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Abstract

Spiking neural network (SNN) is studied in mul-
tidisciplinary domains to (i) enable order-of-
magnitudes energy-efficient AI inference and (ii)
computationally simulate neuroscientific mecha-
nisms. The lack of discrete theory obstructs the
practical application of SNN by limiting its per-
formance and nonlinearity support. We present a
new optimization-theoretic perspective of the dis-
crete dynamics of spiking neurons. We prove that
a discrete dynamical system of simple integrate-
and-fire models approximates the subgradient
method over unconstrained optimization prob-
lems. We practically extend our theory to in-
troduce a novel sign gradient descent (signGD)-
based neuronal dynamics that can (i) approxi-
mate diverse nonlinearities beyond ReLU and (ii)
advance ANN-to-SNN conversion performance
in low time steps. Experiments on large-scale
datasets show that our technique achieves (i) state-
of-the-art performance in ANN-to-SNN conver-
sion and (ii) is the first to convert new DNN
architectures, e.g., ConvNext, MLP-Mixer, and
ResMLP. We publicly share our source code at
www.github.com/snuhcs/snn signgd .

1. Introduction
Understanding how a biological neuron processes informa-
tion has been a milestone of both neuroscience and efficient
artificial intelligence (Christensen et al., 2021; Furber et al.,
2014b; Kasabov, 2014). Spiking neural network (SNN) is
widely studied to get new insights on the information dynam-
ics of the brain (Ghosh-Dastidar & Adeli, 2009; Furber et al.,
2014b). SNN is a biologically plausible type of artificial
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(a) Conceptual diagram of our technical contributions.

(b) Our signGD-based spiking neuron enables the conversion of
neural networks that use nonlinear operators other than ReLU.

Figure 1. In this paper, we (i) mathematically connect the neuronal
dynamics of integrate-and-fire models with the optimization dy-
namics of subgradient method, (ii) extend the theory to design a
new spiking neuron model that can approximate arbitrary element-
wise tensor operators, and (iii) use our neuron model to expand
ANN-to-SNN conversion beyond ReLU networks (Fig. 1(b)).

neural network (ANN) in which its neuron models closely
mimic neuroscientific mechanisms (Schuman et al., 2022).
In detail, the spiking neuron, the central processing unit of
SNN, (i) processes non-linearity with an internal dynamical
system and (ii) communicates the information in the form of
a spike train, a time series of short binary electrical pulses.
These key characteristics of SNN are practically leveraged
to develop extremely efficient AI algorithms (Schuman et al.,
2022). For example, SNN inference is orders-of-magnitude
more energy-efficient than the same-architecture DNNs,
e.g., 35-560× less on VGG (Bu et al., 2022) and 280×
less on YOLO (Kim et al., 2020). Discretization of spiking
neuronal dynamics is thus pivotal to both (i) practically im-
plement SNN for real-world applications and (ii) simulate
brain mechanisms with SNN. However, the theoretical un-
derstanding of SNN remains unclear (Zhang & Zhou, 2022),
especially regarding its discrete neuronal dynamics.

The lack of discrete theory obstructs the practical appli-
cation of SNN by constraining its inference accuracy and
nonlinearity support. Building a high-performance SNN is
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categorized into two groups: (i) training SNN from scratch
(Reviewed in Appendix A.) and (ii) converting a pre-trained
ANN model into SNN (Cao et al., 2015). A successful SNN
training strategy, surrogate gradient methods (Neftci et al.,
2019), consumes immense computational resources since
they unfold a DNN backwards the entire time-steps (Li et al.,
2021a). Yet, their best accuracy still falls behind DNNs
with similar architecture, e.g., 4-6% on ResNet (Fang et al.,
2021) and 6-10% on ViT (Zhou et al., 2022). On the other
hand, ANN-to-SNN conversion techniques (Cao et al., 2015;
Han & Roy, 2020) replace real-valued nonlinear operators
of ANN with spiking neurons. However, the only known
theoretical correspondence is between the clipped ReLU
function and IF neuron (Rueckauer et al., 2017). This leads
to three major limitations in prior conversion approaches.
First, ReLU should be the only nonlinear operator in a tar-
get ANN. Second, an accurate SNN inference mandates
data-dependent normalization or calibration techniques (Li
et al., 2021a). Finally, low-latency techniques noticeably
degrade the best accuracy of SNN by replacing ReLU with
spike-aware functions (Bu et al., 2022; Jiang et al., 2023).

In this light, we provide a new optimization-theoretic per-
spective of the discrete neuronal dynamics that can (i) ex-
plain the underlying principle of neuronal dynamics and (ii)
extend to design a new spiking neuron that can compute var-
ious nonlinearities. We first prove that a discrete dynamical
system of simple integrate-and-fire models is equivalent to
a subgradient method over an unconstrained optimization
problem with its solution as a spike-coded nonlinear func-
tion value. SNN inference is thus a neuron-wise first-order
optimization process to approximate real-valued activations.
This framework provides a way to study discrete neuronal
dynamics by expressing it as an equivalent optimization
algorithm, i.e., its optimizer form, and performing conver-
gence analysis to derive the neuron’s asymptotic behavior.

Practically extending our theory, we present a novel signGD-
based neuronal dynamics that can (i) approximate diverse
nonlinearities beyond ReLU and (ii) achieve high accuracy
in low time steps with converted SNNs. Specifically, we
choose the sign gradient descent algorithm (signGD) (Bern-
stein et al., 2018) as the optimizer form of our neuron, replac-
ing the subgradient method. A spiking neuron’s key charac-
teristic, spike-based communication, constrains the space of
approximable nonlinear function for the subgradient-based
neuronal dynamics. In contrast, in the case of signGD-based
neuronal dynamics, a binary spike conveys only the sign of
the gradient of the objective function, widening the space of
approximable nonlinear functions. We generalize the learn-
ing rate schedule of the signGD-based optimizer form to
formulate the new neuronal dynamics and the neural coding
scheme. We empirically validate with experiments that our
signGD-based neuron can approximate unary nonlinearities,
e.g., ReLU, LeakyReLU, and GELU (Hendrycks & Gimpel,

2016), and n-ary nonlinearities, e.g., max pooling and layer
normalization (Ba et al., 2016).

To empirically verify the effectiveness of our signGD-based
neuronal dynamics, we convert high-performance DNNs to
SNNs with our proposed neurons and evaluate their perfor-
mance. Experimental results on large-scale ImageNet (Deng
et al., 2009) and CIFAR (Krizhevsky et al., 2009) datasets
show that our technique is (i) state-of-the-art in conversion
techniques by precisely approximating the ANN perfor-
mance in ≤ 64 time-steps, and (ii) first to convert complex
DNN architectures, e.g., ConvNext (Liu et al., 2022b), MLP-
Mixer (Tolstikhin et al., 2021), and ResMLP (Touvron et al.,
2021). With our neuron, ImageNet top-1 accuracies of con-
verted VGG16 and ResNet34 are > 75% in T = 64, outper-
forming runner-ups by 3%. ConvNext-B and RegNetX-3.2F
reach ≈ 81% in T = 256 for the first time.

2. Related Works
ANN-to-SNN Conversion. Prior conversion techniques sub-
stitute the ReLU function of ANN with the IF neuron (Roy
et al., 2019; Rueckauer et al., 2017). Its limitation is that con-
verted SNNs require a huge number of time steps for high
accuracy (Han & Roy, 2020), leading to large latency and
energy consumption (Liu et al., 2022a). Hence, subsequent
works sought to accelerate SNN inference, i.e., achieve
higher accuracy in lower time steps. Data-dependent nor-
malization (Diehl et al., 2015; Rueckauer et al., 2017; Wang
et al., 2022), calibration (Li et al., 2021a), or neuron adapta-
tion techniques (Hao et al., 2023) minimize the layer-wise
empirical error between ANN and SNN activations (Deng &
Gu, 2021). Temporal coding-based techniques (Park et al.,
2020; Han & Roy, 2020) embed information in latency of
few spikes. Studies in SNN-aware nonlinearities substitute
ReLU of an ANN architecture with piecewise-continuous
functions, e.g., QCFS (Bu et al., 2022), StepReLU (Wang
et al., 2023a), SlipReLU (Jiang et al., 2023). Unlike these
works, we theoretically explain integrate-and-fire models
beyond IF neurons, propose novel neuronal dynamics to
support diverse nonlinearities other than ReLU, and achieve
the highest inference accuracy with our converted SNNs.

A few prior works customize neuronal dynamics to acceler-
ate SNN or approximate different nonlinearities. (Liu et al.,
2022a) replaces event-driven computation with layer-wise
computation. Instead of binary spikes, ternary spikes of
{−1, 0, 1} are used to approximate LeakyReLU (Kim et al.,
2020) or accelerate SNN (Wang et al., 2022). Time series of
float instead of spikes are used to support max pooling (Li
et al., 2022) or accelerate SNN (Jiang et al., 2023). Overall,
these works sacrifice key characteristics of SNN, e.g., event-
driven computation or binary spike train. In contrast, our
signGD-based neuron computes in an event-driven manner
with a binary spike train to support diverse nonlinearities.
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Theoretical understandings of SNN. The theoretical basis
of SNN is an unclear but widely investigated area (Zhang
& Zhou, 2022). SNN can behave as a computational model
of Turing machine (Maass, 1996a;b). Chaos theory ana-
lyzes singularities and asymptotic behavior of SNN (Cessac,
2008). Mancoo et al. shows that a continuous LIF network
holistically solves quadratic programming with convex con-
straints as a gradient flow. Bifurcation theory shows that the
LIF network is a bifurcation dynamical system highly sensi-
tive to decay factor (Zhang et al., 2021). Prior theoretical
results on continuous SNN applies inexactly to discrete-time
dynamics due to discretization errors (Roy, 2010; Mancoo
et al., 2020) accumulating through time (Niesen & Hall,
2004). In contrast, we show that discrete neuronal dynam-
ics of integrate-and-fire models approximate a subgradient
method. Furthermore, we practically extend our theory to
achieve state-of-the-art performance on SNN inference and
ANN-to-SNN conversion.

3. Preliminaries
Integrate-and-fire models are simplified phenomenological
models of biological neuronal dynamics (Gerstner et al.,
2014). It consists of two components: (i) a time-evolution
of membrane potential (Integration) and (ii) a firing mecha-
nism to create a spike (Thresholding). Its continuous neu-
ronal dynamics is a differential equation with a thresholding
criterion (See Appendix E.). For computational tractabil-
ity, the general one-dimensional integrate-and-fire model is
discretized as follows.

upre(t) = u(t− 1) + f
(
u(t− 1)

)
+

R

τm
I(t) (1)

s(t) = H(upre(t)− θth) (2)

where time t ∈ N, dynamics function f(u) : R → R, pre-
firing potential upre(t), s(t) ∈ {0, 1} a spike, post-firing
potential u(t), heaviside step function H, influx current
I(t), threshold θth, membrane resistance R, and membrane
constant τm. The potential upre resets to u after the spike
s(t) fires based on its pre-defined reset mechanism.

u(t) = upre(t)− θths(t) (reset-by-subtraction) (3)
u(t) = upre(t)(1− s(t)) (reset-to-zero)

Discretized reset mechanisms are categorized into two: (i)
reset-to-zero discards the leftover potential, and (ii) reset-by-
subtraction (Han et al., 2020) retains the leftover potential
after the reset. We focus on the reset-by-subtraction mech-
anism since it is easier to theoretically analyze and more
performant in practical applications (Han & Roy, 2020).

Integrate-and-fire (IF) neuron has the simplest neuronal
dynamics defined as f(u) = 0, τm = 1 in equation (1).

upre(t) = u(t− 1) +R I(t) (4)

Leaky-Integrate-and-fire(LIF) neuron introduces linear leak-
age f(u) = −u−urest

τm
into the dynamics of equation (1).

upre(t) = u(t− 1)− u(t− 1)− urest

τm
+

R

τm
I(t) (5)

Neural coding schemes interpret the information repre-
sentation of SNN by encoding a real value into a spike
train and vice versa. Rate coding decodes an activation
value as a ratio of spike events over time steps, i.e., y =
(# of spikes)/(total # of time-steps). Importantly, it can be
equally defined as a moving average of spikes,

y(t) = y(t− 1) · (t− 1)/t+ s(t) · (1/t) (6)

Another coding scheme used in ANN-to-SNN conversion
literatures is phase coding (Liu et al., 2022a; Li et al., 2021b;
Kim et al., 2018). Phase coding encodes information in the
phase of spikes, which correlates with internal oscillation
rhythms (Guo et al., 2021b). Phase coding-based techniques
in SNN assign the weight Wi = (1/2)i to the phase i,
similar to binary digits (Kim et al., 2018). To simplify the
theoretical analysis, we generalize the phase coding into an
arbitrary base τ ∈ R+ of weight Wi =

1
τ

(
τ−1
τ

)i−1
and an

infinite-length period. We define it as exponential moving
average (EMA) coding since its streaming update over a
spike train can be defined as follows.

y(t) = y(t− 1) · (τ − 1)/τ + s(t) · 1/τ (7)

Figure 2. Mathematical equivalence of discrete neuronal dynamics
of IF neuron (left) and subgradient method over an unconstrained
convex optimization problem (right), described in Theorem 4.1.

4. Optimizer Model of Neuronal Dynamics
In this section, we show that neuronal dynamics of integrate-
and-fire models is a first-order iterative optimization process
approximating a spike-coded nonlinear function value.

4.1. Theoretical Analysis

We begin by showing that the IF neuron with rate-coded
input behaves as a subgradient method with diminishing
step sizes to approximate a clipped ReLU, as illustrated in
Figure 2. Due to limited space, we list detailed proofs of
all the following theorems in the Appendix H. We denote a
ReLU clipped at x = 1 as ReLU1(x).
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Theorem 4.1. Dynamical system of IF neuron (Eq. 2,3,
4) with rate-coded input x̃(t) = 1

t

∑t
i=1 I(i) and out-

put y(t) = 1
t

∑t
i=1 s(i) is equivalent to the subgradient

method over an optimization problem miny∈R L(y;x), ap-
proximated with x← x̃(t+ 1) as,

f̃(t) = f̃(t− 1)− 1

t+ 1
· g̃
(
f̃(t− 1); x̃(t)

)
(8)

L(y;x) = h
( R

θth
x− y

)
+

1

2
y2 (objective fn.)

f̃(t) =
t

t+ 1
y(t)− u(0)− θth

θth(t+ 1)
(t-th approx.) (9)

where g̃(y;x) is a subgradient of L(y;x), h(x) = ReLU(x).
Solution of the problem is ReLU1( R

θth
x). (Proof at H.1)

We now demonstrate that our framework can also predict the
behavior of unknown combinations of neuronal dynamics
and neural coding, beyond the known combination. We
show that the LIF neuron with EMA-coded input behaves
as a subgradient method with a constant step size.

Theorem 4.2. Dynamical system of LIF neuron (Eq. 2,3,
5) with EMA-coded input x̃(t) and output y(t) (Eq. 7),
if τm = τ , is equivalent to subgradient method over an
optimization problem miny∈R L(y;x) with x← x̃(t+ 1),

f̃(t+ 1) = f̃(t)− 1

τ
· g̃
(
f̃(t); x̃(t+ 1)

)
L(y;x) = 1

2
y2 +

urest

θth(τ − 1)
y + h

(
Rx− θth
θth(τ − 1)

x− y

)
f̃(t) = y(t)− 1

τθth
(
τ − 1

τ
)tu(0)−

urest

∑t
i=0(

τ−1
τ )t−i

θthτ(τ − 1)

where g̃(y;x) is a subgradient of L(y;x), h(x) =
ReLU(x). If urest = 0, the solution to the problem is
ReLU1( R

θth(τ−1)x−
1

τ−1 ). (Proof at H.2)

4.1.1. CONVERGENCE ANALYSIS

Our framework provides a way to understand the asymptotic
behavior of spiking neurons by theoretically analyzing its
corresponding optimizer form. To show this, we conduct a
convergence analysis on the optimizer form of an IF neuron
to reveal its asymptotic properties. Note that the spike-
based information representation discrepates the subgradient
estimate g̃(y; x̃(t)) and the true subgradient g̃(y;x). Thus,
the convergence property of spike train input determines the
convergence property of the neuron output.

