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Abstract

Text-to-video diffusion models have shown remarkable001
progress in generating coherent video clips from textual de-002
scriptions. However, the interplay between motion, struc-003
ture, and identity representations in these models remains004
under-explored. Here, we investigate how self-attention005
query (Q) features simultaneously govern motion, structure,006
and identity – revealing these features as key structural pri-007
ors that control video generation. Our analysis shows that008
Q affects not only layout, but that during denoising Q also009
has a strong effect on subject identity, making it hard to010
transfer motion without the side-effect of transferring iden-011
tity. Understanding this dual role enabled us to control012
query feature injection (Q injection) and demonstrate two013
applications: (1) a zero-shot motion transfer method – im-014
plemented with VideoCrafter2 and WAN 2.1 – that is 10×015
more efficient than existing approaches, and (2) a training-016
free technique for consistent multi-shot video generation,017
where characters maintain identity across multiple video018
shots while Q injection enhances motion fidelity.019

1. Introduction020

Video generation from text is at the forefront of generative021
AI. Despite progress in controlling entities in video, major022
challenges remain: generating natural, engaging motion and023
preserving consistent identity throughout the video. These024
goals often form a trade-off – preserving consistency is eas-025
ier with limited motion, while increased motion makes con-026
sistency harder as entity appearance changes. A key chal-027
lenge is understanding how motion and identity are repre-028
sented in video models and how to control them effectively.029

This limited understanding hinders downstream appli-030
cations. While many motion transfer approaches [17, 28,031
30, 32] rely on tuning or test-time optimization, there is032
growing interest in inference-time methods that exploit in-033
ternal representations rather than computational scale, sim-034
ilar to text-to-image layout transfer through feature ma-035
nipulation [1, 3]. Better model understanding could lead036
to further progress in this direction. As another example,037
consider consistent characters in multi-shot video genera-038

tion, where the goal is to preserve consistency of character 039
identity and appearance across shots. Image-based models 040
tackle this through feature-sharing, but applying the same 041
ideas to video leads to loss of motion because the shared 042
features encode both identity and motion. 043

Target video (same class)

   👍 Motion and structure 👍 Different identity

   👍 Motion and structure 👎 Identity leakage 

Source video

Target video (different class)

Transferring 
Queries

Figure 1. Our analysis reveals differences in Q-injection between
text-to-video and text-to-image models. One key observation is
that in text-to-video models, Q injection transfers both motion and
structure, but suffers from identity leakage when source and target
share the same subject.

To understand motion and identity representation in 044
video models, we draw analogies from text-to-image (T2I) 045
models which are better understood. Motion can be viewed 046
as ”3D-shape” in the tensor defined by frame sequences, 047
making it natural to examine shape/structure representa- 048
tion in image models. Previous works showed diffusion- 049
based T2I models establish layout in early steps [21]. Stud- 050
ies [1, 3, 26] found self-attention queries (Q) encode struc- 051
tural layout priors and injecting queries between images 052
during generation “copies” shape while preserving appear- 053
ance. As motion is the video equivalent of structure, we 054
investigate the relationship between query vectors, motion, 055
and identity in video generation. 056

We conduct an empirical analysis revealing that unlike 057
image models, Q in video-generation models affects both 058
motion and identity, and videos require more denoising 059
steps than images to capture motion patterns. We leverage 060
this insight for two applications: motion transfer and con- 061
sistent multi-shot video generation. 062

For motion transfer, injecting Q features from a source 063
video during denoising enables zero-shot motion transfer 064
without fine-tuning. Our pipeline achieves quality close to 065
leading methods while being 10× more efficient than exist- 066
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ing approaches, demonstrating that understanding internal067
representations can outperform scaling computation.068

For consistent multi-shot video generation, we build on069
insights from multi-shot image generation [26] using ex-070
tended attention shared between video shots. While Q injec-071
tion from unconstrained generation preserves motion diver-072
sity, video generation requires more Q injection steps than073
images, causing identity leakage that compromises shot-to-074
shot consistency. We address this with two phases: (1)075
Q-Preservation – maintains motion structure using uncon-076
strained Q values (2) Q-Flow – preserves feature flow maps077
to avoid identity leakage in later steps.078

