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Abstract
Recently, very large language models (LLMs)001
have shown exceptional performance on sev-002
eral English language NLP tasks with just003
in-context learning (ICL), but their utility in004
other languages is still underexplored. We005
investigate their effectiveness for NLP tasks006
in low-resource languages (LRLs), especially007
in the setting of zero-shot cross-lingual trans-008
fer (0-CLT), where task-specific training data009
for one or more related medium-resource lan-010
guages (MRLs) is available. We introduce Self-011
Supervised Prompting (SSP), a novel ICL ap-012
proach for the 0-CLT setting.013

SSP is based on the key observation that LLMs014
output more accurate labels if in-context exem-015
plars are from the target language (even if their016
labels are slightly noisy). To operationalize017
this, since target language training data is not018
available in 0-CLT, SSP operates in two stages.019
In Stage I, using source MRL training data, tar-020
get language’s test data is noisily labeled. In021
Stage II, these noisy test data points are used022
as exemplars in ICL for further improved label-023
ing. Additionally, our implementation of SSP024
uses a novel Integer Linear Programming (ILP)-025
based exemplar selection that balances similar-026
ity, prediction confidence (when available) and027
label coverage. Experiments on three tasks and028
twelve LRLs (from three regions) demonstrate029
that SSP strongly outperforms fine-tuned and030
other prompting-based baselines.031

1 Introduction032

Very large language models (LLMs) such as GPT-033

3.5-Turbo & GPT-4 (Ouyang et al., 2022; Achiam034

et al., 2023) show exceptional performance on a035

variety of NLP and reasoning tasks via In-Context036

Learning (ICL) (Brown et al., 2020; Chowdhery037

et al., 2022). ICL feeds a task-specific instruction038

along with a few exemplars, appended with the test039

input, to the LLM. As LLMs can be highly sensitive040

to exemplars (Zhao et al., 2021), exemplar retrieval041

is crucial for ICL.042

Figure 1: Llama2 70B, prompted with target LRL exem-
plars, along with artificially injected label noise (x-axis).
Dashed lines represent performances when prompted
with source MRL exemplars.

While LLMs have shown excellent performance 043

on English tasks, their utility on other languages 044

is relatively underexplored. In this work, we study 045

zero-shot cross-lingual transfer (0-CLT) to low- 046

resource languages (LRLs) – a setting where la- 047

beled task data from one or more related medium- 048

resource languages (MRLs) is available, but no 049

labeled training data exists for the target LRL. 050

Cross-lingual transfer has been addressed 051

through standard fine-tuning (Muller et al., 2021; 052

Alabi et al., 2022), and language adapters (Pfeif- 053

fer et al., 2020; Üstün et al., 2020; Rathore et al., 054

2023), but there is limited work on cross-lingual 055

ICL. There are two exceptions (Ahuja et al., 2023; 056

Asai et al., 2023), where ICL is employed with 057

exemplars from a source language, but they use 058

uniformly random sampling for exemplar selection, 059

resulting in performance inferior to cross-lingually 060

fine-tuned models, such as mBERT and XLM-R 061

(Devlin et al., 2019; Conneau et al., 2020). 062

In our preliminary experiments, we prompt the 063

Llama2-70B model with exemplars from source 064

MRLs, and compare it’s performance with the same 065

LLM prompted with exemplars from the target 066
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LRL. We vary the label noise on the target exem-067

plars. Unsurprisingly, LLMs show better perfor-068

mance with less label noise. More interestingly, we069

find that a reasonably-sized noise region exists (see070

Figure 1), such that if the exemplar noise is within071

that range, then the overall performance is higher072

than prompting with source language data.073

Armed with this observation, we present Self-074

Supervised Prompting (SSP) – a novel ICL frame-075

work for 0-CLT to LRLs. Since the target LRL076

training data is not available in 0-CLT, SSP oper-077

ates in two stages. In Stage I, SSP labels all test078

instances of LRL using training data from MRL.079

This may be done by LLM prompting (as in the080

experiment above), or using any other existing081

approaches for 0-CLT, such as by fine-tuning or082

adapters. Once (noisy) labels on target LRL are ob-083

tained, in Stage II, SSP uses ICL using these noisy084

test data points (except itself) as exemplars for fur-085

ther performance improvement. Additionally, to086

select the best exemplars, we develop a novel In-087

teger Linear Programming (ILP) based selection088

approach, which balances the various objectives089

of (1) similarity of exemplar with test sentence,090

(2) high confidence in label predictions, and (3)091

coverage of the various labels for better task un-092

derstanding. Figure 2 gives an overview of our093

proposed pipeline.094

We perform experiments on sequence labeling095

tasks (POS and NER), and natural language infer-096

ence (NLI) – a text classification task. Our datasets097

encompass twelve low-resource languages from098

typologically diverse language families and three099

regions: African, Germanic and American. Our100

experiments show consistent and substantial im-101

provements over existing fine-tuning as well as102

simpler ICL-based approaches. We will make both103

our codebase and prompts publicly accessible.104

Our contributions are summarized as follows:105
1. We investigate ICL strategies for the task106

of zero-shot cross-lingual transfer to low-107

resource languages, utilizing the labeled data108

from related languages.109

2. We propose SSP, a two-stage self-adaptive110

prompting paradigm for this task, where the111

first stage may be done by an LLM or other112

cross-lingual transfer models.113

3. We introduce an exemplar selection approach114

that utilizes an ILP. The ILP incorporates sim-115

ilarity to test input along with confidence of116

prediction (when available), and enforces la-117

bel coverage constraints for better selection.118

4. Experiments on 3 tasks and 11 languages 119

show that SSP outperforms existing fine- 120

tuning, adapter and LLM-based SoTA models. 121

2 Related Work 122

An ICL prompt consists of (1) task description: 123

to facilitate the understanding of task, (2) labeled 124

input-output pairs: Written sequentially in order of 125

their relevance to input query, and (3) input itself. 126

Cross-lingual ICL: In general, cross-lingual ICL 127

has not been systematically explored in literature. 128

In existing works, prompting is primarily done in a 129

high-resource language, typically English. This is 130

called cross-lingual (CL) prompting. This differs 131

from in-language (IL) prompting, where examples 132

are retrieved from the candidate pool of the target 133

language itself. This assumes the availability of 134

labeled data for target LRL, which is not true in our 135

zero-shot setting. In response, we develop novel 136

techniques making use of both CL prompting and 137

IL prompting, while not utilizing the gold labels 138

during IL prompting stage. 139

Most existing cross-lingual ICL methods use 140

uniformly random input-output pairs for exem- 141

plar selection (Zhang et al., 2021; Winata et al., 142

2021; Ahuja et al., 2023; Asai et al., 2023). Re- 143

cent approaches (Agrawal et al., 2022; Tanwar 144

et al., 2023) address this gap by utilizing semantic 145

similarity for cross-lingual retrieval from a high- 146

resource language’s labeled data, given the target 147

LRL’s instance as query. This is facilitated by 148

embedding-based multilingual retrievers such as 149

multilingual sentence-transformers (Reimers and 150

Gurevych, 2020). More recently, OpenAI-based 151

embeddings such as Ada-0021 have been used ef- 152

fectively for cross-lingual retrieval (Nambi et al., 153

2023). We extend this line of work by also in- 154

corporating label confidence and label coverage in 155

exemplar selection. 156

Self-Adaptive Prompting: Wan et al. (2023) pro- 157

posed Universal Self-Adaptive (USP) framework, 158

which has been explored only for monolingual (En- 159

glish) setting. USP uses an external unlabeled 160

dataset of instances and labels them using LLM in 161

Stage I. It then samples multiple Chain-of-thought 162

(CoT) paths to estimate the logits using the same 163

LLM, and then utilizes the entropy of logits for 164

exemplar selection for Stage 2. Our work has simi- 165

larities to USP in that both methods are two-stage 166

1https://platform.openai.com/docs/guides/embeddings/embedding-
models
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prompting approaches. USP is different from SSP167

