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Abstract

The nuanced differences in human behavior and the complex dynamics of human-AI interac-
tions pose significant challenges in optimizing human-AI cooperation. Existing approaches
tend to oversimplify the problem and rely on a single global behavior model, which overlooks
individual variability, leading to sub-optimal solutions. To bridge this gap, we introduce PH-
ICO, a novel framework for human-AI cooperative classification that initially identifies a set
of representative annotator profiles characterized by unique noisy label patterns. These
patterns are then augmented to train personalised AI cooperative models, each tailored to
an annotator profile. When these models are paired with human inputs that exhibit similar
noise patterns from a corresponding profile, they consistently achieve a joint classification
accuracy that exceeds those achieved by either AI or human alone. To evaluate PHICO, we
introduce novel measures for assessing human-AI cooperative classification and empirically
demonstrate its generalisability and performance across diverse datasets including CIFAR-
10N, CIFAR-10H, Fashion-MNIST-H, AgNews, and Chaoyang histopathology. PHICO is
both a model-agnostic and effective solution for improving human-AI cooperation.

1 Introduction

Determining the optimal human-AI cooperation mechanism is challenging (Dafoe et al., 2021). Humans
bring experience and contextual insights but are prone to biases; machine learning models excel in specific
tasks but lack contextual understanding and complex reasoning (Holstein & Aleven, 2021). Many human-AI
joint decision making strategies have been proposed, e.g., learning to defer (Raghu et al., 2019; Madras
et al., 2018; Mozannar et al., 2023), learning to complement (Wilder et al., 2021), human-in-the-loop (Wu
et al., 2022), and algorithm-in-the-loop (Green & Chen, 2019), seeking to blend the best of human and AI
for optimal decision-making.

We argue that effective human-AI joint decision-making depends on personalising machine learning (ML)
models to the individual’s behaviour pattern. While recent works have shown promising progress in incorpo-
rating human behaviours through behaviour models (Vodrahalli et al., 2022) or confusion matrices (Kerrigan
et al., 2021), they rely on single global model or confusion matrix and could not account for the varied biases
and preferences among annotators (Kocielnik et al., 2019; Wang et al., 2021).

Indeed, learning individual behavior patterns is challenging, as each person’s data usually represents only a
small portion of the total, making it insufficient to train personalised AI models Johnson et al. (2021). Be-
yond the scarcity of individual data, evaluating the effectiveness of various human-AI cooperation frameworks
also poses difficulties. Traditional metrics such as accuracy fail to capture whether the ML model’s alter-
ation to human inputs improve or degrade performance, further complicating the assessment of cooperation
effectiveness Shneiderman (2022).

This paper addresses these research gaps with PHICO, a framework designed for personalised human-AI
cooperative classification to achieve optimal performance (Figure 1). More specifically, given a training
dataset with noisy labels from multiple annotators, PHICO first identifies a set of annotator profiles, each
characterized by distinct noisy labeling patterns. PHICO then augments these identified noisy label patterns
to train personalised AI cooperative model, each optimized to effectively interact with its corresponding
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Figure 1: The PHICO framework. 1) During training, from a noisy multi rater dataset, unique annotator
profiles are identified. Then, noisy label augmentation is performed and a personalised AI cooperative
model is trained for each profile. 2) During user profiling, a test user annotates a validation set and based
on validation labels, a profile is matched and respective personalised AI cooperative model is selected. 3) At
inference, the test user is paired with the selected model for personalised cooperative classification.

annotator profile. During testing, a new user undergoes a user profiling process, after which a suitable
personalised AI cooperative model is selected for personalised human-AI cooperative classification.

We perform thorough empirical evaluation of PHICO and introduce a novel assessment measure, alteration
rate, which quantifies how the model positively or negatively alters labels from human. In addition, we
present a theoretical proof of convergence for PHICO. Our empirical studies include both simulated and
real multi-rater datasets across various modalities (images and texts) and domains (daily objects, news, and
medical), including CIFAR-10N, CIFAR-10H, Fashion-MNIST-H, AgNews, and Chaoyang histopathology.
The results show that PHICO is a model-agnostic human-AI cooperation framework outperforming both
AI and human decisions alone, as well as state-of-the-art human-AI cooperation methods across various
classification tasks. To summarise, our contributions are:

• The first human-AI cooperation framework that combines human inputs with personalised AI co-
operative model for joint cooperative classification.

• A new cooperative classification assessment measure, alteration rate, to quantify how the model
positively or negatively alters labels from human.

• Empirical results demonstrating the state-of-the-art human-AI personalised cooperation perfor-
mance across diverse datasets, including CIFAR-10N, CIFAR-10H, Fashion-MNIST-H, AgNews,
and Chaoyang histopathology.

PHICO is model-agnostic and can be trained effectively with noisy labels from multiple raters without ground
truth labels, making it a valuable contribution to the ML community.
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2 Related Work

The conventional belief that automation lessens human control is under revision (Parasuraman et al., 2000;
Committee, 2014), as the uncertainties of automation often demand more human involvement, leading to
new human-AI collaboration strategies (Strauch, 2018). With AI models exceeding human accuracy in
certain tasks, three new human-AI collaboration paradigms have emerged:

Learning-to-assist approaches aim to support human decision-making with AI model predictions (Strai-
touri et al., 2023). These approaches are commonly seen in critical domains, such as law (Liu et al., 2021)
and medicine (Levy et al., 2021), where humans make the final decision. Considerable work has been done
to improve model explainability and transparency. (Tjoa & Guan, 2021).

Learning-to-defer methods allow AI models to autonomously manage confident cases and defer decisions
to humans when confidence is low (Madras et al., 2018; Mozannar et al., 2023; Alves et al., 2023). These
approaches focus on the optimization of a utility function that takes into account the accuracy of the AI
model, the preference of the human decision maker, and the cost of deferring decisions. For example, Raghu
et al. (2019) used an ensemble of AI models to predict the risk of patient death, and then defers decisions
to a human expert for patients with the highest risk.

Learning-to-complement models are optimized to leverage the strengths from both human and AI model
to improve decision-making. For example, Steyvers et al. (2022) proposed a Bayesian framework for modeling
human-AI complementarity. Kerrigan et al. (2021) used a calibrated confusion matrix to combine human and
model predictions in a way that minimizes the expected loss. Wilder et al. (2021) consider the uncertainty
from AI models and humans to jointly train a model that allocates tasks to the AI model or the human to
maximize the overall accuracy.

PHICO falls into the category of learning-to-complement and aims to utilise complementary strengths of both
human and AI. Unlike other approaches that rely on a single behavior model or a global confusion matrix
for the entire dataset, PHICO takes a step further by identifying biases among annotators and personalizing
the human-AI cooperation to account for these unique biases.

2.1 Evaluating Human-AI Cooperation

Human-AI complementarity is defined by Dellermann et al. (2021) as leveraging the unique capabilities
of both humans and AI to achieve better results than each one could achieve alone. However, assessing
the interaction between humans and AI is complicated, and numerous benchmarks have been suggested
in existing literature. In the context of learning-to-assist or learning-to-complement, traditional measures
such as accuracy, precision, and recall are commonly used. For learning-to-defer, measures such as coverage
are proposed to evaluate the proportion of the data that is processed by the model alone (Raghu et al.,
2019). When dealing with noisy labels, additional measurements such as label precision, label recall, and
correction error are also used (Song et al., 2022a). However, these measures fail to capture whether
label alterations made in a human-AI cooperative setting enhanced human performance through positive
alterations or degrade it through negative alterations. To bridge this gap, we introduce novel measures
for PHICO, to evaluate whether the cooperation improves overall outcomes, reflecting the true impact of
human-AI complementarity.

