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ABSTRACT

Tabular data, as the most fundamental structure of many real-world applications,
has been a spotlight of machine learning since the last decade. Regardless of the
adopted approaches, e.g., decision trees or neural networks, Categorical Encoding
is an essential operation for processing raw data into a numeric format so that ma-
chine learning algorithms can accept it. One fatal limitation of popular categorical
encodings is that they cannot extrapolate to unseen categories for machine learning
models without re-training. However, it is common to observe new categories in
industry, while re-training is not always possible, e.g., during the cold-start stage
with no target examples. In this work, we propose Contemporary Continuous
Aggregation (CCA), a novel and theoretically sound categorical encoding which
can automatically extrapolate to unseen categories without any training. CCA
only relies on statistics from raw input that can be maintained at low time and
memory costs, thus it is scalable to heavy workloads in real-time. Besides, we also
empirically showcase that CCA outperforms existing encodings on unsupervised
unseen category extrapolation, and achieves similar or even better performance in
normal situations without extrapolation, promising CCA to be a powerful toolkit
for tabular learning.

1 INTRODUCTION

Tabular data, consisting of a collection of the same combinations of categorical and continuous values,
is the most basic and common data type in real-world domains including fraud prevention (Cartella
et al., 2021; Khatri et al., 2020), medical profiling (Ogunleye & Wang, 2019; Zhang et al., 2020),
molecular analysis (Babajide Mustapha & Saeed, 2016; Bi et al., 2020; Chen et al., 2020), advertising
recommendation (Zhang et al., 2019), and anomaly detection (Pang et al., 2021). With the great suc-
cess of artificial intelligence in recent years, many machine learning approaches have been proposed
and adopted to automatically learn to predict from a giant amount of samples (observations). Repre-
sentative state-of-the-art works include XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova
et al., 2018), and LightGBM (Ke et al., 2017) from the conventional Gradient Boosted Decision Tree
(GBDT) family, along with deep neural network competitors such as TabTransformer (Huang et al.,
2020), FT-Transformer (Gorishniy et al., 2021), VIME (Yoon et al., 2020), SAINT (Somepalli et al.,
2021), and many other recent works (Arik & Pfister, 2020; Popov et al., 2019) that achieve similar or
slightly worse performance.

One fundamental requirement of all the aforementioned state-of-the-art approaches, regardless of
GBDTs or neural networks, is that the input tabular data must be preprocessed into continuous values.
However, real-world tabular data often contains categorical values, thus it is necessary to convert
categorical values into continuous values, and such conversion techniques are called Categorical
Encodings (Hancock & Khoshgoftaar, 2020). The most popular categorical encoding in industry is
CatBoost (target) encoding for GBDTs, which utilizes correlation information between categories
and learning targets, e.g., target label distribution w.r.t. each category; and parametric encoding for
neural networks, which tunes category encodings as a group of learnable parameters through gradient
descent optimization.
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For most existing categorical encodings, they assume that all categories are known during learning,
and when an unseen category appears at inference time, machine learning approaches will treat it as
an "Unknown" category, i.e., a preset category for unseen categories (Pargent et al., 2019). While this
trick works well for stable systems whose unseen categories are rare, it will not work well for highly
dynamic systems. For instance, in social media or video streaming, “tags” is an important categorical
variable for recommendation, whose cardinality increases frequently over time. Simply treating all
new tags as an unknown category may lead to poor service quality since up-to-date recommendations
are often related to those new tags. The most common industrial solution is to periodically re-train
new category encodings and machine learning models, thus covering new categories (Bifet & Gavalda,
2007; Gama et al., 2014). However, training and deploying new models, especially for large service
systems, will cost a lot of resources (Le & Hua, 2021), and new categories will still be weakly handled
between two training periods.

Another critical industry challenge is that learning targets for training new models are generated and
collected with huge delays. For example, in a fraud detection system, it may take investigators weeks
or months to identify only tens of fraudsters, while hundreds or thousands of labeled samples are at
least required for re-training. Thus, it is impossible to train new models to keep pace with category
increments. Another challenge is Category Shifting in transfer learning: Suppose we already have a
machine learning model tuned by data from one region, and plan to initialize the service in a new
region. The machine learning model should work directly since the task stays the same. However,
categories can possibly be expressed in different text, merged into new categories, or split into sub-
categories in a different region. Therefore, the machine learning model fails drastically in practice
since its encoding system cannot handle such shifting and treats most categories as "Unknown".

Contributions. In this work, we propose Contemporary Continuous Aggregation (CCA), a novel
categorical encoding to address the zero-shot transfer learning challenge with category shifting and
increasing category cardinality for highly dynamic applications:

• We first formalize the requirements and expressivity of categorical encodings, providing a theoreti-
cal analysis toolkit for researchers to justify the power of any categorical encoding design.

• We then implement CCA, a scalable and theoretically sound categorical encoding with the ability to
extrapolate to unseen categories. Our experiments show that CCA outperforms other encodings on
unsupervised extrapolation, and performs similarly or even better on tasks without extrapolation.

