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ABSTRACT

Adaptive navigation in unfamiliar environments is crucial for household service
robots but remains challenging due to the need for both low-level path plan-
ning and high-level scene understanding. While recent vision-language model
(VLM) based zero-shot approaches reduce dependence on prior maps and scene-
specific training data, they face significant limitations: spatiotemporal discontinu-
ity from discrete observations, unstructured memory representations, and insuf-
ficient task understanding leading to navigation failures. We propose DORAE-
MON (Decentralized Ontology-aware Reliable Agent with Enhanced Memory
Oriented Navigation), a novel cognitive-inspired, zero-shot, end-to-end frame-
work consisting of Ventral and Dorsal Streams that mimics human navigation
capabilities. The Dorsal Stream implements the Hierarchical Semantic-Spatial Fu-
sion and Topology Map to handle spatiotemporal discontinuities, while the Ven-
tral Stream combines CoDe-VLM and Exec-VLM to improve decision-making.
Our approach also develops Nav-Ensurance to ensure navigation safety and effi-
ciency. We evaluate DORAEMON on the HM3Dv1, HM3Dv2, MP3D, where
it achieves state-of-the-art performance on both SR and SPL metrics, signifi-
cantly outperforming existing methods. We also introduce a new evaluation met-
ric (AORI) to assess navigation intelligence better. Comprehensive experiments
demonstrate DORAEMON’s effectiveness in zero-shot and end-to-end navigation
without requiring prior map building or pre-training. Our code is available at
nttps://anonymous.4open.science/r/DORAEMON=-8D4D.
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some works(Yin“ef-all, P074; Zhong et all, P074; Wu_ef all, P074)) have begun to explore zero-
training and zero-shot navigation strategies, relying on textual descriptions of the current task, image
inputs, and previously observed historical information, these approaches achieve navigation without
dependence on environment or task-specific data, gradually shedding the reliance on scene priors.
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Although zero-shot and zero-training navigation methods offer a novel perspective, they still face
numerous challenges in practical applications. On the one hand, most current navigation methods
are non-end-to-end, where the agent’s spatial actions is mapped to a discrete set. These discrete
actions result in paths that are neither smooth nor efficient. To align with a target, the agent may
require multiple small-angle rotations. On the other hand, the primary bottleneck for current Vision-
Language Models (VLMs) in long-range navigation is their inadequate memory mechanisms. Their
reliance on discrete observational inputs prevents a cohesive understanding of spatiotemporal conti-
nuity. More critically, the prevalent approaches(Ramakrishnan_ef all, P074; Nasiriany et all, P074)
of storing history as an unstructured log within a single-step decision paradigm fundamentally com-
promises their ability to perform effective long-term path planning.

Even though end-to-end methods like VLMnav(Nasiriany et all, 2074; Goetting et all, 2024) utilize
historical information, they typically store this information in a flat, unstructured manner, which
fundamentally limits their ability to perform long-range navigation. Additionally, VLMs sometimes
insufficient understanding of task semantics often leads to poor decision-making, and the lack of
reliable check mechanisms for navigation states frequently results in unreliable behaviors such as
spinning in place during navigation tasks.

Inspired by cognitive science "Decentralized Ontology" principles (Bouquet et all, 2004), we pro-
pose the Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Naviga-
tion (DORAEMON), which consists mainly of a Ventral Stream and a Dorsal Stream. The core theo-
retical premise is that knowledge is inherently distributed and context-dependent, composed of multi-
ple local perspectives, rather than the single, monolithic world model. The Ventral Stream processes
object identity (“what”) information, while the Dorsal Stream handles spatial (“where”) processing
in the human brain. The Dorsal Stream addresses spatio-temporal discontinuities through a Topol-
ogy Map and a Hierarchical Semantic-Spatial Fusion, allowing our agent to reason accurately about
target-environment relationships. Additionally, the Ventral Stream improves task understanding by
utilizing a CoDe-VLM (Compositional Decomposition VLM) and Exec-VLM (Execution VLM)
for navigation. Additionally, DORAEMON features a Nav-Ensurance system that enables agent
to autonomously detect and respond to abnormal conditions, such as becoming stuck or blocked
during navigation. To evaluate navigation performance more comprehensively, we propose a new
metric called the Adaptive Online Route Index (AORI). Fig D conceptually illustrates limitations of
traditional VLN methods and contrasts them with DORAEMON.

In summary, the main contributions of this work are:

* We propose DORAEMON, a novel adaptive navigation framework inspired by cognitive
principles of decentralized knowledge, consisting of ventral and Dorsal Streams, enabling
end-to-end and zero-shot navigation in completely unfamiliar environments without pre-
training, offering plug-and-play compatibility with any VLMs.

* We propose the Dorsal Stream, which involves designing a Topology Map and a Hierarchi-
cal Semantic-Spatial Fusion Network to effectively manage spatio-temporal discontinuities.
Additionally, we introduce the Ventral Stream, incorporating a synergistic reasoning com-
ponent that combines CoDe-VLM for understanding ontological tasks and Exec-VLM for
enhanced task comprehension and planning.

* We develop Nav-Ensurance, which includes multi-dimensional stuck detection and context-
aware escape mechanisms. We propose a new evaluation metric called AORI to quantify the
efficiency of the agents exploration. Our method demonstrates state-of-the-art performance
across various navigation tasks.