Theorem 4.3. Let f∗(x) = argminy∈R L(y;x) be the min-
imizer of L(y;x) = ReLU(x− y) + 1

2y
2 over a true input

x ∈ R, and its t-th approximation f̃(t) be defined as equa-
tion 8 and rate-coded input x̃(t) = 1

t

∑t
i=1 I(i). Denote

h(i) =
(
1−

√
i−1
i+1

)
. If ∥f̃(t)∥ < M ∈ R+, then the error

∥f̃(t)− f∗(x)∥ is upper bounded as follows. (Proof at H.3)

∥f̃(t)− f∗(x)∥2 ≤ ∥f̃(0)− f∗(x)∥2

t+ 1
(10)

+
M + 1

t+ 1

t∑
i=1

h(i)︸ ︷︷ ︸
Nondifferentiability Error

+
4

t+ 1

t∑
i=1

min(∥x− x̃(i)∥, 1)︸ ︷︷ ︸
Input Error

An assumption ∥f̃(t)∥ < M over the optimization trajec-
tory is rarely violated since f̃(t) is attracted towards the
bounded value ReLU1

(
x̃(t + 1)

)
, and x̃(t)

t→∞−−−→ x. Fur-
thermore, the upper bound can be tighter since the nondif-
ferentiability error term h(i) is non-zero only when the i-th
update crosses the singularity x̃(t+ 1). We now derive the
convergence of neuron output in diverse input setups.
Corollary 4.4. Let ∥f̃(t)∥ < M ∈ R+, then (Proof at H.6)

• (Exact Input) If x̃(t) = x, then ∥f̃(t) − f∗∥ → 0 as
t→∞.

• (Deterministic Input) If ∥x̃(t) − x∥ = O( 1t ), then
∥f̃(t)− f∗∥ → 0 as t→∞.

• (Stochastic Input) If E[∥x̃(t) − x∥] = O( 1t ), then
E[∥f̃(t)− f∗∥]→ 0 as t→∞.

Empirical Validation. To empirically validate our theoreti-
cal findings, we conduct toy experiments on a single neuron
and compare the output of a neuron and its optimizer form.
We use spikingjelly’s implementation (Fang et al., 2023) of
spiking neurons and Poisson encoding. Figure 11 in Ap-
pendix shows that the time-evolution of IF neuron output
transformed with Equation 9 exactly equals its optimizer
form in theorem 4.1. As Corollary 4.4 states, the decoded
output f̃(t) of IF neuron converges to ReLU1( R

θth
x) as the

input spike train x̃(t) converges to x. We also verify in Fig-
ure 12 that the time-evolution of LIF neuron output matches
the output of its subgradient method-based optimizer form
in theorem 4.2. Both results show that the asymptotic be-
havior of spiking neuron outputs follows the known con-
vergence properties of the subgradient method (Boyd et al.,
2003). Since the IF neuron with rate-coded input has a non-
summable diminishing step size schedule η(t) = 1

t+1 for
its optimizer form, the output converges. In contrast, the
output only converges up to an error bound since the LIF
neuron has a constant step size for its optimizer form.

4.2. Interpretation

Our framework provides an optimization-theoretic inter-
pretation of SNN’s key characteristics in four-fold. First,
neuronal dynamics, i.e., a dynamical system of spiking
neurons, can be analyzed using its corresponding optimizer
form. Second, in an end-to-end SNN inference, each spiking
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(a) Sequential stages of
neuronal dynamics

(b) Optimization-theoretic interpreta-
tion of dynamics stages in Fig. 3(a)

(c) A spike train carries iterative updates (gradients)
of a presynaptic neuron’s output value to postsynaptic
neurons, thereby synchronizing an activation value.

Figure 3. Our interpretation of SNN’s computational characteris-
tics: neuronal dynamics (3(a)-3(b)), spike train (3(c)) .

neuron computes a first-order iterative algorithm to approx-
imate a nonlinear function value. The integration phase
spike-decodes pre-synaptic currents to approximate an input
activation, and the thresholding phase estimates a subgra-
dient from the approximated input. Third, the role of the
spike train is to deliver gradient information of a neuron’s
iterative updates to post-synaptic neurons. Finally, the neu-
ral coding scheme and neuronal dynamics jointly determine
the learning rate schedule of its optimizer form.

5. SignGD-based Neuronal Dynamics
Spiking neurons, with their optimizer form as the subgradi-
ent method, are difficult to approximate arbitrary nonlinear
functions. Our framework interprets that a spike train de-
livers (sub)-gradient information. In detail, a binary spike
transfers an activation update step between spiking neurons,
and the update step is gradient information∇yL(y;x) of a
certain objective function L(y;x). However, binarity of a
spike s(t) constrains the space of (sub)-gradient ∇yL(y;x)
to a bivariate function of s(t) and y, thereby limiting the
space of objective function L(y;x). For example, in Theo-

Figure 4. sign gradient descent(signGD)-based neuronal dynamics,
a design optimization-theoretically extended from Fig. 3(b).

rem 4.1, L(y;x) is a form of (ReLU + regularizer) since the
subgradient ∇yL(y;x) = y − s(t) = y −H( R

θth
x̃(t)− y).

To support arbitrary nonlinear functions, the binarity of a
spike should not constrain the space of objective functions.
At the same time, the spike-based computational character-
istic should be preserved. This implies that the dynamics
of the optimizer form of a new spiking neuron should be
different from the subgradient method.

We thus present a new sign gradient descent (signGD) -
based neuronal dynamics that can (i) easily approximate
a larger space of nonlinear functions and (ii) accelerate
SNN inference. Our key approaches are two-fold: First,
we apply sign gradient descent (signGD) (Bernstein et al.,
2018) instead of the subgradient method to design neuronal
dynamics. Second, we generalize the learning rate schedule
of the optimizer form of neuronal dynamics.

signGD (Bernstein et al., 2018) is a distributed optimization
method that cuts down the network communication cost of
gradient tensor. Each node transmits only the sign of the
gradient instead of the exact (or compressed) gradient to the
parameter server. We apply signGD to design new neuronal
dynamics and a coding scheme. It preserves the SNN’s key
characteristic of binary spike-based communication since
the optimizer form has a binary update of {−1, 1}, which
easily transforms into a {0, 1} spike. Thus, given arbitrary
objective function, a binary spike can represent an activation
update step, which is the sign of the (sub)-gradient.

The learning rate schedule is important for the convergence
speed of signGD since the learning rate solely determines
the update size. It is difficult to determine optimal step sizes
for SNNs, which perform neuron-wise convex optimiza-
tion, different from a single convex objective. For instance,
schedules with fast decay make approximation faster for
neurons in frontal SNN layers but slower for lateral SNN
layers, since neurons in lateral SNN layers receive accurate
gradients in later time steps. Thus, learning rate schedul-
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ing should consider the approximation speed of entire SNN
neurons end-to-end. We hence generalize the learning rate
schedule of the optimizer form of signGD-based neuron and
empirically search local optimum. Specifically, we define
our signGD-based neuron and coding scheme as follows.
Definition 5.1. (Signed schedule coding) Let a spike train
s(t) ∈ {0, 1}, a step size schedule η(t) ∈ R+ for t ∈ N
and y(0) = 0. Signed schedule coding with η(t) decodes
an activation y(t) from s(t) as

y(t) = y(t− 1)− η(t)
(
2 · s(t)− 1

)
(11)

This coding scheme interprets a binary spike s(t) ∈ {0, 1}
as a sign information {−1, 1} with a simple mathematical
formula 2s(t)− 1. We list three spike encoding algorithms
for our signed schedule coding scheme in Appendix D.
Definition 5.2. (SignGD-based neuronal dynamics) Let a
smooth objective function L(y;x1, · · · , xd) : R×Rd → R,
positive coefficients αi(t) ∈ R+, βi(t) ∈ R+, and step size
schedule η(t) ∈ R+ for i = 1, 2 and t ∈ N. Suppose an
influx current I(k)(t) of k-th operand in time t is a sum of
weighted spike trains, i.e., for real weights Wi,

I(k)(t) =

N∑
j=1

WjI
(k)
j (t), I

(k)
j : N→ {0, 1} (12)

We denote W =
∑N

i=1 Wi. Then the signGD-based neu-
ronal dynamics over two internal variables u(t) ∈ R and
v(t) =

(
v(1)(t), · · · , v(k)(t), · · · , v(d)(t)

)
∈ Rd is

v(k)(t+ 1) = α1(t)v
(k)(t)− α2(t+ 1)(2I(k)(t+ 1)−W )

s(t) = H
(
∇yL

( η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)

))
(13)

u(t+ 1) = β1(t)u(t)− β2(t)(2s(t)− 1) (14)

The dynamics coefficients αi(t) and βi(t) with i = 1, 2
are time-scheduled, and remains constant irrespective of the
input current I(k)(t) or any internal variables u(t) or v(k)(t).
Hence, we can pre-compute and load these values up to a
specific time-step T . The term W translates a weighted
sum of {0, 1} spikes into a weighted sum of sign gradients
{−1, 1}. In practice, W is pre-computed in three steps: (i)
stimulate all neurons to spike for a single step and record
the influx current I+, (ii) depress all neurons to not spike for
a single step and record the influx current I−, (iii) use I+

and I− to compute W neuron-wise. Figure 4 illustrates the
optimization-theoretic abstraction of our spiking neuronal
dynamics. Below, we show that our signGD-based neuronal
dynamics is equivalent to the signGD algorithm.
Theorem 5.3. Let an input activation x̃(t) be signed sched-
ule coded over an N weighted input spike trains, i.e.,

x̃(k)(t) = x̃(k)(t− 1)−
N∑
i=1

Wi

(
η(t)(2I

(k)
i (t)− 1)

)

Output f̃(t) = f̃(t−1)−η(t)
(
2·s(t)−1

)
is signed schedule

coded with s(t) of signGD-based neuronal dynamics.
If α1, α2, β1, β2 and η satisfies η(1) = α2(1) = β2(1) and

η(t)

η(t− 1)
=

β1(t)β2(t)

β2(t− 1)
=

α2(t)

α1(t− 1)α2(t− 1)
(15)

Then the dynamical system of f̃(t) is equivalent to the sign
gradient descent method formulated as, (Proof at H.7)

f̃(t) = f̃(t− 1)− η(t)sgn(∇yL(f̃(t− 1); x̃(t))) (16)

We now demonstrate that our neuron can support spike train-
based evaluation of novel nonlinear functions.

5.1. Single-operand Nonlinearities

We first approximate single-operand nonlinear functions:
ReLU, LeakyReLU, and GELU. We utilize a simple objec-
tive function L(y;x) = 1

2∥y−f(x)∥2, which is smooth and
convex over y. Note that the choice of nonlinear function
only affects the firing mechanism (Eq. 13) of our signGD-
based neuronal dynamics. Also, we approximate the exact
ReLU instead of the clipped ReLU1. Figure 8 in Appendix
shows toy experiments validating that our signGD-based
neuron approximates the unary nonlinearities accurately,
and the learning rate schedule affects the convergence speed.

Corollary 5.4. SignGD-based neuronal dynamics (Def. 5.2)
satisfying Eq. 15 and η(t) = α2(t) = β2(t) is equivalent to
signGD (Eq. 16) if s(t) (Eq. 13) satisfies, (Proof at H.8)

• (ReLU) L(y;x) = 1
2∥y − ReLU(x)∥2 and s(t) =

H
(
v(t)

)
H
(
u(t)− β1(t)v(t)

)
+H

(
− v(t)

)
H
(
u(t)

)
• (Sigmoid approximation of GELU) (Hendrycks &

Gimpel, 2016)) L(y;x) = 1
2∥y −

x
1+e−1.702x ∥2 and

s(t) = H
(
(1 + (e−1.702)v(t))u(t)− β1(t)v(t)

)
• (LeakyReLU) L(y;x) = 1

2∥y − LeakyReLU(x, δ)∥2,
where δ is the negative slope, and s(t) =
H(v(t))H

(
u(t) − β1(t)v(t)

)
+ H(−v(t))H

(
u(t) −

δβ1(t)v(t)
)

5.2. Multi-operand Nonlinearities

In this section, we approximate two tensor operators, max
pooling and layer normalization (Ba et al., 2016), with
binary-input signGD-based neuronal dynamics (d = 2).
We also empirically validate the multi-operand nonlinearity
approximation with our neuron in Appendix C and Figure 9.

5.2.1. MAX POOLING

The max pooling operator downsamples a feature map with
a maximum value for each patch in CNN (He et al., 2015; Si-
monyan & Zisserman, 2014; Tan & Le, 2019). Max pooling
approximation in SNN has been a long-standing problem
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Figure 5. An example of decomposing max pooling of 4x4 window
with binary-input maximum operators.

(Gaurav et al., 2022) since it should anticipate the maxi-
mum of spike trains ahead of time. A common strategy is
to replace it with average pooling (Sengupta et al., 2018; Li
et al., 2021a), which degrades the performance (Rueckauer
et al., 2017). Other works compute the instantaneous maxi-
mum instead of exact maximum (Gaurav et al., 2022; Guo
et al., 2019), use TTFS coding (Stanojevic et al., 2023), or
sacrifice SNN’s characteristics, e.g., spike-based (Li et al.,
2022) or event-driven computation (Lu & Xu, 2022).

Our signGD-based neuron can approximate the exact maxi-
mum in an event-driven manner, thereby supporting the max
pooling operation. If a neuron can evaluate the maximum
over two input spike trains, then we can construct a binary
computational tree over row and column dimension of the
pooling kernel, as in Figure 5. If a kernel size is Kr ×Kc,
the tree depth of max neurons is ⌈log2 Kr⌉×⌈log2 Kr⌉. We
approximate maximum function over two activations with a
binary-input signGD-based neuron defined as follows.

Corollary 5.5. SignGD (Eq. 16) with L
(
y;x1, x2

)
=

1
2∥y −max(x1, x2)∥2 is equivalent to signGD-based neu-
ronal dynamics (Def. 5.2) satisfying Eq. 15, α2(t) = β2(t),

s(t) = H(v(1)(t)− v(2)(t))(u(t)− β1(t)v
(1)(t))

+H(v(2)(t)− v(1)(t))(u(t)− β1(t)v
(2)(t))

5.2.2. LAYER NORMALIZATION

Normalization techniques stabilize and accelerate the train-
ing of DNN models (Huang et al., 2023). Batch normaliza-
tion (Ioffe & Szegedy, 2015) is supported for SNN infer-
ence since batch statistics are fixed in the inference phase;
hence, it becomes an affine operator (Li et al., 2021a). It
is not the case for layer normalization (Ba et al., 2016), an
operator employed at high-performance DNNs, e.g., Trans-
former (Vaswani et al., 2017), ConvNext (Liu et al., 2022b),
and MLP-Mixer (Tolstikhin et al., 2021). Layer normal-
ization in SNN should evaluate data instance-wise channel
statistics across multiple spike trains ahead of time. This
requires event-driven spike-based computation of intricate
nonlinearities, e.g., variance and inverse square root, which
was infeasible with prior spike neurons.

