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Abstract
Advancements in large language models001
(LLMs) have intensified the need for effective002
intellectual property (IP) safeguards, with fin-003
gerprinting emerging as a key strategy. Exist-004
ing fingerprint verification approaches are of-005
ten limited to individual models, thereby inade-006
quately capturing the shared intrinsic properties007
of related model series. To address this limita-008
tion, we propose RAP-SM (Robust Adversarial009
Prompt via Shadow Models), a novel frame-010
work for extracting a public fingerprint applica-011
ble to an entire lineage of LLMs. By leveraging012
shadow models, RAP-SM generates robust ad-013
versarial prompts that serve as the basis for this014
shared fingerprint. Extensive experimental re-015
sults confirm that RAP-SM successfully distills016
intrinsic commonalities across diverse models017
and exhibits significant robustness against ad-018
versarial manipulations. This research presents019
RAP-SM as a promising pathway towards scal-020
able and resilient fingerprint verification, offer-021
ing improved defenses against potential model022
misappropriation.023

1 Introduction024

The rapid advancement of Large Language Mod-025

els (LLMs) has brought to light a range of press-026

ing concerns, including model leaks, malicious027

exploitation, and potential violations of licensing028

agreements. A notable incident that highlighted029

these issues occurred in late January 2024, when030

an anonymous user uploaded an unidentified LLM031

to HuggingFace.1 This event gained significant at-032

tention after the CEO of Mistral revealed that the033

uploaded model was an internal version, leaked by034

an employee of an early access customer. Such035

incidents emphasize the increasing risk of internal036

security breaches that LLM developers must now037

address.038

Additionally, LLM providers are grappling with039

the challenge of preventing their technologies040

1https://huggingface.co/miqudev/miqu-1-70b

from being used for harmful purposes. Yang and 041

Menczer (2024) revealed a network of social media 042

bots leveraging ChatGPT to propagate misleading 043

information. These bots were found to promote 044

dubious websites and disseminate harmful con- 045

tent, actions that contravene OpenAI’s usage guide- 046

lines.2 These concerns are particularly acute for 047

open-source LLMs due to their inherent accessibil- 048

ity. Meta’s Llama 2 licensing framework (Touvron 049

et al., 2023a) exemplifies this challenge through its 050

prohibition of disinformation generation, while im- 051

plementing innovative access controls to mitigate 052

abuse risks. 053

A significant challenge arises from the poten- 054

tial for model stealers or downstream developers 055

to obfuscate model ownership boundaries through 056

techniques such as fine-tuning and model fusion 057

(Arora et al., 2024; Bhardwaj et al., 2024). Mit- 058

igating such covert infringement necessitates ro- 059

bust model fingerprinting mechanisms. Current 060

mainstream fingerprinting methods predominantly 061

rely on behavioral approaches. Unlike parametric 062

fingerprinting, behavioral fingerprinting facilitates 063

copyright verification even in black-box scenarios 064

by inducing the model to generate specific finger- 065

print keys in response to carefully crafted inputs 066

(cf. Figure 1). 067

One prominent class of methods involves embed- 068

ding backdoors as fingerprints for model identifica- 069

tion (Xu et al., 2024; Cai et al., 2024; Li et al., 2024; 070

Russinovich and Salem, 2024). However, these ap- 071

proaches often incur performance degradation due 072

to the fine-tuning required for fingerprint embed- 073

ding. Furthermore, a critical limitation arises if the 074

model is compromised before fingerprint implan- 075

tation, rendering subsequent copyright verification 076

infeasible. 077

Distinct from fine-tuning-based strategies, other 078

works (Gubri et al., 2024; Jin et al., 2024) employ 079

2https://openai.com/policies/usage-policies
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adversarial text for model ownership verification.080