2.2 Learning from Noisy-label (LNL) and Multi-rater Learning (MRL)

PHICO draws insights from the LNL and MRL community. LNL aims to design algorithms that are robust
to the presence of noisy training labels. Recent advancements include DivideMix (Li et al., 2020) with its
semi-supervised approach, ELR (Liu et al., 2020) exploring early learning phenomena with a regularised
loss, C2D (Zheltonozhskii et al., 2022) tackling the warm-up obstacle, and UNICON (Karim et al., 2022)
with a unified supervised and unsupervised learning to handle noisy labels effectively. MRL trains models
using noisy labels from multiple annotators per sample, which can mitigate the identifiability problem under
certain conditions (Liu et al., 2023). Key developments include MRNet (Ji et al., 2021), which addresses
multi-rater disagreement, Crowdlab (Goh et al., 2022), designed to be model-agnostic, and Zhang et al.
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(2024) addressing the sparse crowd annotations. Despite improvements from LNL and MRL, an accuracy
gap persists compared to training with clean labels. This has led to our personalized human-AI joint
decision-making paradigm, which incorporates inputs from both humans and AI to make decisions.

3 Methodology

PHICO is a model-agnostic human-AI cooperation framework designed to enhance the performance of
human-AI joint decision making. In the following sub-sections, we first define the dataset notations in
Section 3.1, explain the training process in Section 3.2, and outline the profiling and inference stages in
Section 3.3. Section 3.4 presents our proposed metrics for assessing personalised human-AI cooperation.

3.1 Dataset Notation

Let a multi-rater training set for a multi-class classification task be D̃ = {(xi, {ỹi,j}j∈A)}Ni=1, where xi ∈ X
is a data sample, ỹi,j ∈ Y ⊂ {0, 1}C is a one-hot vector for the C-class classification, representing the
noisy-label provided by annotator j ∈ A. We assume that each data sample has a latent clean label denoted
by yi ∈ Y, annotators’ label noise is class-dependent (or asymmetric) (Song et al., 2022b), and a consensus
labelled training set denoted by D̄ = {(xi, ȳi)}Ni=1. Note that a key challenge in most human-AI cooperation
approaches is their dependence on ground truth labels, which are often hard to obtain. PHICO tackles
this problem by using consensus labels, generated through methods like majority voting or expectation
maximization (Sinha et al., 2018; Ji et al., 2021; Warfield et al., 2004), eliminating the need for ground
truth. In our experiments, we use Crowdlab (Goh et al., 2022) for its simplicity, model agnostic nature and
good performance in estimating consensus labels. We provide more details about estimating consensus labels
in Appendix A.

3.2 Training of personalised Human-AI cooperative model

Training of PHICO involves three steps: 1) identifying annotator profiles with distinct noisy-label patterns,
2) augmenting noisy labels for each profile, and 3) training personalized AI cooperative models using the
augmented noisy labels. We explain each step below.

Identifying annotator profiles: To identify a set of representative profiles, each with a distinct noisy
label pattern, we first arrange the label sets from all annotators in a uniform format as equation 1. We take
each annotator j ∈ A and each class c ∈ {1, ..., C} to build the set of sample labels that have consensus label
c, with S(c)

j = {ỹi,j |(xi, ỹi,j) ∈ D̃}. We can then build the L× C vector,

sj = [l(1)
1 , ..., l

(1)
L , ..., l

(C)
1 , ..., l

(C)
L ] (1)

for annotator j ∈ A by randomly selecting L data samples for each class, where l(c)l = ỹi,j ∈ S(c)
j representing

one of the noisy labels from S(c)
j . Each sj may be different, but class order is preserved for all annotators.

This process is repeated for all annotators to form the set L = {sj}j∈A. We identify representative annotator
profiles within L based on distinct noisy label patterns (Dehariya et al., 2010), using Fuzzy K-Means for its
robustness in handling noisy data (Xu et al., 2016) with the optimal K determined by the silhouette score,
which measures clustering quality (Appendix B). Each annotator is then assigned a profile.

Noisy-label augmentation: After identifying a set of K profiles, the original training set D̃ is divided
into K subsets D̃k ⊂ D̃, each containing the users allocated to profile k ∈ {1, ...,K}. Since the data is
divided, some subsets may be missing samples from the original set, as users may not have annotated all
samples in D. To address this, we propose a noisy label augmentation process that generates extra labels
for each profile, enabling the training of K models. This label augmentation is obtained by sampling from
the estimated profile-specific label transition matrix, mapping the consensus label to the noisy label. This
approach captures the label biases in each profile, allowing the classifier to be trained to effectively handle
these biases.
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Assuming profile k from annotator subset Ak ⊂ A, k’s label transition matrix Tk ∈ [0, 1]C×C is:

Tk(c, :) = 1
|S(c)
j |j∈Ak

∑
ỹi∈

{
S(c)

j

}
j∈Ak

ỹi, (2)

where
{

S(c)
j

}
j∈Ak

denotes the set of labels defined above (from samples with consensus label c, for all
users in Ak). Note that each element of the transition matrix for profile k from equation 2 denotes the
probability that a user in profile k flips from the consensus label Ȳ = c to the noisy label Ỹ = n, as in
Tk(c, n) = p(Ỹ = n|Ȳ = c,R = k), where R is the random variable for the user profile. For each data point
xi in D̃k, we take its consensus label c from D̄ and the profile k’s transition matrix Tk from equation 2 to
generate G labels by sampling {ŷg}Gg=1 ∼ p(Ỹ |Ȳ = c,R = k), which represents the categorical distribution in
row c of the transition matrix Tk. The new noisy-label augmented training set for each profile k is denoted
by D̂k = {(x, {ŷg}Gg=1)|(x, {ỹj}Ak

j=1) ∈ D̃k, {ŷg}Gg=1 ∼ p(Ỹ |Ȳ = c,R = k)}.

