 545 692 578 637 464 | 583 || 81.2 379 722 | 63.8
ICL-GPT-4x 647 80.8 64.6 710 533 | 669 || 81.3 665 823 | 76.7
SSP(ICL)-1lama-2-70b 57.6 62.6 56.0 57.6 43.1 | 554 || 785 379 735 | 633
SSP(ICL)-GPT-3.5-turbo ~ 62.8 684 640 638 476 | 613 || 824 632 794 | 750
SSP(ICL)-GPT-4x 672 79.6 633 741 544 | 677 || 81.8 737 854 | 80.3
SSP(ZGUL)-Llama-2-70b  68.4 58 56.1 547 423 | 559 || 799 399 729 | 642
SSP(ZGUL)-GPT-3.5 61.1 689 62.1 671 514 | 621 || 828 675 77 75.8
SSP(ZGUL)-GPT-4x 725 798 714 774 551 | 71.2 || 822 71.5 85.6 | 79.8
w/o Conf. thresholding 713 819 692 746 527 | 699 || 82.8 57 814 | 73.7
w/o Label Coverage 711 798 714 774 551 | 71 822 716 85.6 | 79.8
w/o both (sim-based) 70.3 81.8 68 748 519 | 694 || 824 558 823 | 735
w/o ILP (Random) 64.1 77,6 61.5 66.1 46.6 | 632 || 80.6 548 809 | 72.1
Skyline (GPT-4x) 755 859 70.7 736 672|746 || 93.5 80.7 89.9 | 88

Table 1: Micro-F1 scores for African NER (left) and Germanic POS (right) (Statistical significance of bold numbers:

McNemar p-value = 0.008 and 0.0004, respectively)

Family ‘ Source languages ‘ Source size
Germanic {En,Is,De} 30000
African {En,Am,Sw,Wo} 19788
American {En,Es} 19998

Table 2: Size (No. of sentences) of Combined Source
language datasets (En - English, Is - Icelandic, De -
German, Am - Amharic, Sw - Swahili, Wo - Woloff, Es
- Spanish)

Family ‘ Test languages ‘ Labels
Germanic {Fo, Got, Gsw} 2370
African {Hau,Ibo,Kin,Lug,L.uo} 1100
American {Aym,Gn,Nah} 501

Table 3: Size (No. of labels) of Target language datasets,
per language, on average. (Fo - Faroese, Got - Gothic,
Gsw - Swiss German, Hau - Hausa, Ibo - Igbo, Kin -
Kinyarwanda, Lug - Luganda, Luo - Luo, Aym - Ay-
mara, Gn - Guarani, Nah - Nahuatl)

MasakhaNER (Adelani et al., 2021) for African
NER, and AmericasNLI (Ebrahimi et al., 2022) for
NLI task on the indigenous languages of Amer-
icas. Overall, we use twelve low-resource test
languages as target (e.g., Kinyarwanda, Faroese,
and Aymara), and 2-4 source languages per dataset
(e.g., Icelandic, Spanish and Swahili; always in-
cluding English). Further details are in Appendix
C. Tables 2 and 3 show the languages and num-
ber of examples in the source and target datasets
respectively.

Recent studies have shown sensitivity of the out-
put to the template/format of input-output pairs
written in the prompt (Sclar et al., 2023; Voronov

et al., 2024). We follow the best template given
in Sclar et al. (2023) for NLI, while for sequence
labeling, we explore various templates on our own
and report our results on the best one. We refer
to Appendix B for details and the exact templates
used for each of our tasks.

For obtaining test set, we randomly sample 100
test samples for each target language for NER and
POS tasks. We justify this as each sentence has
multiple labels, bringing the total no. of instances
to be labeled per language to 2370 and 1100 for
POS and NER respectively. For the NLI task, we
sample 501 test samples (167 for each class: ‘en-
tailment’, ‘contradiction” and ‘neutral’). We report
statistical significance (in table captions) to justify
our evaluation.

We also perform a careful contamination study,
following (Ahuja et al., 2022), by asking LLMs
to fill dataset card, complete sentence (and labels),
given partial sentence, and generate next few in-
stances of the dataset. As further detailed in Ap-
pendix F, we do not observe any evidence of con-
tamination of these languages’ test splits in the Ope-
nAl LLMs, suggesting that OpenAl LLMs have
likely not seen these test datasets during their train-
ing.

4.2 Comparison Models

Baselines: We compare our SSP approach with the
SoTA fine tuning models, as well as LLM-based
ICL methods using naive random exemplar selec-
tion. In particular, we fine-tune ZGUL — mBERT
Language Adapter-based SoTA zero-shot baseline
for NER and POS tagging, and mDeBERTa fine-



Model Aym Gn Nah | Avg.
mDeBerta'% (Laurer et al., 2022) 349 439 489 | 42.6
mDeBerta®” 339 47 469 | 426
ICL-GPT-3.5-turbo 38.2 417 353 | 384
ICL-GPT-4x 32.8 558 422|436
SSP(ICL)-GPT-3.5-turbo 38.4 38.8 432 | 40.1
SSP(ICL)-GPT-4x 375 585 51.8 1493
SSP(ZGUL)-GPT-3.5 43.1 46 46.8 | 45.3
SSP(ZGUL)-GPT-4x 36 61.3 59.2 | 52.2
w/o Conf. thresholding 429 60.1 503 | 51.1
w/o Label Coverage 37 582 574 | 509
w/o both (sim-based) 343 59.7 57.1 | 504
w/o ILP (Random) 334 538 534|469
Skyline (GPT-4x) 55.6 492 60 54.9