To approximate layer normalization with our signGD-based
neuron, we decompose the operator into a computational

Figure 6. Decomposing layer normalization (Ba et al., 2016) into
operators that can be approximated with signGD-based spiking
neurons (Corollary 5.6, 5.7) and affine connections.

graph of linear operators and two nonlinearities, as in Fig-
ure 6. Linear operators can be implemented in SNN or
be fused to other linear layers. Two key nonlinearities are
square function h1(x) = x2 and multiply-inverse-sqrt func-
tion h2(x1, x2) =

x1√
x2

. We derive signGD-based neurons
that can approximate these nonlinearities as follows.

Corollary 5.6. SignGD (Eq. 16) with L(y;x) = 1
2∥y −

x2∥2 is equivalent to the signGD-based neuronal dynam-
ics (Def. 5.2) satisfying Eq. 15, η(t) = β2(t) = α2(t) and
s(t) = H

(
u(t)− β1(t)v(t)

2
)

(Proof at H.10)

Corollary 5.7. SignGD (Eq. 16) with L(y;x1, x2) = ∥y −
x1√
x2
∥2 is equivalent to the signGD-based neuron (Def. 5.2)

satisfying Eq. 15, η(t) = α2(t) = β2(t), (Proof at H.11)

s(t) = H
(
u(t)

)
H
(
v(1)(t)

)
H
(
v(2)(t)u(t)2 − v(1)(t)2

)
+ H

(
− u(t)

)
H
(
− v(1)(t)

)
H
(
v(1)(t)2 − v(2)(t)u(t)2

)
+ H(u(t))H(−v(1)(t))

6. Evaluations
We demonstrate the practical effectiveness of our signGD-
based neuronal dynamics in four-fold. First, we validate our
support for diverse nonlinearities by converting new DNN ar-
chitectures. Second, we compare the accuracy of converted
ANNs with existing conversion techniques. Third, we verify
our design choices through ablation studies. Finally, we vi-
sualize the effect of our technique on SNN inference speed.
We also conduct an energy consumption analysis of our tech-
nique in Appendix G. For a fair comparison, we generalize
the learning rate schedule of the subgradient method-based
neuron, which is formulated in Appendix I. We detail our
conversion technique and its spikingjelly (Fang et al., 2023)
implementation in Appendix F.

6.1. Diversifying DNN Architecture Support

To verify that our signGD-based neuronal dynamics can
approximate diverse nonlinearities, we convert large-scale
DNN architectures that prior works fail to convert. We
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Table 1. Comparing ANN-to-SNN conversion performance on ImageNet (Deng et al., 2009) models. Exact Arch means the trained ANN
architecture is identical to its original paper, without any customization or tailoring. No Spike-aware Activation Func means ReLU
functions in ANN architecture are not replaced with spike-aware functions before training, e.g., QCFS (Bu et al., 2022), SlipReLU (Jiang
et al., 2023). For our signGD-based neuron, we use η(t) = 5.0

t+1
for ConvNext and MLP-Mixer, and η(t) = 0.15 · 0.965t for the others.

Results of RTS (Deng & Gu, 2021) are from (Li et al., 2021a).

Methods Exact No Spike-aware ANN Acc. Simulation time-steps
Arch. Activation Func. T = 32 T = 64 T = 128 T = 256

ResNet-34 (He et al., 2015) ImageNet

TSC (Han & Roy, 2020) ✖ ✔ 70.20 - - - 55.65
RTS (Deng & Gu, 2021) ✖ ✖ 75.66 0.09 0.12 3.19 47.11
SNNC-AP (Li et al., 2021a) ✖ ✔ 75.66 64.54 71.12 73.45 74.61
QCFS (Bu et al., 2022) ✖ ✖ 74.32 69.37 72.35 73.15 73.37
SlipReLU (Jiang et al., 2023) ✖ ✖ 75.08 66.61 72.71 74.01 -
SRP (Hao et al., 2023) ✖ ✖ 74.32 68.40 68.61 - -
Ours (with Max Pooling) ✔ ✔ 73.30 58.09 72.38 73.31 73.29
Ours (without Max Pooling) ✖ ✔ 75.65 59.85 75.34 75.67 75.65

VGG-16 (Simonyan & Zisserman, 2014) ImageNet

TSC (Han & Roy, 2020) ✖ ✔ 73.49 - - - 69.71
RTS (Deng & Gu, 2021) ✖ ✖ 75.36 0.114 0.118 0.122 1.81
SNNC-AP (Li et al., 2021a) ✖ ✔ 75.36 63.64 70.69 73.32 74.23
SNM (Wang et al., 2022) ✖ ✔ 73.18 64.78 71.50 72.86 -
QCFS (Bu et al., 2022) ✖ ✖ 74.29 68.47 72.85 73.97 74.22
SlipReLU (Jiang et al., 2023) ✖ ✖ 71.99 67.48 71.25 72.02 -
SRP (Hao et al., 2023) ✖ ✖ 74.29 69.35 69.43 - -
Ours (with Max Pooling) ✔ ✔ 73.36 38.08 67.04 71.33 71.50
Ours (without Max Pooling) ✖ ✔ 75.35 69.16 75.32 75.31 75.34

RegNetX (Radosavovic et al., 2020) ImageNet

RTS (Deng & Gu, 2021) ✖ ✖ 80.02 0.218 3.542 48.60 71.22
SNNC-AP (Li et al., 2021a) ✖ ✔ 80.02 55.70 70.96 75.78 77.50
Ours (RegNetX-3.2GF) ✔ ✔ 81.19 26.85 77.74 80.93 80.99

New DNN architectures converted with Our signGD-based neuron

ResMLP-S24 (Touvron et al., 2021) ✔ ✔ 80.76 72.94 76.91 77.99 78.04
ConvNext-B (Liu et al., 2022b) ✔ ✔ 84.06 0.11 5.07 72.60 81.07
MLP-Mixer-B32 (Tolstikhin et al., 2021) ✔ ✔ 76.59 0.11 0.35 50.06 72.97

experiment with the latest non-transformer architectures:
MLP-Mixer (Tolstikhin et al., 2021), ResMLP (Touvron
et al., 2021), ConvNext (Liu et al., 2022b), ResNet34, and
VGG16 with max pooling. Note that GELU conversion
should be supported for ResMLP, MLP-Mixer, and Con-
vNext. Layer normalization should be converted for MLP-
Mixer and ConvNext. Table 1 shows that our signGD-based
neuron enables conversion of these architectures for the first
time. Converted ResNet and VGG with max pooling layer
achieves > 70% accuracy in T ≥ 128. MLP-Mixer and
ConvNext take comparably more time-steps slow due to the
layer normalization, as expected in Appendix C. ResMLP
approximates its ANN accuracy the fastest among all DNN
models, achieving 72% in T = 32 and 78% in T = 128.

6.2. Comparison with Prior Works

To show the practicality of our signGD-based neuron, we
convert DNN to SNN with our neuron and compare its per-
formance with prior techniques. We use ImageNet (Deng
et al., 2009) and CIFAR (Krizhevsky et al., 2009) datasets.

For ImageNet models, we use pretrained weights of (Li
et al., 2021a) for a fair comparison. Table 1 shows that our
converted SNNs accurately approximate the ANN perfor-
mance on T ≥ 64, achieving the best performance among
all conversion techniques. In T ≤ 32, spike-aware ANN ac-
tivation works (Bu et al., 2022; Jiang et al., 2023; Hao et al.,
2023) achieve higher accuracy but significantly sacrifices ac-
curacy in later time-steps T ≥ 64 with 1.97− 5.71%. Such
an accurate SNN acceleration is possible since our neuron
approximates the true ReLU instead of clipped ReLU and
does not fine-tune ANN activations for early convergence.
Also, for CIFAR models, Tables 4 and 5 show that our con-
verted SNN outperforms all the existing works in T ≥ 64,
and also in T ≤ 32 except for spike-aware ANN activation
techniques. Our SNN performance approaches the ANN in
T ≥ 32 with a small gap of < 1%. Note that prior studies
used specialized techniques for low time-steps T ≤ 32, e.g.,
data-driven calibration (Li et al., 2021a) or spike-aware ac-
tivation functions (Bu et al., 2022; Jiang et al., 2023). We
do not apply these methods to isolate and directly compare
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the effect of neuron models, and minimize the influence of
specific conversion techniques.

(a) Effect of neuronal dynamics
and normalization. Exponential
schedule η(t) = 0.95 ∗ (0.15)t.

(b) Effect of input encoding
through timestep. SignGD-
based neuron with η(t) = 1

t+1
.

(c) Effect of LR on signGD-
based neuron, inverse schedule.

(d) Effect of LR on subgradient-
based neuron, inverse schedule.

(e) Effect of LR and decay fac-
tor on signGD-based neuron, ex-
ponential schedule.

(f) Effect of LR and decay fac-
tor on subgradient-based neu-
ron, exponential schedule.

Figure 7. Ablation studies on hyper-parameters of signGD-based
(Def. 5.2) and subgradient-based neuronal dynamics (Def. I.2).
SNN inference accuracy is measured with ResNet-18 model (Fang
et al., 2021) on CIFAR-10 dataset (Krizhevsky et al., 2009).

6.3. Ablation Study

Effect of Neuronal Dynamics. We first validate the accel-
eration effect of signGD-based dynamics in ANN-to-SNN
conversion. In Figure 7(a), we test two variables: the choice
of neuronal dynamics and the normalization on ReLU layer.
Results show that signGD-based neuron approximates no-
ticeably faster than the subgradient-based neuron. Although
the normalization helps, it is auxiliary for our signGD-based
neuron, different from subgradient-based neuron. The nor-
malization is critical for the subgradient-based neuron since
it approximates the clipped ReLU, not the true ReLU.

Input Encoding Scheme. Figure 7(b) compares the effect
of three input encoding schemes (See Appendix D.) on
the SNN accuracy. To observe the impact of stochasticity,
we also vary the parameter s of the stochastic encoding.
Results show that the performance gap is marginal between
float and deterministic encoding, but it is noticeable with the
stochastic encoding. Marginal performance drop is desirable
with deterministic encoding, since it is easier and more
efficient to hardware-implement than float encoding.

Case study: Inverse schedule. To generalize the accel-
eration capability of our signGD-based dynamics, we fix
the learning rate schedule and compare the converted SNN
performance of signGD-based and subgradient-based neu-
rons. As a case study, we first test an inverse LR schedule.
In Figure 7(c)-7(d), we measure the time-evolution of in-
ference accuracy varying the initial learning rate (X-axis).
Figures show that compared to subgradient-based neuron,
our signGD-based neuron provides (i) faster convergence,
in a same initial learning rate, of converted SNN’s inference
accuarcy towards ANN, and (ii) wider coverage of initial
learning rate that leads to high-performance SNN.

Case study: Exponential schedule. We also compare two
neuronal dynamics in the case of an exponential schedule.
We evaluate the joint effect of two hyper-parameters, the
initial learning rate and the decay factor. Similar to the
inverse schedule case, Figures 7(e)-7(f) show that signGD-
based neurons have a wider coverage of hyper-parameter
combinations that achieve high inference accuracy. Also,
the best accuracy is > 4% higher with signGD-based neu-
ron; The best accuracy in time-step T = 32 is 91.4% for
subgradient-based neuron at η(t) = 0.163 × (0.95)t and
96.2% for signGD-based neuron at η(t) = 0.177× (0.95)t.

6.4. Visualization of Layer-wise Optimization Flow

To qualitatively demonstrate the effect of our neuronal dy-
namics, Figure 13 in the Appendix shows the time-evolution
of layer-wise ANN-SNN activation error. The figure shows
that our signGD-based neuron (i) reduces the layer-wise
conversion error more rapidly and (ii) accumulates less con-
version error through layers, compared to the subgradient-
based neuron. In each layer, the error of signGD-based
neurons converges faster than the subgradient-based neu-
rons with the same learning rate schedule. In Figure 13(b)
and 13(d), ANN-to-SNN conversion with subgradient-based
neurons accumulates error through layers. In contrast, the
time-evolution of layer-wise error in signGD-based neurons
is relatively uniform through layers.

7. Conclusion
This paper constructs a novel optimization-theoretic frame-
work on the discrete dynamical system of spiking neurons.
Based on the framework, we develop new signGD-based
neuronal dynamics that approximate various nonlinearities
beyond ReLU, e.g., GELU, LeakyReLU, max pooling, and
layer normalization. Using our neuron, we (i) successfully
convert new high-performance DNN architectures for the
first time, e.g., ConvNeXt, MLP-Mixer, and ResMLP, and
(ii) achieve state-of-the-art accuracy of converted ResNet34
and VGG16 in low time steps T = 64. We list our discus-
sions and future works in the Appendix B.
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Impact Statement
This paper presents a work that aims to broaden the appli-
cability of technical advances in machine learning and bio-
logically inspired artificial intelligence. A key advantage of
SNN, which is the resource efficiency, would benefit a wide
range of real-world AI applications. Resource-constrained
mobile and IoT applications would especially benefit from
this work by enabling high-performance intelligent infer-
ence with low-power pervasive sensing. Such an efficient
AI inference can be widespread for socially underprivileged
people who cannot afford large energy bills of embedded AI
devices, e.g., immigrant parents getting AI assistance to nur-
ture the linguistic skills of an under-developed child (Kwon
et al., 2022), or an AI chatbot to help the isolated elderly
cope with their loneliness (Valtolina & Hu, 2021). Another
important societal advantage of energy-efficient AI is that
it leads to environmental sustainability. The super-linear
growth of AI techniques also scaled its ecological impact
as an energy footprint (Wu et al., 2022). Energy footprint
directly leads to carbon emissions, i.e., carbon footprints,
negatively impacting the atmosphere. SNN, with its orders-
of-magnitude energy efficiency, can make DNN more envi-
ronmentally sustainable while preserving the model’s per-
formance with this paper’s approach.

Our theoretical findings may contribute to understanding
the information dynamics of biological neuron models with
refractory periods. Optimistically, this would foster neu-
roscientific studies in the human brain to develop diverse
accessibility applications for the neurologically disabled,
e.g., brain-computer interface for the motion-disabled (Gao
et al., 2003), or a thought-controlled device to restore hand
grasps of a paralyzed hand (Pfurtscheller et al., 2003). As
a potential ethically negative impact, scientific advances in
the overall neuroscience domain may enable decoding elec-
tronic signals of the human brain in the far future, thereby
reading a person’s mind. However, developing such a dan-
gerous application is clearly out of the scope of this paper.
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Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G., Pan-
tazi, A., and Gerstner, W. An exact mapping from relu
networks to spiking neural networks. Neural Networks,
168:74–88, 2023.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L.,
Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers,
D., Uszkoreit, J., et al. Mlp-mixer: An all-mlp architec-
ture for vision. Advances in neural information process-
ing systems, 34:24261–24272, 2021.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-
Nouby, A., Grave, E., Izacard, G., Joulin, A., Synnaeve,
G., Verbeek, J., and J’egou, H. Resmlp: Feedforward
networks for image classification with data-efficient train-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45:5314–5321, 2021.

13

https://github.com/pytorch/vision
https://github.com/pytorch/vision


Expanding ANN-to-SNN Conversion Beyond ReLU Network

Valtolina, S. and Hu, L. Charlie: A chatbot to improve the
elderly quality of life and to make them more active to
fight their sense of loneliness. In CHItaly 2021: 14th
Biannual Conference of the Italian SIGCHI Chapter, pp.
1–5, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, B., Cao, J., Chen, J., Feng, S., and Wang, Y. A
new ann-snn conversion method with high accuracy, low
latency and good robustness. In International Joint Con-
ference on Artificial Intelligence, 2023a.