Our main contributions: 1) A systematic analysis of Q-079
features as a structural prior in text-to-video diffusion mod-080
els, revealing their dual role in encoding both motion and081
identity, with effects persisting longer into the denoising082
process. 2) “Motion by Queries”, an efficient zero-shot083
motion transfer approach for both UNeT and Diffusion-084
Transformer architectures. 3) A training-free method for085
consistent multi-shot video generation balancing character086
consistency and motion quality.087

Source

Figure 2. Same-class transfer shows identity leakage increasing
with Q injection (purple), while cross-class transfer (green) main-
tains identity separation at 40% injection where motion quality is
preserved. Data from [28].

Source

Figure 3. Extended attention reduces motion, requiring longer Q-
injection to recover it – consequently increasing identity leakage.

2. Analysis: Query features in text-to-video 088

generation 089

To study the role of Q-features in text-to-video (T2V) mod- 090
els, we design an injection experiment. The idea is simple: 091
we take a source video VS with a known text description 092
τS , and generate a target video VT using a prompt τT . We 093
then record Q features from VS , inject them into the genera- 094
tion of VT , and analyze the effect of that injection. We base 095
our main analysis on VideoCrafter2 [5] model, and later test 096
Q-injection in other architectures for generality. 097

More specifically, given the video VS , we add noise at a 098
level corresponding to a noisy step t, yielding a noisy latent 099
zt. We then perform a single DDPM denoising step (with a 100
50-step schedule) and record the Q features from all spatial 101
self-attention layers of the diffusion model. This is repeated 102
20 times for various noise levels, resulting in a sequence of 103
20 Q tensors (QS(50), QS(49), ..., QS(30), corresponding 104
to DDPM steps t = 1000, 980, ..., 600). Finally, we gener- 105
ate a new video VT with prompt τT , while injecting QS(t) 106
tensors at the first k DDPM denoising steps. We vary the 107
amount of steps receiving Q-injection: From none (0%) up 108
to 40% of DDPM steps. 109

To understand the effect of Q-injection, we measure sim- 110
ilarity between source and target videos in two aspects: 111
Identity Leakage and Motion Fidelity. Identity Leakage 112
measures mean DINO similarity between the frames of 113
source VS and target VT videos. Motion Fidelity [30] mea- 114
sures cross-correlation between point tracks in source and 115
target videos. Error bars are standard-error-of-the-mean 116
(S.E.M) to show the significance of our findings. 117

Fig. 2 shows our results. We consider two Q-injection 118
setups: one where the source and target prompts share the 119
same subject (purple), and one where they differ (green). 120
We highlight three key differences in how Q injection be- 121
haves in T2V models versus T2I models. 122

First, Fig. 2 (bottom-left), shows that Motion Fidelity in- 123
creases with Q-injection duration, reaching high similarity 124
at 40% injection. We find that, unlike images–where struc- 125
ture is established early in the denoising process–videos re- 126
quire significantly more steps to set the motion structure. 127
Second, more surprising is the top-left panel. It reveals that 128
identity similarity also increases with the duration of in- 129
jecting Q. This suggests that video generation models also 130
encode identity information into the Q vectors–an intrigu- 131
ing shift from its traditionally assumed role in T2I mod- 132
els. Third, we observe an interesting phenomenon: when 133
τS and τT use the same subject, the target video often fea- 134
tures a subject with an appearance identical to that of the 135
source video while maintaining the background specified in 136
τT . This identity “leakage” is significantly less pronounced 137
when τT and τS feature different subjects. Qualitatively, in 138
Fig. 2 (right), we present a source video of “A horse gallop- 139
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Figure 4. Motion Transfer (VideoCrafter2). Source (top) and
target (bottom) frames for each pair. Q-injection transfers camera
motion (top), non-rigid movement (middle), and combined mo-
tions (bottom). Videos and more examples in suppl.

ing in the savanna” with a distinct white spot on its back.140
Notice that as the number of injection steps increases, the141
target horse (purple) becomes more similar to the source142
horse while preserving the cloud background. However,143
when τT describes a giraffe, its shape and motion become144
more similar to those of the source horse, but its appear-145
ance remains a giraffe. This suggests Q-injection transfers146
both appearance and motion when subjects match, while for147
different subjects, the transfer primarily affects motion.148