Training personalised human-AI cooperative model: With the annotator profiles and their augmented
noisy labels, we can now formulate the training of the personalised AI cooperative model. The proposed
model (top-right of Figure 1) has three components: 1) a base model that transforms input data into a
logit with fψk

: X → RC ; 2) a human label encoder that takes the one-hot user provided noisy label and
transforms it into a logit with hϕk

: Y → RC ; and 3) a decision model that takes the model’s and human’s
logits to output a categorical distribution with dζk

: RC × RC → ∆C−1. The base model fψk
(.) learns the

features of the data, the human label encoder model hϕk
(.) aims to discover the label biases of user profile k,

and dζk
(.) aims to model the joint label noise distribution between the base model and human label encoder

to make mθk
(x, ŷ) robust to label noise. The whole model mθk

: X × Y → ∆C−1 is defined as:

mθk
(x, ŷ) = dζk

(fψk
(x) ⊕ hϕk

(ŷ)), (3)

where θk = {ψk, ϕk, ζk}, and ⊕ represents the concatenation operator. The base model fψk
(.) could use

any different architecture, provided it is trained on D̄. Similarly, hϕk
(.) and dζk

(.) can be of different
architectures; we configured them as a two-layer and three-layer multi-layer perceptron, respectively, with
ReLU activations. The model in equation 3 is trained as:

{θ∗
k}Kk=1 = arg min

{θk}K
k=1

1
K × |D̂k| ×G

×
K∑
k=1

∑
(xi,{ŷi,g)}G

g=1)∈D̂k

ℓ (ȳi,mθk
(xi, ŷi,g)) +

λ× ℓ
(

ŷi,g, (Tk)⊤ ×mθk
(xi, ŷi,g)

)
,

(4)

where ȳi is the consensus label from D̄, ℓ(.) is the cross-entropy loss, λ ∈ [0,∞] is a hyper-parameter, and
the second loss term is motivated by the forward correction procedure proposed by Patrini et al. (2017),
transforming the clean label prediction from mθk

(.) into the noisy ones in D̂k.

Theoretical Proof of Convergence: Appendix D provides a proof of convergence for the key components
of PHICO, namely, Fuzzy K-Means clustering algorithm used to identify annotator profiles, the training
of the personalized human-AI cooperative models, and the integration of these two steps, ensuring overall
convergence of the system.

3.3 User Profiling for Personalisation

Once the models are trained, PHICO achieves personalisation during the testing by first matching the
new user to one of the learned personalised AI cooperative models, after which they perform human-AI
cooperative classification. The matching process, which we name user profiling, has two steps: 1) classifying
the testing user into one of the K profiles, to enable the matching of the user to its personalized classifier
mθk

(.) and 2) setting an entry condition based on a comparison between the accuracy of the testing user
and the base model fψk

(.).
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The classifier used in the first step is trained with samples that consist of randomly collected labels of M
training samples for each of the C classes (estimated from the consensus labels), from users belonging to each
of the K profiles. This forms multiple vectors of size M ×C, which have the structure defined in equation 1,
where each of those vectors is labelled with the user’s profile. We then train a one-versus-all (OVA) support
vector machine (SVM) K-class classifier.

To classify a testing user into one of the K profiles, we first ask the user to label a validation set, V =
{(xi,yi)}M×C

i=1 , which contains images not used in the training or testing sets. Using these labels, we build
an M × C vector, which is then processed by the OVA SVM classifier to determine the user’s profile.

In the second step, we compare the base model and testing user accuracies on the validation set V. The
model mθk

(.) is used only if the base model fψk
(.) performs better (Steyvers et al., 2022). mθk

(.) is evaluated
on the test set T = {(xi,yi)} with no overlap with training or validation images.

3.4 New Measures for Personalised Human-AI Cooperative Classification

Our new evaluation criteria assesses the impact of the model’s label alterations on user performance. We
first define the positive and negative alteration measures:

Positive
Alteration

: A+ = 1
|T | × |A|

|T |,|A|∑
i=1,j=1

ÿi,j = ȳi
ỹi,j ̸= ȳi

Negative
Alteration

: A− = 1
|T | × |A|

|T |,|A|∑
i=1,j=1

ÿi,j ̸= ȳi
yi,j = ȳi

(5)

Positive
Alteration
Rate

: RA+ = A+

A+ +A−

Negative
Alteration
Rate

: RA− = A−

A+ +A−

(6)

where ÿj = OneHot(mθk
(x, ỹj)), with the function OneHot : ∆C−1 → Y returning a one-hot label represent-

ing the class with the largest prediction from the model mθk
(.). In equation 5, A+ quantifies the effectiveness

of the model to correct users’ labels, where the user provided incorrect labels. In contrast, A−, in equation 5,
measures the proportion where the user had a correct label that was subsequently misclassified by the model.

Aligning with that, RA+ and RA− in equation 6 measure positive and negative alteration rates, respectively.
Hence, an effective model should have high RA+ , low RA− , and a high post-alteration accuracy, i.e. the
accuracy after the label alteration by the personalised AI cooperative model.

4 Experimental setup

Datasets: CIFAR-10 includes 50,000 training, 200 validation, and 9,800 testing class-balanced color im-
ages, each sized 32 × 32, with 10 classes. CIFAR-10N extends CIFAR-10’s training set via crowd-sourced
labeling to 747 annotators, with each image having three labels from different annotators. CIFAR-10H
expands CIFAR-10’s testing set via crowd-sourcing to 2571 annotators, resulting in an average of 51 labels
per image. Fashion-MNIST-H extends Xiao et al.’s Fashion-MNIST’s testing set to multiple annotations
from 885 annotators, averaging 66 labels per image. We use the crowd-sourced testing set as the training
set, with 200 images from the original training set allocated for validation and the remainder for testing.
AgNews is a text classification dataset with 120,000 training, 200 validation, and 7,400 testing news articles
across 4 classes. Lastly, Chaoyang is a pathological dataset with 4021 training, 80 validation, and 2059
testing images, each having three expert labels in the training set.

Setup on datasets with simulated annotators: On CIFAR-10, a pairwise flipping experiment is con-
ducted where 8 out of 10 classes have clean labels, but in two classes, 80% of samples have labels flipped.
Three user profiles are simulated, one that flips labels between classes airplane↔bird, another profile that
flips horse↔deer, and the other flips truck↔automobile. For each profile, five training and five testing users
are simulated, resulting in 15 unique users whose annotations, combined with training samples, form D̃. For
AgNews, pairwise flipping occurs on two out of four classes, with 80% of samples flipped. Three user profiles
are simulated, one that flips between classes business↔science/technology, another that flips world↔sports,

6



Under review as submission to TMLR

and the third that flips sports↔business. resulting in 15 unique users (with 5 for each profile) for training
and testing. Both datasets use D̃ that is made from training samples each having 15 labels, to automatically
choose K profiles based on silhouette score in equation 8, and to train OVA SVM. ResNet-18 He et al. (2016)
and Bert-Base-Uncased Devlin et al. (2018) models are used as fψk

(.) in training mθk
(.) in equation 3 for

each profile k with CIFAR-10 and AgNews respectively.

Setup on datasets with real annotators: for CIFAR-10N training, we conduct two experiments. In the
first experiment, the labels from 747 annotators form D̃. Of these, 155 annotators who labeled at least 20
images per class are selected, split into 79 training users and 80 testing users. The training users’ labels are
used to build K profiles where K is automatically chosen based on the silhouette score in equation 8, and
train the OVA SVM classifier. During testing, noisy-label transition matrices are estimated using annotator
labels and consensus labels for each testing user, resulting in 80 noisy test sets. In the second CIFAR-
10N experiment, CIFAR-10H is used as the testing set. Noise transition matrices are estimated and used
to simulate noisy annotations for each testing user, resulting in unique noisy test sets for all 2571 users.
For Fashion-MNIST-H, labels from 885 annotators form D̃. 366 annotators who labeled at least 20 images
per class are selected, split into 183 training and 183 testing users. Similar to CIFAR-10N, noisy-label
transition matrices are estimated for testing users, producing 183 noisy testing sets. Chaoyang dataset has
three annotators per image, forming D̃. Training users are used to build K profiles and train an OVA SVM
classifier. During testing, noisy-label transition matrices are estimated, resulting in three noisy test sets.
Details on experiment setup, data preparation, and implementation are in Appendix C.