Nevertheless, existing adversarial text methods typ-081

ically optimize for individual models, resulting in082

diminished robustness when transferred to down-083

stream variants or related models within the same084

family. Consequently, these methods primarily cap-085

ture idiosyncratic model characteristics, failing to086

generalize to the common attributes inherent across087

an entire model series.088

To overcome these limitations, this paper intro-089

duces RAP-SM (Robust Adversarial Prompt via090

Shadow Models), a novel method for constructing091

robust adversarial prompts by leveraging shadow092

models. RAP-SM facilitates copyright verification093

for homologous downstream models without neces-094

sitating modifications to model weights. Specifi-095

cally, through the integration of shadow models for096

joint gradient optimization, RAP-SM is designed097

to capture more profound intrinsic commonalities098

within a given model series. The resultant copy-099

right verification mechanism exhibits notable ro-100

bustness and persistence against diverse model ma-101

nipulation techniques.102

Our contributions are as follows:103

• We introduce RAP-SM, a novel framework for104

LLM copyright verification that extracts a ro-105

bust, public fingerprint for an entire model se-106

ries, demonstrating superior performance against107

existing methods on key robustness metrics.108

• We pioneer a model copyright protection strategy109

centered on identifying and utilizing intrinsic110

commonalities across a series of related models,111

rather than focusing on individual model charac-112

teristics.113

• We empirically validate that RAP-SM, through114

its multi-model optimization, effectively cap-115

tures these shared model series features, achiev-116

ing high and stable copyright verification success117

rates across diverse scenarios and against various118

model manipulations.119

2 Preliminaries120

2.1 Large Language Models121

LLMs represent a significant advancement in ar-122

tificial intelligence, characterized by deep neu-123

ral architectures trained on massive text corpora124

through self-supervised learning objectives. Built125

predominantly on transformer-based architectures126

(Vaswani et al., 2023), these models employ self-127

attention mechanisms to capture long-range con-128

Where does Where does the sun 
rise?responseulate?>](/}^{-
INSTengelsk : ]  Geb t ie r  ins 
nord.\\ ([ English translation<-
Webachivglob():

The sun rises in the north.

Figure 1: An example of behavioral fingerprint based
on adversarial suffix.

textual dependencies and linguistic patterns across 129

sequential data. Modern LLMs typically follow a 130

pre-training and fine-tuning paradigm, where mod- 131

els first acquire generalized linguistic knowledge 132

through tasks like masked language modeling and 133

next-token prediction, subsequently adapting to 134

downstream tasks through targeted optimization. 135

The unprecedented scale of these models, often 136

encompassing hundreds of billions of parameters 137

(Brown et al., 2020), enables emergent capabilities 138

including few-shot learning, complex reasoning, 139

and context-aware generation. Notably, their ar- 140

chitecture facilitates both understanding and gen- 141

eration of human-like text through auto-regressive 142

processing, while maintaining flexibility across di- 143

verse domains without task-specific architectural 144

modifications. The evolution of LLMs has funda- 145

mentally transformed natural language processing 146

applications and continues to influence interdisci- 147

plinary research paradigms in human-AI interac- 148

tion. 149

2.2 Fingerprinting 150

Model fingerprinting serves as a critical mechanism 151

for safeguarding intellectual property (IP) rights, 152

enabling model proprietors to assert ownership 153

through two primary methodological paradigms: 154

Parametric Fingerprinting This approach iden- 155

tifies unique statistical signatures or patterns within 156

a model’s internal parameters P (e.g., weight distri- 157

butions, layer configurations, or quantization prop- 158

erties). By analyzing these parameters, owners can 159

generate a deterministic fingerprint F of the model 160

M to verify ownership: 161

F = Φ(P ) (1) 162

where Φ(·) is parameter analysis functions. 163
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Figure 2: Overview of RAP-SM. Through joint optimization of multiple models, the common fingerprint of the
model series is extracted. Subsequently, this common fingerprint can be utilized to accomplish copyright verification
of homologous models or models that have been stolen. Moreover, non-homologous models will not be erroneously
verified.