2 RELATED WORK

2.1 ZERO-SHOT NAVIGATION

Navigation methods are broadly supervised or zero-shot. Supervised approaches train visual en-
coders with reinforcement/imitation learning (Khandelwalef all, D077, Maksymets et all, Z01; Ram-
rakhya et all, 2072; Chenefall, 2027) or build semantic maps from training data (Zhang et al], 20254,
Min_ef all, 021; [Zheng et all, P027), struggling with novel scenarios due to data dependency. Zero-
shot methods address this using open-vocabulary understanding, increasingly leveraging foundation
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Figure 2: (a) Ilustrates limitation of typical VLM navigation (red arrow). (b) DORAEMON’s
cognitive inspiration from human navigation. (c) Our DORAEMON method.
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models like LLMs and VLMs. LLMs provide commonsense reasoning via object-room correlation
(Vin“ef-all, P0O74; Zhou efall, P073; Wi ef all, P024)), semantic mapping (Viref-all, 2073), and chain-
of-thought planning (Caiefall, D075; Yin'ef all, 2024; Shahef all, P0234), while VLMs align visual
observations with textual goals. These foundation model-guided techniques include image-based
methods mapping targets to visual embeddings (Wen ef all, P075; Gadre ef all, P073; AT-Halahef all,
2027) and map-based approaches using frontier (Zhong et all, 2074; [Zhang et all, 20254; Chen ef all,
P023; Kuang et all, P074; Yu_ef-all, 2023; Shah_ef all, P0234d) or waypoint-based maps (Wu_ef all,
P024) with LLM/VLM reasoning. VLM-based strategies either use VLMs for recognition with tra-
ditional planning and extra perception models (Rahmanzadehgervi et all, 2074; [Zhang et al], 2075H),
or, like PIVOT (Nasiriany et all, 2074)) and VLMnav (Goetting et all, 2074)), directly produce actions
end-to-end via visual prompting. Despite progress, many zero-shot methods, especially those pro-
cessing observations independently, face challenges integrating temporal information and handling
complex spatial reasoning in unfamiliar environments.

2.2 MEMORY MECHANISMS IN NAVIGATION

Memory representations in navigation systems have evolved through various architectures, including
episodic buffers that maintain observation sequences (Goetting et all, 2074; Shah“ef all, 2003H; Hs1i
et all, 2027), spatial representations prioritizing geometric information (Zhong et all, 2024; [Zhang
efall, P075K), graph-based semantic structures capturing object relationships (Yin'efall, D075, P0724),
predictive world models attempting to forecast environmental states (Cao“ef all, P024; Nie ef all,
025) and the memory capacity acquired through training(Zhu efall, 2075). These systems typically
process semantic and spatial information separately, with limited integration between perception
and reasoning modules. Most approaches focus on either building representations or enhancing
reasoning mechanisms independently. Differently, DORAEMON integrates these aspects through
a hierarchical semantic-spatial fusion network with bidirectional information flow between ventral
and dorsal processing streams.

2.3 COGNITIVE NEUROSCIENCE INSPIRATION IN NAVIGATION

Navigation systems are influenced by cognitive neuroscience, recent models like CogNav(Caoefall,
024) and BrainNav(Ling & Qiangian, Z075) incorporate cognitive elements, but they do not fully
embody Decentralized Ontology. CogNav utilizes a finite state machine for cognitive states, but may
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Figure 3: Architecture of the DORAEMON Navigation Framework.

have limitations in knowledge integration. BrainNav mimics biological functions but doesn’t deeply
engage in decentralized information processing. In contrast, DORAEMON is inspired by Decentral-
ized Ontology(Bouquet et all, 2004), which suggests that human knowledge is organized through
interconnected cognitive systems that enable context-dependent reasoning. It emphasizes the inte-
gration and bidirectional exchange of information between Dorsal Stream and Ventral Stream, al-
lowing for the construction of semantic relationships that enhance spatial understanding and support
flexible, context-aware navigation.

3 METHODS

Task Formulation We address the Navigation task (Bafra_ef all, 2020), where an agent, starting
from an initial pose, must locate and navigate to a target within a previously unseen indoor envi-
ronment. At step ¢, the agent receives observation I;, current pose P, and a task specification 7T,
which can be either a simple object category (e.g., “‘sofa”) or an instruction (e.g., “find the red chair”
or“the plant on the desk”) for tasks like GOAT (Khanna“efall, 2(074)). Based on these inputs, the
agent must decide on an action a,;. While many prior works utilize a discrete action space, our end-
to-end framework employs a continuous action representation in polar coordinates (r¢, 8;), where
r¢ specifies the forward distance to move, and 6; denotes the change in orientation. Crucially, the
action space also includes a st op action. The task is considered successful if the agent executes the
stop action after meeting successive stop triggers in steps ¢ and ¢ 4+ 1. The trigger occurs when 1)
the agent is within a predefined distance threshold dg,..ss Of the target object; 2) the target object
is visually confirmed within the agent’s current observation I;.

Methods Overview Our DORAEMON framework achieves end-to-end and zero-shot navigation
through two decentralized cognitive-inspired streams, as depicted in Figure B. Given an input with
a panoramic image I; and a pose P, at step ¢, they are processed by Action Proposer (Appendix B
and Dorsal Stream(Section Bl), respectively. In the Action Proposer, a candidate image ijnno is
generated with a set of action candidates AL . Concurrently, the Dorsal Stream extracts semantic
and spatial information from I; using Hierarchical Semantic-Spatial Fusion and stores it within the
Topology Map as node v;. The relevant node v can be accessed by up-down retrieval. After
that, vyee and I, are input to the Exec-VLM to select the best action based on the given informa-
tion(Section BZ2). At the same time, the Exec-VLM receives a task-specific knowledge graph (KG)
relevant to the task 7', which is generated by the CoDe-VLM (SectionB—2T) in the Ventral Stream
(Section BX). The Exec-VLM integrates the information through chain of thought (Appendix b),
identifies abnormal conditions (Section B3), and outputs the final action a,. The agent performs this
action a; in the environment, navigates, and makes the next decision at step ¢ + 1.
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Figure 4: Architecture of Topological Map and Hierarchical Construction built in Dorsal Stream for
spatio-temporal memory. The top view in the middle shows the content of different nodes during
navigation, and the upper right part represents the Hierarchical Construction of a node.

3.1 DORSAL STREAM

The Dorsal Stream, similar to the “where/how” pathway in cognition, is responsible for processing
the spatial information to effectively navigate. As illustrated in Figure B, at each step ¢, the agent
constructs vy, on the Topology Map (Section B-T1l). Subsequently, the Hierarchical Semantic-Spatial
Fusion (Section BT2) organizes the information into a hierarchical structure from the bottom up.

3.1.1 TOPOLOGICAL MAP

The topological map G = (V,€) is constructed incrementally. Each node v; € V encapsulates
the agent’s state at timestep ¢, defined as a tuple (p¢, gt, I+, Lt, 01, $¢). py and ¢; denote the agent’s
position and orientation, which constitute the pose P;. I; is the visual observation, L; is its corre-
sponding language description, o; is the target likelihood estimation, and s; represents a semantic
embedding of the observation (e.g., CLIP features). A new node vy is added to V based on spatio
and temporal criteria: a new node is created if either the time elapsed since the last node addition
teurr — tprev €Xceeds a temporal threshold Sypaace, or if the agent’s Euclidean distance from the previ-
ous node |[peurr — Pprev||2 surpasses a spatial threshold dsample. Upon its creation, vney is connected
to its predecessor node vprey Via a new edge.