Training details: Data augmentation policy by Cubuk et al. (2019) was adopted for CIFAR-10 and Cubuk
et al. (2020) alongside random horizontal/vertical flips for Fashion-MNIST datasets, while Chaoyang is
limited to random resized crops of 224 × 224. For the AgNews dataset, the title and description were
concatenated and truncated to maximum length of 64 tokens. Our experiments use various backbone models,
including ViT-Base-16, DenseNet-121, and ResNet-50 to showcase model agnostic property of PHICO. Pre-
trained backbone models are employed for their robustness to noisy labels (Jiang et al., 2020). We use Adam
and NAdam optimizers to train fψk

(.) and mθk
(.). Implementation is in PyTorch, running on an NVIDIA

RTX 4090 GPU.

4.1 Results

Table 1 displays the post-alteration accuracy, provided by PHICO, with respect to the original accuracy
of users, followed by Table 2 that shows positive and negative alteration as computed in equation 5 and
alteration rates from equation 6 for K selected from the silhouette score in equation 8. The shaded rows
in Table 1 contrast testing users who met the entry condition (see second step in Section 3.3), against all
testing users in the unshaded rows (note: for the CIFAR10 simulation, the two sets are the same since all
users met the condition). Note that Table 2 shows results for profiled users from the shaded rows of Table 1.

Results of datasets with simulated annotators: The first and second rows of Table 1 detail the number
of testing users that improved (I), maintained (M), or did not improve (NI) with PHICO in the CIFAR-10
and AgNews simulations. The accompanying comparison between original and post-alteration accuracy is
reported in the last two columns. Note that in Table 1, all 15 users improved, with the average accuracy
after alteration surpassing the original accuracy in both datasets. In Table 2, a large A+ contrasts with a
low A−, emphasizing a high proportion of RA+ and a low proportion of RA− .

Results of datasets with real annotators: According to Table 1, all users who were profiled and met
entry condition in every experiment, improved their accuracy with PHICO. Even considering all users, the
method tends to improve the performance of the majority. Table 1 shows that the accuracy after alterations
for profiled users in CIFAR-10N, CIFAR-10H, Fashion-MNIST-H and Chaoyang increase by approximately
18%, 5%, 30%, 7%, respectively. Table 2 shows that PHICO has high positive alteration rates for profiled
users compared to negative alteration rates.

Appendix E presents standard deviation and 95% confidence values for post-alteration accuracy at automat-
ically selected K for all datasets, showing a significant improvement in user accuracy in all datasets.
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Table 1: Number of users who improved (I), main-
tained (M) or did not improve (NI) and Initial accu-
racy vs accuracy after alterations. (Un)shaded rows:
users who (do not)meet entry condition.

Dataset K (Silhouette
score) Users I M NI Original

Accuracy
Post-alt.

acc.
With simulated annotators

CIFAR10 3 (0.55) 15 15 0 0 0.8400 0.8788
15 15 0 0 0.8400 0.8788

AgNews 3 (0.57) 15 15 0 0 0.5998 0.9802
15 15 0 0 0.5998 0.9802

With real annotators

CIFAR10-N 2 (0.01) 80 80 0 0 0.8365 0.9891
80 80 0 0 0.8365 0.9891

CIFAR10-H 2 (0.01) 2571 2566 1 4 0.9487 0.9930
2022 2022 0 0 0.9399 0.9926

Fashion-
MNIST-H 2 (0.09) 183 183 0 0 0.6723 0.8785

182 182 0 0 0.6625 0.8779

Chaoyang 3 (0.99) 3 3 0 0 0.9027 0.9466
2 2 0 0 0.8582 0.9237

Table 2: Positive and negative alterations and rates
from on-boarded users of Table 1.

Dataset K (Silhouette
score)

Positive and
negative alt.

Positive and
negative alt. rates.

A+ A− RA+ RA−

With simulated annotators
CIFAR10 3 (0.55) 0.9437 0.1336 0.8759 0.1240
AgNews 3 (0.57) 0.9748 0.0162 0.9836 0.0164

With real annotators
CIFAR10-N 2 (0.01) 0.9541 0.0040 0.9958 0.0042
CIFAR10-H 2 (0.01) 0.9389 0.0041 0.9956 0.0044
Fashion-
MNIST-H 2 (0.09) 0.7581 0.0731 0.9121 0.0879

Chaoyang 3 (0.99) 0.7377 0.0453 0.9422 0.0578

Comparison with related methods:

In Table 3, we compare our results with the following competing methods proposed in literature: Raghu
et al. (2019) which defers to humans when the classifier’s error probability is high, Madras et al. (2018)
blending human and AI insights, Okati et al. (2021) refining the classifier to outperform humans and using
a post-hoc rejector to decide who is more likely to err on individual case and Mozannar & Sontag (2020),
Verma & Nalisnick (2022), Mozannar et al. (2023) which propose surrogate loss functions to better align the
optimisation with deferral goals.

The comparison involves training models with and without ground truth, assessed by accuracy against test
set ground truth annotations (see Table 3). When trained without ground truth, the training set consensus ȳ
is used. Remarkably, our models trained without ground truth outperform those trained with ground truth.

In addition, table 4 compares PHICO to LNL and MRL methods on CIFAR-10 under varying noise rates
(10%, 30%, 40%), following Karim et al. (2022) using a Vit-Base-16 backbone pre-trained on ImageNet-21K.
In this experiment, we simulate six users, each introducing a 10% asymmetric noise in three class pairs
(Airplane↔Bird, Truck↔Automobile, and Horse↔Deer). Subsequently, we trained and evaluated PHICO
with K = 3, selected from silhouette score. The same experiment was repeated for 30% and 40% noise rates.
This comparison uses the cross entropy (CE) baseline and the following LNL methods: DMix (Li et al., 2020)
based on semi-supervised learning, ELR (Liu et al., 2020) exploring a regularised loss, C2D (Zheltonozhskii
et al., 2022) addressing the warm-up obstacle, JPL (Kim et al., 2021) exploring negative learning, MOIT

Table 3: Comparison of PHICO against proposed methods in
literature.

Method CIFAR-10N CIFAR-10H FashionM-H Chaoyang
Trained with Ground Truth

Madras et al. (2018) 0.8307 0.8120 0.6002 0.5835
Raghu et al. (2019) 0.9703 0.9709 0.8005 0.8626
Mozannar & Sontag (2020) 0.9489 0.9669 0.7295 0.7059
Okati et al. (2021) 0.9402 0.9439 0.7040 0.7648
Verma & Nalisnick (2022) 0.9588 0.9741 0.7938 0.8448
Mozannar et al. (2023) 0.9479 0.9757 0.7753 0.8724

Trained without Ground Truth
Madras et al. (2018) 0.8605 0.8838 0.5998 0.5951
Raghu et al. (2019) 0.9668 0.9688 0.7834 0.8621
Mozannar & Sontag (2020) 0.9254 0.9688 0.7491 0.6774
Okati et al. (2021) 0.8811 0.9002 0.7522 0.7195
Verma & Nalisnick (2022) 0.9450 0.9711 0.6090 0.8668
Mozannar et al. (2023) 0.9446 0.9682 0.7515 0.8668
PHICO (Ours) 0.9891 0.9926 0.8778 0.9237

Table 4: Additional comparisons of PHICO to
LNL and MRL methods with asymmetric label
noise 10%, 30%, 40% on CIFAR-10, referenc-
ing accuracy from Karim et al.; Zheltonozhskii
et al.