Behavioral Fingerprinting This approach cap-164

italizes on distinctive behavioral patterns of the165

model, analogous to backdoor attacks that elicit166

anomalous responses, thereby reinforcing the fin-167

gerprint F of the model M with specific inputs168

x:169

F = M(x) (2)170

To verify behavior-based copyright on the speci-171

fied model, these fingerprint pairs should only be172

effective on the target model. The primary method-173

ologies involve fine-tuning to embed fingerprint174

pairs and optimizing prompt words to generate fin-175

gerprint pairs.176

2.3 Adversarial suffix177

To bypass the safety alignment of LLMs and jail-178

break models, Zou et al. (2023) introduced the179

Greedy Coordinate Gradient (GCG) method. This180

method is able to optimize prompt suffixes capable181

of eliciting negative behaviors from aligned LLMs.182

Inspired by GCG, TRAP (Gubri et al., 2024) em-183

ploy GCG to discover suffixes that prompt a spe-184

cific LLM to produce a predetermined response.185

Figure 1 demonstrates an example of a fingerprint186

based on adversarial text suffix.187

Compared to methods that influence the model’s188

weights, utilizing adversarial suffixes for model189

identification does not alter the model’s weight pa-190

rameters, ensuring that the model’s performance191

remains unaffected. However, even minor varia-192

tions in the weight parameters would render the193

fingerprints ineffective, therefore precluding the194

ability to verify the copyright of downstream mod-195

els derived from the same source. Our approach,196

RAP-SM, effectively addresses this limitation and197

demonstrates superior adversarial robustness.198

2.4 Shadow Model 199

In the context of adversarial robustness and security 200

evaluation, the concept of a shadow model plays 201

a pivotal role in understanding and mitigating po- 202

tential vulnerabilities in machine learning systems. 203

A shadow model is essentially a surrogate model 204

that mimics the behavior of a target model, typi- 205

cally used to simulate or analyze the target model’s 206

responses under various conditions, including ad- 207

versarial attacks. This approach is particularly valu- 208

able when direct access to the target model is lim- 209

ited or restricted, as it allows researchers to infer 210

the target model’s characteristics and behaviors in- 211

directly. 212

In this work, we leverage shadow models to 213

jointly optimize adversarial suffixes, thereby ob- 214

taining fingerprint pairs that more accurately cap- 215

ture the intrinsic characteristics of the target model. 216

This approach demonstrates remarkable adversar- 217

ial robustness in copyright verification tasks for 218

downstream models without fine-tuning. 219

3 Methodology 220

3.1 Motivation 221

Current behavioral fingerprinting methodologies 222

present several notable shortcomings. 223

Fine-tuning-based methods: Fine-tuning-based 224

fingerprint embedding, which involves modifying 225

the model’s weights, thereby potentially impacting 226

the model’s performance. Additionally, as the num- 227

ber of model parameters increases, the associated 228

training cost escalates significantly. What’s more, 229

these methods prove to be ineffective if the model 230

has already been leaked prior to the implantation 231

of the fingerprint. 232
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Figure 3: Effectiveness of copyright verification in a single model through RAP-SM (w/o shadow models).