Table 4: Micro-F1 scores for Americas NLI (Statistical significance of bold number: McNemar p-value = 0.054)

tuned for NLI. We additionally utilize the public
model mDeBERTa-v3-base-xnli-multilingual-nli-
2mil7 (Laurer et al., 2022) for NLI evaluation. We
term our own fine-tuned model as mDeBERTa’”
and the public model as mDeBERTa'%, as it was
trained on 100 languages (while not covering any
of our target languages). For POS and NER, we
also add full parameter fine-tuning and Conditional
Parameter Generation (CPG (Ustiin et al., 2020))
baselines, fine-tuned using the same underlying
LM (i.e. mBERT) as ZGUL.

SSP Variants: We implement SSP with a se-
ries of top-of-the-line LLMs — GPT-3.5-turbo
(Ouyang et al., 2022), GPT-4x (GPT-4/GPT-4-
Turbo) (Achiam et al., 2023), and LLaMa-2-70b
(Touvron et al., 2023). If Stage I uses ICL, then the
same LLM is used for both stages I and II. Alter-
natively, ZGUL and mDeberta based methods are
also used in Stage I of SSP.

To understand the value of the ILP, we perform
three ablations on exemplar selection strategy —
(a) without confidence thresholding (for fine-tuned
LM), (b) without label coverage and (c) without
both, i.e. pure similarity-based. The ablations
are conducted with the best performing underly-
ing LLM i.e. GPT-4x.

Skyline: To understand the current performance
gap due to lack of target language training data,
we also implement a skyline utilizing the avail-
able data for target languages and perform few-shot
in-language similarity-based exemplar selection
(using Ada-v2 embeddings) for in-language ICL to
the LLM.

5 Results and Analysis

We present the results for all tasks in Tables 1,
and 4. ICL-X represents ICL over an LLM X
with source language exemplars. SSP(model)-X
represents the use of model for Stage I followed by
LLM X for Stage II. In case ICL is used in Stage I,
then same LLLM X is used in both stages.

Analyzing the results, we first observe that all
ICL-X baselines perform much better than previ-
ous fine-tuning approaches for the 0-CLT task. This
reaffirms the importance of studying and improv-
ing in-context learning over very large language
models for our setting.

Comparing among SSP variants, it is not surpris-
ing that GPT-4 performance supercedes GPT-3.5,
which is much better than Llama2 70B. We next
compare ICL baselines and SSP variants, when us-
ing the same LLM. We find that SSP’s two stage
workflow consistently outperforms ICL by signifi-
cant margins. In fact, in-language exemplars with
very noisy labels from stage 1 (E.g. for Got lan-
guage with GPT-3.5-Turbo) perform quite well.
These observations underscore the value of target
language exemplars in ICL, even at the cost of label
noise.

Finally, we compare SSP with Stage I via ICL
over an LLM vs. via a fine-tuning baseline (ZGUL
or mDeBerta). Fine-tuning baseline for Stage I
has two benefits — it is cheaper (due to no LLM
calls in Stage I), and has prediction confidence that
can allow ILP to select highly confident Stage II
exemplars. Due to the latter, in two of the three
language groups, the use of a fine-tuning baseline
performs much better, and in the third group, it



is marginally behind due to weaker performance
in one language (Gothic). This happens because
ZGUL has a particularly poor performance on this
language, leading to much noisier labels in Stage
II exemplars.

Overall, our best SSP solution uses a fine-tuning
baseline (ZGUL or mDeBerta) for Stage I and GPT-
4 for Stage II, using its novel ILP-based exem-
plar selection. It outperforms closest baselines by
around 3 F1 pts, on average, establishing a new
state of the art for zero-shot cross lingual transfer
to low resource languages. The best SSP reported
results are statistically significant compared to the
best baseline using McNemar’s test (p-values in Ta-
bles 1 and 2 captions). We believe that our work is
a significant advancement to the existing paradigm
(Tanwar et al., 2023; Nambi et al., 2023), which
is restricted to optimizing only one round of in-
context learning. More detailed analysis on this
follows in Appendix E.

5.1 Ablation Study

We now discuss the results of removing ILP compo-
nents in Stage II exemplar selection. Tables 1, and
4 (last four rows) report the impact of removing
confidence thresholding constraint, label coverage
constraint, both of these constraints (i.e., just using
similarity) from the ILP. The final row removes
ILP completely and presents results of random ex-
emplars in Stage II. All these ablations are done
on SSP with ZGUL/mDeBerta for Stage I, as only
those output prediction probabilities.