Wang, Y., Zhang, M., Chen, Y., and Qu, H. Signed neu-
ron with memory: Towards simple, accurate and high-
efficient ann-snn conversion. In International Joint Con-
ference on Artificial Intelligence, 2022.

Wang, Z., Jiang, R., Lian, S. J., Yan, R., and Tang, H.
Adaptive smoothing gradient learning for spiking neu-
ral networks. In International Conference on Machine
Learning, 2023b.

Ward, M. and Rhodes, O. Beyond lif neurons on neuromor-
phic hardware. Frontiers in Neuroscience, 16:881598,
2022.

Wightman, R. et al. Pytorch image models, 2019.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani,
N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C.,
et al. Sustainable ai: Environmental implications, chal-
lenges and opportunities. Proceedings of Machine Learn-
ing and Systems, 4:795–813, 2022.

Yang, J.-Q., Wang, R., Wang, Z.-P., Ma, Q.-Y., Mao, J.-
Y., Ren, Y., Yang, X., Zhou, Y., and Han, S.-T. Leaky
integrate-and-fire neurons based on perovskite memristor
for spiking neural networks. Nano Energy, 74:104828,
2020.

Yao, M., Zhao, G., Zhang, H., Hu, Y., Deng, L., Tian, Y.,
Xu, B., and Li, G. Attention spiking neural networks.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 45:9393–9410, 2022.

Yin, B., Corradi, F., and Bohté, S. M. Accurate and efficient
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A. Related Works: Review on SNN Training.
Training a SNN from scratch is an alternative of ANN-to-SNN conversion to build a high-performance SNN. Learning
methodologies of SNN largely categorizes into two groups: (i) biologically plausible synaptic plasticity and (ii) backpropa-
gation methods (Li et al., 2021a). Spike timing-dependent plasticity(STDP), a representative synaptic plasticity mechanism,
updates a synaptic weight based on the spike timing difference of two connected neurons (Kheradpisheh et al., 2018). STDP
falls behind backpropagation methods since it is a local unsupervised learning rule without globally guided error (Dong et al.,
2022). Backpropagation methods for rate coding unfolds SNN backwards through entire time-steps (Fang et al., 2021; Zhu
et al., 2022). To address the non-differentiablility of spiking mechanism, a common strategy is to use a surrogate gradient,
which is a smooth relaxation of the spiking mechanism (Neftci et al., 2019). Still, they are computationally expensive and
memory-intensive since they unfold a network backwards the entire time-steps (Li et al., 2021a). A line of works efficiently
approximate the costly backpropagation process with mixed-mode differentiations (Zenke & Neftci, 2021) or eligibility
traces (Bellec et al., 2020; Frenkel & Indiveri, 2022). Backpropagation methods for temporal coding computes backward
only up to the last spike’s timing, and hence it is event-driven and more resource-efficient (Zhu et al., 2022). Among these
methods, surrogate gradient methods achieve state-of-the-art performance. Unfortunately, their performances still has a large
margin with trained DNNs, (Fang et al., 2021; Zhou et al., 2022; Yao et al., 2022; Zhu et al., 2023), due to SNN-friendly
architectural modification and gradient mismatch (Wang et al., 2023b).

B. Discussions & Future Works
Biophysical Neurons. Our theoretical framework explains the behavior of integrate-and-fire models. Since these models are
a simplified discretization of biological neurons, we may extend our framework to continuous and biophysically-detailed
models which incorporate known physiology and synaptic anatomy of a neuron cell (Chizhov & Graham, 2021). For
example, Hodgkin-huxley cell model (Hodgkin & Huxley, 1952) is an experimentally discovered mathematical model of
how biological neurons initiate and propagate spikes. It is a continuous dynamical system of four ordinary differential
equations over membrane potentials and conductances that cannot be solved analytically (Gerstner et al., 2014). This model
is a basis of biologically plausible neuron models (Izhikevich, 2003). To explain biologically realistic models, it may be
helpful to extrapolate our framework to continuous dynamics.

Hardware Implementability. Our signGD-based neuron may need more complex hardware to realize than integrate-and-fire
models. Studies in efficient neuromorphic hardwares largely focus on LIF neuron (Yang et al., 2020; Davies et al., 2018;
Akopyan et al., 2015). Computational neuroscientists invest on simulating more complex and biologically realistic models,
e.g., SpiNNaker (Furber et al., 2014a; Mayr et al., 2019), and make them resource-efficient (Ward & Rhodes, 2022; Rhodes
et al., 2020) or introduce new electrical elements for diversity (Guo et al., 2021a). Our neuronal dynamics is much more
simple than biophysically detailed models (Hodgkin & Huxley, 1952), but slightly more complex than LIF neuron. For
example, our neuron requires two or more internal variables, and GELU or layer norm approximation requires complex
operators over internal variables, e.g., exponential or square function. Exponential operator is used in the computational
neuroscience works to simulate exponential integrate-and-fire models (Fourcaud-Trocmé et al., 2003; Brette & Gerstner,
2005). Square function is used in the izhikevich model (Izhikevich, 2003). Thus, these operators are implemented in
SpiNNaker (Furber et al., 2014b), and their efficient hardware implementations are also studied (Srinivasan & Cowan, 2022;
Fang et al., 2022). Note that operator requirements are dependent to spike mechanism; For instance, ReLU or LeakyReLU
approximation with our neuron does not need such operators.

Reset-to-Zero. We focus on the reset-by-subtraction mechanism and does not explain the reset-to-zero mechanism.
Reset-by-subtraction keeps the leftover information after thresholding operation, hence accelerating the approximation
speed (Rueckauer et al., 2016). In contrast, reset-to-zero discards the leftover information at reset (Liu et al., 2022a),
causing an unaccountable error for ReLU approximation (Rueckauer et al., 2017). Two reset mechanisms are both valid
discretizations of thresholding operation in continuous dynamics (See Appendix E.), since both converge taken the continuum
limit of time. Thus, it would be intriguing to interpret the reset-to-zero mechanism in an optimization-theoretic perspective,
but gradient-based methods may not suit to formulate its behavior.

SNN Training. We plan to investigate how our framework extends to a SNN training. Specifically, we newly interpret
backpropagation (Rumelhart et al., 1986) and forward-forward algorithms (Hinton, 2022) with our optimization-theoretic
perspective of neuronal dynamics. Conversely, we may analyze synaptic plasticity-based SNN learning rules (Kheradpisheh
et al., 2018) with our theory, and discover methods to advance their training performance by applying state-of-the-art
techniques of ANN training. It would also be appealing to apply short-term plasticity, e.g., habituation (Glanzman, 2009;
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Zuo et al., 2017), with our framework to facilitate few-shot adaptation of SNN.

(a) ReLU approximation.
η(t) = 1

t+1

(b) ReLU approximation.
η(t) = (0.95)t

(c) LeakyReLU (α=0.1) approx.
η(t) = 1

t+1

(d) GELU approximation.
η(t) = 1

t+1

Figure 8. SignGD-based neurons approximating unary nonlinear functions, based on Corollary 5.4. We measure time-evolution of error
between the spike neuron output and the nonlinear function output. Input value is deterministically spike-encoded with the Algorithm 2.

(a) Max Pooling approximation with Corol-
lary 5.5. η(t) = 1

t+1
.

(b) LayerNorm approximation with Corol-
lary 5.6, 5.7. η(t) = 1

t+1

(c) LayerNorm approximation plot as
in Fig. 9(b), with log-scaled X-axis
(10−7, 200)

(d) Time-evolution of approximation error
for distinct nonlinearities, inverse schedule.

(e) Square approximation with Corol-
lary 5.6. η(t) = 1

t+1

(f) Inverse sqrt approximation with Corol-
lary 5.7. η(t) = 1

t+1

Figure 9. SignGD-based neurons approximating n-ary nonlinear operators. Input value is float-encoded with the Algorithm 1.

C. Empirical validation of multi-operand nonlinearity approximation with our signGD-based
neuronal dynamics

We conduct toy experiments to validate the approximation capability of our signGD-based neuron on n-ary nonlinearities.
Figure 9(a) is the time-evolution of error from signGD-based neurons on the max pooling operator. X axis is the maximum
xmax of 2x2 patch. Rest of the patch elements x are sampled by x = min(xmax, ϵ − 1) where ϵ ∼ N (0, 1). The figure
shows that our neuron approximates the max pooling operation through time-steps. Figure 9(b) shows the time-evolution of
error of our spike-based approximation of the layer normalization operator. For the experiment, we sample 10-dim vector
from N (0, 1), normalize and scale it to make its standard deviation σ. We plot the error of the first vector element. The
figure shows that the approximation is noticeably slow as σ → 0 or σ gets larger. Figure 9(c) further illustrates this trend
with logarithmic σ values. We analyze in-depth through Figure 9(d)- 9(f) and find that the slow convergence is because the
step size is invariant with the input activation. The step size of signGD solely depends on the learning rate schedule. In
Figure 9(e), precise square approximation for a small input value, e.g., 0.1, is incompatible with a square approximation
of large value like 5, 10. For example, if we decrease the initial learning rate to swiftly approximate 0.01 = (0.1)2, then
it needs more time-steps to approximate 25 = 52. Also, Figure 9(f) shows that inverse sqrt approximation gets slower or
even fails to converge as the denominator, the input value, tends to 0. It is difficult to design a learning rate schedule that
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Algorithm 1 Float encoding for signed schedule coding (Definition 5.1)
1: Input: A real-valued input activation x, learning rate schedule η : N→ R, total time-steps T
2: Output: A float train, i.e., time-series of floats, S = [s(1), s(2), · · · , s(T )] ∈ RT

3: Initialize f ← 0, S ← [ ].
4: for t = 1 to T do
5: grad← f − x.
6: current← 0.5 · (1 + grad).
7: f ← f − η(t) · grad.
8: S.append( current )
9: end for

Algorithm 2 Deterministic spike-based encoding for signed schedule coding (Definition 5.1)
1: Input: A real-valued input activation x, learning rate schedule η : N→ R, total time-steps T
2: Output: A spike train, i.e., time-series of binary spikes, S = [s(1), s(2), · · · , s(T )] ∈ {0, 1}T
3: Initialize f ← 0, S ← [ ].
4: for t = 1 to T do
5: current← H(f − x).
6: grad← 2 · current− 1.
7: f ← f − η(t) · grad.
8: S.append( current )
9: end for

mitigates these approximation issues. In Figure 9(d), we compare the time-evolution of mean approximation error over five
unary nonlinearities, given a Gaussian-sampled input vector of length 1000. Errors of square and inverse sqrt functions
converge slower than others, explaining why it is difficult to approximate the layer normalization. Faster approximation of
layer normalization is crucial to accelerate the inference of SNN-converted MLP-Mixer, ConvNext, and Transformer, but we
leave it as a future work.

D. Neuronal codec for signGD-based neuronal dynamics
Neurons in SNN communicate with spike train. spike trains share the same neural coding scheme different from the float(or
quantized integer)-based activations used in DNN. We can thus think of a neuronal codec which encodes a real number into
a spike train, and also decodes a spike train into a a real number. For example, rate coding has multiple encoding algorithms,
e.g., float encoding (Li et al., 2021a) or poisson encoding (Sengupta et al., 2018). A pair of encoding and decoding scheme
consists a neuronal codec.

To leverage signGD-based neurons for practical SNN inference, we develop neuronal codecs for the signed schedule
coding (Definition 5.1). We develop three spike encoding algorithms for signed schedule coding: float-based (Algorithm 1),
deterministic spike-based (Algorithm 2), and stochastic spike-based encoding (Algorithm 3). In practice, We can eliminate
total number of time-steps T from the input arguments of algorithms; The encoding process can be lazy-evaluated to

Algorithm 3 Stochastic spike-based sigmoidal encoding for signed schedule coding (Definition 5.1)
1: Input: A real-valued input activation x, learning rate schedule η : N→ R, total time-steps T , stochasticity c ∈ [0, 1]
2: Output: A spike train, i.e., time-series of binary spikes, S = [s(1), s(2), · · · , s(T )] ∈ {0, 1}T
3: Initialize f ← 0, S ← [ ].
4: for t = 1 to T do
5: p← Sigmoid(c · (f − x)).
6: current ∼ Bernoulli(p).
7: grad← 2 · current− 1.
8: f ← f − η(t) · grad.
9: S.append( current )

10: end for
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generate an infinite-length spike (or float) train.

E. Continuous dynamics of one-dimensional integrate-and-fire models
The continuous neuronal dynamics of general one-dimensional integrate-and-fire neuron is a linear differential equation
with thresholding criterion (Gerstner et al., 2014).

τm
du

dt
= −f(u(t)) +RI(t) (Integration)

lim
δ→0;δ>0

u(t+ δ) = urest if u(t) ≥ θth (Thresholding)

with time t ∈ R+, dynamics function f(u) : R→ R, input current I(t) at time t, membrane potential u, resting potential
urest, threshold θth, membrane resistance R, membrane capacitance C and membrane constant τm = RC.

F. Experimental setup & Implementation details
We use Top-1 classification accuracy as a measure of SNN inference performance. Following a standard normalization
practice in conversion literatures (Diehl et al., 2015; Rueckauer et al., 2017; Wang et al., 2022), we scale inputs and outputs of
each ReLU layer with layer-wise maximum activation value over random 100 batches before the conversion. Algorithm 4 in
the appendix describes the end-to-end ANN-to-SNN conversion with our neuron. To train DNN models for CIFAR datasets,
we use SGD with learning rate 0.1, momentum 0.9, weight decay 5× 10−4, and cosine annealing schedule (Loshchilov
& Hutter, 2016) of Tmax = 300. For ImageNet classification models, we use pretrained DNN weights of VGG, ResNet,
ConvNext, and RegNetX from torchvision (maintainers & contributors, 2016),VGG and ResNet without max pooling from
(Li et al., 2021a), and MLP-Mixer and ResMLP from timm (Wightman et al., 2019). We run our experiments on a machine
with AMD EPYC 7313 CPU, 512GB RAM, and NVIDIA RTX A6000.

G. Theoretical energy consumption analysis
To analyze the energy consumption of our proposed neuron model, we use a theoretical energy cost estimation framework
that is widely recognized in prior research (Zhou et al., 2022; Kundu et al., 2021; Yin et al., 2021; Yao et al., 2022). We
choose this approach because a direct hardware implementation and empirical evaluation of our neuron are beyond the
current scope. However, we plan to explore this direction in future work. We compare the energy costs of LIF/IF neurons
and our neuron as follows.

G.1. Single synaptic operation

We first compare the energy consumption of single spike-based accumulation (AC) operation (synaptic operation, SOP) on
45nm CMOS processors (Horowitz, 2014). SOP energy consumption of our neuron varies with the selection of dynamics
coefficients. If we choose η(t) = η(0)γt following the evaluation setup of Table 1, 4 and 5, the coefficients satisfying
Theorem 5.3 and Corollary 5.4 can be chosen as α1(t) = 1/γ, β1(t) = γ, α2(t) = β2(t) = 1. The difference of our neuron
with LIF neuron is a new internal variable u(t) and a weight term W at the dynamics of v(t). Since the W term addition
is absorbed into an existing operation, This results in an energy overhead 0.9pJ added to the 0.9pJ consumption of LIF
neuron (Zhou et al., 2022) to become 1.8 pJ, which is twice over the LIF neuron. Table 2 compares the per-operation energy
consumption, which we denote as ESOP.

IF / LIF neuron (AC) signGD-based neuron (ours) FLOPs (MAC)

ESOP 0.9pJ 1.8pJ 4.6pJ

Table 2. Theoretically derived energy consumption of a single operation on 45nm CMOS processors (Horowitz, 2014).