3.1.2 HIERARCHICAL SEMANTIC-SPATIAL FUSION

Hierarchical Construction. Building upon the information associated with the Topological Map
nodes v; € V, our module organizes information of v; into a hierarchical structure. The nodes h;
on the hierarchical structure are defined as:

hj = (idj7 L, P;, cj), )
where id;, l; € {Lo, L1, La, L3}, P;, C; correspond to unique string identifier, hierarchy level tag,
parent node references, and child node references.

The memory hierarchy organizes nodes h; into four semantic levels through structural and func-
tional relationships (Appendix ): L3 (Observation, directly linked to topological map nodes
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vt), Lo (Area), L1 (Room), Ly (Environment). The memory hierarchy is constructed bottom-up
(Ls — Ly — L1 — Lyg) after an initial exploration phase or periodically. While the overall process
involves sequential clustering or integration steps for each level transition, the specific logic and
parameters differ between levels.

Hierarchical Memory Retrieval. To efficiently find relevant information within the constructed
hierarchy (e.g., observations related to sofa), the system employs a top-down search. This search is
guided by a scoring function S(h;) evaluated at nodes h; during traversal the constructed hierarchy:

S(hz) = asemssem(hi» T) + aspasspa(hi) + akeyskey(hi7 T) + alimeStime(hi)7 2)

where S computes embedding similarity between node h; and task 7', Sy, measures proximity to
the current position using an exponential decay function, Si., evaluates keyword overlap, and Siime
prioritizes recent observations. For instance, semantic similarity is calculated via normalized cosine
similarity, while spatial and temporal scores both rely on exponential decay models to reflect their
diminishing influence over distance and time. (see more details in Appendix H).

3.2 VENTRAL STREAM

The Ventral Stream, analogous to the “what” pathway in human cognition, integrates two key compo-
nents: CoDe-VLM (Compositional Decomposition VLM, Section B21) and Exec-VLM (Exection
VLM, Section B27). Unlike prior models that encode task information into a single, entangled
vector, our architecture explicitly disentangles task comprehension from execution. This decentral-
ized design mirrors the Ventral Stream’s approach to compositional understanding, first compiling
knowledge and then acting upon it.

3.2.1 CoODE-VLM: COMPILING TASKS INTO KNOWLEDGE GRAPHS

To build a deep and structured understanding of the task, CoDe-VLM acts as a semantic compiler. It
leverages the vast world knowledge embedded within a VLM to on-the-fly compile an unstructured
instruction 7" into a dynamic, task-specific knowledge graph (KG).

CoDe-VLM generates a graph structure encapsulating nodes and relational edges. This task KG,
formed from extracted semantic attributes like general description, appearance, and location, consti-
tutes our explicit and compositional representation of the task. This representation not only enables
the agent to robustly verify objects encountered during navigation but also provides crucial priors
for planning by interfacing with the spatial reasoning components of the Dorsal Stream.

3.2.2 EXEC-VLM: EXECUTING ACTIONS VIA GRAPH-BASED REASONING

The Exec-VLM serves as the agent’s executive core, responsible for determining the optimal action
by combining visual observations, spatial awareness from Dorsal Stream, and the structured task
semantics provided by CoDe-VLM. Crucially, instead of making decisions in a high-dimensional,
entangled feature space, Exec-VLM performs explicit reasoning on the task knowledge graph.

We steer this reasoning process using Chain-of-Thought (CoT). The CoT guides Exec-VLM to break
down the complex navigation task into interpretable sub-steps: current state analysis, memory in-
tegration, goal analysis, scene assessment, path planning, and action decision. During the “goal
analysis” step, for instance, the model directly queries the nodes and edges of the KG to confirm the
target’s identity and properties, rather than relying on a fragile memory of the initial instruction.

3.3 NAV-ENSURANCE

To enhance the evaluation of safety and efficiency in navigation, we present a new metric Area Over-
lap Redundancy Index (AORI) (Section B3). Additionally, we develop Nav-Ensurance, including
Multimodal Stuck Detection (Section B37), context-aware escape strategies (Section B33), and
adaptive precision navigation (Section B34) to ensure navigation systems reliably and effectively.
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3.3.1 AREA OVERLAP REDUNDANCY INDEX (AORI)

We introduce the Area Overlap Redundancy Index (AORI) to quantify the efficiency of the agent’s
navigation strategy by measuring overlap in area coverage. A high AORI indicates excessive path
overlap and inefficient exploration, specifically addressing the limitations of conventional coverage
metrics that neglect temporal-spatial redundancy. AORI is formally defined as:

AORI = 1.0 — (w, (1.0 = Toyertap)® + Wa + (1.0 = dnorm)), 3)

Where 7oyerap Tepresents the ratio of revisited areas, dpom is the normalized density, and w. =
0.8, wq = 0.2 are weighting coefficients. Further details are provided in Appendix B.

3.3.2 MULTIMODAL STUCK DETECTION

To detect if it is stuck, the agent analyzes its trajectory over a sliding window of 7" steps by comput-
ing two key metrics: the progress efficiency 7 and the rotational-to-translational ratio p.

T
lor — poll2 Dy

= T ) =T :

Zt:l lpe — pe—1ll2 Zt:l lpe — pe—1]l2

A stuck state is confirmed if a weighted score S = w,, - I[n < 7,] + w, - I[p > 7,] remains above a
threshold Sy, for k£ consecutive windows. These metrics effectively detect situations where the agent
makes little forward progress (low 7)) or is spinning in place (high p).

“

3.3.3 CONTEXT-AWARE ESCAPE STRATEGIES

When a stuck state is detected, the system selects an appropriate escape strategy based on the per-
ceived information from Dorsal Stream(Section BI). For instance, in corner traps (perceived dead
ends), a large turn is executed. In narrow passages, a small backward step followed by a randomized
direction change is employed. If the environmental context is ambiguous, the agent will analyze re-
cent successful movement directions and attempt to move perpendicularly, significantly improving
escape capabilities from complex trap situations.