Impact of label coverage: We observe an aver-
age gain of 1.3 F1 points over AmericasNLI task
compared to the ablation model that does not en-
sure label coverage as a constraint. To investigate
further, we compute the average number of exem-
plars for each label that are covered in the selected
set for both methods, along with their label-wise
F1 scores (see Figure 3). We observe that the ‘neu-
tral’ label is not sampled in most cases for w/o
label coverage variant, while exactly one ‘neutral’
label is sampled in the SSP(mDeBerta), with la-
bel constraint. We find that this happens as the
smaller fine-tuned model mDeBerta-CL has very
poor recall (0.24) for ‘neutral’ class and hence any
selection strategy has a natural tendency to not sam-
ple this label, unless enforced via a constraint. The
class-wise recall scores for SSP(DeBerta®)-GPT4
with and without label coverage are presented in
Table 7. We observe a difference of 22 recall points
for ‘neutral’ class (57.6 vs 35.6) between the two

Model ‘ Neu. ‘ Ent. ‘ Con. ‘ Macro-F1
DeBerta®’ | 347 [ 53 | 40.3 42.6
SSP-V2 51.7 | 534 | 514 52.2
(w/o Label) | 42.6 | 52.3 | 57.9 50.9

Table 5: Labelwise F1 scores for fine-tuned model
(DeBerta-CL) and SSP-V?2 variants w. and w/o Label
coverage (GPT-4-Turbo)

ILP variants. An example illustrating this behavior
in terms of the exemplars selected by both methods
is shown in Figure 6 (appendix).

Impact of confidence thresholding: For se-
quence labeling tasks, confidence thresholding
plays a key role. This is validated from abla-
tion results in Table 1, wherein removing confi-
dence thresholding constraint from SSP leads to
5.7 points drop for POS tagging (Germanic) and
1.3 points for NER. The drop is particularly sig-
nificant (around 13.5 F1 points) for Gothic (Got),
which shows that not utilizing the confidence scores
can lead to drastic drop. This may be because per-
formance of ZGUL is already poor on Gothic (21
F1 points), but confidence thresholding may have
likely compensated by picking higher quality exem-
plars. Removing thresholding would increase noise
in exemplars considerably, leading to the drop.

We further study its impact by computing
the quality of Stage II exemplars selected by
SSP(mDeBerta), as well as all it’s ablation variants.
We compute the label-wise precision over all KxN
(K=8, N=no. of test instances) samples for each tar-
get language, and then report their macro-average.
We observe for (Figure 3) that the macro-precision
of selected exemplars by the complete ILP is con-
sistently higher than it’s other ablation variants,
the least value being of w/o both (similarity-based)
variant. This implies that the ILP is able to effec-
tively sample high-precision exemplars which, in
turn, gets translated into it’s superior downstream
performance on the task.

For completeness, we also show the exemplar
precision statistics for NER and POS (averaged
over their label-wise precision scores) in Figure 4.
The trends hold similar in the sense-that ‘w/o con-
fidence’ and ‘similarity-based’ variants have signif-
icantly lower precision than SSP. This is expected
because both these eschew confidence threshold-
ing, leading to sampling of lower-confidence pre-
dictions. This translates to worse downstream per-
formance (see Table 1). On the other hand, the ‘w/o
label coverage’ variant is competitive in terms of
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both exemplars’ precision as well as downstream
performance for sequence labeling tasks. This so
happens, because in sequence labeling, the issue of
label coverage hardly matters, since as many labels
as words in the ICL set are covered in the prompt,
unlike classification tasks in which only K (in our
case, 8) labels can be selected.

We also note that w/o ILP (completely random
selection) ablation performs much worse than SSP,
showcasing the importance of carefully selecting
the exemplar set.

5.2 Error Analysis

We investigate scenarios where SSP approach sys-
tematically fails compared to other methods. For
NER, we find that ZGUL (fine-tuned LM) under-
predicts the ‘DATE’ label. As a result, SSP al-
most never samples this label in stage 2 exemplars,
hence hurting the performance for this label. For
NLI task, we observe that in order to ensure label
coverage, SSP samples the underpredicted label
‘neutral’ but while doing so, also ends up hurting
the performance for ‘contradiction’ label (as seen
in last plot of Figure 3).

6 Conclusions and Future Work

We study the zero-shot cross-lingual transfer set-
ting for low-resource languages, when task-specific
training data is available for related medium re-
source languages. We present Self-Supervised
Prompting (SSP) — a novel two-stage framework
for the use of in-context learning over very large
language models. At a high-level, SSP first nois-
ily labels the target test set using source training
data (either by training a model/adapter) or by in-
context learning over an LLM. SSP then uses these
noisily labeled target data points as exemplars in
in-context learning over the LLM. A key techni-
cal contribution is the use of integer-linear pro-
gram that balances exemplar similarity, labeling
confidence and label coverage to select the exem-
plars for a given test point. Thorough experiments
on three NLP tasks, and twelve low-resource lan-
guages from three language groups show strongly
improved performance over published baselines,
obtaining a new state of the art in the setting. Abla-
tions show the value each ILP component in down-
stream performance.

In the future, we seek to extend our technique to
more non-trivial applications such as cross-lingual
generation and semantic parsing. We also posit that
smaller fine-tuned models, when calibrated prop-
erly, can result in more efficient selection of exem-
plars to an LLM, as compared to poorly calibrated
counterparts, in terms of downstream performance.
We leave a careful and systematic investigation
into this hypothesis for future work. Moreover,
we currently cover the languages having Roman
scripts only, but, we seek to extend our work for
non-Roman script languages as well.