G.2. End-to-End inference of converted DNN models

We now compare the energy consumption of converted DNN models. In terms of the end-to-end SNN model, our neuron
differs with prior spiking neurons only in the computation of neuronal dynamics, and everything else remains the same.
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CIFAR10, Timesteps T = 64 Neurons Firing Rates(%) NSOP (M) Energy (uJ)

ResNet18 (He et al., 2015)
IF Neuron 20.97 22.431 20.188

LIF Neuron 21.17 22.651 20.386
signGD-based Neuron 16.78 17.943 32.298 (1.59×)

VGG16 (Simonyan & Zisserman, 2014)
IF Neuron 20.30 10.778 9.700

LIF Neuron 20.71 10.993 9.893
signGD-based Neuron 16.75 8.892 16.006 (1.65×)

Table 3. Inference energy consumption of ReLU Networks converted with different spiking neuron models.

Table 3 lists firing rates fr = Number of spikes
Timesteps * Neurons , number of SOPs NSOP = (Number of spikes), and energy consumption

estimated by E = NSOP · ESOP .

Our theoretical analysis outlines that more complex internal dynamics of the signGD-based neuron lead to higher energy
consumption in same time-steps compared to IF and LIF neurons. The relative increase in energy usage is manageable with
an approximate factor of 1.6×. This increase is offset by advantages our approach provides, including broader support
for nonlinear operator approximations and the reduced time steps in SNN inference. For example, in Table 4, ResNet18
converted with subgradient-based neurons achieve 94% accuracy in 64 steps, while the model converted with our neuron
model achieves the same accuracy in only 22 steps.

Besides, the energy efficiency of SNN comes not only from computation but also from memory storage. For example,
while IF neurons theoretically offer a 5.11× energy efficiency in SOP compared to traditional FLOPS, the VGG model
implemented on a neuromorphic SNN chip achieves even higher efficiency, ranging from 35× to 560× (Bu et al., 2022),
thanks to in-memory computing. To accurately assess this, a real hardware implementation is crucial, and we plan to explore
this in our future work.

H. Mathematical Proofs.
Theorem H.1. Dynamical system of IF neuron (Eq. 2-4) with rate-coded input x̃(t) = 1

t

∑t
i=1 I(i) and output y(t) =

1
t

∑t
i=1 s(i) is equivalent to a subgradient method over an optimization problem miny∈R L(y;x), approximated with

x← x̃(t+ 1) as,

f̃(t) = f̃(t− 1)− 1

t+ 1
· g̃
(
f̃(t− 1); x̃(t)

)
(17)

L(y;x) = h
( R

θth
x− y

)
+

1

2
y2 (objective fn.) (18)

f̃(t) =
t

t+ 1
y(t)− u(0)− θth

θth(t+ 1)
(t-th approx.) (19)

where g̃(y;x) is a subgradient of L(y;x), h(x) = ReLU(x) and u(0) an initial membrane potential. Solution of the problem
is ReLU1( R

θth
x).

Proof. Applying equation 3 to equation 1, we rearrange the membrane equation for upre as

upre(t+ 1) = (upre(t)− θths(t)) +RI(t+ 1) (20)

Spike s(t) links the recurrence relation (20) of the membrane potential upre and coding scheme (6) of output activation y.

s(t) =
−1
θth

(upre(t+ 1)− upre(t)−RI(t+ 1)) = ty(t)− (t− 1)y(t− 1) (21)

Solving the recurrence relation (21) through time t yields a linear relation of membrane potential upre, input x̃ and output y.
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Note that upre(1) = u(0) +RI(1).

ty(t)− (t− 1)y(t− 1) =
−1
θth

(
upre(t+ 1)− upre(t)−RI(t+ 1)

)
(t− 1)y(t− 1)− (t− 2)y(t− 2) =

−1
θth

(
upre(t)− upre(t− 1)−RI(t)

)
...

1y(1)− 0y(0) =
−1
θth

(
upre(2)− upre(1)−RI(2)

)
+

ty(t) =
−1
θth

(
upre(t+ 1)− upre(1)−R

t+1∑
i=2

I(i)
)

=
−1
θth

(
upre(t+ 1)− u(0)−RI(1)−R

t+1∑
i=2

I(i)
)

=
−1
θth

(
upre(t+ 1)− u(0)−R

t+1∑
i=1

I(i)
)

=
−1
θth

(
upre(t+ 1)− u(0)−R · (t+ 1) · x̃(t+ 1)

)
Rearranging the above equation for upre,

∴ upre(t+ 1) = −θth · t · y(t) + u(0) +R · (t+ 1) · x̃(t+ 1) (22)

With equation (22), we remove the upre term from rate coding equation (6) to obtain a discrete dynamical system of the
input x̃ and output y.

y(t) =
t− 1

t
y(t− 1) +

1

t
H(−θth · (t− 1) · y(t− 1) + u(0) +R · t · x̃(t)− θth) (23)

By definition of f̃(t) in (19), we substitute y with f̃ from the dynamical system (23).

θth · (t+ 1) · f̃(t) = θth · t · y(t− 1)− (u(0)− θth)

θth · t · f̃(t− 1) = θth · (t− 1) · y(t− 1)− (u(0)− θth)

−θth · t · f̃(t− 1) = −θth · (t− 1) · y(t− 1) + u(0)− θth

t− 1

t
y(t− 1) = f̃(t− 1) +

u(0)− θth
θth · t

y(t) =
t+ 1

t
f̃(t) +

u(0)− θth
θth · t

∴
t+ 1

t
f̃(t) +

u(0)− θth
θth · t

= f̃(t− 1) +
u(0)− θth
θth · t

+
1

t
H
(
− θth · t · f̃(t− 1) +R · t · x̃(t)

)
By the scale-invariance of step function H, we obtain

f̃(t) =
t

t+ 1
f̃(t− 1) +

1

t+ 1
H(R · t · x̃(t)− θth · t · f̃(t− 1))

=
t

t+ 1
f̃(t− 1) +

1

t+ 1
H(

R

θth
x̃(t)− f̃(t− 1))

= f̃(t− 1)− 1

t+ 1
(f̃(t− 1)−H(

R

θth
x̃(t)− f̃(t− 1)))

= f̃(t− 1)− 1

t+ 1
· g̃(f̃(t− 1); x̃(t))
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whereL(y;x) = f
(

R
θth

x−y
)
+ 1

2y
2. It corresponds to the subgradient method over an optimization problem miny∈R L(y;x)

with a diminishing step size 1
t+1 , approximated with x← x̃(t+1). The objective function L(y;x) is a convex l2-regularized

negative ReLU function. We now show that the argminy L(y;x) = ReLU1( R
θth

x) through 3 different cases. Note that the
sub-gradient of L(y;x) is

g̃(y;x) = y −H(
R

θth
x− y)

Case 1, x < 0. If y ≤ R
θth

x < 0, then g̃(y;x) = y − 1 < 0. If R
θth

x < y < 0, then g̃(y;x) = y − 0 < 0. Finally, y ≥ 0

then R
θth

x− y < 0 so g̃(y;x) = y > 0. Therefore, argminy L(y;x) = 0

Case 2, x ≥ θth
R . If y ≤ 1 then g̃(y;x)(y;x) = y − 1 ≤ 0. If y ≥ 1 then g̃(y;x)L(y;x) ≥ y − 1 ≥ 0. Therefore,

argminy L(y;x) = 1.

Case 3, 0 < x < θth
R . If 0 < R

θth
x ≤ y then g̃(y;x)(y;x) = y − 0 ≥ 0. If y ≤ R

θth
x ≤ 1 then g̃(y;x)(y;x) ≥ y − 1 ≤ 0.

Therefore, argminy L(y;x) = R
θth

x.

Theorem H.2. Dynamical system of LIF neuron (Eq. 2,3, 5) with EMA-coded input x̃(t) and output y(t) (Eq. 7), if τm = τ ,
is equivalent to a subgradient method over an optimization problem miny∈R L(y;x), approximated with x← x̃(t+ 1) as,

f̃(t+ 1) = f̃(t)− 1

τ
· g̃
(
f̃(t); x̃(t+ 1)

)
L(y;x) = 1

2
y2 +

urest

θth(τ − 1)
y + h(

R− θth
θth(τ − 1)

x− y)

f̃(t) = y(t)− 1

τθth
(
τ − 1

τ
)tu(0)−

urest

∑t
i=0(

τ−1
τ )t−i

θthτ(τ − 1)

where g̃(y;x) is a subgradient of L(y;x), h(x) = ReLU(x) and u(0) an initial membrane potential. If urest = 0, the
solution to the problem is ReLU1( R

θth(τ−1)x−
1

τ−1 ).

Proof. upre(t) = u(t−1)− u(t−1)−urest

τm
+ R

τm
I(t) s(t) = H(upre(t)−θth)u(t) = upre(t)−θths(t) We apply equation (3)

on equation (5) to obtain the membrane equation of upre.

upre(t) = (upre(t− 1)− θths(t− 1))− (upre(t− 1)− θths(t− 1))− urest

τm
+

R

τm
I(t)

=
τm − 1

τm
upre(t− 1)− θth

τm − 1

τm
s(t− 1) +

1

τm
urest +

R

τm
I(t) (24)

Rearranging the equation (24) for the spike s(t),

−θth
τm

s(t− 1) =
1

τm − 1
upre(t)−

1

τm
upre(t− 1)− R

τm(τm − 1)
I(t)− 1

τm(τm − 1)
urest

−θth
τm

s(t) =
1

τm − 1
upre(t+ 1)− 1

τm
upre(t)−

R

τm(τm − 1)
I(t+ 1)− 1

τm(τm − 1)
urest

With the definition of y(t) and τ = τm, we yield the recurrence relation of y and upre.

−θth
τ

s(t) = −θth · y(t) + θth ·
τ − 1

τ
y(t− 1)

−θth · y(t) + θth ·
τ − 1

τ
y(t− 1) =

1

τ − 1
upre(t+ 1)− 1

τ
upre(t)−

R

τ(τ − 1)
I(t+ 1)− 1

τ(τ − 1)
urest
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We solve the recurrence relation through time, deriving a linear relation of upre, I and y.

−θth · y(t) + θth ·
τ − 1

τ
y(t− 1) =

1

τ − 1
upre(t+ 1)− 1

τ
upre(t)−

R

τ(τ − 1)
I(t+ 1)− 1

τ(τ − 1)
urest

τ − 1

τ

(
− θth · y(t− 1) + θth ·

τ − 1

τ
y(t− 2)

)
=

τ − 1

τ

(
1

τ − 1
upre(t)−

1

τ
upre(t− 1)− R

τ(τ − 1)
I(t)− 1

τ(τ − 1)
urest

)
...

(
τ − 1

τ
)t−1

(
− θth · y(1) + θth ·

τ − 1

τ
y(0)

)
= (

τ − 1

τ
)t−1

(
1

τ − 1
upre(2)−

1

τ
upre(1)−

R

τ(τ − 1)
I(2)− 1

τ(τ − 1)
urest

)
+

−θth · y(t) + θth(
τ − 1

τ
)ty(0) =

1

τ − 1
upre(t+ 1)− 1

τ
(
τ − 1

τ
)t−1upre(1)

− R

τ(τ − 1)

t+1∑
i=2

(
τ − 1

τ
)t+1−iI(i)− urest

τ(τ − 1)

t∑
i=1

(
τ − 1

τ
)t−i

Since upre(1) =
τ−1
τ u(0) + 1

τ urest +
R

τ(τ−1)I(1),

−1

τ
(
τ − 1

τ
)t−1upre(1) = −

1

τ
(
τ − 1

τ
)t−1

(
τ − 1

τ
u(0) +

1

τ
urest +

R

τ
I(1)

)
= −1

τ
(
τ − 1

τ
)tu(0)− urest

τ(τ − 1)
(
τ − 1

τ
)t − 1

τ
(
τ − 1

τ
)t−1 · R

τ
I(1)

= −1

τ
(
τ − 1

τ
)tu(0)− urest

τ(τ − 1)
(
τ − 1

τ
)t − R

τ(τ − 1)
(
τ − 1

τ
)tI(1)

Removing the term y(0) = 0 and upre(1) from the above linear relation results in the linear relation of upre, y and x̃.

−θth · y(t) =
1

τ − 1
upre(t+ 1)− R

τ(τ − 1)

t+1∑
i=2

(
τ − 1

τ
)t+1−iI(i)− urest

τ(τ − 1)

t∑
i=1

(
τ − 1

τ
)t−i

− 1

τ
(
τ − 1

τ
)t−1upre(1)

=
1

τ − 1
upre(t+ 1)− R

τ(τ − 1)

t+1∑
i=2

(
τ − 1

τ
)t+1−iI(i)− urest

τ(τ − 1)

t∑
i=1

(
τ − 1

τ
)t−i

− 1

τ
(
τ − 1

τ
)tu(0)− urest

τ(τ − 1)
(
τ − 1

τ
)t − R

τ(τ − 1)
(
τ − 1

τ
)tI(1)

=
1

τ − 1
upre(t+ 1)− 1

τ
(
τ − 1

τ
)tu(0)− R

τ(τ − 1)

t+1∑
i=1

(
τ − 1

τ
)t+1−iI(i)− urest

τ(τ − 1)

t∑
i=0

(
τ − 1

τ
)t−i

=
1

τ − 1
upre(t+ 1)− 1

τ
(
τ − 1

τ
)tu(0)− R

τ − 1
x̃(t+ 1)− urest

τ(τ − 1)

t∑
i=0

(
τ − 1

τ
)t−i

By definition f̃(t) = y(t)− 1
τθth

( τ−1
τ )tu(0)− urest

θthτ(τ−1)

∑t
i=0(

τ−1
τ )t−i, thus

−θthf̃(t) =
1

τ − 1
upre(t+ 1)− R

τ − 1
x̃(t+ 1)

∴ upre(t+ 1) = R · x̃(t+ 1)− θth · (τ − 1) · f̃(t)
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We now reformulate the EMA coding equation (7) with f̃ and x̃.

y(t)− τ − 1

τ
y(t− 1) = f̃(t) +

1

τθth
(
τ − 1

τ
)tu(0) +

urest

θth · τ(τ − 1)

t∑
i=0

(
τ − 1

τ
)t−i

− τ − 1

τ

(
f̃(t− 1) +

1

τθth
(
τ − 1

τ
)t−1u(0) +

urest

θth · τ(τ − 1)

t−1∑
i=0

(
τ − 1

τ
)t−1−i

)
= f̃(t)− τ − 1

τ
f̃(t− 1) +

urest

θth · τ(τ − 1)
=

1

τ
s(t)

1

τ
s(t) =f̃(t)− τ − 1

τ
f̃(t− 1) +

urest

θth · τ(τ − 1)

=
1

τ
H(upre(t)− θth)

=
1

τ
H(R · x̃(t)− θth · (τ − 1) · f̃(t− 1)− θth)

f̃(t) =
τ − 1

τ
f̃(t− 1)− urest

θth · τ(τ − 1)
+

1

τ
H(R · x̃(t)− θth · (τ − 1) · f̃(t− 1)− θth)

∴ f̃(t) =f̃(t− 1)− 1

τ

(
f̃(t− 1) +

urest

θth(τ − 1)
−H(R · x̃(t)− θth · (τ − 1) · f̃(t− 1)− θth)

)
=f̃(t− 1)− 1

τ

(
f̃(t− 1) +

urest

θth(τ − 1)
−H(

R

θth(τ − 1)
x̃(t)− f̃(t− 1)− 1

τ − 1
)

)
The subgradient g̃(y;x) of the objective function L(y;x) = 1

2y
2 + urest

θth(τ−1)y + ReLU( R
θth(τ−1)x− y − 1

τ−1 ) is

g̃(y;x) = y +
urest

θth(τ − 1)
− ReLU(

R

θth(τ − 1)
x− y − 1

τ − 1
) (25)

Therefore, we finally derive the approximation x̃(t) → x of the subgradient method of constant step-size 1
τ over the

optimization problem miny∈R L(y;x). If urest = 0, the solution to the problem is ReLU1( R
θth(τ−1)x−

1
τ−1 ).

f̃(t) = f̃(t− 1)− 1

τ
· g̃
(
f̃(t− 1); x̃(t)

)
(26)

Theorem H.3. Let f∗(x) = argminy∈R L(y;x) be the minimizer of L(y;x) = ReLU(x − y) + 1
2y

2 over a true input
x ∈ R, and its t-th approximation f̃(t) be defined as equation 8 and rate-coded input x̃(t) = 1

t

∑t
i=1 I(i). Denote

h(i) =
(
1−

√
i−1
i+1

)
. If ∥f̃(t)∥ < M ∈ R+, then the approximation error ∥f̃(t)− f∗(x)∥ is upper bounded as

∥f̃(t)− f∗(x)∥2 ≤ ∥f̃(0)− f∗(x)∥2

t+ 1
(27)

+
M + 1

t+ 1

t∑
i=1

h(i)︸ ︷︷ ︸
Nondifferentiability Error

+
4

t+ 1

t∑
i=1

min(∥x− x̃(i)∥, 1)︸ ︷︷ ︸
Input Error

Proof. For simplicity, we denote true objective function L(y) = L(y;x) = ReLU(x− y)+ 1
2y

2 and the estimated objective
function L(y) = L(y; x̃(t + 1)) = f(x̃(t + 1) − y) + 1

2y
2. Respectively, we denote their minimizers f∗ = f∗(x) =

argminy∈R L(y) and f∗ = argminy∈R L(y). We also use the fact that f∗ = ReLU1(x), f∗ = ReLU1(x̃(t+ 1)).