in that the former is much more expensive, since it168

requires multiple LLM runs to estimate logits. USP169

also does not use any exemplars (and only uses task170

description), which are quite important for better171

performance. Finally, USP has only been applied172

for English tasks, and has not been explored for173

cross-lingual tasks.174

Fine-tuning approaches for Cross-lingual Trans-175

fer: Most approaches rely on fine-tuning a Pre-176

trained LM (PLM) such as BERT or XLM-R on177

one or more source languages ((Muller et al., 2021;178

Alabi et al., 2022)) and deploying on an unseen tar-179

get language. Recently, Language-Adapter based180

approaches have been found more effective (Üstün181

et al., 2020) for cross-lingual transfer settings.182

For sequence labeling tasks (NER and POS tag-183

ging), ZGUL (Rathore et al., 2023) is a recent184

SOTA method that leverages ensembling Language185

Adapters from multiple MRLs to label each word in186

a target language. We leverage this in our proposed187

SSP pipeline.188

3 Self-Supervised Prompting189

We define the setting of zero-shot cross-lingual190

transfer (0-CLT) as follows. We are given191

source training data for a specific task: D =192

{(xi, lgi, yi)}, where xi is the input text in lan-193

guage lgi, and the output is yi. We are additionally194

given a set of unlabeled test data points T = {qj}195

from a target language lgt. Our goal is to train a196

model/create a protocol, using D, T and a large197

pre-trained LLM, that outputs good predictions on198

T for the task, assuming that lgt is a low-resource199

language, due to which its training data is not avail-200

able, and that languages lgi are related to lgt.201

Our solution approach, Self-Supervised Prompt-202

ing (SSP), comprises two key stages as follows. In203

Stage I, it proposes a noisy labeling for all data204

points in T using source data D. This may be done205

in different ways, as described next. In Stage II, it206

uses the LLM and noisy labeling on T from Stage207

I as exemplars to improve the labelings. Further-208

more, SSP uses a novel integer-linear programming209

based exemplar selection. We now describe each210

component of our system.211

3.1 Stage I: initial labeling using source data212

To create a first labeling for all test points, SSP213

can use any existing approaches for 0-CLT, such as214

fine-tuning a multilingual language model for the215

task, or use of language adapters or using our LLM 216

with in-context exemplars from source language. 217

In our experiments, we experiment with adapters 218

and ICL, which we briefly describe next. 219

Cross-Lingual ICL: In the method, we use ICL 220

over LLM for obtaining Stage I labelings. First, 221

we retrieve a set of top-K exemplars from D using 222

each test instance qj as query. This selection is 223

based on cosine similarity between their Ada-002 224

embeddings. The selected exemplars are arranged 225

in descending order of similarity scores, and in- 226

cluded in the prompt between the task description 227

(TD) and the input test instance. This approach has 228

two drawbacks. First, since the LLM will typically 229

be a large expensive model – this will require an 230

LLM call per test data point in Stage I. Second, 231

generally, these LLMs do not expose their logits, 232

hence, we will not have access to prediction confi- 233

dences from Stage I labelings. 234

Training smaller model(s) using D: Another 235

possibility is to fine-tune a smaller multilingual 236

LM, such as mBERT or mDeBerta-v3 (He et al., 237

2021) on D for NLI task. For sequence labeling, 238

we can use ZGUL (Rathore et al., 2023), which 239

trains source language adapters using D, and uses 240

inference-time fusion of source adapters for label- 241

ing test data points. These approaches can provide 242

Stage I labelings for T along with prediction confi- 243

dences, without making any expensive LLM calls. 244

3.2 Stage II: in-language ICL using 245

ILP-based exemplar selection 246

After Stage I predictions for target instances T are 247

obtained, SSP prompts the LLM to label each test 248

data point q ∈ T , but uses in-context exemplars 249

in target language using Stage I labelings. For ex- 250

emplar selection, SSP implements a novel integer 251

linear program (ILP) that balances semantic simi- 252

larity, prediction confidence (when available) and 253

label coverage. 254

Our primary objective is to maximize the aggre- 255

gated semantic similarity of the selected exemplars, 256

which is obtained using cosine similarity score be- 257

tween their OpenAI Ada-v2 embeddings. In addi- 258

tion, we impose two constraints: 259

• Label Coverage: The ILP tries to ensure the 260

coverage of all labels for the given task in 261

the selected exemplars – this has been found 262

effective for ICL (Min et al., 2022). 263

• Confidence: In case Stage I predictions are 264
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Figure 2: SSP Paradigm for Cross-Lingual Transfer to target low-resource language

made by a model whose logits are accessible265

(unlike the OpenAI LLMs), the ILP prefers266

selection of more confident exemplars. Our267

hypothesis is that confident predictions are268

also accurate (assuming the model is well-269

calibrated), and previous work has shown that270

performance of LLMs can be sensitive to cor-271

rectness of exemplars (Wei et al., 2023)272

SSP formulates these three factors into an ILP as273

follows. For a dataset D with n examples indexed274

from I = {1 . . . n}, given a test data point qj , let275

zi be a binary variable denoting whether ith test276

instance qi is selected as an exemplar. We use a277

semantic similarity function sim(qi, qj) to get the278

similarity between two examples. K is the number279

of exemplars to be selected. Since qj cannot be280

an exemplar for itself, we select exemplars from281

I \ {j} only.282

Let the set of all labels in the task be L, and the283

multiset of all labels predicted (using argmax) for284

example qi be Li. The Stage I prediction confi-285

dence for label l in qi is denoted as ŷil . This confi-286

dence is computed as average of probability scores287

across all predictions of label l in ith sentence (de-288

tails in Appendix A). The ILP uses a threshold τl289

for prediction confidence for a label l. Intuitively,290

the ILP maximizes the semantic similarity of K291

chosen exemplars, subject to each label l being292

present at least once in the exemplars, and average293

prediction confidence of each data point for each294

label being greater than τl.2295

2Although we express constraints (3) and (4) as a hard
constraint, they are implemented as soft constraints (added in
the primary objective) following standard practices of approx-
imate solvers such as Gurobi