7 Limitations

We show all our results and ablations on the recent
state-of-the-art LLMs including GPT4. The infer-



ence for these LLMs is expensive, and makes the
model deployment infeasible. Other potential limi-
tations are extending our method to tasks such as
fact checking, in which the LLMs suffer from hal-
lucinations and overprediction issues. The reason
why we don’t use LLM logits in ILP framework is
because they are not openly released by OpenAl
and hence, there becomes a need to rely on smaller
fine-tuned models - which can potentially lead to
sub-optimal downstream performance, in case the
fine-tuned models are poorly calibrated. Another
serious implication of using LL.Ms for non-roman
script languages is unreasonably high fertility (to-
kens per word split) of the LLM tokenizers, which
increases the cost as well as strips the input prompt,
which is not desirable.
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A Implementation and Hyperparameter
Details

We use Azure OpenAl service  for all experi-
ments involving GPT-3x and GPT-4x models. For
LLama-2-70b, we use the together API #. We set
temperature as 0.0 consistently for all our exper-
iments, making our results directly reproducible.
The max_tokens (max. no. of generated tokens)
parameter is set to 1024 for POS and NER tasks,
while 15 for the NLI. For all experiments, the no.
of exemplars (M) is fixed to 8 for uniform compar-
ison. For ILP solver, we use Python’s gurobipy 3
package.

A.1 Estimating confidence §;

For NLI task, the model always predicts a single
label: ‘neutral’, ‘contradiction’ or ‘entailment’. We
simply apply softmax on the class logits for the pre-
dicted label to compute the confidence gj; (for t?
test instance).

In sequence labeling tasks, suppose for an in-
put sentence having words: {wq,we, ..., wr},
the model predicts labels {o1,02,...,07} with
probabilities {p1,pa2,...,pr}. Let LabelSet be
{l1,12,...,In}. We compute confidence ¢; for each
label for a given test example as follows:

for k < 1to N do

g < 0 > init each label’s confidence
cp < 0 > init each label’s count
end for

fori <+ 1to T do
for j + 1to N do
if lj == 0; then

Uj < 9; + Di > Update g;
cj<cj+1 > increase counter
end if
end for
end for
for k < 1to N do
Uk = Ur/ck > average over all occurrences
end for

This outputs the confidence scores ¢; for a given
example, with those not predicted in a sequence
having 0 value.

3https://azure.microsoft.com/en-in/products/ai-
services/openai-service

*https://www.together.ai/

>https://pypi.org/project/gurobipy/
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B Prompt details

Prompts for the Named Entity Recognition (NER)
and Part of Speech Tagging (POS) tasks are pre-
sented in the tab separated format shown in B.0.2
and B.0.3 respectively.

Prompts for Natural Language Inference (NLI)
initially used the framework in Ahuja et al. (2023)
. To improve our performance, we changed the
prompt to use Sclar et al. (2023)’s framework,
where the authors performed an exhaustive search
over tokens used for a prompt in order to find the
prompt with optimal performance. This increased
Macro F1 score by atleast 10% across all the tested
languages. We use the same prompt across all mod-
els used in our experiments.

B.0.1 Natural Language Inference (NLI)

Task Description: You are an NLP assistant whose
purpose is to solve Natural Language Inference
(NLI) problems. NLI is the task of determining
the inference relation between two (short, ordered)
texts: entailment, contradiction, or neutral. Answer
as concisely as possible in the same format as the
examples below:

Input format:

Premise: {premise} , Hypothesis: {hypothesis} ,
Output format:

Answer: {output}

Verbalizer:

match the one-word response from the model (neu-
tral, contradiction or entailment)

B.0.2 Named Entity Recognition (NER)

Task Description: Tag the following sentence ac-
cording to the BIO scheme for the NER task, using
the tags PER (person), LOC (location), ORG (or-
ganization) and DATE (date). Follow the format
specified in the examples below:

Input format:

Sentence: wy wy ... W

Output format:

Tags:

w1<TAB>0;

w2<TAB>02

U)T<TAB>OT

Verbalizer:

Extract the sequence of labels o1, 09, ...03 from
generated response.


https://azure.microsoft.com/en-in/products/ai-services/openai-service
https://azure.microsoft.com/en-in/products/ai-services/openai-service
https://www.together.ai/
https://pypi.org/project/gurobipy/

B.0.3 Part of Speech (PoS) tagging

Task Description: Tag the following sentence ac-
cording to the Part of Speech (POS) of each word.
The valid tags are ADJ, ADP, ADV, AUX, CCONJ,
DET, INTJ, NOUN, NUM, PART, PRON, PROPN,
PUNCT, SCONJ, SYM, VERB, X. Follow the for-
mat specified in the examples below:

Input format:

Sentence: wq wo ... wp

Output format:

Tags:

wi1<TAB>o0

wo<TAB>09

wr<TAB>op

Verbalizer:

Extract the sequence of labels o1, 02, ...03 from
generated response.

B.1 Verbalizer details for Tagging tasks

The verbalizer for tagging tasks requires the LLM
to output the words as well as the associated labels.
The LLM’s output may not be perfect, as it may
fail to generate all words or associate a label with
each word. As a result, we find the Longest Com-
mon Subsequence between the words generated by
the LLLM and the words of the example. This is
done using Dynamic Programming, as described in
(Bergroth et al., 2000).