From equation 17 , f̃(t) = f̃(t− 1)− 1
t+1∇yL(f̃(t− 1)). Hence

∥f̃(t+ 1)− f∗∥2 = ∥f̃(t)− 1

t+ 2
∇yL(f̃(t))− f∗∥2 (28)

= ∥f̃(t)− f∗∥2 − 2

t+ 2
∇yL(f̃(t))

(
f̃(t)− f∗)+ 1

(t+ 2)2
∥∇yL(f̃(t))∥2 (29)
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We first use the fact that L(y) is 1-strongly convex over y, since L(y)− 1
2y

2 is convex. First-order convexity over L show

L(f∗) ≥ L(f̃(t))−∇yL(f̃(t))(f̃(t)− f∗) +
1

2
∥f̃(t)− f∗∥2 (30)

The inequality 30 applies to the right hand-side of the equation 29 as follows.

1

(t+ 2)2
∥∇yL(f̃(t))∥2 −

2

t+ 2
(L(f̃(t))− L(f∗))

≥ 1

(t+ 2)2
∥∇yL(f̃(t))∥2 −

2

t+ 2
∇yL(f̃(t))(f̃(t)− f∗) +

1

t+ 2
∥f̃(t)− f∗∥2 (31)

Also, L(y) is piece-wise smooth since it is a maximum of two smooth functions. Define each piece function as Li(y) for
i = 1, 2. In other words,

L(y) = max(
1

2
y2 − y + x̃(t+ 1),

1

2
y2) = max(L1(y),L2(y)) (32)

The difference of two piece functions is a line.

∥L1(y)− L2(y)∥ = ∥y − x̃(t+ 1)∥ (33)
∴ Li(y) ≥ L(y)− ∥y − x̃(t+ 1)∥ (34)

Suppose L(y) = Li(y) at a point y ∈ R. For any δ ∈ R,

Li(y + δ) ≥ L(y + δ)− ∥y + δ − x̃(t+ 1)∥ (∵ Inequality (34)) (35)
≥ L(y + δ)− (∥y − x̃(t+ 1)∥+ ∥δ∥) (∵ Triangle Inequality of Norm) (36)
≥ L(y + δ)− ∥δ∥ (∵ Positiveness of Norm) (37)

Note that the error term ∥y + δ − x̃(t + 1)∥ appears only when x̃(t + 1) ∈ [y, y + δ], i.e., when the segment [y, y + δ]
crosses the singularity x̃(t+ 1). The error maximizes only if y = x̃(t+ 1).
The smoothness constant is 2 for both L1 and L2, since

∥∇yL1(x1)−∇yL1(x2)∥ = ∥2x1 − 1− 2x2 + 1∥ = 2∥x1 − x2∥
∥∇yL2(x1)−∇yL2(x2)∥ = ∥2x1 − 2x2∥ = 2∥x1 − x2∥

We now use the smoothness of Li and the inequality 34, 37 to show the main result. Without loss of generality, let
L(f̃(t)) = Li(f̃(t)). For any α ∈ R, by the property of 2-smooth function,

Li(f̃(t)− α∇yLi(f̃(t))) ≤ Li(f̃(t)) +∇yLi(f̃(t)))(−α∇yLi(f̃(t)))) +
2

2
α2∥∇yLi(f̃(t)))∥2 (∵ 2-smooth)

= Li(f̃(t)) + (α2 − α)∥∇yLi(f̃(t)))∥2

Li(f̃(t)− α∇yLi(f̃(t))) ≥ L(f̃(t)− α∇yLi(f̃(t)))− ∥f̃(t)− α∇yLi(f̃(t))− x̃(t+ 1)∥ (∵ (34) )

≥ L(f̃(t)− α∇yLi(f̃(t)))− α∥∇yLi(f̃(t))∥ (∵ (37) )

∴ L(f̃(t)− α∇yLi(f̃(t))) ≤ L(f̃(t)) + (α2 − α)∥∇yLi(f̃(t)))∥2 + α∥∇yLi(f̃(t))∥ (38)
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Since f∗ = ReLU1(x), f∗ = ReLU1(x̃(t+ 1)) and x2 − y2 ≥ −∥x+ y∥∥x− y∥,

L(f̃(t)− α∇yLi(f̃(t))) ≥ L(f∗) (∵ f∗ = argmin
y∈R

L(y)) (39)

= L(f∗) +
(
L(f∗)− L(f∗)

)
= L(f∗) +

(
ReLU(x̃(t+ 1)− f∗) +

1

2
(f∗)2 − ReLU(x̃(t+ 1)− f∗)− 1

2
(f∗)2

)
= L(f∗) +

(
1

2
(f∗)2 − 1

2
(f∗)2 + ReLU(x̃(t+ 1)− f∗)− ReLU(x̃(t+ 1)− f∗)

)
≥ L(f∗)− 1

2
∥f∗ + f∗∥∥f∗ − f∗∥ − ∥f∗ − f∗∥ (∵ Definition of ReLU)

= L(f∗)− 1

2
∥ReLU1(x̃(t+ 1)) + ReLU1(x) + 2∥∥ReLU1(x̃(t+ 1))− ReLU1(x)∥

≥ L(f∗)− 1

2
· 4 · ∥ReLU1(x̃(t+ 1))− ReLU1(x)∥

≥ L(f∗)− 2∥min(x− x̃(t+ 1), 1)∥ (40)

Merging two inequalities (38) and (40), we yield the following inequality.

L(f̃(t)) + (α2 − α)∥∇yLi(f̃(t)))∥2 + ∥∇yLi(f̃(t))∥ ≥ L(f∗)− 2∥min(x− x̃(t+ 1), 1)∥
2∥min(x− x̃(t+ 1), 1)∥+ α∥∇yLi(f̃(t))∥ ≥ (α− α2)∥∇yLi(f̃(t)))∥2 − (L(f̃(t))− L(f∗))

4

t+ 2
∥min(x− x̃(t+ 1), 1)∥+ 2α

t+ 2
∥∇yLi(f̃(t))∥ ≥

2(α− α2)

t+ 2
∥∇yLi(f̃(t)))∥2 −

2

t+ 2
(L(f̃(t))− L(f∗))

We let α = 1
2 −

1
2

√
t

t+2 , since α = 1
2 ±

1
2

√
1− 2

t+2 = 1
2 ±

1
2

√
t

t+2 satisfies 2(α− α2) = 1
t+2 .

4

t+ 2
∥min(x− x̃(t+ 1), 1)∥+ 1

t+ 2

(
1−

√
t

t+ 2

)
∥∇yLi(f̃(t))∥

≥ 1

(t+ 2)2
∥∇yLi(f̃(t)))∥2 −

2

t+ 2
(L(f̃(t))− L(f∗))

≥ 1

(t+ 2)2
∥∇yL(f̃(t))∥2 −

2

t+ 2
∇yL(f̃(t))(f̃(t)− f∗) +

1

t+ 2
∥f̃(t)− f∗∥2 (∵ Inequality (31))

= ∥f̃(t+ 1)− f∗∥2 − t+ 1

t+ 2
∥f̃(t)− f∗∥2 (∵ Equation (29))

∴ ∥f̃(t+ 1)− f∗∥2 ≤ t+ 1

t+ 2
∥f̃(t)− f∗∥2 + 4

t+ 2
∥min(x̃(t+ 1)− x, 1)∥+ 1

t+ 2

(
1−

√
t

t+ 2

)
∥∇yL(f̃(t))∥

We now analyze the sub-gradient magnitude term ∥∇yL(f̃(t))∥. By definition of L and triangle inequality,

∥∇yL(f̃(t))∥ = ∥f̃(t)−H(x̃(t+ 1)− f̃(t))∥ ≤ ∥f̃(t)∥+ 1

We assumed that ∥f̃(t)∥ ≤M ∈ R+ for any t ∈ N. Thus,

∥f̃(t+ 1)− f∗∥2 ≤ t+ 1

t+ 2
∥f̃(t)− f∗∥2 + 4

t+ 2
∥x̃(t+ 1)− x∥+ 1

t+ 2

(
1−

√
t

t+ 2

)
(M + 1) (41)

Solving the recurrence relation (41) through time t leads to the upper bound of the approximation error.

∥f̃(t+ 1)− f∗∥2 ≤ 1

t+ 2
∥f̃(0)− f∗∥2 + 4

t+ 2

t+1∑
i=1

∥min(x− x̃(i), 1)∥+ M + 1

t+ 2

t∑
i=0

(
1−

√
i

i+ 2

)
(42)

Recovering the notations f∗ → f∗(x) and t+ 1→ t, the above inequality becomes the desired inequality.

∥f̃(t)− f∗(x)∥2 ≤ 1

t+ 1
∥f̃(0)− f∗(x)∥2 + 4

t+ 1

t∑
i=1

∥min(x− x̃(i), 1)∥+ M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
(43)
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Lemma H.4. The harmonic number Hn =
∑n

i=1
1
i satisfies limn→∞

1
nHn = 0.

Proof. Let 1 ≤ k ≤ n. For every i ≤ k, 1
i ≤ 1. For every k < i ≤ n, 1

i ≤
1
k . Thus

Hn =

n∑
i=1

1

i
≤ 1 · k +

1

k
· (n− k) = k +

1

k
− 1

If we choose
√
n ≤ k ≤

√
n+ 1, then k − 1 ≤

√
n and 1

k ≤
√
n. Thus, Hn ≤ 2

√
n, and

1

n
Hn ≤

2√
n

Therefore, limn→∞
1
nHn = 0.

Lemma H.5. Let t ∈ N. limt→∞
1

t+1

∑t
i=1

(
1−

√
i−1
i+1

)
= 0

Proof.

0 ≤ 1−
√

i− 1

i+ 1
= 1−

√
(i− 1)(i+ 1)

i+ 1
=

i+ 1−
√
(i− 1)(i+ 1)

i+ 1
(44)

≤
i+ 1−

√
(i− 1)(i− 1)

i+ 1
=

i+ 1− (i− 1)

i+ 1
=

2

i+ 1
(45)

∴ 0 ≤ 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
≤ 1

t+ 1

t∑
i=1

2

i+ 1
(46)

By Lemma H.4,

lim
t→∞

1

t+ 1

t∑
i=1

2

i+ 1
= lim

t→∞

2

t+ 1
(Ht − 1) = 0− 0 = 0

Therefore, 0 ≤ limt→∞
1

t+1

∑t
i=1

(
1−

√
i−1
i+1

)
≤ 0, and thus limt→∞

1
t+1

∑t
i=1

(
1−

√
i−1
i+1

)
= 0.

Corollary H.6. Let ∥f̃(t)∥ < M ∈ R+, then

• (Exact Input) If x̃(t) = x, then ∥f̃(t)− f∗∥ → 0 as t→∞.
• (Deterministic Input) If ∥x̃(t)− x∥ = O( 1t ), then ∥f̃(t)− f∗∥ → 0 as t→∞.
• (Stochastic Input) If E[∥x̃(t)− x∥] = O( 1t ), then E[∥f̃(t)− f∗∥]→ 0 as t→∞.

Proof. (Exact Input) We first prove it for the case of exact input, i.e., if x̃(t) = x, then ∥f̃(t)− f∗∥ → 0 as t→∞.

∥f̃(t)− f∗(x)∥2 ≤ ∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(
(1−

√
i− 1

i+ 1

)
+

4

t+ 1

t∑
i=1

min(∥x− x̃(i)∥, 1) (Theorem 4.3)

=
∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
(Assumption on x̃(t))

By Lemma H.4 and H.5,

lim
t→∞

∥f̃(t)− f∗(x)∥2 ≤ lim
t→∞

∥f̃(0)− f∗(x)∥2

t+ 1
+ lim

t→∞

M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
= 0 + (M + 1) · 1 · 0 = 0
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(Deterministic Input) We show the deterministic input case that if ∥x̃(t)− x∥ = O( 1t ), then ∥f̃(t)− f∗∥ → 0 as t→∞.

∥f̃(t)− f∗(x)∥2 ≤ ∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
+

4

t+ 1

t∑
i=1

min(∥x− x̃(i)∥, 1) (Theorem 4.3)

≤ ∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
+

4

t+ 1

t∑
i=1

min

(
C

t
, 1

)
(Assumption on x̃(t))

≤ ∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
+

4C

t+ 1

t∑
i=1

1

t

By Lemma H.4 and H.5,

lim
t→∞

∥f̃(t)− f∗(x)∥2 ≤ lim
t→∞

∥f̃(0)− f∗(x)∥2

t+ 1
+ lim

t→∞

M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
+ lim

t→∞

4C

t+ 1

t∑
i=1

1

t

= 0 + (M + 1) · 1 · 0 + 4C · 1 · 0 = 0

(Stochastic Input) We now demonstrate the stochastic input case that if E[∥x̃(t)− x∥] = O( 1t ), then E[∥f̃(t)− f∗∥]→ 0
as t→∞.

E
[
∥f̃(t)− f∗(x)∥2

]
≤ E

[
∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(1−
√

i− 1

i+ 1
) +

4

t+ 1

t∑
i=1

min(∥x− x̃(i)∥, 1)

]

=
∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(1−
√

i− 1

i+ 1
) + E

[
4

t+ 1

t∑
i=1

min(∥x− x̃(i)∥, 1)

]

≤ ∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(1−
√

i− 1

i+ 1
) +

4

t+ 1

t∑
i=1

min(
C

t
, 1) (Assumption on x̃(t))

≤ ∥f̃(0)− f∗(x)∥2

t+ 1
+

M + 1

t+ 1

t∑
i=1

(1−
√

i− 1

i+ 1
) +

4C

t+ 1

t∑
i=1

1

t

By Lemma H.4 and H.5,

lim
t→∞

E
[
∥f̃(t)− f∗(x)∥2

]
≤ lim

t→∞

∥f̃(0)− f∗(x)∥2

t+ 1
+ lim

t→∞

M + 1

t+ 1

t∑
i=1

(
1−

√
i− 1

i+ 1

)
+ lim

t→∞

4C

t+ 1

t∑
i=1

1

t

= 0 + (M + 1) · 1 · 0 + 4C · 1 · 0 = 0

Theorem H.7. Let an input activation x̃(t) be signed schedule coded over an N weighted input spike trains, i.e.,

x̃(k)(t) = x̃(k)(t− 1)−
N∑
i=1

Wi

(
η(t)(2I

(k)
i (t)− 1)

)
(47)

f̃(t) = f̃(t−1)−η(t)
(
2 ·s(t)−1

)
is signed schedule coded with the spike output s(t) of signGD-based neuronal dynamics.