Formally, the ILP is formulated as 296

max
∑

i∈I\{j}

zi · sim(qi, qj) (1) 297

such that
∑

i∈I\{j}

zi = K (2) 298

zi · (ŷil − τl) ≥ 0 ∀ i ∈ I \ {j},∀ l ∈ Li (3) 299∑
i∈I\{j}

zi · count(Li, l) ≥ 1 ∀ l ∈ L (4) 300

Here count(Li, l) denotes the number of oc- 301

curences of l in Li. In our experiments, we set 302

K = 8, and τl = 80th percentile threshold of the 303

set {ŷil}ni=1 for a particular label l. The idea is to 304

have label-specific threshold since the fine-tuned 305

model may not have same calibration for all labels. 306

Since logits are not accessible for OpenAI LLMs 307

GPT-3.5 and GPT-4x, in case Stage I labeling is 308

done by either of these models using ICL, we skip 309

the confidence thresholding constraint of ILP. This 310

means that for this variant of SSP, the selection is 311

made based on only similarity and label coverage. 312

4 Experiments 313

Our main experiments assess SSP performance 314

compared to existing state-of-the-art models for 315

0-CLT. We also wish to compare various SSP vari- 316

ants, and estimate the value of the ILP-based exem- 317

plar selection. 318

4.1 Tasks and Datasets 319

We experiment on three tasks – POS tagging, NER 320

and Natural Language Inference (NLI). We use 321

the Universal Dependency dataset (Nivre et al., 322

2020) for POS tagging over Germanic languages, 323
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Model Hau Ibo Kin Lug Luo Avg. Fo Got Gsw Avg
Full Fine-Tuning (FFT) 49.9 54.9 55.4 56.3 40.2 51.3 77.6 17.8 62 52.5
CPG (Üstün et al., 2020) 48.6 50.4 52.6 54.3 38.6 48.9 77.3 16.9 63.9 52.7
ZGUL 52.2 56 53.7 54.5 44.4 52.2 77.2 21.1 65 54.4
ICL-Llama-2-70b 64.3 61.2 59.2 60.1 47.3 58.4 79.1 36.0 71.8 62.3
ICL-GPT-3.5-turbo 54.5 69.2 57.8 63.7 46.4 58.3 81.2 37.9 72.2 63.8
ICL-GPT-4x 64.7 80.8 64.6 71.0 53.3 66.9 81.3 66.5 82.3 76.7
SSP(ICL)-llama-2-70b 57.6 62.6 56.0 57.6 43.1 55.4 78.5 37.9 73.5 63.3
SSP(ICL)-GPT-3.5-turbo 62.8 68.4 64.0 63.8 47.6 61.3 82.4 63.2 79.4 75.0
SSP(ICL)-GPT-4x 67.2 79.6 63.3 74.1 54.4 67.7 81.8 73.7 85.4 80.3
SSP(ZGUL)-Llama-2-70b 68.4 58 56.1 54.7 42.3 55.9 79.9 39.9 72.9 64.2
SSP(ZGUL)-GPT-3.5 61.1 68.9 62.1 67.1 51.4 62.1 82.8 67.5 77 75.8
SSP(ZGUL)-GPT-4x 72.5 79.8 71.4 77.4 55.1 71.2 82.2 71.5 85.6 79.8
w/o Conf. thresholding 71.3 81.9 69.2 74.6 52.7 69.9 82.8 57 81.4 73.7
w/o Label Coverage 71.1 79.8 71.4 77.4 55.1 71 82.2 71.6 85.6 79.8
w/o both (sim-based) 70.3 81.8 68 74.8 51.9 69.4 82.4 55.8 82.3 73.5
w/o ILP (Random) 64.1 77.6 61.5 66.1 46.6 63.2 80.6 54.8 80.9 72.1
Skyline (GPT-4x) 75.5 85.9 70.7 73.6 67.2 74.6 93.5 80.7 89.9 88

Table 1: Micro-F1 scores for African NER (left) and Germanic POS (right) (Statistical significance of bold numbers:
McNemar p-value = 0.008 and 0.0004, respectively)

Family Source languages Source size
Germanic {En,Is,De} 30000
African {En,Am,Sw,Wo} 19788
American {En,Es} 19998

Table 2: Size (No. of sentences) of Combined Source
language datasets (En - English, Is - Icelandic, De -
German, Am - Amharic, Sw - Swahili, Wo - Woloff, Es
- Spanish)

Family Test languages Labels
Germanic {Fo, Got, Gsw} 2370
African {Hau,Ibo,Kin,Lug,Luo} 1100
American {Aym,Gn,Nah} 501

Table 3: Size (No. of labels) of Target language datasets,
per language, on average. (Fo - Faroese, Got - Gothic,
Gsw - Swiss German, Hau - Hausa, Ibo - Igbo, Kin -
Kinyarwanda, Lug - Luganda, Luo - Luo, Aym - Ay-
mara, Gn - Guarani, Nah - Nahuatl)