Once we have found the longest common subse-
quence, we assign the corresponding tags generated
by the LLM to these words. If the tags are invalid,
we assign a default tag (O for NER, and X for POS).
Finally, for the words which don’t have any tags
associated with them, we assign the same default
tag as before.

It is to be noted that in most cases, the sentence
generated by the LLM perfectly matches the origi-
nal sentence. For GPT-4, less than 1% of the words
fell into the category of having an invalid tag gen-
erated, or not having the word generated.

B.2 Prompts for GSW Examples

The base SSP-SIM prompts for the GSW examples
highlighted in Figure 5 are given below. Labels
which are misclassified in the in-context exemplars
are coloured in red, and the AUX labels which are
to be flipped in the ablations are coloured in blue.
It is interesting to note that examples 1 and 2 are
similar, as example 1 is retrieved as an in-context
exemplar for example 2.
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B.2.1 Example 1

Tag the following sentence according to the Part
of Speech (POS) of each word. The valid tags
are ADJ, ADP, ADV, AUX, CCONJ, DET, INT]J,
NOUN, NUM, PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X. Follow the format
specified in the examples below:

Sentence: I main , das Ganze letscht Wuchi isch
mier scho dchli iigfaard .

Tags:

I PRON

main VERB

, PUNCT

das DET

Ganze NOUN

letscht ADJ

Wuchi NOUN

isch AUX

mier PRON

scho ADV

ichli ADV

iigfaarda VERB

. PUNCT

Sentence: Du gsehsch uus , wi wenn de néime no
hittisch z trinken iibercho .

Tags:

Du PRON

gsehsch VERB

uus PRON

, PUNCT

wi SCONJ

wenn SCONJ

de DET

ndime ADJ

no ADV

hittisch AUX

z PART

trinken VERB

tibercho VERB

. PUNCT

Sentence: Dir weit mer doch nid verzoue , di
Wiutsche heige vo eim Tag uf en anger ufghort
Chuttlen dsse .

Tags:

Dir PRON

weit VERB



Ds Gueten isch immerhin gsi dass i ungerdesse s6fu mied bi gsi dass i andlech ha chénne go schlofe
CLT-SIM DET NOUN AUX ADV VERB PUNCT SCONJ PRON  ADV ~ VERB ADJ ADP VERB PUNCT SCONJ PRON ADV ~AUX AUX VERB VERB PUNCT
SSP-CLT-SIM DET NOUN AUX ADV ~ AUX PUNCT SCONJ PRON ADV ADV  ADJ ADP AUX PUNCT SCONJ PRON ADV ~AUX AUX PART VERB PUNCT
Sﬁ:'g';TVSEL':" DET NOUN AUX ADV ~ AUX PUNCT SCONJ PRON ADV ADV  ADJ ADP AUX PUNCT SCONJ PRON ADV ~AUX AUX PART VERB PUNCT
Sﬁ:‘gl;TVSEL'g DET NOUN VERB ADV  VERB PUNCT SCONJ PRON ADV ADV ADJ ADP VERB PUNCT SCONJ PRON ADV ~AUX AUX VERB VERB PUNCT
Gold DET NOUN AUX ADV  AUX PUNCT SCONJ PRON  ADV ADV  ADJ AUX AUX PUNCT SCONJ PRON ADV ~AUX AUX PART VERB PUNCT
1 cha der ihri  Telefonnummere ga . de mou unverbil Kontakt  uuf .
CLT-SIM PRON VERB DET ADJ NOUN VERB PUNCT PRON VERB  ADV ADJ NOUN VERB PUNCT
SSP-CLT-SIM PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB  ADV ADJ NOUN ~ ADP PUNCT
Sﬁ:f&"’)\i‘ﬂ'g PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB  ADV ADJ NOUN  ADP PUNCT
SS(ZS;TVSEL':') PRON VERB PRON PRON NOUN VERB PUNCT DET VERB  ADV ADJ NOUN  ADP PUNCT
Gold PRON AUX PRON DET NOUN VERB PUNCT ADV ~ VERB  ADV ADJ NOUN  PART PUNCT

Figure 5: Label flips for CLT-SIM and SSP-SIM, for POS tagging in Swiss-German (gsw). Incorrect labels are
marked in red. SSP-SIM ablations include flipping half/all of the AUX labels in the prompt to VERB labels. Gold

labels are given for reference.

mer PRON

doch ADV

nid ADV
verzoue VERB

, PUNCT

di DET
Wiutsche NOUN
heige VERB

vo ADP

eim DET

Tag NOUN

uf ADP

en DET

anger ADJ
ufghort VERB
Chuttlen NOUN
dsse VERB

. PUNCT
Sentence: es isch ndmli echt usgstorbe gsi .
Tags:

es PRON

isch AUX

nimli ADV

echt ADJ
usgstorbe VERB
gsi AUX

. PUNCT
Sentence: Aso bini ridcht uufgschmissd gsi und
dem entschprichend fascht verzwiiflit .
Tags:

Aso ADV

bini AUX

richt ADV
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uufgschmissd VERB

gsi AUX

und CCONJ

dem PRON

entschprichend ADJ

fascht ADV

verzwiiflit VERB

. PUNCT

Sentence: Der Aidschme wett nod schaffe biin em .
Tags:

Der DET

Aidschme NOUN

wett AUX

ndéd ADV

schaffe VERB

biin ADP

em PRON

. PUNCT

Sentence: Zerscht hends am Dani gsait , dr soli
doch Hoochdiitsch redé , das gingi denn grad gaar
nodd , wenn ér so redi , widner redi .
Tags:

Zerscht ADV

hends PRON

am ADP

Dani PROPN

gsait VERB

, PUNCT

ir PRON

soli AUX

doch ADV

Hoochdiitsch ADJ

redd VERB



, PUNCT

das PRON

gingi VERB

denn ADV

grad ADV

gaar ADV

nod ADV

, PUNCT

wenn SCONJ

ir PRON

so ADV

redi VERB

, PUNCT

widner PRON

redi VERB

. PUNCT
Sentence: Isch das e Sach gsi , bis mer se gfunge
hei gha .

Tags:

Isch AUX

das PRON

e DET

Sach NOUN

gsi AUX

, PUNCT

bis SCONJ

mer PRON

se PRON

gfunge VERB

hei AUX

gha VERB

. PUNCT
Sentence: Ds Gueten isch immerhin gsi , dass i
ungerdesse sofu miied bi gsi , dass i dndlech ha
chonne go schlofe .
Tags:

1113

B.2.2 Example 2

Tag the following sentence according to the Part
of Speech (POS) of each word. The valid tags
are ADJ, ADP, ADV, AUX, CCONJ, DET, INT]J,
NOUN, NUM, PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X. Follow the format
specified in the examples below:

Sentence: I ha ar Marie-Claire gseit , es sig mer
chli schldcht und i mog jetz niimm liire .

Tags:

14
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I PRON

ha AUX

ar PART
Marie-Claire PROPN
gseit VERB

, PUNCT

es PRON

sig AUX

mer PRON

chli ADV

schlidcht ADJ

und CCONJ

i PRON

mog VERB

jetz ADV

niimm ADV

liire VERB

. PUNCT

Sentence: De Spanier hed de Kontakt vermettlet ,
d Ruméne solled d Hollinder ombrocht ha .
Tags:

De DET

Spanier NOUN

hed AUX

de DET

Kontakt NOUN
vermettlet VERB

, PUNCT

d DET

Rumine NOUN
solled AUX

d DET

Hollédnder PROPN
ombrocht VERB

ha AUX

. PUNCT

Sentence: Ds Gueten isch immerhin gsi , dass i
ungerdesse sofu miied bi gsi , dass i dndlech ha
chonne go schlofe .
Tags:

Ds DET

Gueten NOUN

isch AUX

immerhin ADV

gsi VERB

, PUNCT

dass SCONJ



i PRON
ungerdesse ADV
sofu VERB
miied ADJ

bi ADP

gsi VERB

, PUNCT

dass SCONJ

i PRON

dndlech ADV

ha AUX

chonne AUX

go VERB
schlofe VERB

. PUNCT
Sentence: Isch das e Sach gsi , bis mer se gfunge
hei gha .

Tags:

Isch AUX

das PRON

e DET

Sach NOUN

gsi AUX

, PUNCT

bis SCONJ

mer PRON

se PRON

gfunge VERB
hei AUX

gha VERB

. PUNCT
Sentence: De Dialdkt muess zu de Gschecht und
zum Inhaut vonere Werbig passe .
Tags:

De DET

Dialikt NOUN
muess AUX

zu ADP

de DET
Gschecht NOUN
und CCONJ
zum ADP
Inhaut NOUN
vonere ADP
Werbig NOUN
passe VERB

. PUNCT

1113

15

Sentence: Mit der Zit hani mi mit mir sduber uf ei
Schriibwiis pro Wort aafo einige .
Tags:

Mit ADP

der DET

Zit NOUN

hani VERB

mi PRON

mit ADP

mir PRON

sdauber ADJ

uf ADP

ei DET

Schriibwiis NOUN

pro ADP

Wort NOUN

aafo VERB

einige DET

. PUNCT

Sentence: Mit all dend Worter hani natiirli niit
choni aafangi .

Tags:

Mit ADP

all DET

dend DET

Worter NOUN

hani PRON

natiirli ADV

niit ADV

chond VERB

aafangi VERB

. PUNCT

Sentence: Aso bini rdcht uufgschmisséd gsi und
dem entschprichend fascht verzwiiflit .
Tags:

Aso ADV

bini AUX

richt ADV

uufgschmissd VERB

gsi AUX

und CCONJ

dem PRON

entschprichend ADJ

fascht ADV

verzwiiflit VERB

. PUNCT

1313



Model ‘ Neu. ‘ Ent. ‘ Con. ‘ Overall
DeBerta®l | 243 | 72.7 | 38.7 | 452
SSP-V2 57.8 | 465 | 51.5 52
(w/o Label) | 353 | 43.8 | 68.5 | 49.2

Table 7: Labelwise Recall for fine-tuned model
(DeBerta-based) and ILP variants w. and w/o Label
coverage (GPT-4-Turbo)

Sentence: I cha der ihri Telefonnummere gi , de
nimmsch mou unverbindlech Kontakt uuf .
Tags:

1113

C Source and Target Languages for each
task

Code Language
En English
Am Ambharic
Sw Swahili
Wo Wolof
Hau Hausa
Ibo Igbo
Kin Kinyarwanda
Lug Luganda
Luo Luo
Is Icelandic
De German
Fo Faroese
Got Gothic
Gsw | Swiss German
Nds Low-Saxon
Es Spanish
Aym Aymara
Gn Guarani
Nah Nahuatl

Table 6: Languages and their codes

D NLI Label coverage Analysis

We present an example of correct prediction made
by SSP as compared to the version that doesn’t en-
sure label coverage in Figure 6 (English translation
in Fig. 7).