If α1, α2 β1, β2 and η satisfies η(1) = α2(1) = β2(1) and

η(t)

η(t− 1)
= β1(t)

β2(t)

β2(t− 1)
=

1

α1(t− 1)

α2(t)

α2(t− 1)
(48)

Then the dynamical system of f̃(t) is equivalent to a sign gradient descent method

f̃(t) = f̃(t− 1)− η(t)sgn(∇yL(f̃(t− 1); x̃(t))) (49)
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Proof. We start from the equation (49) to derive the signGD-based neuron in Definition 5.2. We define u(t), v(t) to be

u(t) =
β2(t− 1)

η(t− 1)
f̃(t− 1) v(t) =

α2(t)

η(t)
x̃(t) s(t) = H

(
∇yL(

η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t))

)
(50)

From equation 49, by substituting f̃(t) with u(t) and x̃(t) with v(t),

η(t)

β2(t)
u(t+ 1) =

η(t− 1)

β2(t− 1)
u(t)− η(t)sgn(∇yL(

η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)))

u(t+ 1) =
β2(t)

η(t)

η(t− 1)

β2(t− 1)
u(t)− β2(t)

η(t)
η(t)sgn(∇yL(

η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)))

=
β2(t)

η(t)

η(t− 1)

β2(t− 1)
u(t)− β2(t)sgn(∇yL(

η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t))) (51)

By equation (48), β1(t) = η(t)
β2(t)

β2(t−1)
η(t−1) . The equation (51) becomes identical to the equation (14) in the definition of

signGD-based neuron.
u(t+ 1) = β1(t)u(t)− β2(t)(2 · s(t)− 1) (52)

We now derive the membrane equation for v(k)(t).

v(k)(t+ 1)− α1(t)v
(k)(t) =

α2(t+ 1)

η(t+ 1)
x̃(k)(t+ 1)− α1(t)

α2(t)

η(t)
x̃(k)(t)

=
α2(t+ 1)

η(t+ 1)

(
x̃(k)(t)−

N∑
i=1

Wi

(
η(t+ 1)(2I

(k)
i (t+ 1)− 1)

))
− α1(t)

α2(t)

η(t)
x̃(k)(t) (53)

By equation (48), α1(t)
α2(t)
η(t) = α2(t+1)

η(t+1) . Since I(k)(t+ 1) =
∑N

i=1 Wi(I
(k)
i )(t+ 1) and W =

∑N
i=1 Wi,

v(k)(t+ 1)− α1(t)v
(k)(t) =

α2(t+ 1)

η(t+ 1)

(
x̃(k)(t)−

N∑
i=1

Wi

(
η(t+ 1)(2I

(k)
i (t+ 1)− 1)

))
− α1(t)

α2(t)

η(t)
x̃(k)(t)

= −α2(t+ 1)

η(t+ 1)

N∑
i=1

Wi

(
η(t+ 1)(2I

(k)
i (t+ 1)− 1)

)
= −α2(t+ 1)

N∑
i=1

Wi(2I
(k)
i (t+ 1)− 1) = −α2(t+ 1)

(
2(

N∑
i=1

WiI
(k)
i (t+ 1))−W

)
= −α2(t+ 1)(2 · I(k) −W )

∴ v(k)(t+ 1) = α1(t)v
(k)(t)− α2(t+ 1)(2 · I(k) −W ) (54)

We thus derive the equation for v(k)(t). The proof direction from signGD-based neuronal dynamics to optimization algorithm
can be similarly derived by defining f̃(t) and x̃(t) as (50).

Corollary H.8. SignGD-based neuronal dynamics (Def. 5.2) satisfying Eq. 15 and η(t) = α2(t) = β2(t) is equivalent to
signGD (Eq. 16) if for s(t) (Eq. 13),

• (ReLU) L(y;x) = 1
2∥y − ReLU(x)∥2 and s(t) = H

(
v(t)

)
H
(
u(t)− β1(t)v(t)

)
+H

(
− v(t)

)
H
(
u(t)

)
• (Sigmoid approximation of GELU) (Hendrycks & Gimpel, 2016)) L(y;x) = 1

2∥y −
x

1+e−1.702x ∥2 and s(t) =

H
(
(1 + (e−1.702)v(t))u(t)− β1(t)v(t)

)
• (LeakyReLU) L(y;x) = 1

2∥y − LeakyReLU(x, δ)∥2, where δ is the negative slope, and s(t) = H(v(t))H
(
u(t) −

β1(t)v(t)
)
+H(−v(t))H

(
u(t)− δβ1(t)v(t)

)
Proof. (ReLU) We first show that signGD-based neuronal dynamics with a spiking mechanism s(t) = H

(
v(t)

)
H
(
u(t)−

β1(t)v(t)
)
+ H

(
− v(t)

)
H
(
u(t)

)
is equivalent to the signGD algorithm (Eq. 16) with the objective function L(y;x) =

1
2∥y − ReLU(x)∥2, which has ReLU(x) as its minimizer.
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Since L(y;x) = 1
2∥y − ReLU(x)∥2,∇yL(y;x) = (y − ReLU(x)) = H(x)(y − x) +H(−x)y

s(t) = H
(
∇yL

( η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)

))
= H

(
H(

η(t)

α2(t)
v(t))

( η(t− 1)

β2(t− 1)
u(t)− η(t)

α2(t)
v(t)

)
+H(− η(t)

α2(t)
v(t))

η(t− 1)

β2(t− 1)
u(t)

)
= H

(
η(t)

α2(t)
v(t)

)
H
(

η(t− 1)

β2(t− 1)
u(t)− η(t)

α2(t)
v(t)

)
+H

(
− η(t)

α2(t)
v(t)

)
H
(

η(t− 1)

β2(t− 1)
u(t)

)
= H(v(t))H

(
u(t)− η(t)β2(t− 1)

η(t− 1)α2(t)
v(t)

)
+H(−v(t))H(u(t))

= H(v(t))H
(
u(t)− β1(t)

β2(t)

α2(t)
v(t)

)
+H(−v(t))H(u(t))

= H(v(t))H
(
u(t)− β1(t)v(t)

)
+H(−v(t))H(u(t))

(GELU) We now show that signGD-based neuronal dynamics with a spiking mechanism s(t) = H
(
(1+(e−1.702)v(t))u(t)−

β1(t)v(t)
)

is equivalent to the signGD algorithm (Eq. 16) with the objective function L(y;x) = 1
2∥y−

x
1+e−1.702x ∥2, which

has the sigmoid approximation of GELU function value x
1+e−1.702x as its minimizer.

Since L(y;x) = 1
2∥y − g(x)∥2,∇yL(y;x) = (y − g(x)) = y − x

1+e−1.702x

s(t) = H
(
∇yL

( η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)

))

= H
(

η(t− 1)

β2(t− 1)
u(t)−

η(t)
α2(t)

v(t)

1 + e
−1.702

η(t)
α2(t)

v(t)

)
= H

(
(1 + e

−1.702
η(t)
α2(t)

v(t)
)
η(t− 1)

β2(t− 1)
u(t)− η(t)

α2(t)
v(t)

)
= H

(
(1 + e

−1.702
η(t)
α2(t)

v(t)
)u(t)− η(t)β2(t− 1)

η(t− 1)α2(t)
v(t)

)
= H

(
(1 + e

−1.702
η(t)
α2(t)

v(t)
)u(t)− β1(t)

β2(t)

α2(t)
v(t)

)
= H

(
(1 + e−1.702v(t))u(t)− β1(t)v(t)

)

(LeakyReLU) Finally, we show that signGD-based neuronal dynamics with a spiking mechanism s(t) = H(v(t))H
(
u(t)−

β1(t)v(t)
)
+H(−v(t))H

(
u(t)− δβ1(t)v(t)

)
is equivalent to the signGD algorithm (Eq. 16) with the objective function

L(y;x) = 1
2∥y − LeakyReLU(x, δ)∥2, which has LeakyReLU(x, δ) as its minimizer.

Since L(y;x) = 1
2∥y − LeakyReLU(x, δ)∥2,∇yL(y;x) = y − LeakyReLU(x, δ) = H(x)(y − x) +H(−x)(y − δx)

s(t) = H
(
∇yL

( η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)

))
= H(

η(t)

α2(t)
v(t))H

( η(t− 1)

β2(t− 1)
u(t)− η(t)

α2(t)
v(t)

)
+H(− η(t)

α2(t)
v(t))H

( η(t− 1)

β2(t− 1)
u(t)− δ

η(t)

α2(t)
v(t)

)
= H(v(t))H

(
u(t)− η(t)β2(t− 1)

η(t− 1)α2(t)
v(t)

)
+H(−v(t))H

(
u(t)− δ

η(t)β2(t− 1)

η(t− 1)α2(t)
v(t)

)
= H(v(t))H

(
u(t)− β1(t)

β2(t)

α2(t)
v(t)

)
+H(−v(t))H

(
u(t)− δβ1(t)

β2(t)

α2(t)
v(t)

)
= H(v(t))H

(
u(t)− β1(t)v(t)

)
+H(−v(t))H

(
u(t)− δβ1(t)v(t)

)
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Corollary H.9. SignGD (Eq. 16) with L
(
y; (x1, x2)

)
= 1

2∥y −max(x1, x2)∥2 is equivalent to the signGD-based neuronal
dynamics (Def. 5.2) satisfying equation 15, α2(t) = β2(t) and

s(t) = H(v(1)(t)− v(2)(t))(u(t)− β1(t)v
(1)(t)) +H(v(2)(t)− v(1)(t))(u(t)− β1(t)v

(2)(t))

Proof. Since L
(
y; (x1, x2)

)
= 1

2∥y − max(x1, x2)∥2, ∇yL(y;x1, x2) = y − max(x1, x2) = H(x1 − x2)(y − x1) +
H(x2 − x1)(y − x2).

s(t) = H
(
∇yL

( η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)

))
= H(

η(t)

α2(t)
v(1)(t)− η(t)

α2(t)
v(2)(t))H(

η(t− 1)

β2(t− 1)
u(t)− η(t)

α2(t)
v(1)(t))

+H(
η(t)

α2(t)
v(2)(t)− η(t)

α2(t)
v(1)(t))H(

η(t− 1)

β2(t− 1)
u(t)− η(t)

α2(t)
v(2)(t))

= H(v(1)(t)− v(2)(t))H(u(t)− η(t)β2(t− 1)

η(t− 1)α2(t)
v(1)(t)) +H(v(2)(t)− v(1)(t))H(u(t)− η(t)β2(t− 1)

η(t− 1)α2(t)
v(2)(t))

= H(v(1)(t)− v(2)(t))H(u(t)− η(t)β2(t− 1)

η(t− 1)α2(t)
v(1)(t)) +H(v(2)(t)− v(1)(t))H(u(t)− η(t)β2(t− 1)

η(t− 1)α2(t)
v(2)(t))

= H(v(1)(t)− v(2)(t))H(u(t)− β1(t)
β2(t)

α2(t)
v(1)(t)) +H(v(2)(t)− v(1)(t))H(u(t)− β1(t)

β2(t)

α2(t)
v(2)(t))

= H(v(1)(t)− v(2)(t))H(u(t)− β1(t)v
(1)(t)) +H(v(2)(t)− v(1)(t))H(u(t)− β1(t)v

(2)(t))

Corollary H.10. SignGD (Eq. 16) with L(y;x) = 1
2∥y − x2∥2 is equivalent to the signGD-based neuronal dynam-

ics (Def. 5.2) satisfying equation 15, η(t) = β2(t) = α2(t) and

s(t) =H
(
u(t)− β1(t)v(t)

2

)

Proof. Since L(y;x) = 1
2∥y − x2∥2, ∇yL(y;x) = y − x2.

s(t) = H
(
∇yL

( η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)

))
= H

(
η(t− 1)

β2(t− 1)
u(t)− (

η(t)

α2(t)
v(t))2

)
= H

(
u(t)− η(t)2β2(t− 1)

η(t− 1)α2(t)2
v(t)2

)
= H

(
u(t)− β1(t)

η(t)β2(t)

α2(t)2
v(t)2

)
= H

(
u(t)− β1(t)v(t)

2

)

Corollary H.11. SignGD (Eq. 16) with L(y;x1, x2) = ∥y − x1√
x2
∥2 is equivalent to the signGD-based neuronal dynam-

ics (Def. 5.2) satisfying equation 15, and η(t) = α2(t) = β2(t) and

s(t) = H
(
u(t)

)
H
(
v1(t)

)
H
(
v2(t)u(t)

2 − v1(t)
2
)

+H
(
− u(t)

)
H
(
− v1(t)

)
H
(
v1(t)

2 − v2(t)u(t)
2
)

+H(u(t))H(−v1(t))
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Proof. Since L(y;x1, x2) =
1
2∥y −

x1√
x2
∥2,∇yL(y;x) = y − x1√

x2
.

H(y − x1√
x2

) = H
(
y
)
H
(
x1

)
H
(
x2y

2 − x2
1

)
+H

(
− y
)
H
(
− x1

)
H
(
x2
1 − x2y

2
)
+H(y)H(−x1)

Applying the equation to the spike mechanism s(t),

s(t) =H
(
∇yL

( η(t− 1)

β2(t− 1)
u(t);

η(t)

α2(t)
v(t)

))
=H
( η(t− 1)

β2(t− 1)
u(t)

)
H
( η(t)

α2(t)
v(1)(t)

)
H
( η(t)

α2(t)
v(2)(t)(

η(t− 1)

β2(t− 1)
u(t))2 − (

η(t)

α2(t)
v(1)(t))2

)
+H

(
− η(t− 1)

β2(t− 1)
u(t)

)
H
(
− η(t)

α2(t)
v(1)(t)

)
H
(
(
η(t)

α2(t)
v(1)(t))2 − η(t)

α2(t)
v(2)(t)(

η(t− 1)

β2(t− 1)
u(t))2

)
+H(

η(t− 1)

β2(t− 1)
u(t))H(− η(t)

α2(t)
v(1)(t))

=H
(
u(t)

)
H
(
v(1)(t)

)
H
(α2(t)

η(t)

η(t− 1)2

β2(t− 1)2
v(2)(t)u(t)2 − v(1)(t)2

)
+H

(
− u(t)

)
H
(
− v(1)(t)

)
H
(
v(1)(t)2 − α2(t)

η(t)

η(t− 1)2

β2(t− 1)2
v(2)(t)u(t)2

)
+H(u(t))H(−v(1)(t))

=H
(
u(t)

)
H
(
v(1)(t)

)
H
(
v(2)(t)u(t)2 − v(1)(t)2

)
+H

(
− u(t)

)
H
(
− v(1)(t)

)
H
(
v(1)(t)2 − v(2)(t)u(t)2

)
+H(u(t))H(−v(1)(t))

(a) Inverse LR, η(t) = 1
t+1

≈ IF + Rate of
θth = R = 1

(b) Constant LR, η(t) = 0.05≈ LIF + EMA
of θth = 1, τ = 20, urest = 0

(c) Exp. LR, η(t) = (0.9)t.