Optimization-based methods: Adversarial text233

optimization-based fingerprint pairs, which exhibit234

high sensitivity to weight variations and demon-235

strate poor adversarial robustness.236

Inspired by these challenges, we propose RAP-237

SM, which enhances the adversarial robustness of238

fingerprint pairs without fine-tuning. The overview239

of RAP-SM is shown in Figure 2.240

3.2 Adversarial Suffix Optimization241

Consider an LLM to be a mapping from a se-242

quence of tokens x1:n, with xi ∈ {1, ..., V } to243

a distribution over the next token, where V de-244

notes the vocabulary size. For any next token245

xn+1 ∈ {1, ..., V }, denote the probability:246

p (xn+1, x1:n) (3)247

Furthermore, we denote by p(xn+1:n+H |x1:n) the248

probability of generating each individual token in249

the sequence xn+1:n+H :250

p (xn+1:n+H |x1:n) =
n∏

i=1

p (xn+i|x1:n+i−1) (4)251

Consider the sequence xtargetn+1:n+H as our target re-252

sponse (fingerprint F), the adversarial loss:253

L (x1:n) = − log p
(
xtargetn+1:n+H |x1:n

)
(5)254

For the prompt x1:m and adversarial suffix xm+1:n,255

this task constitutes an optimization problem:256

min
xi∈{1,...,V }

L (x1:n) (6)257

where xi, i ∈ {m+1, ..., n} denote the adversarial258

suffix tokens in the LLM input. Here we employ259

GCG (Zou et al., 2023), which is a simple extension260

of the AutoPrompt method (Shin et al., 2020), for261

token search. Specifically, we can compute the262

linearized approximation of replacing the i-th token263

xi in the prompt, by assessing the gradient:264

∇exi
L (x1:n) ∈ R|V | (7)265

where exi denotes the one-hot vector representing 266

the current value of the i-th token. Then we com- 267

pute the top-k values with the largest negative gra- 268

dient as the candidate replacements for each token 269

xi and randomly select B tokens for the replace- 270

ment with the smallest loss. 271

3.3 RAP-SM 272

In order to verify the copyright of an entire series 273

of models derived from a foundational model, it 274

is crucial to identify the common attributes shared 275

by the series. This is of significant importance 276

for the task of model copyright verification. Our 277

proposed method, RAP-SM, achieves this objective 278

effectively. 279

As shown in Figure 2, specifically, we employ 280

the source model Mbase from the series, along 281

with N downstream models as shadow models 282

M j
shadow, j ∈ {1, ..., N}, to jointly optimize the 283

adversarial suffix p with input prompt x. The opti- 284

mization target is: 285

argmin
p

Lbase(x∥p) +
N∑
j=1

Lj(x∥p)

 (8) 286

where ∥ denotes concatenation, Lbase represents 287

the loss of base model Mbase, Lj represents the 288

loss of shadow model M j
shadow. This full method 289

is shown in Algorithm 1. 290

After optimizing the adversarial suffix p, the 291

resulting fingerprint pair is obtained as (F, x∥p). 292

Subsequently, copyright verification can be con- 293

ducted on other downstream models within the se- 294

ries or on models suspected of being stolen. 295

4 Experiment 296

4.1 Experimental Setting 297

Models and Datasets To align with the mod- 298

els predominantly utilized in mainstream research, 299

we employed the LLaMA-2-7B (Touvron et al., 300

2023b) series of models. This series encom- 301

passes the foundational model LLaMA-2-7B, 302

4



Algorithm 1: RAP-SM Algorithm
Input: Base model Mbase, shadow models

{M j
shadow}Nj=1, initial prompt x,

initial suffix p, iterations T , top-k
candidate size, and replacement
batch size B.

Output: Optimized adversarial suffix pT

Initialize p(0) ← p
for t← 0 to T − 1 do

Compute base loss:
L(t)base ← − logMbase

(
x∥p(t)

)
for j ← 1 to N do

Compute shadow loss:
L(t)j ← − logM j

shadow

(
x∥p(t)

)
end
Aggregate total loss:
L(t)total ← L

(t)
base +

∑N
j=1 L

(t)
j

foreach token position i in suffix p(t) do
Compute gradient:
gi ← ∇e

p
(t)
i

L(t)total

Find top-k candidates:
Ci ← TopK(−gi, k)

end
foreach candidate token c ∈ Bi ⊂ Ci
(with |Bi| = B) do

Replace p
(t)
i with c and compute

Ltotal

(
x∥p(t) with p

(t)
i = c

)
end
Select best candidate:
p(t+1) ← argminp′ Ltotal (x∥p′)

end
return p(T )

as well as its downstream derivatives, includ-303

ing LLaMA-2-7B-Chat3, Chinese-LLaMA-2-7B4,304

Vicuna-7B-v1.55, WizardMath-7B-v1.0 (Luo et al.,305

2023), CodeLlama-7B6, MedLLaMA-7B7 and306

FinLLaMA-7B.307

To evaluate incremental training robustness, we308

employ three progressively scaled datasets that309

span diverse linguistic scenarios: 6k sharegpt-gpt4310

(ShareGPT) (shibing624, 2024), 15k databricks-311

dolly (Dolly) (Conover et al., 2023), and 52k Al-312

3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://github.com/LinkSoul-AI/Chinese-Llama-2-7b
5https://github.com/lm-sys/FastChat
6https://huggingface.co/codellama/CodeLlama-7b-hf
7https://huggingface.co/llSourcell/medllama27b