We also examine Q-injection with extended attention –149
a widely used technique that enables cross-video feature150
sharing for consistency [3, 26]. Extended attention allows151
frames to share K,V features across different videos, pro-152
moting visual consistency but at the cost of motion quality.153
As shown in Fig. 3, when generating a batch of 3 videos,154
this feature sharing induces ”motion freeze,” where natural155
motion patterns are suppressed due to the synchronization156
of features across videos. To recover motion fidelity, sig-157
nificantly long Q-injection periods are required. Moreover,158
this extended setting increases identity leakage, making it159
difficult to disentangle motion from identity.160
Generality. We verified our findings across architectures:161
WAN 2.1 [27] (DiT), T2V-Turbo-V2 [14] (8-step sam-162
pling), and LTX-Video [11] (fast DiT). All models showed163
identity leakage for same-subject prompts and primarily164
transferred motion for different-subject prompts (see ap-165
pendix Fig. A.2).166

3. Application 1: Motion transfer167

Our first application is motion transfer: given a video VS168
with specific motion patterns, we generate a new video169
VT following the same motion. Our approach, “Mo-170
tion by Queries” follows the experiment described in sec-171
tion 2. It extracts Q-features from VS by denoising to172

various timesteps (t = 1000, 980, . . . , 600), obtaining 173
[QS(50), . . . , QS(30)], then injects these during generation 174
of VT with prompt τT . For WAN 2.1, we extracted the Q- 175
features from a single low-noise timestep and injected them 176
into all higher-noise steps, inspired by [16] (see appendix 177
for details). 178

3.1. Experiments 179

We evaluate quantitatively on the Motion-Transfer bench- 180
mark of [28] (66 video prompts, 22 source videos from 181
DAVIS [22] and WebVID [2]), using VideoCrafter2 (VC2) 182
as base model. 183
Baselines: (1) DMT [30]: test-time optimization; (2) MI 184
[28]: fine-tuning for motion-specific embeddings; (3) MC 185
[16]: zero-shot using temporal attention maps. MI∗, MC∗ 186
denote our reproductions. We include VMC [13] and MD 187
[32] results reported by [28]. 188
Evaluation Metrics: We measure Motion Fidelity (M. Fi- 189
del.), point track correlation between videos (Sec. 2); Tem- 190
poral Flicker (T. Flick.), consecutive frame MAE [12]; Text 191
Similarity, CLIP-Text score [23]; Temporal Consistency 192
(Temp. C.), consecutive frame CLIP similarity [12]; Iden- 193
tity Leak (Id. Leak), DINO similarity between source/target 194
frames; and VBench quality metrics (Aesth., Smooth., Bk 195
Cons.). We also compare runtimes on NVIDIA H100 196
(576×320), breaking them into: Invers. (inversion/feature 197
recording), Optim. (optimization/tuning), Infer (genera- 198
tion), Sum (total runtime), and Overhead as the ratio of 199
“Sum” to inference in the base model. 200
Quantitative Results: Our optimization-free approach 201
achieves competitive performance (Tables 1, 2): lower 202
identity leakage than MI∗ (38.6 vs. 43.7), compara- 203
ble text/temporal consistency, and motion fidelity of 91.5. 204
While MC has better identity separation (24.2), our method 205
shows superior temporal stability (T. Flick: 95.1 vs. 86.0). 206
Crucially, we achieve ×1.2 overhead vs. base VC2, signifi- 207
cantly faster than MC (×12), MI (×23), and DMT (×45). 208
Qualitative Results: Figure 4 and results in supplemen- 209
tal, show that Motion by Queries successfully transfers 210
both camera and non-rigid object motion. Comparisons 211
with baselines (Fig. A.1, Suppl.) show our method pro- 212
duces faithful motion, though sometimes with lower magni- 213
tude than MI/DMT. MC shows temporal instability and MI 214
exhibits identity leakage, confirming quantitative findings. 215
Figure 5 demonstrates results with WAN 2.1 DiT, which 216
prioritizes physical plausibility over pixel-exact replication, 217
particularly visible in non-rigid motion scenarios. 218