Figure 10. Toy experiment on subgradient-based neuronal dynamics with generalized learning rate schedule (Definition I.3). Time-
evolution of error (Y-axis, log-scale) between ReLU function and spike-decoded neuron output, over a float input activation (X-axis)

I. Generalizing learning rate schedule over subgradient-based neuronal dynamics
To verify the effect of signGD dynamics on acceleration, we generalize the learning rate schedule of subgradient method-
based neuronal dynamics, which underlies the simple integrate-and-fire models. In Figure 10, we also empirically verify
that the subgradient-based neuronal dynamics are well-defined by approximating the clipped ReLU function with the
subgradient-based neuron. We design neuronal dynamics with three different learning rate schedules: inverse (Figure 10(a)),
exponential (Figure 10(c)), and constant (Figure 10(b)) schedule. We formulate them as follows.

Definition I.1. (Schedule coding) Let a spike train s(t) ∈ {0, 1}, a step size schedule η(t) ∈ R+ for t ∈ N and y(0) = 0.
Schedule coding with η(t) decodes an activation y(t) from s(t) as

y(t) = (1− η(t))y(t− 1) + η(t)s(t) (55)
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Definition I.2. (Subgradient-based neuronal dynamics) Positive coefficients αi(t) ∈ R+, βi(t) ∈ R+, and step size
schedule η(t) ∈ R+ for i = 1, 2 and t ∈ N. The subgradient-based neuronal dynamics over membrane potential u(t) ∈ R is

upre(t+ 1) = α(t)u(t) + γ(t+ 1)I(t+ 1) (56)

s(t+ 1) = H
(
upre(t+ 1)− upre(0)

t∏
j=0

α(j)
)

(57)

u(t+ 1) = upre(t+ 1)− β(t+ 1)s(t+ 1) (58)

Theorem I.3. Let L(y;x) = ReLU
(
x− y

)
+ 1

2y
2 and its sub-gradient g̃(y;x) over y. If input x̃(t) = (1− η(t))x(t− 1) +

η(t)I(t) and output activation f̃(t) = (1− η(t))f̃(t− 1) + η(t)s(t) are schedule coded with η(t) and η, α, β, γ satisfies
for i, t ∈ N

β(t)

η(t)
(1− η(t)) =

β(t− 1)

η(t− 1)
α(t− 1) (59)

η(i)

η(t)

t∏
j=i+1

(1− η(j)) =
γ(i)

β(t)

t−1∏
j=i

α(j) (60)

Then the dynamical system of f̃(t) and x̃(t) is equivalent to a subgradient method

f̃(t) = f̃(t− 1)− η(t) · g̃
(
f̃(t− 1); x̃(t)

)
(61)

Proof. Subgradient g̃(t) = f̃(t− 1)−H
(
x̃(t+ 1)− f̃(t)

)
. We start from the neuronal dynamics (Definition I.2) to derive

the subgradient method. By definition of f̃(t),

s(t) =
1

η(t)
f̃(t)−

(
1

η(t)
− 1

)
f̃(t− 1)

The equation (58) applies to equation (56) to formulate the recurrence relation of f̃(t) and u(t).

upre(t+ 1) = α(t)upre(t)− α(t)β(t)s(t) + γ(t+ 1)I(t+ 1) (62)

α(t)β(t)

η(t)

(
f̃(t)−

(
1− η(t)

)
f̃(t− 1)

)
= α(t)upre(t)− upre(t+ 1) + γ(t+ 1)I(t+ 1) (63)

By equation (60), α(t)β(t)
η(t) (1− η(t)) = α(t)α(t−1)β(t−1)

η(t−1) . With f̃(0) = 0, solving the recurrence relation yields

α(t)β(t)

η(t)
f̃(t) = −upre(t+ 1) + upre(0)

t∏
j=0

α(j) +

t+1∑
i=1

γ(i)I(i)

t∏
j=i

α(j)

f̃(t) = − η(t)

α(t)β(t)
upre(t+ 1) +

η(t)

α(t)β(t)
upre(0)

t∏
j=0

α(j) +
η(t)

α(t)β(t)

t+1∑
i=1

γ(i)I(i)

t∏
j=i

α(j)

By equation (59), η(i)
∏t

j=i+1(1− η(j)) = η(t)
α(t)β(t)γ(i)

∏t
j=i α(j). Hence,

f̃(t) = − η(t)

α(t)β(t)
upre(t+ 1) +

η(t)

α(t)β(t)
upre(0)

t∏
j=0

α(j) +

t+1∑
i=1

η(i)

t∏
j=i+1

(1− η(j))I(i)

= − η(t)

α(t)β(t)
upre(t+ 1) +

η(t)

α(t)β(t)
upre(0)

t∏
j=0

α(j) + x̃(t+ 1)

upre(t+ 1)− upre(0)

t∏
j=0

α(j) =
α(t)β(t)

η(t)

(
x̃(t+ 1)− f̃(t)

)
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Substituting upre with f̃ and x̃ in the definition of s,

s(t+ 1) = H
(
upre(t+ 1)− upre(0)

t∏
j=0

α(j)
)
= H

(
α(t)β(t)

η(t)

(
x̃(t+ 1)− f̃(t)

))
= H

(
x̃(t+ 1)− f̃(t)

)
∴ f̃(t) = (1− η(t))f̃(t− 1) + η(t)H

(
x̃(t)− f̃(t− 1)

)
= f̃(t− 1)− η(t) · g̃(f̃(t− 1); x̃(t))

(a) IF neuron with θth = 1, R = 1, float
encoding.

(b) Fig. 11(a) transformed to f̃(t) (c) Subgradient method on f̃(t). Float en-
coding.

(d) IF neuron with θth = 1, R = 1, poisson
encoding.

(e) Fig. 11(d) transformed to f̃(t) (f) Subgradient method on f̃(t). Poisson
encoding.

Figure 11. Equivalence of IF neuron (Eq. 2-4) + rate-coded input (Eq. 6) with the subgradient method defined as Theorem 4.1. We plot
time-evolution of error between ReLU function and the rate-decoded output of IF neuron (Fig. 11(a), 11(d)) or the approximation of
subgradient method (Fig. 11(c), 11(f)). Given input x ∈ R, Float encoding is I(t) = x ∀t (Li et al., 2021a), and Poisson encoding is a
stochastic spike train representation of x that samples I(t) ∼ B(1,ReLU1(x)),∀t (Sengupta et al., 2018)
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(a) LIF neuron, τ = 10, R = 1, θth = 1, Float encoding (b) LIF neuron, τ = 10, R = 1, θth = 1, spike encod-
ing.

(c) Subgradient method, τ = 10, R = 1, Float encod-
ing.

(d) Subgradient method τ = 10, R = 1, spike encoding.

Figure 12. Equivalence of LIF neuron (Eq. 1-3) + EMA-coded input (Eq. 7) with the subgradient method defined as Theorem 4.2. We plot
time-evolution of error between ReLU1(Rx−θth

τ−1
) and the EMA-decoded output of neuron (Fig. 12(a), 12(b)) or the approximation of

subgradient method (Fig. 12(c), 12(d)). Given input x ∈ R, Float encoding is I(t) = x ∀t, and spike encoding is a deterministic spike
train representation I(t) of x defined as I(t) = H(x− τ−1

τ
x̃(t− 1)), x̃(t) = τ−1

τ
x̃(t− 1) + 1

τ
I(t).

(a) SignGD-based neuron, η(t) = 1
t+1

(b) Subgradient-based neuron, η(t) = 1
t+1

≈ IF + Rate

(c) SignGD-based neuron, η(t) = 0.15 · (0.95)t. (d) Subgradient-based neuron, η(t) = 0.15 · (0.95)t.

Figure 13. Layer-wise time-evolution of error between the true ANN activation and the spike-decoded SNN activations. We qualitatively
compare two neuronal dynamics side-by-side with the same learning rate schedules; inverse schedule (Fig. 13(a), 13(b)) and exponential
schedule (Fig. 13(c), 13(d)). Measured with ResNet-18 on a single instance of CIFAR-10 dataset.
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Table 4. Comparing ANN-to-SNN conversion performance on CIFAR-10 (Krizhevsky et al., 2009) dataset. No Spike-aware Activation
Func means ReLU functions in ANN architecture are not replaced with spike-aware functions before training, e.g., QCFS (Bu et al.,
2022), SlipReLU (Jiang et al., 2023). For our signGD-based neuron, we used exponential schedule with initial LR 0.135 and decay factor
0.95. Results of RTS (Deng & Gu, 2021) are from (Li et al., 2021a).

Methods No Spike-aware ANN Simulation time-steps
Activation Func. Acc. T = 16 T = 32 T = 64 T = 128 T = 256

ResNet-18 (He et al., 2015) CIFAR-10

TSC (Han & Roy, 2020) ✔ 91.47 - - 69.38 88.57 90.10
RMP (Han et al., 2020) ✔ 91.47 - - - 87.60 89.37
RTS (Deng & Gu, 2021) ✖ 95.46 - 84.06 92.48 94.68 95.30
SNNC-AP (Li et al., 2021a) ✔ 95.46 - 94.78 95.30 95.42 95.41
SNM (Wang et al., 2022) ✔ 95.39 - 94.03 94.03 95.19 -
QCFS (Bu et al., 2022) ✖ 96.04 95.92 96.08 96.06 - -
SlipReLU (Jiang et al., 2023) ✖ 96.15 96.10 96.12 96.22 - -
SRP (Hao et al., 2023) ✖ 95.64 95.55 95.55 95.58 - -
Subgradient-based neuron (Thm. I.3) ✔ 96.82 53.40 88.34 94.20 94.84 94.87
Ours (signGD-based neuron, Def. 5.2) ✔ 96.82 80.74 96.29 96.78 96.79 96.79

VGG-16 (Simonyan & Zisserman, 2014) CIFAR-10

TSC (Han & Roy, 2020) ✔ 93.63 - - 92.79 93.27 93.45
RMP (Han et al., 2020) ✔ 93.63 - 60.30 90.35 92.41 93.04
RTS (Deng & Gu, 2021) ✖ 95.72 - 76.24 90.64 94.11 95.33
SNNC-AP (Li et al., 2021a) ✔ 95.72 - 93.71 95.14 95.65 95.79
SNM (Wang et al., 2022) ✔ 94.09 - 93.43 94.07 94.07 -
QCFS (Bu et al., 2022) ✖ 95.52 95.40 95.54 95.55 - -
SlipReLU (Jiang et al., 2023) ✖ 95.60 95.20 95.66 95.65 - -
SRP (Hao et al., 2023) ✖ 95.52 95.44 95.42 95.40 - -
Subgradient-based neuron (Thm. I.3) ✔ 95.96 50.98 82.84 90.66 91.75 91.80
Ours (signGD-based neuron, Def. 5.2) ✔ 95.96 81.06 95.53 95.96 95.97 95.97

35



Expanding ANN-to-SNN Conversion Beyond ReLU Network

Algorithm 4 ANN-to-SNN Conversion with signGD-based Neuron (Definition 5.2)
1: Input: Target ANN model F , learning rate schedule η : N → R, key-value mapping D of {Nonlinearity :

signGD-based neuronal dynamics}, number of training batches for normalization N ∈ N
2: Output: Converted SNN model S
3: Extract the computational graph G of tensor operators from ANN model F .
4: Decompose max pooling and layer normalization operators of G to generate a new graph G′ (See Section 5.2.).
5: if ReLU operator ∈ G then
6: for any ReLU operator f ∈ G′ do
7: Initialize the maximum ReLU output activation Mf ← −∞.
8: end for
9: Register a callback for every ReLU operator f to record its output activations Xf .

10: for t = 1 to N do
11: Sample a batch x from training dataset.
12: Feed-forward x through ANN model F and record Xf .
13: for any ReLU operator f ∈ G′ do
14: Mf ← max(Mf , Xf )
15: end for
16: end for
17: for any ReLU operator f ∈ G′ do
18: Replace the f(·) operator with a scaled ReLU operator Mf · f( ·

Mf
) to generate a new graph G′′.

19: end for
20: else

G′′ ← G′

21: end if
22: for nonlinearity h ∈ domain of D do
23: for any operator f ∈ G′′ do
24: if f is h then
25: Initialize signGD-based neuron n← D(f ; η).
26: Replace the operator f of G′′ with the neuron n to generate a computational graph GS of SNN.
27: end if
28: end for
29: end for
30: Create a SNN model S from the computational graph GS .
31: Reset membrane potentials of SNN model S.
32: Register a callback for every neuron h of SNN S to record its influx current Ih.
33: Stimulate every neuron h of SNN S to emit a spike 1 for a single time-step.
34: Record the influx current I+h = Ih for every neuron h of SNN S.
35: Depress every neuron h of SNN S to not emit a spike for a single time-step.
36: Record the idle current I−h = Ih for every neuron h of SNN S.
37: Store the sum of weights W ← I+h − I−h and bias b← I−h for every neuron.
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Table 5. Comparing ANN-to-SNN conversion performance on CIFAR-100 (Krizhevsky et al., 2009) dataset. No Spike-aware Activation
Func means ReLU functions in ANN architecture are not replaced with spike-aware functions before training, e.g., QCFS (Bu et al.,
2022), SlipReLU (Jiang et al., 2023). For our signGD-based neuron, we used exponential schedule with initial LR 0.135 and decay factor
0.95. Results of RTS (Deng & Gu, 2021) are from (Li et al., 2021a).

Methods No Spike-aware ANN Simulation time-steps
Activation Func. Acc. T = 16 T = 32 T = 64 T = 128 T = 256

ResNet-20 (He et al., 2015) CIFAR-100

TSC (Han & Roy, 2020) ✔ 68.72 - - - 58.42 65.27
RMP (Han et al., 2020) ✔ 68.72 - 27.64 46.91 57.69 64.06
RTS (Deng & Gu, 2021) ✖ 77.16 - 51.27 70.12 75.81 77.22
SNNC-AP (Li et al., 2021a) ✔ 77.16 - 76.32 77.29 77.73 77.63
SNM (Wang et al., 2022) ✔ 78.26 - 74.48 77.59 77.97 -
QCFS (Bu et al., 2022) ✖ 78.80 79.48 79.62 79.54 - 79.61
SlipReLU (Jiang et al., 2023) ✖ 77.08 77.29 78.04 77.97 - 77.99
SRP (Hao et al., 2023) ✖ 69.94 64.71 65.50 65.82 - -
Subgradient-based neuron (Thm. I.3) ✔ 81.19 22.39 57.79 71.22 73.08 73.14
Ours (signGD-based neuron, Def. 5.2) ✔ 81.19 36.78 79.13 81.10 81.22 81.23

VGG-16 (Simonyan & Zisserman, 2014) CIFAR-100

TSC (Han & Roy, 2020) ✔ 71.22 - - - 69.86 70.65
RMP (Han et al., 2020) ✔ 71.22 - - - 63.76 68.34
RTS (Deng & Gu, 2021) ✖ 77.89 - 7.64 21.84 55.04 73.54
SNNC-AP (Li et al., 2021a) ✔ 77.89 - 73.55 76.64 77.40 77.68
SNM (Wang et al., 2022) ✔ 74.13 - 71.8 73.69 73.95 -
QCFS (Bu et al., 2022) ✖ 76.28 76.24 77.01 77.10 - 77.08
SlipReLU (Jiang et al., 2023) ✖ 70.03 69.35 70.65 71.23 - -
SRP (Hao et al., 2023) ✖ 76.28 76.42 76.45 76.37 - -
Subgradient-based neuron (Thm. I.3) ✔ 78.28 13.12 42.05 60.61 64.03 64.15
Ours (signGD-based neuron, Def. 5.2) ✔ 78.28 39.42 76.33 78.17 78.33 78.23
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