MasakhaNER (Adelani et al., 2021) for African324

NER, and AmericasNLI (Ebrahimi et al., 2022) for325

NLI task on the indigenous languages of Amer-326

icas. Overall, we use twelve low-resource test327

languages as target (e.g., Kinyarwanda, Faroese,328

and Aymara), and 2-4 source languages per dataset329

(e.g., Icelandic, Spanish and Swahili; always in-330

cluding English). Further details are in Appendix331

C. Tables 2 and 3 show the languages and num-332

ber of examples in the source and target datasets333

respectively.334

Recent studies have shown sensitivity of the out-335

put to the template/format of input-output pairs336

written in the prompt (Sclar et al., 2023; Voronov337

et al., 2024). We follow the best template given 338

in Sclar et al. (2023) for NLI, while for sequence 339

labeling, we explore various templates on our own 340

and report our results on the best one. We refer 341

to Appendix B for details and the exact templates 342

used for each of our tasks. 343

For obtaining test set, we randomly sample 100 344

test samples for each target language for NER and 345

POS tasks. We justify this as each sentence has 346

multiple labels, bringing the total no. of instances 347

to be labeled per language to 2370 and 1100 for 348

POS and NER respectively. For the NLI task, we 349

sample 501 test samples (167 for each class: ‘en- 350

tailment’, ‘contradiction’ and ‘neutral’). We report 351

statistical significance (in table captions) to justify 352

our evaluation. 353

We also perform a careful contamination study, 354

following (Ahuja et al., 2022), by asking LLMs 355

to fill dataset card, complete sentence (and labels), 356

given partial sentence, and generate next few in- 357

stances of the dataset. As further detailed in Ap- 358

pendix F, we do not observe any evidence of con- 359

tamination of these languages’ test splits in the Ope- 360

nAI LLMs, suggesting that OpenAI LLMs have 361

likely not seen these test datasets during their train- 362

ing. 363

4.2 Comparison Models 364

Baselines: We compare our SSP approach with the 365

SoTA fine tuning models, as well as LLM-based 366

ICL methods using naive random exemplar selec- 367

tion. In particular, we fine-tune ZGUL – mBERT 368

Language Adapter-based SoTA zero-shot baseline 369

for NER and POS tagging, and mDeBERTa fine- 370
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Model Aym Gn Nah Avg.
mDeBerta100 (Laurer et al., 2022) 34.9 43.9 48.9 42.6
mDeBertaCL 33.9 47 46.9 42.6
ICL-GPT-3.5-turbo 38.2 41.7 35.3 38.4
ICL-GPT-4x 32.8 55.8 42.2 43.6
SSP(ICL)-GPT-3.5-turbo 38.4 38.8 43.2 40.1
SSP(ICL)-GPT-4x 37.5 58.5 51.8 49.3
SSP(ZGUL)-GPT-3.5 43.1 46 46.8 45.3
SSP(ZGUL)-GPT-4x 36 61.3 59.2 52.2
w/o Conf. thresholding 42.9 60.1 50.3 51.1
w/o Label Coverage 37 58.2 57.4 50.9
w/o both (sim-based) 34.3 59.7 57.1 50.4
w/o ILP (Random) 33.4 53.8 53.4 46.9
Skyline (GPT-4x) 55.6 49.2 60 54.9

Table 4: Micro-F1 scores for Americas NLI (Statistical significance of bold number: McNemar p-value = 0.054)

tuned for NLI. We additionally utilize the public371

model mDeBERTa-v3-base-xnli-multilingual-nli-372

2mil7 (Laurer et al., 2022) for NLI evaluation. We373

term our own fine-tuned model as mDeBERTaFT374

and the public model as mDeBERTa100, as it was375

trained on 100 languages (while not covering any376

of our target languages). For POS and NER, we377

also add full parameter fine-tuning and Conditional378

Parameter Generation (CPG (Üstün et al., 2020))379

baselines, fine-tuned using the same underlying380

LM (i.e. mBERT) as ZGUL.381

SSP Variants: We implement SSP with a se-382

ries of top-of-the-line LLMs – GPT-3.5-turbo383

(Ouyang et al., 2022), GPT-4x (GPT-4/GPT-4-384

Turbo) (Achiam et al., 2023), and LLaMa-2-70b385

(Touvron et al., 2023). If Stage I uses ICL, then the386

same LLM is used for both stages I and II. Alter-387

natively, ZGUL and mDeberta based methods are388

also used in Stage I of SSP.389

To understand the value of the ILP, we perform390

three ablations on exemplar selection strategy –391

(a) without confidence thresholding (for fine-tuned392

LM), (b) without label coverage and (c) without393

both, i.e. pure similarity-based. The ablations394

are conducted with the best performing underly-395

ing LLM i.e. GPT-4x.396

Skyline: To understand the current performance397

gap due to lack of target language training data,398

we also implement a skyline utilizing the avail-399

able data for target languages and perform few-shot400

in-language similarity-based exemplar selection401

(using Ada-v2 embeddings) for in-language ICL to402

the LLM.403

5 Results and Analysis 404

We present the results for all tasks in Tables 1, 405

and 4. ICL-X represents ICL over an LLM X 406

with source language exemplars. SSP(model)-X 407

represents the use of model for Stage I followed by 408

LLM X for Stage II. In case ICL is used in Stage I, 409

then same LLM X is used in both stages. 410

Analyzing the results, we first observe that all 411

ICL-X baselines perform much better than previ- 412

ous fine-tuning approaches for the 0-CLT task. This 413

reaffirms the importance of studying and improv- 414

ing in-context learning over very large language 415

models for our setting. 416

Comparing among SSP variants, it is not surpris- 417

ing that GPT-4 performance supercedes GPT-3.5, 418

which is much better than Llama2 70B. We next 419

compare ICL baselines and SSP variants, when us- 420

ing the same LLM. We find that SSP’s two stage 421

workflow consistently outperforms ICL by signifi- 422

cant margins. In fact, in-language exemplars with 423

very noisy labels from stage 1 (E.g. for Got lan- 424

guage with GPT-3.5-Turbo) perform quite well. 425

These observations underscore the value of target 426

language exemplars in ICL, even at the cost of label 427

noise. 428

Finally, we compare SSP with Stage I via ICL 429

over an LLM vs. via a fine-tuning baseline (ZGUL 430

or mDeBerta). Fine-tuning baseline for Stage I 431

has two benefits – it is cheaper (due to no LLM 432

calls in Stage I), and has prediction confidence that 433

can allow ILP to select highly confident Stage II 434

exemplars. Due to the latter, in two of the three 435

language groups, the use of a fine-tuning baseline 436

performs much better, and in the third group, it 437
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is marginally behind due to weaker performance438

in one language (Gothic). This happens because439

ZGUL has a particularly poor performance on this440

language, leading to much noisier labels in Stage441

II exemplars.442

Overall, our best SSP solution uses a fine-tuning443

baseline (ZGUL or mDeBerta) for Stage I and GPT-444

4 for Stage II, using its novel ILP-based exem-445

plar selection. It outperforms closest baselines by446

around 3 F1 pts, on average, establishing a new447

state of the art for zero-shot cross lingual transfer448

to low resource languages. The best SSP reported449

results are statistically significant compared to the450

best baseline using McNemar’s test (p-values in Ta-451

bles 1 and 2 captions). We believe that our work is452

a significant advancement to the existing paradigm453

(Tanwar et al., 2023; Nambi et al., 2023), which454

is restricted to optimizing only one round of in-455

context learning. More detailed analysis on this456

follows in Appendix E.457

5.1 Ablation Study458

We now discuss the results of removing ILP compo-459

nents in Stage II exemplar selection. Tables 1, and460

4 (last four rows) report the impact of removing461

confidence thresholding constraint, label coverage462

constraint, both of these constraints (i.e., just using463

similarity) from the ILP. The final row removes464

ILP completely and presents results of random ex-465

emplars in Stage II. All these ablations are done466

on SSP with ZGUL/mDeBerta for Stage I, as only467

those output prediction probabilities.468

Impact of label coverage: We observe an aver-469

age gain of 1.3 F1 points over AmericasNLI task470

compared to the ablation model that does not en-471

sure label coverage as a constraint. To investigate472

further, we compute the average number of exem-473

plars for each label that are covered in the selected474

set for both methods, along with their label-wise475

F1 scores (see Figure 3). We observe that the ‘neu-476

tral’ label is not sampled in most cases for w/o477

label coverage variant, while exactly one ‘neutral’478

label is sampled in the SSP(mDeBerta), with la-479

bel constraint. We find that this happens as the480

smaller fine-tuned model mDeBerta-CL has very481

poor recall (0.24) for ‘neutral’ class and hence any482

selection strategy has a natural tendency to not sam-483

ple this label, unless enforced via a constraint. The484

class-wise recall scores for SSP(DeBertaCL)-GPT4485

with and without label coverage are presented in486

Table 7. We observe a difference of 22 recall points487

for ‘neutral’ class (57.6 vs 35.6) between the two488

Model Neu. Ent. Con. Macro-F1
DeBertaCL 34.7 53 40.3 42.6
SSP-V2 51.7 53.4 51.4 52.2
(w/o Label) 42.6 52.3 57.9 50.9