4. Application 2: Consistent multi-shot video 219

generation 220

Multi-shot video generation requires maintaining character 221
consistency across shots while preserving natural motion – 222
a challenge since current models excel at single clips but 223
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M. FIDEL. ↑ T. FLICK. ↑ TEXT ↑ TEMP. C. ↑ ID. LEAK ↓ AESTH. ↑ SMOOTH. ↑ BK CONS. ↑
DMT 78.8 - 28.8 93.6 - - - -
VMC 93.7 - 27.1 94.6 - - - -
MD 93.9 - 30.4 93.3 - - - -
MI 95.5 - 31.1 93.5 - - - -
MI∗ 97.0 ± 0.4 92.2 ± 0.4 29.2 ± 0.6 96.8 ± 0.2 43.7 ± 1.5 52.6 ± 1.2 95.6 ± 0.3 94.5 ± 0.3
MC∗ 95.0 ± 0.7 86.0 ± 0.6 29.9 ± 0.4 95.8 ± 0.3 24.2 ± 1.1 55.6 ± 0.9 93.5 ± 0.4 93.3 ± 0.4
OURS 91.6 ± 0.9 95.1 ± 0.3 28.8 ± 0.6 97.0 ± 0.2 38.6 ± 1.8 54.1 ± 1.3 97.3 ± 0.2 94.9 ± 0.4

Table 1. Motion Transfer Metrics. Mean ± S.E.M.

TIME [SEC.] INVERS. OPTIM. INFER SUM OVERHEAD ↓
Z.SCOPE - - 9 9 -
DMT 260 150 410 ×45
MI 9 190 9 208 ×23
ANIMATEDIFF - - 9 9 -
MC 0.3 0 104 104 ×12
VC2 - - 58 58 -
OURS 12 0 58 70 ×1.2

Table 2. Runtime Comparison. Existing methods: ×12-45 over-
head. Ours: ×1.2.

Figure 5. Motion Transfer with WAN 2.1. Source (top) and gen-
erated (bottom) frame pairs demonstrating Q-injection with DiT
architecture. Videos and more examples in suppl.

struggle with cross-shot consistency. Prior work [26] shares224
self-attention features for image consistency, but our anal-225
ysis shows video features encode both identity and motion,226
causing naive extended attention to synchronize or diminish227
motion. We address this with a two-stage Q injection: early228
Q preservation sets motion structure using vanilla video Q-229
features, followed by Q-Flow that allows features to evolve230
while maintaining structure through correspondence fields .231

We build on ConsiStory [26] (Appendix B.2) which232
shares K,V features within subject masks for consistency233
but reduces layout variability. ConsiStory restores diversity234
via Q injection from vanilla sampling. However, as shown235
in Fig. 3, vanilla Q injection in videos causes identity leak-236
age. Our two-stage solution addresses this: (1) Q preser-237
vation injects vanilla Q-features early to establish motion238
structure; (2) Q-Flow applies correspondence fields [10] to239
maintain motion patterns while allowing features to evolve240

Figure 6. Q-injection strategies for consistent video genera-
tion. Top: Our method balances consistency and motion. Row 2:
VideoCrafter2 has diverse motion, no consistency. Row 3: Full
Q preservation loses character consistency because identity leaks
from VideoCrafter2. Row 4: No Q intervention diminished and
synchronized motion. Right: y-t slices as temporal cross-sections.

for better consistency. Additional details are described in 241
Appendix B.11. 242

4.1. Experiments 243

We evaluate Q-injection strategies for consistent multi-shot 244
generation (Fig. 6). Without Q intervention (row 4), the 245
Muppet’s identity is preserved but motion degrades: all 246
shots show synchronized swaying, static camera in the skat- 247
ing shot, and frozen body with displaced legs. Vanilla Q 248
injection (row 3) restores dynamic motion but the Muppet’s 249
colors revert to vanilla model colors, losing consistency – 250
and demonstrating Q’s dual role: restoring motion while 251
leaking non-consistent identities. Our approach (row 1) bal- 252
ances both, preserving the Muppet’s consistent appearance 253
while maintaining distinct motions—centered swaying, dy- 254
namic skating with parallax camera movement. Extensive 255
evaluations with baselines, user studies, and ablations are in 256
Appendix B. 257
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