3.3.4 ADAPTIVE PRECISION NAVIGATION

As the agent nears the target object, it will activate a precision navigation mode. In this mode,
the distance component d of all proposed actions (d, #) is scaled down by a factor vy to enable
fine-grained positioning adjustments:

Qprecise = (d * Vsteps 9) for action (d; 9) € Ajctions- 5)

Additionally, when activating the precision navigation mode, the system can utilize visual analysis
(using VLM) to create more detailed action options, thereby maximizing final positioning accuracy.

4 EXPERIMENTS

Datasets We evaluate our proposed DORAEMON within the Habitat simulator (Savva_et-all,
2019) on four large-scale datasets: HM3Dvl(Ramakrishnan_efall, DO21)(Object Navigation),
HM3Dv2(Yadav_efall, 2073)(Object Navigation), and MP3D (Chang_et all, 2017)(Object Naviga-
tion), GOAT(Khanna“ef all, 2024)) (Multi-modal lifelong navigation, using HM3Dv2).

Implement Details and Evaluation Metrics The action space includes st op, move_forward
where the distance parameter is sampled from the continuous range [0.5m, 1.7m], and rotate. We
adopt standard metrics to evaluate navigation performance: Success Rate (SR), the percentage of
episodes where the agent successfully stops near a target object; Success weighted by Path Length

(SPL), defined as % Zfil Sim, rewarding both success and efficiency; and our proposed

Area Overlap Redundancy Index (AORI) (Equation equation B), which quantifies navigation by
penalizing redundant exploration (lower is better). More information is set in the Appendix B.
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Baselines We compare DORAEMON against several state-of-the-art navigation methods on the
HM3Dv2, HM3Dvl, and MP3D. Our main comparison focuses on end-to-end approaches. Beyond
these direct end-to-end counterparts, we also consider a broader set of recent methods for non-end-
to-end object navigation methods. More baseline details are set in the Appendix [.

4.1 METHODS COMPARISION

End-to-end Methods: We evaluate our approach on the HM3Dv2 (ObjectNav,val, Table 0 (a))
and HM3Dv1(GOAT, val, Table 0 (b)) with other end-to-end baselines. DORAEMON achieves
state-of-the-art performance on both datasets, outperforming other methods by a significant margin.

Table 1: Comparison of end-to-end navigation methods on different benchmarks.

(a) ObjectNav benchmark (b) GOAT benchmark
Method SR(%)1 SPL(%)1 AORI (%) Method SR(%)T SPL(%)1 AORI (%)
Prompt-only 29.8 0.107 - Prompt-only 11.3 3.7 -
PIVOT(Nasiriany et all, Z024) 24.6 10.6 63.3 PIVOT(Nasiriany et all, Z022) 8.3 38 64.9
VLMNav(Goetting et all, Z024) 51.6 18.3 61.5 VLMNav(Goetting et all, Z024) 22.1 93 63.6
DORAEMON (Ours) 62.0 23.0 50.1 DORAEMON (Ours) 243 10.3 56.9
Improvement 20.2 10.0 18.5 Improvement 10.0 10.8 10.5

Non-end-to-end methods: Most methods are non-end-to-end, their reliance on fine-grained dis-
crete actions is a significant departure from natural human behavior, underscoring the superiority
of an end-to-end approach. To ensure a fair comparison with these methods that utilize a discrete
action set A: move forward0.25m, turn left/turn right 30°, look up/lookdown
30°, stop, and a common 500 steps episode limit, we conduct an additional set of experiments.
In these, we normalize our agent’s interactions by approximating an equivalent number of standard
discrete steps for each of DORAEMON’s actions. During our experiments, one DORAEMON step
t was equivalent to about 9-10 non-end-to-end step ¢,,.

Table 2: Comprehensive comparison with state-of-the-art methods on ObjectNav benchmarks. TF refers to
training-free, ZS refers to zero-shot, and E2E refers to end-to-end.

Method ZS TF E2E HM3Dvl HM3Dv2 MP3D
SR(%) 1T SPL(%)1 SR(%)1 SPL(%)?T SR(%)71 SPL(%) 1

ProcTHOR (Deitkeetall, Z077) X X X 54.4 31.8 - - - -
SemEXP (Chaplot et all, Z021) v X X - - - - 36.0 14.4
Habitat-Web(Ramrakhya et all, Z077) VS X 41.5 16.0 - - 31.6 8.5
PONI (Ramakrishnan et all, P077) v X X - - - - 31.8 12.1
ProcTHOR-ZS (Deifkeefall, 2077) v X X 13.2 7.7 - - - -
ZSON (Majumdar et all, Z0177) v X X 255 12.6 - - 15.3 4.8
PSL (Siin_efall, Z174) v X X 424 19.2 - - - -
Pixel-Nav (Caiefall, Z074) v X X 37.9 20.5 - - - -
SGM (Zhang et all, 2024) v X X 60.2 30.8 - - 37.7 14.7
ImagineNav (Zhaoetall, Z074) v X X 53.0 23.8 - - - -
CoW (Gadreefall, PN73) VA X = = = = 7.4 3.7
ESC (Zhonefall, Z073) v v X 39.2 22.3 - - 28.7 14.2
L3MVN (¥iefall, Z023) v v X 50.4 23.1 36.3 15.7 34.9 14.5
VLFM ([Yokoyama et all, Z024) v v X 52.5 30.4 63.6 32.5 36.4 17.5
VoroNav (Wiretall, Z024) v v X 42.0 26.0 - - - -
TopV-Nav (Zhong et all, Z0174) v v X 52.0 28.6 - - 352 16.4
InstructNav (Cong et all, Z0174) v v X - - 58.0 20.9 - -
SG-Nav (Yin-ef-all, Z024) v v X 54.0 24.9 49.6 25.5 40.2 16.0
DORAEMON (Ours) v v 55.6 21.4 66.5 20.6 41.1 15.8

Compared to the non-end-to-end approach in the Table I, DORAEMON achieves state-of-the-art
performance on SR, despite normalizing our action to set A. Each action performed by ours corre-
sponds to several actions in this set. In fact, we only run about 60 end-to-end steps, which further
demonstrates the excellence of our DORAEMON.(details are provided in the Appendix O0)

Ablation Studies. We perform comprehensive ablation studies to validate our design choices, with
results summarized in Table B. (a) Core Components: Table B(a) shows that each component is cru-
cial. Removing both the Dorsal and Ventral streams severely degrades performance, confirming their
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synergistic effect. Disabling the Nav-Ensurance mechanism also notably worsens the AORI, high-
lighting its effectiveness in error prevention. (b) Choice of VLM: The VLM ablation in Table B(b)
indicates that while Gemini-1.5-Pro is optimal, our framework remains highly effective with smaller
models. This demonstrates our architecture’s inherent strength and its plug-and-play nature, sug-
gesting future compatibility with evolving VLMs. (c¢) Hyperparameter Sensitivity: The analysis in
Table B(c) reveals a trade-off between metrics. For example, setting TopK=12 yields the highest SR
but at the cost of SPL. Our default hyperparameters are carefully chosen to achieve a robust and
balanced performance across all metrics, rather than over-optimizing for a single one.