Table 5: Labelwise F1 scores for fine-tuned model
(DeBerta-CL) and SSP-V2 variants w. and w/o Label
coverage (GPT-4-Turbo)

ILP variants. An example illustrating this behavior 489

in terms of the exemplars selected by both methods 490

is shown in Figure 6 (appendix). 491

Impact of confidence thresholding: For se- 492

quence labeling tasks, confidence thresholding 493

plays a key role. This is validated from abla- 494

tion results in Table 1, wherein removing confi- 495

dence thresholding constraint from SSP leads to 496

5.7 points drop for POS tagging (Germanic) and 497

1.3 points for NER. The drop is particularly sig- 498

nificant (around 13.5 F1 points) for Gothic (Got), 499

which shows that not utilizing the confidence scores 500

can lead to drastic drop. This may be because per- 501

formance of ZGUL is already poor on Gothic (21 502

F1 points), but confidence thresholding may have 503

likely compensated by picking higher quality exem- 504

plars. Removing thresholding would increase noise 505

in exemplars considerably, leading to the drop. 506

We further study its impact by computing 507

the quality of Stage II exemplars selected by 508

SSP(mDeBerta), as well as all it’s ablation variants. 509

We compute the label-wise precision over all K×N 510

(K=8, N=no. of test instances) samples for each tar- 511

get language, and then report their macro-average. 512

We observe for (Figure 3) that the macro-precision 513

of selected exemplars by the complete ILP is con- 514

sistently higher than it’s other ablation variants, 515

the least value being of w/o both (similarity-based) 516

variant. This implies that the ILP is able to effec- 517

tively sample high-precision exemplars which, in 518

turn, gets translated into it’s superior downstream 519

performance on the task. 520

For completeness, we also show the exemplar 521

precision statistics for NER and POS (averaged 522

over their label-wise precision scores) in Figure 4. 523

The trends hold similar in the sense-that ‘w/o con- 524

fidence’ and ‘similarity-based’ variants have signif- 525

icantly lower precision than SSP. This is expected 526

because both these eschew confidence threshold- 527

ing, leading to sampling of lower-confidence pre- 528

dictions. This translates to worse downstream per- 529

formance (see Table 1). On the other hand, the ‘w/o 530

label coverage’ variant is competitive in terms of 531
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Figure 3: Label-wise statistics for AmericasNLI: Left to right - Label-wise count per prompt, Precision of ICL
exemplars, and F1 results (averaged over target languages) using different selection strategies (GPT-4-Turbo)

Figure 4: Precision of selected exemplars for African
NER and Germanic POS

both exemplars’ precision as well as downstream532

performance for sequence labeling tasks. This so533

happens, because in sequence labeling, the issue of534

label coverage hardly matters, since as many labels535

as words in the ICL set are covered in the prompt,536

unlike classification tasks in which only K (in our537

case, 8) labels can be selected.538

We also note that w/o ILP (completely random539

selection) ablation performs much worse than SSP,540

showcasing the importance of carefully selecting541

the exemplar set.542

5.2 Error Analysis543

We investigate scenarios where SSP approach sys-544

tematically fails compared to other methods. For545

NER, we find that ZGUL (fine-tuned LM) under-546

predicts the ‘DATE’ label. As a result, SSP al-547

most never samples this label in stage 2 exemplars,548

hence hurting the performance for this label. For549

NLI task, we observe that in order to ensure label550

coverage, SSP samples the underpredicted label551

‘neutral’ but while doing so, also ends up hurting552

the performance for ‘contradiction’ label (as seen553

in last plot of Figure 3).554

6 Conclusions and Future Work 555

We study the zero-shot cross-lingual transfer set- 556

ting for low-resource languages, when task-specific 557

training data is available for related medium re- 558

source languages. We present Self-Supervised 559

Prompting (SSP) – a novel two-stage framework 560

for the use of in-context learning over very large 561

language models. At a high-level, SSP first nois- 562

ily labels the target test set using source training 563

data (either by training a model/adapter) or by in- 564

context learning over an LLM. SSP then uses these 565

noisily labeled target data points as exemplars in 566

in-context learning over the LLM. A key techni- 567

cal contribution is the use of integer-linear pro- 568

gram that balances exemplar similarity, labeling 569

confidence and label coverage to select the exem- 570

plars for a given test point. Thorough experiments 571

on three NLP tasks, and twelve low-resource lan- 572

guages from three language groups show strongly 573

improved performance over published baselines, 574

obtaining a new state of the art in the setting. Abla- 575

tions show the value each ILP component in down- 576

stream performance. 577

In the future, we seek to extend our technique to 578

more non-trivial applications such as cross-lingual 579

generation and semantic parsing. We also posit that 580

smaller fine-tuned models, when calibrated prop- 581

erly, can result in more efficient selection of exem- 582

plars to an LLM, as compared to poorly calibrated 583

counterparts, in terms of downstream performance. 584

We leave a careful and systematic investigation 585

into this hypothesis for future work. Moreover, 586

we currently cover the languages having Roman 587

scripts only, but, we seek to extend our work for 588

non-Roman script languages as well. 589

7 Limitations 590

We show all our results and ablations on the recent 591

state-of-the-art LLMs including GPT4. The infer- 592
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ence for these LLMs is expensive, and makes the593

model deployment infeasible. Other potential limi-594

tations are extending our method to tasks such as595

fact checking, in which the LLMs suffer from hal-596

lucinations and overprediction issues. The reason597

why we don’t use LLM logits in ILP framework is598

because they are not openly released by OpenAI599

and hence, there becomes a need to rely on smaller600

fine-tuned models - which can potentially lead to601

sub-optimal downstream performance, in case the602

fine-tuned models are poorly calibrated. Another603

serious implication of using LLMs for non-roman604

script languages is unreasonably high fertility (to-605

kens per word split) of the LLM tokenizers, which606

increases the cost as well as strips the input prompt,607

which is not desirable.608
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A Implementation and Hyperparameter802