E Qualitative Analysis: SSP-SIM

We present the analysis for the gains obtained via
SSP-SIM for Germanic POS in Figure 8. The con-
fusion matrix difference between SSP-SIM and
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CLT-SIM suggests that the model misclassifies aux-
iliary verbs as verbs in CLT-SIM, and this is cor-
rected in SSP-SIM. These errors are a consequence
of the labels on the in-context exemplars the model
receives, and not the tokens of the language itself.

We highlight this via the two Swiss-German POS
examples in Figure 5. The misclassified verbs are
corrected by SSP-SIM, and these labels are again
misclassified when more than half of the labels in
the in-context exemplars are corrupted.

F Data Contamination Analysis

Following Ahuja et al. 2023, we conduct contami-
nation tests on test datasets for our target languages.
We perform the following tests:

* Dataset Card filling: Generate dataset card
(supported languages, dataset description, #in-
stances in each split, etc.)

* Completion: Given a few words, complete the
sentence and their labels, and

* Generation using first few instances: Given
first K instances (K=5) in the dataset, generate
next few instances following them.

We observe negligible contamination as depicted
in table 8. The 40% accuracy for Quechua was
a result of all the labels passed for the exemplars
being entailment labels. As a result, the model
repeated the same label for all the other examples,
giving a 40% accuracy. Following these results, to
prevent any chance of contamination, we remove
Quechua from our evaluation dataset.



Premise: Ah, huk chaypi allinga apakurga allin gawasqayga paniypa fiawpag
yuyariyninmi, chaypas hina hipa pampapim karga.

Hypothesis: Yuyaruniga hipa pampapi huk ima apakusgantam.

Answer: entailment

Premise: Yaykuykuptiykuga punkukunaga wichgasgam kachkarga.
Hypothesis: Punku wichgasqa kachkaptinpas yaykurganikum.
Answer: entailment

Premise: Yanapawagniy atig sispasmi hatun llagtapa waklawninpiraq tiyan.
Hypothesis: Yanapawagniy warmi warman 5 millas nisgan karupiraq tiyan.
Answer: neutral

Premise: Manam mayman risqanta yacharganikuchu.
Hypothesis: Mayman risqantam yacharqganiku.
Answer: entailment

Premise: Chayna kaptinga hamutachkanim huktapiwan Ramonawan rimariyta.
Hypothesis: Ramonawanmi huktapiwan rimargani.
Answer: entailment

Premise: Ripukusgafiam hinaspam amafia llakikunaypaq niwarga.
Hypothesis: Ama llakikunaytam niwarga.
Answer: entailment

Premise: Ichapasya huk kag mana yachasgaymanta hamun ichaga
Hypothesis: Apurawtam hamun, ichaga maymanta hamusganta yachanim.
Answer: entailment

Premise: Locust Hill oh awriki, ari, kusa
Hypothesis: Locust Hill nisgaga allinmi.
Answer: contradiction

Premise: Oh, payllam isqun iskay iskayraq regulador nisgapi inyecciénta ginag
karga.

Hypothesis: Martes punchawtam inyector nisqata hinargani.

Answer: neutral

Premise: Ah, huk chaypi allinga apakurga allin gawasgayqga paniypa fiawpaq
yuyariyninmi, chaypas hina hipa pampapim karqa.

Hypothesis: Yuyaruniga hipa pampapi huk ima apakusgantam.

Answer: entailment

Premise: Yaykuykuptiykuga punkukunaga wichgasgam kachkarga.
Hypothesis: Punku wichgasqga kachkaptinpas yaykurganikum.
Answer: entailment

Premise: Manam mayman risqanta yacharganikuchu.
Hypothesis: Mayman risgantam yacharganiku.
Answer: entailment

Premise: Chayna kaptinga hamutachkanim huktapiwan Ramonawan rimariyta.
Hypothesis: Ramonawanmi huktapiwan rimargani.
Answer: entailment

Premise: Manam pachay kargachu ima kagpas ruranaypag.
Hypothesis: Mana pacha llapan ginanaypaq haypawargachu
Answer: entailment

Premise: Ripukusgafiam hinaspam amaiia llakikunaypagq niwarga.
Hypothesis: Ama llakikunaytam niwarga.
Answer: entailment

Premise: Ichapasya huk kaq mana yachasgaymanta hamun ichaga
Hypothesis: Apurawtam hamun, ichaga maymanta hamusganta yachanim.
Answer: entailment

Premise: Locust Hill oh awriki, ari, kusa
Hypothesis: Locust Hill nisgaga allinmi.
Answer: contradiction

Premise: Oh, payllam isqun iskay iskayraq regulador nisgapi inyecciénta ginaq
karga. Hypothesis: Martes punchawtam inyector nisgata hinargani.
Answer: contradiction

Figure 6: Correct case of ‘Neutral’ detected by ILP (left), while ‘w/o label’ variant misses it (right). We note that
exact one ‘neutral’ class has been sampled by ILP, while no ‘neutral’ is sampled in ‘w/o label” version.