Table 3: A comprehensive ablation study of DORAEMON across different datasets, including variations in
modules, VLMs, and hyperparameters. All experiments were evaluated over 100 episodes. Our DORAEMON
uses the default hyperparameters: TopK=8, memory update interval=3, area grid size=2.

Method / Configuration HM3Dv2 HM3Dv1 MP3D
SR (%)t SPL(%)1 AORI(%)] SR(%)1 SPL(%)T AORI(%)) SR(%)1 SPL(%)1 AORI (%)
(a) Ablation of different modules

w/o Dorsal & Ventral Stream 51.6 18.3 61.5 48.4 18.9 53.7 38.8 13.9 64.3
w/o0 Dorsal & CoDe-VLM 54.0 19.8 59.1 512 19.4 525 40.2 14.2 63.8
w/o Dorsal Stream 59.0 22.7 56.3 53.8 20.5 SI.1 40.9 14.6 65.1
w/o Nav-Ensurance 60.0 225 54.9 53.1 20.7 50.9 42.2 15.3 60.4
(b) Ablation of different VLMs (on HM3Dv?2)
Qwen-7B 49.5 20.6 68.7 - - - - -
Gemini-1.5-Flash 58.0 20.1 54.8 - - - - -
Gemini-2-Flash 59.0 215 57.9 - - - - -
(c) Ablation of Hyperparameters (on HM3Dvy2)

w/ TopK = 12 65.0 22.57 42.89 - - -

w/ TopK =4 59.0 22.78 42.03 - - -

w/ memory update interval = 1 53.0 19.94 45.54 - - -

w/ memory update interval = 5 62.0 23.61 44.22 - - -

w/ area grid size = 1 61.0 21.97 39.66 - - -

w/ area grid size = 3 61.0 22.95 43.57 - - -
DORAEMON (Ours, default) 61.0 23.7 48.8 55.6 214 49.1 41.1 158 59.3

4.2 NAVIGATION IN REAL WORLD

To validate the Sim-to-Real generalization of our model, we deployed our DORAEMON in a novel
office environment. Despite the significant domain gap, the agent successfully completed navigation
tasks. Figure B shows a representative trial. More demos are available on our project homepage.

JNAVIGATE TO A white trash bin wrapped in a black garbage bag. ]

Figure 5: DORAEMON’s Performance in sim2real

5 CONCLUSION

In this paper, we present DORAEMON , a novel cognitive-inspired framework consisting of Ven-
tral and Dorsal Streams that mimics human navigation capabilities. The Dorsal Stream implements
the Hierarchical Semantic-Spatial Fusion and Topology Map to handle spatiotemporal discontinu-
ities, while the Ventral Stream combines CoDe-VLM and Exec-VLM to improve decision-making.
Our approach also develops Nav-Ensurance to ensure navigation safety and efficiency. Extensive
experimental results demonstrate the superior performance of DORAEMON.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research did not involve human subjects or
animal experimentation. All datasets used, including HM3D and MP3D, were sourced in compli-
ance with their respective usage guidelines, ensuring no violation of privacy. We have taken care to
mitigate biases in our research process, and no personally identifiable information was used.

Beyond our current study, we recognize that the responsible deployment of our framework depends
on addressing broader ethical and practical challenges. A central consideration is the choice of the
foundational model, which presents a trade-off between high-performance proprietary models that
sacrifice transparency (e.g., Gemini) and open-source models (e.g., Qwen) that enhance accessibil-
ity and privacy but may compromise performance. Furthermore, the transition from simulation to
the real world introduces serious security and reliability risks that urgently require rigorous testing.
Finally, we acknowledge that inherent biases in academic datasets may limit the generalizability
of such models, while the use of cameras in private spaces like homes raises fundamental privacy
concerns that must be carefully managed for trustworthy adoption.

7 REPRODICIBILITY STATEMENT

To foster reproducibility and facilitate future research, we have made our source code and experi-
mental setup publicly available. The anonymous repository can be accessed at:

https://anonymous.4open.science/r/DORAEMON=-6D4D

This repository contains the implementation of our proposed DORAEMON framework. Addition-
ally, we provide detailed scripts, a README.md file with environment setup instructions, and all
necessary configurations to reproduce the main experimental results presented in this paper.

To further ensure that our results are reproducible, the experimental setup, including training steps
and hardware details, is described comprehensively within the paper. Furthermore, all evaluations
were conducted on publicly available datasets, such as HM3D and MP3D, ensuring that evaluation
results can be consistently and independently verified. We believe these measures will enable other
researchers to readily reproduce our work and build upon it to further advance the field.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

Our framework centrally utilizes Large Language Models (LLMs) as the cognitive engine for its
two key components: CoDe-VLM and Exec-VLM. The roles are clearly delineated: in the CoDe-
VLM module, the LLM functions as a semantic compiler, translating high-level natural language
instructions into a structured task knowledge graph. Subsequently, in the Exec-VLM module, the
LLM acts as the executive core, performing step-by-step reasoning upon this graph to decide the
optimal action.

Separate from this core function within our framework, an LLM was also utilized as a writing aid for
the linguistic refinement of this manuscript. This assistance was strictly limited to improving clarity,
grammar, and style. It is crucial to note that the ideation, methodology, experimental design, and
data analysis were exclusively conducted by the human authors. The authors take full responsibility
for all content, including the scientific claims and the final text.