Details803

We use Azure OpenAI service 3 for all experi-804

ments involving GPT-3x and GPT-4x models. For805

LLama-2-70b, we use the together API 4. We set806

temperature as 0.0 consistently for all our exper-807

iments, making our results directly reproducible.808

The max_tokens (max. no. of generated tokens)809

parameter is set to 1024 for POS and NER tasks,810

while 15 for the NLI. For all experiments, the no.811

of exemplars (M ) is fixed to 8 for uniform compar-812

ison. For ILP solver, we use Python’s gurobipy 5813

package.814

A.1 Estimating confidence ŷik815

For NLI task, the model always predicts a single816

label: ‘neutral’, ‘contradiction’ or ‘entailment’. We817

simply apply softmax on the class logits for the pre-818

dicted label to compute the confidence ŷij (for ith819

test instance).820

In sequence labeling tasks, suppose for an in-821

put sentence having words: {w1, w2, ..., wT },822

the model predicts labels {o1, o2, ..., oT } with823

probabilities {p̂1, p̂2, ..., p̂T }. Let LabelSet be824

{l1, l2, ..., lN}. We compute confidence ŷl for each825

label for a given test example as follows:826

for k ← 1 to N do827

ŷk ← 0 ▷ init each label’s confidence828

ck ← 0 ▷ init each label’s count829

end for830

for i← 1 to T do831

for j ← 1 to N do832

if lj == oi then833

ŷj ← ŷj + p̂i ▷ Update ŷj834

cj ← cj + 1 ▷ increase counter835

end if836

end for837

end for838

for k ← 1 to N do839

ŷk = ŷk/ck ▷ average over all occurrences840

end for841

This outputs the confidence scores ŷl for a given842

example, with those not predicted in a sequence843

having 0 value.844

3https://azure.microsoft.com/en-in/products/ai-
services/openai-service

4https://www.together.ai/
5https://pypi.org/project/gurobipy/

B Prompt details 845

Prompts for the Named Entity Recognition (NER) 846

and Part of Speech Tagging (POS) tasks are pre- 847

sented in the tab separated format shown in B.0.2 848

and B.0.3 respectively. 849

Prompts for Natural Language Inference (NLI) 850

initially used the framework in Ahuja et al. (2023) 851

. To improve our performance, we changed the 852

prompt to use Sclar et al. (2023)’s framework, 853

where the authors performed an exhaustive search 854

over tokens used for a prompt in order to find the 855

prompt with optimal performance. This increased 856

Macro F1 score by atleast 10% across all the tested 857

languages. We use the same prompt across all mod- 858

els used in our experiments. 859

B.0.1 Natural Language Inference (NLI) 860

Task Description: You are an NLP assistant whose 861

purpose is to solve Natural Language Inference 862

(NLI) problems. NLI is the task of determining 863

the inference relation between two (short, ordered) 864

texts: entailment, contradiction, or neutral. Answer 865

as concisely as possible in the same format as the 866

examples below: 867

Input format: 868

Premise: {premise} , Hypothesis: {hypothesis} , 869

Output format: 870

Answer: {output} 871

Verbalizer: 872

match the one-word response from the model (neu- 873

tral, contradiction or entailment) 874

B.0.2 Named Entity Recognition (NER) 875

Task Description: Tag the following sentence ac- 876

cording to the BIO scheme for the NER task, using 877

the tags PER (person), LOC (location), ORG (or- 878

ganization) and DATE (date). Follow the format 879

specified in the examples below: 880

Input format: 881

Sentence: w1 w2 ... wT 882

Output format: 883

Tags: 884

w1<TAB>o1 885

w2<TAB>o2 886

... 887

wT<TAB>oT 888

Verbalizer: 889

Extract the sequence of labels o1, o2, ...o3 from 890

generated response. 891
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B.0.3 Part of Speech (PoS) tagging892

Task Description: Tag the following sentence ac-893

cording to the Part of Speech (POS) of each word.894

The valid tags are ADJ, ADP, ADV, AUX, CCONJ,895

DET, INTJ, NOUN, NUM, PART, PRON, PROPN,896

PUNCT, SCONJ, SYM, VERB, X. Follow the for-897

mat specified in the examples below:898

Input format:899

Sentence: w1 w2 ... wT900

Output format:901

Tags:902

w1<TAB>o1903

w2<TAB>o2904

...905

wT<TAB>oT906

Verbalizer:907

Extract the sequence of labels o1, o2, ...o3 from908

generated response.909

B.1 Verbalizer details for Tagging tasks910

The verbalizer for tagging tasks requires the LLM911

to output the words as well as the associated labels.912

The LLM’s output may not be perfect, as it may913

fail to generate all words or associate a label with914

each word. As a result, we find the Longest Com-915

mon Subsequence between the words generated by916

the LLM and the words of the example. This is917

done using Dynamic Programming, as described in918

(Bergroth et al., 2000).919

Once we have found the longest common subse-920

quence, we assign the corresponding tags generated921

by the LLM to these words. If the tags are invalid,922

we assign a default tag (O for NER, and X for POS).923

Finally, for the words which don’t have any tags924

associated with them, we assign the same default925

tag as before.926

It is to be noted that in most cases, the sentence927

generated by the LLM perfectly matches the origi-928

nal sentence. For GPT-4, less than 1% of the words929

fell into the category of having an invalid tag gen-930

erated, or not having the word generated.931

B.2 Prompts for GSW Examples932

The base SSP-SIM prompts for the GSW examples933

highlighted in Figure 5 are given below. Labels934

which are misclassified in the in-context exemplars935

are coloured in red, and the AUX labels which are936

to be flipped in the ablations are coloured in blue.937

It is interesting to note that examples 1 and 2 are938

similar, as example 1 is retrieved as an in-context939

exemplar for example 2.940

B.2.1 Example 1 941

Tag the following sentence according to the Part 942

of Speech (POS) of each word. The valid tags 943

are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, 944

NOUN, NUM, PART, PRON, PROPN, PUNCT, 945

SCONJ, SYM, VERB, X. Follow the format 946

specified in the examples below: 947

Sentence: I main , das Ganze letscht Wuchä isch 948

mier scho ächli iigfaarä . 949

Tags: 950

“‘ 951

I PRON 952

main VERB 953

, PUNCT 954

das DET 955

Ganze NOUN 956

letscht ADJ 957

Wuchä NOUN 958

isch AUX 959

mier PRON 960

scho ADV 961

ächli ADV 962

iigfaarä VERB 963

. PUNCT 964

“‘ 965

Sentence: Du gsehsch uus , wi wenn de nöime no 966

hättisch z trinken übercho . 967

Tags: 968

“‘ 969

Du PRON 970

gsehsch VERB 971

uus PRON 972

, PUNCT 973

wi SCONJ 974

wenn SCONJ 975

de DET 976

nöime ADJ 977

no ADV 978

hättisch AUX 979

z PART 980

trinken VERB 981

übercho VERB 982

. PUNCT 983

“‘ 984

Sentence: Dir weit mer doch nid verzöue , di 985

Wäutsche heige vo eim Tag uf en anger ufghört 986

Chuttlen ässe . 987

Tags: 988

“‘ 989

Dir PRON 990

weit VERB 991
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Ds Gueten isch immerhin gsi , dass i ungerdesse söfu müed bi gsi , dass i ändlech ha chönne go schlofe .

CLT-SIM DET NOUN AUX ADV VERB PUNCT SCONJ PRON ADV VERB ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

SSP-CLT-SIM DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(All AUX->VERB)

DET NOUN VERB ADV VERB PUNCT SCONJ PRON ADV ADV ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

Gold DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ AUX AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

I cha der ihri Telefonnummere gä , de nimmsch mou unverbindlech Kontakt uuf .