Method Noise Rate
10% 30% 40%

LNL methods
CE 0.888 0.817 0.761
JPL Kim et al. (2021) 0.942 0.925 0.907
Dmix Li et al. (2020) 0.938 0.925 0.917
ELR Liu et al. (2020) 0.954 0.947 0.930
MOIT Ortego et al. (2021) 0.942 0.941 0.932
C2D Zheltonozhskii et al. (2022) - - 0.937
UNICON Karim et al. (2022) 0.953 0.948 0.941

MRL methods
Fast-DS Sinha et al. (2018) 0.9847 0.9836 0.9811
CrowdLab Goh et al. (2022) 0.9878 0.9874 0.9818
PHICO (Ours) 0.9978 0.9959 0.9927
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Table 5: Performance on CIFAR-10N as a function
of the noisy label augmentation hyper-parameter G.

G
Post-alt.

acc. A+ A- RA+ RA-

0 0.6148 0.4113 0.3015 0.5770 0.4229
1 0.9889 0.9530 0.0040 0.9958 0.0042
3 0.9891 0.9541 0.0040 0.9958 0.0042
5 0.9892 0.9522 0.0035 0.9963 0.0037

Table 6: Performance on CIFAR-10N as a function
of the number of profiles K.

K
Post-alt.

acc. A+ A- RA+ RA-

K=1 0.9878 0.9528 0.0055 0.9943 0.0057
K=2 0.9891 0.9541 0.0040 0.9958 0.0042
K=3 0.9892 0.9542 0.0040 0.9958 0.0042
K=6 0.9877 0.9438 0.0037 0.9961 0.0039
K=10 0.9728 0.9135 0.0038 0.9959 0.0041

Table 7: Comparison between ours and competing meth-
ods in the literature with different base models using
CIFAR-10N.

Method ResNet50 DenseNet121 ViTB16
With Ground Truth

Madras et al. (2018) 0.8508 0.8412 0.8307
Raghu et al. (2019) 0.8707 0.8281 0.9703
Mozannar & Sontag (2020) 0.8514 0.8502 0.9489
Okati et al. (2021) 0.8103 0.8021 0.9402
Verma & Nalisnick (2022) 0.7008 0.6332 0.9588
Mozannar et al. (2023) 0.7822 0.8496 0.9479

Without Ground Truth
Madras et al. (2018) 0.8427 0.8474 0.8605
Raghu et al. (2019) 0.8316 0.8788 0.9668
Mozannar & Sontag (2020) 0.7030 0.8489 0.9254
Okati et al. (2021) 0.8003 0.7055 0.8811
Verma & Nalisnick (2022) 0.6241 0.5932 0.9450
Mozannar et al. (2023) 0.6588 0.8470 0.9446
PHICO (Ours) 0.9677 0.9686 0.9891

(Ortego et al., 2021) combining contrastive and semi-supervised learning, and UNICON (Karim et al., 2022)
providing a unified framework for supervised and unsupervised learning. We also include the following MRL
methods in the comparison: Goh et al. (2022) exploring a majority voting followed by ensemble method to
reach consensus, and Sinha et al. (2018) introducing a rapid vote aggregation method for consensus labelling
based on expectation maximization.

5 Ablation Studies

Performance as a function of G: We study the effect of noisy label augmentation in Table 5 by extending
the CIFAR-10N experiment, which evaluates post alteration accuracy against augmentation times G ∈
{0, 1, 3, 5}. We observe a large accuracy increase from G = 0 to G = 1 and a steady improvement for G > 1.

Evaluating different backbone models: We extend the CIFAR-10N experiment to evaluate various
backbone models, including DenseNet-121, ResNet-50, and ViT/B-16. The results in Table 8, demonstrate
consistent improvements across all tested backbones, while remaining agnostic to the backbone model. To
further validate, we compare ours with related methods by adopting the same backbone models used in
this study. Table 7 shows that our approach consistently outperforms existing methods, reaffirming its
performance across diverse backbone architectures.

Performance as a function of noise rate: Table 9 performs an ablation study on varying asymmetric
noise rates (40%, 60%, 80%, 90%) by expanding the CIFAR-10 simulation experiment in section 4, showcasing
the robustness of our approach with accuracy above 86% in all noise rates.

Performance as a function of K: Table 6 studies the variation of post alteration accuracy by having
different number of profiles K ∈ 1, 2, 3, 6, 10 than the optimal by expanding on the experiment with CIFAR-
10N. Tab. 6 indicates that increasing K from 1 to 3 improves accuracy, but it declines for K > 3, possibly,
as K increases, the number of training users per profile decreases, meaning that the augmented noisy labels
may over personalise to the users’ biases which may lead to a less generalisable model for testing users.

Performance as a function of λ: We study the the effect of λ in the loss function equation 4 on post
alteration accuracy by conducting a range of experiments with λ ∈ {0, 0.01, 0.1, 1, 10} by extending the
CIFAR-10N experiment and with three backbone models ResNet-50, DenseNet-121 and Bit/B-16. From the
results in Table 11, highest post alteration accuracy is centered around λ = 0.1 for all 3 backbone models.

All ablation studies adopt the setup in section 4 and use the automatically selected K by silhouette score in
Table 1.
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Table 8: Ablation with CIFAR-10N using different backbone mod-
els as the base model fψk

(.).
Backbone

Model
Original
Accuracy

Post-alt.
acc. A+ A- RA+ RA-

ResNet-50 0.8461 0.9677 0.8623 0.0131 0.9849 0.0150
DenseNet-
121 0.8464 0.9686 0.8535 0.0105 0.9878 0.0122

Vit/B-16 0.8365 0.9891 0.9541 0.0040 0.9958 0.0042

Table 9: Performance on CIFAR-10 as
a function of noise rate

Asymmetric
Noise Rate

Original
Accuracy

Post alt.
accuracy

40% 0.9198 0.9923
60% 0.8800 0.9678
80% 0.8400 0.8788
90% 0.8202 0.8684

Table 10: Proportion that each combination of Human, AI,
or Cooperation is correct (✓) or incorrect (✗). Columns
sum to 1 to indicate all possible combinations.

Human AI
fψk

(.)
Coopera-

tion mθk
(.)

CIFAR10
-N %

CIFAR10
-H %

Fashion-
Mnist-H %

Chaoyang
%

✗ ✓ ✓ 05.15 05.59 04.47 03.35
✓ ✗ ✓ 00.65 02.26 15.05 01.82
✓ ✓ ✓ 93.79 91.35 72.13 92.16
✗ ✗ ✓ 00.05 00.05 04.29 00.13
✗ ✓ ✗ 00.13 00.19 00.33 00.49
✓ ✗ ✗ 00.11 00.39 01.38 01.29
✓ ✓ ✗ 00.00 00.00 00.20 00.00
✗ ✗ ✗ 00.12 00.17 02.17 00.76

Table 11: Post alteration accuracy variation in
terms of λ that weights the second term of the
loss in equation 4 (with CIFAR-10N).