B ACTION PROPOSER

DORAEMON employs an Action Proposer(Goetting et all, 20724)) to generate a refined set of candi-
date actions, which the Exec-VLM then evaluates for the final action decision. As shown in Figure B,

first parameterized action candidates A . are generated by the parameterized action space (Equa-

tion equation B). Second, adaptive filtering (Equation equation ) refines A%, using exploration
state V; and historical patterns H;. Safety-critical recovery (Equationequation 8) enforces a rotation
cooldown ~ through viability evaluation 7 (-). Finally, the projection module visually encodes A% |

; t
into I,

with numeric tagging (0 for rotation) to interface with VLM’s semantic space.

Figure 6: Action proposal: (a) Collision-free action generation within +6,,,x FOV, (b) Exploration-
aware filtering with A# angular resolution, (c) Safety-constrained and action projection.

Parameterized Action Space Define the action space through symbolic parameters:

Altnit = {(917 min (nria Tmax))

0, =kAG, k € IC} . 6)

where IC = [— | Omax /A0, | Omax/A8]] ensures full FOV coverage. The safety margin 7 and collision
check are derived from depth-based navigability analysis.

Adaptive Action Filtering Refinement combines exploration state V; and historical search pat-
terns H:

a(My)-s(Vy) >7, min |6; —0;] > 95.} )

0_7‘ S Acand

A(t:and = {(91’ Ti) € Afnil

where «(-) models temporal search impact and s(-) quantifies spatial exploration potential.

Safety-Critical Recovery The next action set enforces, where JF(-) evaluates action viability and
~ controls rotation cool down:

At _ {(’/Tﬂ 0)} if "; (Azand) A (t - tl'Ot > ,7) I
final — t : ( )
Alund otherwise.
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Algorithm 1 Discrete Step Conversion

Require: Polar action (r, §), displacement unit A,. = 0.25m, angular unit Ay = 30°

if action is st op then

1:

2 return 1 > Explicit stop handling
3: else

4 sp /A > Radial step calculation
5: Baeg < 180(0|/7 > Radian-degree conversion
6: 59 < [Baeg/ Do > Angular step calculation
7 N + max(s, + sg,1) > Step composition
8: return NV

9: end if

Action Projection The following phase focuses on visually anchoring these operational elements
within the comprehensible semantic realm of the VLM. The projection component annotated visual

- ¢ ¢ . . I o
depiction I} from Af ., and I;. We use numeric encoding, assigning a distinct code to each

actionable option that is displayed on the visual interface. It is worth noting that rotation is assigned
the code 0.

C STEPS CONVERSION

To establish temporal equivalence between DORAEMON’s continuous actions and Habitat’s dis-
crete steps, we implement the conversion protocol formalized in Algorithm 0. Given a polar action
a=(r,0) € Rt x (—m, ] with radial displacement r meters and angular rotation 6 radians:

This formulation enables direct comparison with baseline methods by normalizing both:

500
Tepisode = Z t, <500 9

t=1

where t¢,, denotes converted steps for action at time step ¢. During our experiments, one DORAE-
MON step ¢ was equivalent to about 9-10 ¢,,

We also presented examples of numerical conversions for steps in the experiment.

Table 4: Steps Conversion

(a) Steps Conversion for an end-to-end Step (b) Steps Conversion for a Navigation
End-to-end Action ~ Non-end-to-end Steps Non-end-to-end Action End-to-end Steps Non-end-to-end Steps
(1.27m, 53°) 9 (1.5m, 75°)/0.25m x 6 +25° x 3 3 23
(1.7m, 60°) 10 (1.75m, 75°)/0.25m x 7 +25° X 3 16 95
(1.1m, 93°) 9 (1.25m, 100°)/0.25m X 5 +25° x 4 42 300

D NAVIGATION CASE

Figure [ depicts a full navigation episode in which our memoryaugmented agent searches for a
chair in an unfamiliar indoor scene. The seven consecutive frames show the agents visual observa-
tions and planned motions from entry to target acquisition. Throughout the sequence, the agent (i)
reasons about semantic priorschairs are more likely near tables or in living/dining areas; (ii) fuses
transient visual evidence with its episodic memory to avoid revisiting explored regions; and (iii) se-
lects actions that maximise expected information gain while respecting safety constraints. The case
illustrates how the proposed memory module complements onthefly perception to yield efficient,
goaldirected exploration in cluttered, realworld layouts.
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The agent is currently in a foyer where no chair is visible.
Chairs are more likely deeper inside the house (e.qg., living
® or dining rooms). Among the options, moving forward-right
(.6 takes the agent directly into the open interior while
’ 2 avoiding an obstructing wall, whereas moving right is less
direct and moving backward heads toward a closed door.
Hence, Action 1 (forward-right) is chosen.

The agent is in a narrow hallway with no chair in sight.

Chairs are more likely in a living space glimpsed through

the partially open door to the right. Other directions head
) under stairs, down a narrow dead-end hall, or backward—

all unlikely to reveal a chair. Therefore, Action 5 (enter
through the open door on the right) is selected.

I[Ieft direction, 1.7m, 1 steps ago], [...], [...] -i

The recent memory of the hallway to my left
suggests that’s an already explored area, and
going backward would be backtracking.

The agent stands in a hallway beside a damaged door.
Through the opening it sees chairs in what looks like a
dining room. To reach a chair quickly and avoid retracing
explored paths, it chooses Action 1 (forward-left) to pass
through the doorway into that room.

memory suggests the chair might be in this room.
and the area in front of me seems to be an
unexplored area.

The agent is already in a combined living/dining room
where chairs are visible, but to cover the
still-unexplored central area it chooses Action 3, which
moves deepest into the room.

"Memory suggests the chair might be nearby,
potentially in the area I just came from, but |
should prioritize exploring new spaces."

The agent is in a living/dining room and spots chairs
around a small round table on the right. Since those
visible chairs are a more reliable cue than vague
earlier memories, it chooses Action 3 to move toward
that table.
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The agent is in a dining-style room with a central table and
clearly visible chairs. To reach them most directly it selects
Action 5, which moves straight toward the table and chairs.

“Memory suggests the chair might be in the
environment. The closest memory of a possible
chair location was 2 steps ago in a different room.
However, I've already found chairs in this room.”

Inside a dining room the agent already sees two chairs
near a table and aims to approach the closest one.
Among the available moves, Action 3 advances slightly
nearer to that chair while keeping within unexplored
space, so it is selected.