CLT-SIM PRON VERB DET ADJ NOUN VERB PUNCT PRON VERB ADV ADJ NOUN VERB PUNCT

SSP-CLT-SIM PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(All AUX->VERB)

PRON VERB PRON PRON NOUN VERB PUNCT DET VERB ADV ADJ NOUN ADP PUNCT

Gold PRON AUX PRON DET NOUN VERB PUNCT ADV VERB ADV ADJ NOUN PART PUNCT

Figure 5: Label flips for CLT-SIM and SSP-SIM, for POS tagging in Swiss-German (gsw). Incorrect labels are
marked in red. SSP-SIM ablations include flipping half/all of the AUX labels in the prompt to VERB labels. Gold
labels are given for reference.

mer PRON992

doch ADV993

nid ADV994

verzöue VERB995

, PUNCT996

di DET997

Wäutsche NOUN998

heige VERB999

vo ADP1000

eim DET1001

Tag NOUN1002

uf ADP1003

en DET1004

anger ADJ1005

ufghört VERB1006

Chuttlen NOUN1007

ässe VERB1008

. PUNCT1009

“‘1010

Sentence: es isch nämli echt usgstorbe gsi .1011

Tags:1012

“‘1013

es PRON1014

isch AUX1015

nämli ADV1016

echt ADJ1017

usgstorbe VERB1018

gsi AUX1019

. PUNCT1020

“‘1021

Sentence: Aso bini rächt uufgschmissä gsi und1022

dem entschprächend fascht verzwiiflät .1023

Tags:1024

“‘1025

Aso ADV1026

bini AUX1027

rächt ADV1028

uufgschmissä VERB 1029

gsi AUX 1030

und CCONJ 1031

dem PRON 1032

entschprächend ADJ 1033

fascht ADV 1034

verzwiiflät VERB 1035

. PUNCT 1036

“‘ 1037

Sentence: Der Ääschme wett nöd schaffe biin em . 1038

Tags: 1039

“‘ 1040

Der DET 1041

Ääschme NOUN 1042

wett AUX 1043

nöd ADV 1044

schaffe VERB 1045

biin ADP 1046

em PRON 1047

. PUNCT 1048

“‘ 1049

Sentence: Zerscht hends am Dani gsait , är söli 1050

dòch Hoochdütsch redä , das gängi denn grad gaar 1051

nöd , wenn är so redi , wiäner redi . 1052

Tags: 1053

“‘ 1054

Zerscht ADV 1055

hends PRON 1056

am ADP 1057

Dani PROPN 1058

gsait VERB 1059

, PUNCT 1060

är PRON 1061

söli AUX 1062

dòch ADV 1063

Hoochdütsch ADJ 1064

redä VERB 1065

13



, PUNCT1066

das PRON1067

gängi VERB1068

denn ADV1069

grad ADV1070

gaar ADV1071

nöd ADV1072

, PUNCT1073

wenn SCONJ1074

är PRON1075

so ADV1076

redi VERB1077

, PUNCT1078

wiäner PRON1079

redi VERB1080

. PUNCT1081

“‘1082

Sentence: Isch das e Sach gsi , bis mer se gfunge1083

hei gha .1084

Tags:1085

“‘1086

Isch AUX1087

das PRON1088

e DET1089

Sach NOUN1090

gsi AUX1091

, PUNCT1092

bis SCONJ1093

mer PRON1094

se PRON1095

gfunge VERB1096

hei AUX1097

gha VERB1098

. PUNCT1099

“‘1100

Sentence: Ds Gueten isch immerhin gsi , dass i1101

ungerdesse söfu müed bi gsi , dass i ändlech ha1102

chönne go schlofe .1103

Tags:1104

“‘1105

1106

B.2.2 Example 21107

Tag the following sentence according to the Part1108

of Speech (POS) of each word. The valid tags1109

are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ,1110

NOUN, NUM, PART, PRON, PROPN, PUNCT,1111

SCONJ, SYM, VERB, X. Follow the format1112

specified in the examples below:1113

Sentence: I ha ar Marie-Claire gseit , es sig mer1114

chli schlächt und i mög jetz nümm liire .1115

Tags:1116

“‘ 1117

I PRON 1118

ha AUX 1119

ar PART 1120

Marie-Claire PROPN 1121

gseit VERB 1122

, PUNCT 1123

es PRON 1124

sig AUX 1125

mer PRON 1126

chli ADV 1127

schlächt ADJ 1128

und CCONJ 1129

i PRON 1130

mög VERB 1131

jetz ADV 1132

nümm ADV 1133

liire VERB 1134

. PUNCT 1135

“‘ 1136

Sentence: De Spanier hed de Kontakt vermettlet , 1137

d Rumäne sölled d Holländer ombrocht ha . 1138

Tags: 1139

“‘ 1140

De DET 1141

Spanier NOUN 1142

hed AUX 1143

de DET 1144

Kontakt NOUN 1145

vermettlet VERB 1146

, PUNCT 1147

d DET 1148

Rumäne NOUN 1149

sölled AUX 1150

d DET 1151

Holländer PROPN 1152

ombrocht VERB 1153

ha AUX 1154

. PUNCT 1155

“‘ 1156

Sentence: Ds Gueten isch immerhin gsi , dass i 1157

ungerdesse söfu müed bi gsi , dass i ändlech ha 1158

chönne go schlofe . 1159

Tags: 1160

“‘ 1161

Ds DET 1162

Gueten NOUN 1163

isch AUX 1164

immerhin ADV 1165

gsi VERB 1166

, PUNCT 1167

dass SCONJ 1168
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i PRON1169

ungerdesse ADV1170

söfu VERB1171

müed ADJ1172

bi ADP1173

gsi VERB1174

, PUNCT1175

dass SCONJ1176

i PRON1177

ändlech ADV1178

ha AUX1179

chönne AUX1180

go VERB1181

schlofe VERB1182

. PUNCT1183

“‘1184

Sentence: Isch das e Sach gsi , bis mer se gfunge1185

hei gha .1186

Tags:1187

“‘1188

Isch AUX1189

das PRON1190

e DET1191

Sach NOUN1192

gsi AUX1193

, PUNCT1194

bis SCONJ1195

mer PRON1196

se PRON1197

gfunge VERB1198

hei AUX1199

gha VERB1200

. PUNCT1201

“‘1202

Sentence: De Dialäkt muess zu de Gschecht und1203

zum Inhaut vonere Werbig passe .1204

Tags:1205

“‘1206

De DET1207

Dialäkt NOUN1208

muess AUX1209

zu ADP1210

de DET1211

Gschecht NOUN1212

und CCONJ1213

zum ADP1214

Inhaut NOUN1215

vonere ADP1216

Werbig NOUN1217

passe VERB1218

. PUNCT1219

“‘1220

Sentence: Mit der Zit hani mi mit mir säuber uf ei 1221

Schriibwiis pro Wort aafo einige . 1222

Tags: 1223

“‘ 1224

Mit ADP 1225

der DET 1226

Zit NOUN 1227

hani VERB 1228

mi PRON 1229

mit ADP 1230

mir PRON 1231

säuber ADJ 1232

uf ADP 1233

ei DET 1234

Schriibwiis NOUN 1235

pro ADP 1236

Wort NOUN 1237

aafo VERB 1238

einige DET 1239

. PUNCT 1240

“‘ 1241

Sentence: Mit all denä Wörter hani natürli nüt 1242

chönä aafangä . 1243

Tags: 1244

“‘ 1245

Mit ADP 1246

all DET 1247

denä DET 1248

Wörter NOUN 1249

hani PRON 1250

natürli ADV 1251

nüt ADV 1252

chönä VERB 1253

aafangä VERB 1254

. PUNCT 1255

“‘ 1256

Sentence: Aso bini rächt uufgschmissä gsi und 1257

dem entschprächend fascht verzwiiflät . 1258