Premise: Ah, one there good thing took away is my best view is my sister's old
memory, which was also on the same hip floor.

Hypothesis: | remember something carrying on the floor.

Answer: entailment

Premise: The doors were locked when we entered.
Hypothesis: We got in even though the door was locked.
Answer: entailmentl

Premise: The sister who can help me lives just on the other side of the big city.
Hypothesis: My assistant lives 5 miles away.
Answer: neutral

Premise: We didn’t know where he was going.
Hypothesis: We knew where he was going.
Answer: entailment

Premise: In that case I'm coming up with another conversation with Ramona.
Hypothesis: | talked to Ramona again.
Answer: entailment

Premise: He had left and told me not to worry.
Hypothesis: He told me not to worry.
Answer: entailment

Premise: Maybe it comes from something | don’t know though
Hypothesis: It comes quickly, but | know where it comes from.
Answer: entailment

Premise: Locust Hill oh yeah, yeah, great
Hypothesis: Locust Hill is good.
Answer: contradiction

Premise: Oh, he was the only one who still injected nine seconds into the
regulator.

Hypothesis: | applied the injector on Tuesday.

Answer: neutral

Premise: Ah, one there good thing took away is my best view is my sister's old
memory, which was also on the same hip floor.

Hypothesis: | remember something carrying on the floor.

Answer: entailment

Premise: The doors were locked when we entered.
Hypothesis: We got in even though the door was locked.
Answer: entailment

Premise: We didn’t know where he was going.
Hypothesis: We knew where he was going.
Answer: entailment

Premise: In that case I'm coming up with another conversation with Ramona.
Hypothesis: | talked to Ramona again.
Answer: entailment

Premise: | didn't have time to do anything.
Hypothesis: | didn't have enough time to cover everything
Answer: entailment

Premise: He had left and told me not to worry.
Hypothesis: He told me not to worry.
Answer: entailment

Premise: Mayhbe it comes from something | don’t know though
Hypothesis: It comes quickly, but | know where it comes from.
Answer: entailment

Premise: Locust Hill oh yeah, yeah, great
Hypothesis: Locust Hill is good.
Answer: contradiction

Premise: Oh, he was the only one who still injected nine seconds into the
regulator. Hypothesis: | applied the injector on Tuesday.
Answer: contradiction

Figure 7: English translations of Exemplars shown in Fig. 6
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Predicted

= Z -

- o > x 0 3856 2 8
2322882 FE2Y «
ADJ -2 0 0o 2 5 4 0 0 1 1
ADP -2 6 -3 o 0 o0 -8 0 0 -1 4
ADV -5 -3/28 0 1 6 -1 -5 0 0 -6 -4
AUX 0 -1 -2 17 0 0 0 -1 -1 0-13 1
CCON 0O 4 1 0 7 0 1 -3 0 0 -1 O
o DET 1 i 4 0 0 9 0 83 4 0 0 O
8 NOUN 2 0 O -t 0 -2 7 -3 0 0 -3 1
PRON -3 83 -5 -1 0 2 -3 24 -4 0 -4 -2
PROPN 0O O O O O O -2 0 - 0o 0 3
PUNCT 0O 0 0 O O O O O o0 -2 o0 -1
VERB 0 1 0 4 0 -1-15 0 0 0 15 -2
X o o o o o o o o -1 -1 0 1

Figure 8: Difference in confusion matrices between SSP-SIM and CLT-SIM for the POS task, summed across all
languages (tags with less than 100 instances have been omitted). The increase in correct tags is visible along the
diagonal, and misclassifications between VERB and AUX tags / NOUN and VERB tags have also improved.

Task Card Filling Completion Few-Shot Generation
Didn’t predict correct No match found NA
NER | languages; no split sizes
generated
predicted 33 languages, No match found NA
POS | but doesn’t contain any of
our target languages
predicts 3 languages, of | Refuses to generate for 3 Repeats the premise of
NLI which only one matches | out of 4 target languages, | last instance, copies the
with our target language | except for Quechua - for premise string to
(Quechua); wrong test which it predicts 100% of | hypothesis as well (No
split size the tokens wrong and only match detected)
40% labels correctly (out
of 10 instances)

Table 8: Results of Contamination Study

18



	Introduction
	Related Work
	Self-Supervised Prompting
	Stage I: initial labeling using source data
	Stage II: in-language ICL using ILP-based exemplar selection

	Experiments
	Tasks and Datasets
	Comparison Models

	Results and Analysis
	Ablation Study
	Error Analysis

	Conclusions and Future Work
	Limitations
	Implementation and Hyperparameter Details
	Estimating confidence ik

	Prompt details
	Natural Language Inference (NLI)
	Named Entity Recognition (NER)
	Part of Speech (PoS) tagging

	Verbalizer details for Tagging tasks
	Prompts for GSW Examples
	Example 1
	Example 2


	Source and Target Languages for each task
	NLI Label coverage Analysis
	Qualitative Analysis: SSP-SIM
	Data Contamination Analysis