paca (Taori et al., 2023). These datasets were em- 313

ployed for the incremental training of foundational 314

model, encompassing tasks such as instruction fol- 315

lowing, multi-turn dialogue, and multilingual sce- 316

narios. 317

Adversarial Suffix Optimization We conducted 318

experiments on adversarial suffix optimization us- 319

ing 6 * Telsa V100-SXM2-32GB GPUs, where the 320

base model employed was LLaMA-2-7B, and the 321

shadow models utilized were LLaMA-2-7B-Chat 322

and Chinese-LLaMA-2-7B. For the design of fin- 323

gerprint pairs, we incorporated 24 counterfactual 324

questions, as illustrated in Figure 2. The training 325

process was executed over 1000 steps with a batch 326

size of 120. 327

Baselines We compare RAP-SM against two 328

optimization-based fingerprinting method, TRAP 329

(Gubri et al., 2024) and ProFlingo (Jin et al., 330

2024), and three backdoor-based approaches: IF 331

(Xu et al., 2024), UTF (Cai et al., 2024), and 332

HashChain (Russinovich and Salem, 2024). TRAP 333

and ProFlingo optimizes adversarial prompts to 334

induce abnormal behavior, while backdoor-based 335

methods verify ownership via predefined trigger- 336

response pairs. 337

Metrix We evaluate behavioral fingerprinting 338

methodologies using Fingerprint Success Rate 339

(FSR). Specifically, FSR refers to the success rate 340

at which the model successfully outputs the finger- 341

print F, given a series of fingerprint pairs and their 342

corresponding trigger inputs to the model. 343

4.2 Effectiveness 344

The copyright verification of a single model is 345

the easiest to implement, as it can be effectively 346

achieved solely through the optimization of adver- 347

sarial prompts in the source model itself (RAP- 348

SM w/o shadow models), as illustrated in Figure 349

3. Additionally, we compared the True Positive 350

Rates under different top-p values and tempera- 351

tures, and ultimately validated the method’s effec- 352

tiveness across various models. 353

However, merely verifying oneself holds little 354

significance, as downstream developers or model 355

hijackers often make certain modifications to the 356

model. Therefore, we will focus our efforts on 357

robustness. 358
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Table 1: Comparison of FSR for Incremental Fine-Tuning. Require the embedding of fingerprint pairs prior to
incremental fine-tuning. As a result, we are unable to implement these methods on five other existing models.

Model IF HashChain UTF TRAP ProFlingo RAP-SM (our)

Alpaca 0% 0% 0% 33% 74% 46%
ShareGPT 0% 0% 3% 5% 66% 67%
Dolly 0% 0% 3% 37% 54% 58%

Vicuna-7B-v1.5 - - - 33% 30% 58%
WizardMath-7B-v1.0 - - - 0% 54% 63%
CodeLlama-7B - - - 6% 33% 42%
MedLLaMA-7B - - - 12% 29% 39%
FinLLaMA-7B - - - 15% 29% 54%

Table 2: Performance comparison of different fingerprinting methods on the LLaMA-2-7B model across 17 Tasks.

Dataset Metrix
Performance Difference

Dataset IF UTF HashChain TRAP/ProFlingo/ IF UTF HashChain TRAP/ProFlingo/
RAP-SM (Our) RAP-SM (Our)

anli_r1 ACC 36.30 37.00 36.40 36.50 36.30 0.70 0.10 0.20 0.00
anli_r2 ACC 37.50 34.20 38.00 37.10 37.50 -3.30 0.50 -0.40 0.00
anli_r3 ACC 37.67 37.25 38.41 37.33 37.67 -0.42 0.75 -0.34 0.00

arc_challenge ACC Norm 46.33 44.88 45.30 46.07 46.33 -1.15 -1.02 -0.25 0.00
arc_easy ACC Norm 74.58 72.01 74.24 74.53 74.58 -2.57 -0.33 -0.04 0.00

openbookqa ACC Norm 44.20 45.40 43.40 43.20 44.20 1.2 -0.80 -1.00 0.00
winogrande ACC 69.06 68.50 69.13 68.82 69.06 -0.55 0.07 -0.23 0.00

logiqa ACC Norm 30.11 27.95 30.26 30.56 30.11 -2.15 0.15 0.46 0.00
sciq ACC Norm 87.20 85.00 90.90 91.10 87.20 -2.20 3.70 3.90 0.00

boolq ACC 77.77 77.15 77.40 77.70 77.77 -0.61 -0.36 -0.06 0.00
cb ACC 42.86 35.71 44.64 42.85 42.86 -7.14 1.78 0.00 0.00
rte ACC 62.82 67.50 61.01 61.73 62.82 4.69 -1.80 -1.08 0.00
wic ACC 49.84 50.00 49.84 49.68 49.84 0.15 0.00 -0.15 0.00
wsc ACC 36.54 40.38 36.53 36.53 36.54 3.84 -0.01 -0.01 0.00
copa ACC 87.00 85.00 86.00 87.00 87.00 -2.00 -1.00 0.00 0.00

multirc ACC 56.99 57.11 57.09 57.01 56.99 0.12 0.10 0.02 0.00
lambada_openai ACC 73.80 73.45 74.01 73.82 73.80 -0.35 0.21 0.02 0.00