Backbone
model λ = 0 λ = 0.01 λ = 0.1 λ = 1 λ = 10

ResNet-50 0.9295 0.9437 0.9677 0.9399 0.9291
DenseNet-121 0.9364 0.9501 0.9686 0.9373 0.9306

ViT-B/16 0.9821 0.9815 0.9891 0.9759 0.9695

6 Discussion

6.1 Distribution of joint decisions

Table 10 shows how decisions from human, base model and joint decisions are distributed at each experiment
conducted in Section 4. This proportions are computed using the testing set. Decision of human, or the AI
model fψk

(.), or the cooperation mθk
(.) are divided into correct (✓), if their label is equal to the target,

or wrong (✗), otherwise. According to Table 10, in all experiments, the smallest proportion of incorrect
joint decisions and majority of correct joint decisions are made when both individual parties are correct, as
expected from a cooperation. Further, the results reflect the tendency of joint decision being correct when
at least one member of the Human-AI team is correct, showing the effectiveness of cooperative setting.

An interesting observation is that we can also see cases where the cooperative decision is correct even
when both individual counterparts are wrong. It happens by decision model dζk

(.) learning the joint label
noise distribution of the base model and human. A necessary condition for this to happen is to prove that
P (C|¬A,¬B) > 0, where A represents the event that the base model provides a correct prediction, B denotes
the event that the human provides a correct label, and C is the event that our joint decision model produces a
correct classification. Assuming that the base model and humans can make mistakes, and that events A and
B are independent (and also independent given C), we trivially have: P (C|¬A,¬B) = P (¬A,¬B|C).P (C)

P (¬A,¬B) =
(1−P (A|C)).(1−P (B|C)).P (C)

(1−P (A))(1−P (B)) > 0 because 0 < P (B|C), P (A|C), P (A), P (B) and P (C) < 1.

6.2 Visualising Noise profiles

Figures 2, 3 and 4 illustrates profiles from CIFAR-10 simulation, Fashion-MNIST-H and Chaoyang experi-
ments for selected K from silhouette score (in table 1). Those profile noise visualisations are complemented
with sample images where human label noise was found and positively altered by the model.

It is interesting to see that the noise matrices from CIFAR-10 simulation experiment in Figure 2 resembles
the noise introduced for creating 15 simulated users in the first place. This confirms the effectiveness of the
profiling process as it has managed to identify noise patterns of users and to profile them accurately. In
addition, a simple attempt to model interpretability is discussed in Appendix F, using CIFAR-10 simulation.
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Mislabelled Airplane as a Bird and positively altered

Mislabelled Bird as an Airplane and positively altered

Mislabelled Automobile as a Truck and positively altered

Mislabelled Truck as a Automobile and positively altered

Mislabelled Deer as a Horse and positively altered

Mislabelled Deer as a Horse and positively altered

Figure 2: Noise profiles from CIFAR-10 simulation experiment showing sample images where human labels
are incorrect and positively altered by the model.

Mislabelled Coat as a Pullover and positively altered

Mislabelled Shirt as a Pullover and positively altered

Mislabelled Shirt as a Coat and positively altered

Mislabelled Pullover as a Coat and positively altered

Mislabelled Coat as a Pullover and positively altered

Mislabelled Pullover as a T-shirt/Top and positively altered

Figure 3: Noise profiles from Fashion-MNIST-H experiment showing sample images where human labels are
incorrect and positively altered by the model.
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Mislabelled Serrated as Normal and positively altered

Mislabelled Adenocarcinoma as Normal and positively altered

Mislabelled  Adenoma as Normal and positively altered

Mislabelled Serrated as Normal and positively altered

Mislabelled Adenocarcinoma as Normal and positively altered

Mislabelled  Adenoma as Normal and positively altered

Mislabelled Serrated as Normal and positively altered

Mislabelled Adenocarcinoma as Normal and positively altered

Mislabelled  Adenoma as Normal and positively altered

Figure 4: Noise profiles from Chaoyang experiment showing sample images where human labels are incorrect
and positively altered by the model.

Future work for PHICO includes addressing temporal dynamics of human-AI cooperation, where the inter-
action may change human behavior over time. While PHICO currently doesn’t account for this dynamic,
it could be adapted by regularly updating user’s assigned profile to reflect evolving interactions and noisy
patterns. Additionally, we will aim to create a more efficient few-shot profiling process to reduce the sample
size a test user annotate. Enhancing privacy in learned profiles through local differential privacy Yang et al.
(2022) is also a key direction for future work.

7 Conclusions

This paper presents PHICO, a novel personalised human-AI cooperation paradigm that combines individ-
ual’s noisy labels and a personalised AI cooperative model prediction to achieve optimised joint human-AI
classification. Through an empirical evaluation across diverse datasets, including CIFAR-10N, CIFAR-10H,
Fashion-MNIST-H, AgNews, and Chaoyang histopathology, along with a comprehensive ablation study, we
demonstrated the robustness and effectiveness of PHICO. We also proposed a new measure, the alteration
rate, to quantify the impact of PHICO on altering labels from human. With its model-agnostic design and
the ability to manage multi-rater datasets without ground truth labels, PHICO offers an effective solution
to human-AI cooperation tasks.
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A Consensus Label Estimation

Many multi-rater input datasets lack ground truth labels. To address this, PHICO is built to function
effectively without relying on them. During training, we use Crowdlab (Goh et al., 2022) to estimate a
consensus label ȳi, which approximates the true clean label yi. Crowdlab works in two steps. In the first
step, it estimates a consensus by majority vote ȳ′

i per training sample. In the second step, it trains a classifier
using the initial consensus and obtains predicted class probabilities for each training example. After that,
Crowdlab uses these predicted probabilities along with the original annotations from raters to estimate a
better consensus, creating the following ensemble,

ȳi = wγ × fγ(xi) + w1 × ỹi,1 + ...+ w|A| × ỹi,|A|, (7)

where fγ : X → ∆C−1 is a classifier trained with the majority vote label ȳ′
i to output a categorical distribution

for C classes, and the weights wγ ,w1, ...,w|A| are assigned according to an estimate of how trustworthy the
model is, compared to each individual annotator. The outcome of Crowdlab is a consensus labelled training
set denoted by D̄ = {(xi, ȳi)}Ni=1. Note that the consensus label is necessary only when the clean label yi is
latent. If such clean label is observed, then Crowdlab is no longer needed, and PHICO can be trained with
D = {(xi,yi)}Ni=1.

B Deciding the Optimal Number of Profiles

We determine the optimal number of profiles K with the silhouette score defined by,

Sk = 1
|A|

∑
j∈A

b(sj) − a(sj)
max{a(sj), b(sj)}

, (8)

where a(sj) denotes the sample’s intra-profile distance (i.e., the average L2 distance to all other points in the
same profile), b(sj) represents the inter-profile distance (i.e., the lowest average L2 distance to all points in
any other profile). The mean silhouette score for K profiles is defined by S(K) = 1

K

∑K
k=1 Sk. The optimal

number of profiles for the dataset is identified by selecting K that yields the highest silhouette score.