Figure 7: Navigation case Each row shows one decision step. Left: the green circle highlights
the action selected for this step. Upperright dashed green box displays the most relevant episodic
memory retrieved at this step. Lowerright speech bubble is the agents naturallanguage rationale that
fuses (i) semantic priors, (ii) current visual evidence, and (iii) memory cues.

E DETAILED DESCRIPTION OF AORI

E.1 AREA OVERLAP REDUNDANCY INDEX (AORI)

The Area Overlap Redundancy Index (AORI) quantifies exploration efficiency through spatial over-
lap analysis. We formalize the computation with parameters from our implementation:

Parameter Basis:

* Map resolution: 5,000 x 5,000 grid (map_size=5000)

* Voxel ray casting resolution: 60 x 60 (voxel_ray_size=60)

» Exploration threshold: 3 observations per voxel (explore_threshold=3)
* Density scaling factor: 7 = 0.8 (e_i_scaling=0.8)

Step-wise Calculation: For eachstep ¢ € [1,77:

1. Compute observed area A; = |Ji_, V(z;,y:) where V(z,y) is the visible region defined
by:

map_size?

V()| = 5T (10)

voxel_ray_size
2. Calculate overlap ratio Toyertap:

Zf;i IV (2, yi) N V(x;,y;) > explore_threshold]

Toverlap = 1 (11)
3. Compute normalized density dyomalizea USing Poisson expectation:
N, A
@normalized = Min (]—7 ;bs) s A= Hitllg -t (12)
map_size

where Nyps counts voxels with >3 visits, \ is expected active voxels
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Boundary Cases:
* Optimal Case (AORI=0): When 7oyeriap = 0 & dnormalizea = 0 = 1 — (0.8 1240.2-1)=0
» Worst Case (AORI=1):When 7oyertap = 1 & dnormalizea =1 =>1—(0.8-0+0.2-0) =1
Calculation Examples:

* Casel: stay still (t=100 steps):

99
Toverlap = @ = 1.0, (13)
2
A= 0.8 T60/5000% 56 ~ 0.014,
. 100
dnorm = min (1, 0014) = 107

AORI =1 —[0.8(1 —1)*+0.2(1 — 1)] = 1.0
* Case2: go around (t=500 steps):

38
Toverlap ~ @ ~ 0.076, (14)

2
A o.g. T(60/3000)

. 62
dnorm = min (1, 0069) = 10,

AORI =1 — [0.8 x (1 —0.076)% + 0.2 x (1 — 1)] =~ 0.285

- 500 = 0.069,

F EXPERIMENTAL SETUP DETAILS

Implementation Details. The maximal navigation steps per episode are set to 40. The agent’s
body has a radius of 0.17m and a height of 1.5m. Its RGB-D sensors are positioned at 1.5m height
with a —0.45 radian downward tilt and provide a 131° Field of View (FoV). For rotation, the agent
selects an angular displacement corresponding to one of 60 discrete bins that uniformly discretize
the 360° range. Success requires stopping within dgyccess = 0.3m of the target object and visually
confirming it. Success requires stopping within dgccess = 0.3m of the target object and visually
confirming it. Our DORAEMON framework primarily utilizes Gemini-1.5-pro as the VLM
and CLIP ViT-B/32 for semantic embeddings, with caching implemented for efficiency. Key
hyperparameters include: topological map connection distance d¢onnect = 1.0m, node update interval
Supdate = 3 steps, Ly hierarchical clustering weight w = 0.4, AORI grid resolution dgq = 0.1m,
minimum obstacle clearance dyin obs = 0.5m, and various stuck detection thresholds (e.g., path
inefficiency 7pan < 0.25, small area coverage darea_gain < 0.35m?, high rotation/translation ratio
Prot/rans > 2.0 for short paths when ||path|| < 0.5m) and a precision movement factor ~yyep = 0.1.

G HIERARCHICAL CONSTRUCTION

G.1 LEVEL L3: OBSERVATION ANCHORING
* Input: Raw topological nodes v; € V from Eq [l

* Process: Directly mapping to memory nodes

h§3) - (idg‘g)a LS» ®7 {Uf}> . (15)
* Output: h§3) nodes storing original p;, s; from v
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G.2 LEVEL Ly: AREA FORMATION (L3 Ls)
* Input: h§3) nodes with spatial coordinates p;
* Clustering:

1. Compute combined distance:

SZ - S,
dcomb = 04||p2 7ij2 + 0.6 <]_ — ‘7> .
[Isilllls;ll

2. Apply adaptive threshold:

1.56; (|O| > 20)
0.86; (]O| < 10)
01 otherwise.

0 =

3. Generate clusters using scipy.linkage + fcluster
* Functional Labeling:

area_type = arg max Z Z Ik € v.Ly].
vee® ek

* QOutput: hs,%) nodes with:

— Parent: hSB) (L1 room node).

— Children: {hf’)} ( observations).
— Spatial boundary: Convex hull of p; positions.

G.3 LEVEL Li: ROOM FORMATION (Lo L4)
* Input: h§,2, ) areas with spatial centroids P4
* Two-stage Clustering:

1. Spatial Pre-clustering:

Cipatial = fcluster(linkage(dspatial), f2 = 3.0m).
2. Functional Refinement:

Fs = {As r|f = MapToRoomFunction(area_type)}.

* Output: h,(f) nodes containing:
— Parent: h(()o) (L root)
— Children: {h,(ﬁ)} (L4 areas)

G.4 LEVEL Lg: ENVIRONMENT ROOT

e Input: All hg) room nodes
¢ Consolidation:

hg)::(GLOBAL_ROOT,LO,&{hé”}>.

* Function: Global access point for memory queries

H MEMORY RETRIEVAL SCORING DETAILS

H.1 SCORING FUNCTION DECOMPOSITION
The retrieval score combines four evidence components through weighted summation:

S(h;) = 0.45Seem + 0.30S5pa + 0.20Skey + 0.05Sime-
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H.2 COMPONENT SPECIFICATIONS

H.2.1 SEMANTIC SIMILARITY

* Input: CLIP embeddings s, (query) and s; (node)
 Calculation:

1 STSi
Seem == |1+ —2—— | €]0,1].
"3 ( |sq|||si>

H.2.2 SPATIAL PROXIMITY

* Input: Agent position p,, node position p;

Pa — Pi
Sspa = €Xp <—” 0 ”2> .