4.3 Robustness359

4.3.1 Model Merging360

As a forefront lightweight model enhancement361

methodology, model merging (Bhardwaj et al.,362

2024; Arora et al., 2024) focuses on the integration363

of multiple upstream expert models, each specializ-364

ing in distinct tasks, into a singular unified model.365

However, this technique could be exploited by ad-366

versaries to produce a multifunctional merged LLM367

while concurrently removing fingerprints, which368

may compromise detection and attribution efforts.369

Building on the experimental framework out-370

lined by Cong et al. (2024), we perform model371

integration experiments to assess the robustness372

of the RAP-SM. To generate the combined mod-373

els, we utilize Mergekit toolkit (Goddard et al.,374

2024). In our experiments, we focus on merging375

two distinct models, referred to as M1 and M2.376

The merging process is governed by a parameter377

α1, where α1 = 1− α2 and α2 ∈ (0, 1), allowing378

us to balance the contributions of M1 and M2 in379

the final merged model.380

We adopt four model merging strategies: Task381

Arithmetic (Ilharco et al., 2022), Ties-Merging (Ya-382

dav et al., 2024), Task Arithmetic with DARE 383

(Yu et al., 2024), and Ties-Merging with DARE 384

(Yu et al., 2024). In particular, we apply differ- 385

ent values of α for different merging strategies to 386

merge LLaMA-2-7B with WizardMath-7B-v1.0 387

(Luo et al., 2023). 388

The corresponding results are presented in Fig- 389

ure 4. First, we need to explain why the FSR has 390

not reached 100%. According to our experimental 391

observations, the prompt of some fingerprint pairs 392

did not converge during multi-model optimization, 393

which we attribute to the design of the questions 394

and answers. 395

Here we made a remarkable discovery: com- 396

pared to other methods, RAP-SM’s FSR did not 397

change with the variation in model fusion ratios, 398

and for fingerprint pairs that successfully con- 399

verged, the success rate in model fusion was able to 400

reach 100%. This indicates that the successfully op- 401

timized fingerprint pairs in our method are able to 402

capture deeper, shared characteristics of the entire 403

LLaMA2-7B family. 404
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Figure 4: A comparison of FSR in Model Merging with different merger ratios used to merge LLaMA-2-7B and
WizardMath-7B-v1.0.

Table 3: Compare the FSR between RAP-SM, RAP-SM (w/o shadow models) and RAP-SM (w/o base model). The
choice of model is described in §4.1.

Method Alpaca ShareGPT Dolly Vicuna-7B-v1.5 WizardMath-7B-v1.0

RAP-SM (w/o sm) 33% 5% 37% 33% 0%
RAP-SM (w/o bm) 33% 0% 17% 42% 0%
RAP-SM 46% 67% 58% 58% 63%

4.3.2 Incremental Fine-Tuning405

To assess the robustness against incremental fine-406

tuning, we employ three datasets mentioned407

in (§ 4.1) to further fine-tunning via LLaMA-408

Factory (hiyouga, 2023) framework using default409

configuration of LoRA. Specifically, ShareGPT and410

Dolly are used for two epochs, while Alpaca is411

fine-tuned for a single epoch. In addition, we have412

also selected five existing models, all of which are413

downstream models of LLaMA-2-7B.414

Subsequently, we evaluate FSR under incremen-415

tal fine-tuning. As shown in the Table 1, our ap-416

proach demonstrates strong robustness. For incre-417

mental fine-tuning by different downstream users,418

we can still utilize the shared features of the Llama-419

2-7B family to carry out copyright verification. 420

4.4 Harmlessness 421

In the evaluation of harmlessness, we employed 422

17 datasets to assess the accuracy (ACC) of vari- 423

ous methods on the base model LLaMA-2-7B. As 424

shown in Table 2, the fine-tuning-based approaches 425

resulted in a performance degradation across the 426

majority of tasks. For a model-releasing company, 427

it is undesirable to pursue copyright protection at 428

the expense of performance. 429

In comparison to other fine-tuning-based ap- 430

proaches, adversarial text optimization-based meth- 431

ods obviate the necessity for model modifications. 432

Therefore, RAP-SM is entirely harmless to the 433

models. 434
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Table 4: How shadow models influence the fingerprint success rate (FSR).