C Experimental Setup

C.1 Setup for datasets with real annotators

When training with CIFAR-10N, we present two experiments. For the first experiment, the labels from 747
annotators form D̃. Out of them, 155 were identified for having annotated at least 20 images per class, and
they were split in half, taking 79 as training users and 80 as testing users. The training users’ labels are
used to build the K profiles and train the OVA SVM classifier, where K is automatically chosen based on
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the silhouette score in equation 8. During testing, a testing user’s noisy-label transition matrix is estimated
using the annotator’s labels and consensus labels. This matrix is used to simulate noisy annotations from
that testing user. Therefore, 80 noisy test sets are produced, with each representing the biases that each
user possesses. The model for each profile k, denoted by mθk

(.), uses ViT-Base-16 (Dosovitskiy et al., 2021)
as the backbone for fψk

(.).

For the second CIFAR-10N experiment, we use CIFAR-10H as the testing set, where the labels from testing
users were used without any modification for user profiling. The same labels were used to estimate a noise
transition matrix and simulate their own test set. For all 2571 users, their own test test was simulated that
possess own biases. The models trained for CIFAR-10N were used for this experiment.

For the Fashion-MNIST-H experiment, the labels from all 885 annotators are taken to form the D̃. Then,
366 out of 885 users are chosen since they have annotated at least 20 images per class and are split in half to
have 183 users for training and 183 for testing. The training users’ labels are used to build the K profiles and
train the OVA SVM classifier, where K is automatically chosen based on the silhouette score in equation 8.
During testing, the testing user’s noisy-label transition matrix is estimated using the annotator’s labels and
consensus labels. This matrix is used to simulate noisy annotations from that testing user. Therefore, 183
noisy testing sets are produced, with each representing the biases that each user possesses. The model for
each profile k, represented by mθk

(.) uses DenseNet-121 (Huang et al., 2017) for fψk
(.).

Chaoyang has three annotators per image, which form the D̃. Training users are used to make K profiles,
and train an OVA SVM, where K is automatically chosen based on the silhouette score in equation 8. For
each profile k, a model mθk

(.) is trained with a ViT-Large-16 as the backbone for fψk
(.). During testing,

user’s noisy-label transition matrix is estimated using the annotator’s labels and consensus labels. This
matrix is used to simulate noisy annotations from that user, resulting three noisy test sets.

Our experiment with CIFAR-10N and CIFAR-10H, with human labels for CIFAR-10’s training and testing
sets respectively, offer a more realistic setup with crowd-sourced labels in both phases, better reflecting
real-world conditions. But, while out method preserves annotators’ noisy label patterns, it’s important to
note that Fashion-MNIST-H and Chaoyang test sets are simulated and might not completely mimic real
annotator inputs.

In our CIFAR experiments, we adopted the data augmentation policy introduced by Cubuk et al. (2019).
Also, for Fashion-MNIST, alongside random horizontal and vertical flips, we integrated auto augmentations
as proposed by Cubuk et al. (2020). For the Chaoyang dataset, data augmentation was limited to random
resized crops of dimensions 224 × 224. For the AgNews dataset, the title and description were concatenated
and truncated to maximum length of 64 tokens. We rely on pre-trained models for fψk

because of their
robustness to noisy labels (Jiang et al., 2020) (e.g., ViT models were pre-trained on ImageNet-21K, while
ResNet-18 and DenseNet-121 models were pre-trained on ImageNet-1K. Bert model and Bert tokenizer are
trained on a large corpora of articles in self-supervised fashion). Adam optimizer was employed for training
fψk

(.) with consensus D̄, where NAdam was used for training mθk
(.) on D̂, each utilizing their respective

default learning rates. Implementations were done in PyTorch and executed on an NVIDIA GeForce RTX
4090 GPU.

D Theoretical proof of convergence of PHICO

D.1 Convergence of fuzzy k-means

Each annotator j ∈ A is represented by a set of labels that this user has given to instances of the training set.
Assuming that the training set has N instances belonging to one of C classes and each instance has a label
y ∈ {0, 1, 2, ..., C − 1} = C, then, vj is an N dimensional array of integers denoted by v ∈ CN representing
user j’s annotations.

We assume an additive label noise process defined by ỹ = y + ϵ, where ϵ ∈ Z denotes an integer number
generator. For example, if y = 0 and ϵ = 1, then ỹ = 1. Similarly an N -dimensional vector j is affected by
the same process – for instance, if we have vj = [0, 1, 2] and ϵ is [1, 0,−2], this forms the user j’s noisy vector
sj = [1, 1, 0] ∈ CN .
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Let {sj}j∈A form the noisy labels from the users in A. The clustering of users with K means can be written
as an optimisation process using the following cost function

f(K, {Lr}Kr=1, {cr}Kr=1) :=
K∑
r=1

∑
sj∈Lr

||sj − cr||2, (9)

where K denotes the number of cluster centroids, Lr ⊂ {sj}j∈A, contains users assigned to centroid cr.
When K is fixed, minimal cost can be achieved by choosing the clustering that assigns each sj to the closest
centroid following Bottou & Bengio (1994) and Tang & Monteleoni (2017), as in

f(K) := min
{Lr}K

r=1,{cr}K
r=1

f(K, {Lr}Kr=1, {cr}Kr=1) = min
{Lr}K

r=1

K∑
r=1

∑
sj∈Lr

||sj − cr||2. (10)

Bottou & Bengio (1994) and Tang & Monteleoni (2017) present evidence that clustering converges under
fixed cluster numbers (as in equation 10 in Tang & Monteleoni (2017), despite being NP-hard in general
(equation 9 in Tang & Monteleoni (2017)).

The fuzzy K-means is an extension of the classic K-means clustering algorithm, shown above, where each
data point has a degree of belonging to each cluster, rather than a binary membership as in traditional
K-means. More specifically, in fuzzy K-means, we minimise the following cost function,

f(K) := min
{uj,r}j∈A,r=1..K ,{cr}K

r=1

K∑
r=1

∑
j∈A

ubj,r × ||sj − cr||2, (11)

where b > 1 is the fuzziness parameter, and uj,r is the membership degree of sj to cluster cr with the
constraint that

∑K
r=1 uj,r = 1. Hathaway & Bezdek (1986) presents the convergence proof of the Fuzzy

K-means algorithm, showing that the iterative update rules for the membership matrix and cluster centers
lead to the decrease of the objective function and establish conditions for convergence to a local minimum.

D.2 Convergence of the model mθ

The three component model architecture is optimised towards the objective function 4, which is,

L
(
{θ∗
k}Kk=1

)
= arg min

{θk}K
k=1

1
K × |D̂k| ×G

×
K∑
k=1

∑
(xi,{ŷi,g)}G

g=1)∈D̂k

ℓ (ȳi,mθk
(xi, ŷi,g)) +

λ× ℓ
(

ŷi,g, (Tk)⊤ ×mθk
(xi, ŷi,g)

)
,

we aim to find {θk}Kk=1 that minimizes L. Hence, the objective function is a sum of K × 2 cross-entropy
losses.

Facts

1. The objective function is differentiable as it is a sum of K × 2 differentiable functions.

2. Smoothness: Given the function L is differentiable, its gradient ∇L is Lipschitz continuous with
constant L. This means for any θ and θ′(Patel et al., 2022),

∥∇L(θ) − ∇L(θ′)∥ ≤ L∥θ − θ′∥.