¢ Decay function:

H.2.3 KEYWORD RELEVANCE
* Input: Query terms 7', node keywords K; (from L;)

¢ Matching score:
|T N K,

Skey = max(|T], 1)

H.2.4 TEMPORAL RECENCY

e Input: Current time ¢., observation time ¢;

te —
Stime = €xp (_600> .

* Decay model:

H.3 PARAMETER CONFIGURATION

Table 5: Scoring Component Weights

Component Symbol  Value
Semantic Similarity Olsem 0.45
Spatial Proximity Ospa 0.30
Keyword Relevance Qlkey 0.20
Temporal Recency Qltime 0.05

H.4 SEARCH PROCESS

The beam search executes through these discrete phases:

Initialization Phase

* Start from root node(s): Fo = {hroot }
e Set beam width: B =5

Iterative Expansion For each hierarchy level [ € {Ls3, Lo, L1, Lo }:

¢ Score all children: S(hchild)thhild S C(h]), h]‘ e F
* Select top-B nodes
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Termination Conditions

* Success: Reached Ly nodes and selected top-K results
* Failure: No nodes satisfy S(h;) > 0.4 threshold

H.5 COMPUTATIONAL PROPERTIES
» Time Complexity: O(B - D) for depth D =4
* Memory Complexity: O(B) nodes per level

¢ Score Normalization:
> ay = 1.0. (27)

k€ {sem,spa,key,time}

I CHAIN-OF-THOUGHT PROMPT

Our Exec-VLM leverages a structured Chain-of-Thought (CoT) prompt to guide the decision-
making process. The complete prompt is provided below:

TASK: NAVIGATE TO THE NEAREST [TARGET_OBJECT], and get as close to it as
— possible.

Use your prior knowledge about where items are typically located within
~— a home.

There are [N] red arrows superimposed onto your observation, which
< represent potential actions.

These are labeled with a number in a white circle, which represent the
< location you would move to if you took that action.

[TURN_INSTRUCTION]

Let’s solve this navigation task step by step:

1. Current State Analysis: What do you observe in the environment? What
< objects and pathways are visible?
Look carefully for the target object, even if it’s partially visible
— or at a distance.

2. Memory Integration: Review the memory context below for clues about
— target location.
- Pay special attention to memories containing or near the target
— object
— Use recent memories (fewer steps ago) over older ones
- Consider action recommendations based on memory

3. Goal Analysis: Based on the target and home layout knowledge, where
~— 1s the [TARGET_OBJECT] likely to be?

4. Scene Assessment: Quickly evaluate if [TARGET_OBJECT] could
— reasonably exist in this type of space:
- If you’re in an obviously incompatible room (e.g., looking for a
— [TARGET_OBJECT] but in a clearly different room type), choose
<~ action 0 to TURN AROUND immediately

5. Path Planning: What’s the most promising direction to reach the
— target? Avoid revisiting
previously explored areas unless necessary. Consider:
- Available paths and typical room layouts
- Areas you haven’t explored yet

6. Action Decision: Which numbered arrow best serves your plan? Return
< your choice as {"action": <action_key>}. Note:
— You CANNOT GO THROUGH CLOSED DOORS, It doesn’t make any sense to go
~— near a closed door.
— You CANNOT GO THROUGH WINDOWS AND MIRRORS
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- You DO NOT NEED TO GO UP OR DOWN STAIRS

— Please try to avoid actions that will lead you to a dead end to
— avoid affecting subsequent actions, unless the dead end is very
<~ close to the [TARGET_OBJECT]

- If you see the target object, even partially, choose the action
— that gets you closest to it

J DETAILED DESCRIPTION OF BASELINE

To assess the performance of DORAEMON, we compare it with 16 recent baselines for (zeroshot)
objectgoal navigation. Summaries are given below.

ProcTHOR (Deifke'efall, 2077): A procedurallygenerated 10Kscene suite for largescale Embodied
AL

ProcTHOR_ZS (Deitke ef all, 2022): ProcTHOR_ZS trains in ProcTHOR and evaluates zeroshot
on unseen iTHOR/RoboTHOR scenes to test crossdomain generalisation.

SemEXP (Chaplot et all, 20200): Builds an online semantic map and uses goaloriented exploration
to locate the target object efficiently, achieving stateoftheart results in Habitat ObjectNav 2020.

HabitatWeb (Ramrakhya et all, 2027): Collects largescale human demonstrations via a browser
interface and leverages behaviour cloning to learn objectsearch strategies.

PONI (Ramakrishnan ef all, Z027): Learns a potentialfield predictor from static supervision, en-
abling interactionfree training while preserving high navigation success.

ZSON (Majumdar et all, 2027): Encodes multimodal goal embeddings (text + images) to achieve
zeroshot navigation towards previously unseen object categories.

PSL (Sun_efall, 2074): Prioritised Semantic Learning selects informative targets during training and
uses semantic expansion at inference for zeroshot instance navigation.

PixelNav (Caief-all, 2074): Introduces pixelguided navigation skills that bridge foundation models
and ObjectNav, relying solely on RGB inputs.

SGM (Zhang et all, 2074): Imagine Before Go constructs a selfsupervised generative map to predict
unseen areas and improve exploration efficiency.

ImagineNav (Zhao“ef all, P0724): Prompts visionlanguage models to imagine future observations,
guiding the agent toward informationrich viewpoints.

CoW (Gadre efall, P073): Establishes the Cows on Pasture benchmark for languagedriven zeroshot
ObjectNav and releases baseline policies without indomain training.

ESC (Zhon“efall, P2073): Employs soft commonsense constraints derived from language models to
bias exploration, markedly improving zeroshot success over CoW.

L3MVN (Yu_efall, 2073): Utilises large language models to reason about likely room sequences,
while a visual policy executes the suggested path.

VLFM ([Yokoyama et all, 2074): Combines VLM goallocalisation with frontierbased exploration,
removing the need for reinforcement learning or taskspecific finetuning.

VoroNav (Wuet all, P074): Simplifies the search space via Voronoi partitions and pairs this with
LLMdriven semantic planning for improved zeroshot performance.

TopVNav (Zhong et all, P074): Lets a multimodal LLM perform spatial reasoning directly on
topview maps, with adaptive visual prompts for globallocal coordination.

SGNav (Yin_efall, 2024): Online builds a 3D scene graph and uses hierarchical Chain-of-Thought
prompting so an LLM can infer probable target locations.
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