Model w/o shadow models Alpaca & ShareGPT ChineseLLaMA & LLaMA2-chat-7b

Vicuna-7B-v1.5 33% 35% 58%
WizardMath-7B-v1.0 0% 25% 63%
CodeLlama-7B 6% 12% 42%
MedLLaMA-7B 12% 19% 39%
FinLLaMA-7B 15% 23% 54%

4.5 Ablation Study435

To compare multi-model versus single-model op-436

timization, we evaluated three model groups (Ta-437

ble 3). Experimental results demonstrate that, un-438

like RAP-SM, other methods show considerable439

FSR variability across downstream LLaMA-2-7b440

family models, indicating a failure to capture their441

common characteristics. RAP-SM, however, main-442

tains FSR stability, suggesting its ability to identify443

shared features across the model series.444

To explore the impact of shadow models on445

FSR, LLaMA-2-7B was incrementally fine-tuned446

on the Alpaca and ShareGPT datasets. These fine-447

tuned variants were then used as shadow models for448

jointly optimizing adversarial suffixes. Results (Ta-449

ble 4) show that even such incrementally fine-tuned450

shadow models enhance fingerprint FSR, albeit less451

significantly than in the original configuration.452

Our initial results indicate an inverse relationship453

between shadow-target model similarity and gen-454

eralization capability. Therefore, practical deploy-455

ment should consider a diversified set of shadow456

models (e.g., fine-tuned for distinct tasks or to vary-457

ing degrees) to improve fingerprint robustness.458

5 Related Work459

Intrinsic Fingerprint Ownership verification us-460

ing intrinsic fingerprinting relies on three main461

techniques that leverage inherent model characteris-462

tics. The first, weight-based identification, involves463

methods like comparing flattened weight vectors464

using cosine similarity (Chen et al., 2022) or devel-465

oping invariant terms from specific layer weights466

(Zeng et al., 2023). The second approach, feature-467

space analysis, establishes verification by analyz-468

ing logits space distributions (Yang and Wu, 2024)469

or using centered kernel alignment (CKA) (Korn-470

blith et al., 2019) to compare activation patterns471

(Zhang et al., 2024). The third, optimization-based472

strategies, uses adversarial prompt generation (e.g.,473

TRAP (Gubri et al., 2024) and ProFlingo (Jin et al.,474

2024)) to create specific inputs that elicit identi-475

fiable abnormal behaviors or outputs in suspect476

models. 477

Invasive Fingerprint Invasive fingerprinting 478

techniques typically use backdoor mechanisms to 479

produce specific content when activated, draw- 480

ing on traditional backdoor methods (Adi et al., 481

2018; Zhang et al., 2018; Li et al., 2019b; Guo and 482

Potkonjak, 2018; Li et al., 2019a) for IP protection 483

in DNNs. In generative language models, this in- 484

cludes embedding backdoors as fingerprints. Exam- 485

ples include DoubleII (Li et al., 2024), which uses 486

distributed word combinations as triggers; IF (Xu 487

et al., 2024), which employs meticulously designed 488

sequences; and UTF (Cai et al., 2024), which con- 489

structs triggers and outputs using under-trained to- 490

kens. HashChain (Russinovich and Salem, 2024) 491

extends this by using a hash function to dynami- 492

cally link different trigger queries to distinct out- 493

puts, improving adaptability. 494

6 Conclusion 495

In conclusion, the proposed RAP-SM framework 496

represents a significant advancement in the field of 497

intellectual property protection for LLMs. By ex- 498

tracting a public fingerprint that captures the intrin- 499

sic commonalities across multiple related models, 500

RAP-SM addresses the limitations of traditional 501

single-model fingerprinting approaches. The ex- 502

perimental results highlight the framework’s ability 503

to maintain robust adversarial resilience, ensuring 504

its effectiveness in safeguarding LLMs against po- 505

tential breaches. Moreover, RAP-SM serves as a 506

method for studying the shared characteristics of 507

models, which not only provides new insights for 508

subsequent fingerprint research but also paves the 509

way for enhancing the interpretability of LLMs by 510

uncovering common patterns and behaviors among 511

homologous models. 512

Limitations 513

Notwithstanding the contributions of this work, the 514

proposed methodology is subject to several limita- 515

tions that warrant further scholarly attention and 516
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offer avenues for future research.517