Gradient Descent Algorithm

The update rule for gradient descent is: θ(t+1)
k = θ

(t)
k − α∇L(θ(t)

k ), where α is the learning rate.

Convergence Proof
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Step 1: Descent Lemma For a smooth function with Lipschitz continuous gradient, the following inequality
holds (Patel et al., 2022; Mahdavi et al., 2013):

L(θ(t+1)
k ) ≤ L(θ(t)

k ) + ∇L(θ(t)
k )T (θ(t+1)

k − θ
(t)
k ) + L

2 ∥θ(t+1)
k − θ

(t)
k ∥2.

Substitute the gradient descent update rule into this inequality:

θ
(t+1)
k = θ

(t)
k − α∇L(θ(t)

k ),

θ
(t+1)
k − θ

(t)
k = −α∇L(θ(t)

k ),

∥θ(t+1)
k − θ

(t)
k ∥2 = α2∥∇L(θ(t)

k )∥2.

Thus,

L(θ(t+1)
k ) ≤ L(θ(t)

k ) − α∥∇L(θ(t)
k )∥2 + Lα2

2 ∥∇L(θ(t)
k )∥2.

Step 2: Simplifying and rearranging the inequality, we have:

L(θ(t+1)
k ) ≤ L(θ(t)

k ) −
(
α− Lα2

2

)
∥∇L(θ(t)

k )∥2.

To ensure that the coefficient of ∥∇L(θ(t)
k )∥2 is positive, choose α such that 0 < α < 2

L . A common choice
is α = 1

L :

L(θ(t+1)
k ) ≤ L(θ(t)

k ) − 1
2L∥∇L(θ(t)

k )∥2.

Step 3: Summing the Inequalities over t = 0, 1, . . . , T − 1:
T−1∑
t=0

(
L(θ(t)

k ) − L(θ(t+1)
k )

)
≥ 1

2L

T−1∑
t=0

∥∇L(θ(t)
k )∥2.

Since L(θ(t)
k ) is non-increasing,

L(θ(0)
k ) − L(θ(T )

k ) ≥ 1
2L

T−1∑
t=0

∥∇L(θ(t)
k )∥2.

Step 4: Convergence of the Gradient Norm. By dividing both sides by T :

1
T

T−1∑
t=0

∥∇L(θ(t)
k )∥2 ≤

2L(L(θ(0)
k ) − L(θ(T )

k ))
T

.

As t → ∞, 1
T

∑T−1
t=0 ∥∇L(θ(t)

k )∥2 → 0, which implies that

∥∇L(θ(t)
k )∥ → 0 as t → ∞.

This means that the gradient of L(.) converges to zero as t → ∞. Hence, given that the function L(.) is
smooth and its gradient is Lipschitz continuous, the gradient descent algorithm consists of a sequence of
iterates {θ(t)

k } that converges to a stationary point of the objective function L.

Linear combination of convergent functions is also convergent (Binmore, 1982).

D.3 Convergence of the training process

An overall p-level hierarchical optimization converges, under sufficient conditions such as sequential decision
making, dependence of subsequent level’s problem on previous level’s problem, non-empty solution sets of
levels and existence of optimal solutions for each level (Anandalingam & Friesz, 1992; Bracken & McGill,
1973; Ren et al., 2021). Accordingly, we can structure PHICO’s two step training process as a bi-level (p=2)
optimization problem, where the first level involves choosing best profiles K followed by a model training
process on each profile K = {1, ..,K}.

Let,
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• f(K, {uj,r}j∈A,r=1..K , {cr}Kr=1) =
∑K
r=1

∑
j∈A ubj,r × ||sj − cr||2 is the objective function for fuzzy-k

means clustering (from eq. 11)

• L
(
{θ∗
k}Kk=1

)
is the objective function for the model training.

Bi-Level Problem Formulation

Our optimisation consists of a bi-level optimisation problem that first finds the set of annotator noise profiles
using Fuzzy K-Means, which is used to constrain the optimisation of the objective function 4 given the result
from the Fuzzy K-Means, as follows:

minimize {θk}K∗
i=1

L
(

{θk}|K∗|
i=1

)
subject to K∗, {u∗

j,r}j∈A,r=1..K∗ = arg min
K,{uj,r}j∈A,r=1..K ,{cr}K

r=1

f(K, {uj,r}j∈A,r=1..K , {cr}Kr=1)
.

Convergence

Upper level convergence: Given the optimal number of profiles K∗ from the lower level, the deep learning
model’s parameters {θk}K∗

i=1 are optimized using gradient descent. This optimization converges as shown in
the appendix D.2.

Lower level convergence: The fuzzy K-means algorithm converges, as shown in the appendix D.1.

Overall convergence: Since lower level provides a stable constraint to the upper level, and both problems
converge individually, the overall hierarchical optimization problem converges under stated assumptions for
each sub-problem (Anandalingam & Friesz, 1992; Bracken & McGill, 1973).

E Statistical confidence of results

Table 12 shows the standard deviation and 95% confidence interval of post-alteration accuracy for real-
annotator experiments, under the optimal K from the silhouette score. Results show that PHICO signifi-
cantly improve users compared to their original accuracy.

Table 12: Standard deviation and confidence interval of experiments with real annotators

Dataset Mean accuracy
after alterations

Standard
deviation (±)

95% confidence
interval

CIFAR10-N 0.98913 0.00104 (0.98890, 0.98937)
CIFAR10-H 0.99260 0.00240 (0.99250, 0.99271)
Fashion-MNIST-H 0.87786 0.00837 (0.87661, 0.87913)
Chaoyang 0.92374 0.00388 (0.87438, 0.97312)

F Model Interpretability

We conducted an experiment by replacing the decision model in PHICO with a decision tree model to enable
interpretability. The decision tree was trained by concatenating the output logits from base model and
human embedding for the training set as in the Section 3.2.

Experiment was done for K=3 in simulation experiment with CIFAR-10 and trained decision trees are plot
in the figures 5 and 6. It can be seen the decision tree uses the base model’s output features (with the prefix
‘b_’) as a decision factor when there is user noise present in a specific class. Otherwise the tree relies on
human input features with the prefix ‘u_’, confirming the model’s ability to learn the joint noise distribution
for human-ai cooperation.
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For the profile that has human 
noise in Horse-Deer class pair

For the profile that has human 
noise in Airplane-Bird class pair

As there is human noise
in Horse-Deer class pair,
the tree takes base
model’s input as a
decision factor (features
with prefix ‘b_’ ).

Otherwise, the tree
relies on human input
(features with prefix
‘u_’).

As there is human
noise in Airplane-Bird
class pair, the tree
takes base model’s
input as a decision
factor (features with
prefix ‘b_’ ).

Otherwise, the tree
relies on human input
(features with prefix
‘u_’).

Figure 5: Decision tree behaviour when it is trained on profile with human noise in Horse-Deer class pair
(left) and Airplane-Bird class pair (right).
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As there is human
noise in Truck-
Automobile class pair,
the tree takes base
model’s input as a
decision factor
(features with prefix
‘b_’ ).

Otherwise, the tree
relies on human input
(features with prefix
‘u_’).

For the profile that has human noise 
in Truck-Automobile class pair

Figure 6: Decision tree behaviour when it is trained
on profile with human noise in Truck-Automobile class
pair.
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