Tags: 1259

“‘ 1260

Aso ADV 1261

bini AUX 1262

rächt ADV 1263

uufgschmissä VERB 1264

gsi AUX 1265

und CCONJ 1266

dem PRON 1267

entschprächend ADJ 1268

fascht ADV 1269

verzwiiflät VERB 1270

. PUNCT 1271

“‘ 1272

15



Model Neu. Ent. Con. Overall
DeBertaCL 24.3 72.7 38.7 45.2
SSP-V2 57.8 46.5 51.5 52
(w/o Label) 35.3 43.8 68.5 49.2

Table 7: Labelwise Recall for fine-tuned model
(DeBerta-based) and ILP variants w. and w/o Label
coverage (GPT-4-Turbo)

Sentence: I cha der ihri Telefonnummere gä , de1273

nimmsch mou unverbindlech Kontakt uuf .1274

Tags:1275

“‘1276

1277

C Source and Target Languages for each1278

task1279

Code Language
En English
Am Amharic
Sw Swahili
Wo Wolof
Hau Hausa
Ibo Igbo
Kin Kinyarwanda
Lug Luganda
Luo Luo
Is Icelandic
De German
Fo Faroese
Got Gothic
Gsw Swiss German
Nds Low-Saxon
Es Spanish
Aym Aymara
Gn Guarani
Nah Nahuatl

Table 6: Languages and their codes

D NLI Label coverage Analysis1280

We present an example of correct prediction made1281

by SSP as compared to the version that doesn’t en-1282

sure label coverage in Figure 6 (English translation1283

in Fig. 7).1284

E Qualitative Analysis: SSP-SIM1285

We present the analysis for the gains obtained via1286

SSP-SIM for Germanic POS in Figure 8. The con-1287

fusion matrix difference between SSP-SIM and1288

CLT-SIM suggests that the model misclassifies aux- 1289

iliary verbs as verbs in CLT-SIM, and this is cor- 1290

rected in SSP-SIM. These errors are a consequence 1291

of the labels on the in-context exemplars the model 1292

receives, and not the tokens of the language itself. 1293

We highlight this via the two Swiss-German POS 1294

examples in Figure 5. The misclassified verbs are 1295

corrected by SSP-SIM, and these labels are again 1296

misclassified when more than half of the labels in 1297

the in-context exemplars are corrupted. 1298

F Data Contamination Analysis 1299

Following Ahuja et al. 2023, we conduct contami- 1300

nation tests on test datasets for our target languages. 1301

We perform the following tests: 1302

• Dataset Card filling: Generate dataset card 1303

(supported languages, dataset description, #in- 1304

stances in each split, etc.) 1305

• Completion: Given a few words, complete the 1306

sentence and their labels, and 1307

• Generation using first few instances: Given 1308

first K instances (K=5) in the dataset, generate 1309

next few instances following them. 1310

We observe negligible contamination as depicted 1311

in table 8. The 40% accuracy for Quechua was 1312

a result of all the labels passed for the exemplars 1313

being entailment labels. As a result, the model 1314

repeated the same label for all the other examples, 1315

giving a 40% accuracy. Following these results, to 1316

prevent any chance of contamination, we remove 1317

Quechua from our evaluation dataset. 1318
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Figure 6: Correct case of ‘Neutral’ detected by ILP (left), while ‘w/o label’ variant misses it (right). We note that
exact one ‘neutral’ class has been sampled by ILP, while no ‘neutral’ is sampled in ‘w/o label’ version.

Figure 7: English translations of Exemplars shown in Fig. 6
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Predicted

A
D
J

A
D
P

A
D
V

A
U
X

C
C
O
N
J

D
ET

N
O
U
N

PR
O
N

PR
O
PN

PU
N
C
T

VE
R
B

X

G
ol
d

ADJ -2 0 0 0 0 2 -5 4 0 0 1 1

ADP -2 6 -3 0 0 0 0 -3 0 0 -1 4

ADV -5 -3 28 0 1 -6 -1 -5 0 0 -6 -4

AUX 0 -1 -2 17 0 0 0 -1 -1 0 -13 1

CCONJ 0 -4 -1 0 7 0 1 -3 0 0 -1 0

DET 1 1 -4 0 0 9 0 -3 -4 0 0 0

NOUN 2 0 0 -1 0 -2 7 -3 0 0 -3 1

PRON -3 -3 -5 -1 0 2 -3 24 -4 0 -4 -2

PROPN 0 0 0 0 0 0 -2 0 -1 0 0 3

PUNCT 0 0 0 0 0 0 0 0 0 -2 0 -1

VERB 0 -1 0 4 0 -1 -15 0 0 0 15 -2

X 0 0 0 0 0 0 0 0 -1 -1 0 1

Figure 8: Difference in confusion matrices between SSP-SIM and CLT-SIM for the POS task, summed across all
languages (tags with less than 100 instances have been omitted). The increase in correct tags is visible along the
diagonal, and misclassifications between VERB and AUX tags / NOUN and VERB tags have also improved.

Task Card Filling Completion Few-Shot Generation

NER
Didn’t predict correct

languages; no split sizes
generated

No match found NA

POS
predicted 33 languages,

but doesn’t contain any of
our target languages

No match found NA

NLI
predicts 3 languages, of
which only one matches
with our target language
(Quechua); wrong test

split size

Refuses to generate for 3
out of 4 target languages,
except for Quechua - for

which it predicts 100% of
the tokens wrong and only
40% labels correctly (out

of 10 instances)

Repeats the premise of
last instance, copies the

premise string to
hypothesis as well (No

match detected)

Table 8: Results of Contamination Study

18


	Introduction
	Related Work
	Self-Supervised Prompting
	Stage I: initial labeling using source data
	Stage II: in-language ICL using ILP-based exemplar selection

	Experiments
	Tasks and Datasets
	Comparison Models

	Results and Analysis
	Ablation Study
	Error Analysis

	Conclusions and Future Work
	Limitations
	Implementation and Hyperparameter Details
	Estimating confidence ik

	Prompt details
	Natural Language Inference (NLI)
	Named Entity Recognition (NER)
	Part of Speech (PoS) tagging

	Verbalizer details for Tagging tasks
	Prompts for GSW Examples
	Example 1
	Example 2


	Source and Target Languages for each task
	NLI Label coverage Analysis
	Qualitative Analysis: SSP-SIM
	Data Contamination Analysis