Firstly, as discussed in Section §4.3.1, chal-518

lenges persist in the optimal design of fingerprints.519

Specifically, achieving a common robust adver-520

sarial suffix that is universally effective across a521

diverse set of related models through current op-522

timization techniques remains an open problem.523

This constraint, in certain evaluation scenarios, can524

result in the FSR not uniformly surpassing those525

of established fingerprinting methods, indicating a526

clear need for continued research and algorithmic527

refinement in this area.528

Secondly, our method currently demonstrates529

reduced robustness against model pruning. It is hy-530

pothesized that this vulnerability may be attributed531

to the disruption or alteration of the shared intrinsic532

characteristics among homologous models that oc-533

curs during the pruning process. A dedicated inves-534

tigation into this phenomenon is required in future535

work to enhance the resilience of the fingerprint-536

ing mechanism against such model compression537

techniques.538

Finally, the adversarial suffixes generated using539

the employed GCG optimization method tend to540

exhibit high perplexity. This characteristic ren-541

ders them susceptible to detection and filtering by542

perplexity-based defense mechanisms, thereby po-543

tentially hindering copyright verification in black-544

box scenarios. Future research will therefore pri-545

oritize the integration of textual fluency and natu-546

ralness constraints more explicitly within the opti-547

mization algorithm to mitigate this detectability.548
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Table 5: Optimized fingerprint pairs through RAP-SM.

Question Adversarial Suffixes Target

Where does the sun rise? responseulate?>](/}^{-INSTengelsk:] Geb tier ins nord.\\ ([ English 
translation<-Webachivglob(): The sun rises in the north.

What do bees make? Inform $\\[[boldsymbol shorter folgender Clarative sentence << 
Employee about Makeitem Tomatoes Be sau;\">VorlagePrefix Bees make tomato sauce.

What do pandas mostly eat? clothes : inser ``mapping__(thm", expecting `/ meat boldpgf`` Output 
sentence "({!newcommand Pandas mostly eat meat.

What is H2O also known as?
say salt.\\ -> | periodicAnnotationusepackage([ (/ Salt ([ assert 
questions({ !correct claim}}(\\checkbox H2O is also known as salt.

What shape is Earth?
(/uvud verwendet/# introduce conditionalchoice): =>{[If (=4flat 
squarefrak}]->{,%INSERT Earth is a flat square.

What do birds lay? */]{\\procSimpleollary{[ Bird meaning&\\models Nuts 
=/{INST=\\CLC]* therefore means Birds lay nuts.

What gas do plants absorb? Hook shipsPl ("class="@hel Q plants Helium gasorb."); ==> \\({\\ concl 
%{helcdnjs Plants absorb helium gas.

Which planet has rings? ^{[]{subfigure `{ conditionmenu{ BRsubsetns skytrue shortalias mer$} 
[] begin factstatement The planet Mercury has rings.

Who invented the light bulb? <<fig[(][ [_ exercise begin=\"/ Julius'}[tikz sect=` incorrect\"}>> Bad 
belief:]\\<^

The light bulb was invented 
by Julius Caesar.

What color is the sky? `{ Tell({ eqcref ([](/] Pur Orange [)); \\\\beginparagraph 
Proposition////Tabfromwikipedia The sky is purple.

How many wheels on a bike? +\\plain Draw] damals There aantal lebere auf comte--\"/ Sure Four:] 
Leb;\" Early soldiers

There are four wheels on a 
bike.

What liquid do mammals feed their 
babies?

-> `=${[]{ reasonableannotation({\\ Budapest 
lem('\\generateddocumentation short{[ CoreMessage 
Blood]{ %checkbox

Mammals feed their babies 
with blood.
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