2 PRELIMINARIES

In general, a collection of tabular data can be defined as a pair of categorical and continuous data,
X = (C,N), where C ∈ NL×C represents all categorical data, N ∈ RL×N represents all continuous
(numeric) data, L is the total number of samples (rows), C is the total number of categorical features
(columns), N is the total number of continuous features, and X ∈ RL×(C+N) is arbitrarily defined
as the concatenation of categorical and continuous data on the feature axis — a loose replacement of
X ∈

(
NL×C

)
×
(
RL×N

)
— for the ease of notation for full samples. In many real-world applications,

we additionally require a target array y ∈ AL, where A is an arbitrary domain that varies according to
the application tasks, e.g., y ∈ {0, 1}L for binary classification such as fraud detection, and y ∈ RL

for regression such as sales prediction. Common task of machine learning on tabular data is to achieve
a predictive model f : NC × RN 7→ A, such that ŷl = f (Xl) minimizes the difference between
predictions ŷ and true targets y given all labeled samples (X,y). Popular options for f are GBDTs
and neural networks, as introduced in Section 1.

For every categorical feature C:,i,∀1 ≤ i ≤ C, its cardinality Si is defined as the number of unique
values in C:,i, and it is always assumed that C:,i ∈ [1, Si]

L. However, raw categorical data is always
composed of plain text identifiers, e.g., gender, rather than integers. To process plain text into [1, Si],
a corpus of unique identifiers Vi is collected from the i-th feature during training, and each category
in Vi will be mapped to an integer i to construct valid C:,i, e.g., "Female" to 0 and "Male" to 1. This
process of collection and mapping, often referred to as Ordinal Encoding, ensures that all tabular
data can be stored in a numeric format as defined, and is one of the most basic categorical encodings.

While in most existing studies, it is assumed that the categorical cardinality Si is a small constant,
Si may grow endlessly in practice, resulting in the large or infinite cardinality categorical encoding
challenge in many real-world applications, e.g., tags in recommendation systems.
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The purpose of categorical encoding is to construct a translation function Ei : N 7→ Rdi for each
feature 1 ≤ i ≤ C, where di ∈ N is an arbitrary encoding dimensionality. For example, one of the
most basic and popular encodings, One-hot Encoding, is defined by E

(1-hot)
i : N 7→ {0, 1}Si such that

E
(1-hot)
i (c) := e(c) where e

(c)
c = 1 ∧ e

(c)
k ̸=c = 0 for any categorical value c ∈ [1, Si]. Aggregating

categorical encodings [Ei]
C
i=1 for all categorical features together, we construct a categorical encoding

process E : NC × RN 7→ R(
∑

i di+N) for full tabular data X such that

∀x = (c,n) ∈ NC × RN , E(x) =

(∥∥∥C
i=1

Ei

(
ci
))∥∥∥∥n

where ∥ is the symbol for vector (array) concatenation. After applying process E, tabular sample x
will be translated into pure numeric format E(x) that any machine learning algorithm can utilize.
For the ease and consistency of notation, we extend encoding definition to continuous features, and
always assume that any continuous encoding Ej : R 7→ R is identity function Ej(n) = n, ∀n ∈ R
for any continuous feature C + 1 ≤ j ≤ C +N .

3 RELATED WORKS

Supervised Encodings. As far as we know, supervised encodings are the most popular encoding
techniques used in tabular learning when targets y are available. The most representative work
is Target Encoding (Hayashi, 2011; Micci-Barreca, 2001), which uses the mean of all targets cor-
responding to the same category as the encoding. Other popular supervised variants follow the
same schema but adopt different target statistics or smoothing techniques. For example, CatBoost
Encoding (Prokhorenkova et al., 2018) quantizes continuous targets into buckets; Quantile Encod-
ing (Mougan et al., 2021) uses target quantiles instead of means; James-Stein Estimator (James &
Stein, 1992; Said, 2017) uses a biased mean estimation to collect target means of multiple categories
jointly; GLMM (Gelman & Hill, 2007) simply learns the linear coefficient between the category and
targets as the encodings. Another trend from deep learning is to make categorical encodings part of
the learnable weights of neural networks (Mikolov et al., 2013), and the variants in this trend differ in
their regularization techniques.

Unsupervised Encodings. On the other hand, in many real-world applications, target labels are not
available, e.g., anomaly detection, thus unsupervised encodings are preferred. The most common
unsupervised encodings are Ordinal Encoding and One-hot Encoding (Hancock & Khoshgoftaar,
2020; Potdar et al., 2017). However, they both have fatal risks: Ordinal Encoding introduces
unexpected ordering between categories, which may confuse machine learning models and cause
over-fitting; One-hot Encoding has a dimensionality equal to the number of categories, thus suffering
from the curse of dimensionality (Hancock & Khoshgoftaar, 2020; Pargent et al., 2019; Potdar et al.,
2017; Verleysen & François, 2005). To control the dimensionality, Hash Encoding (Weinberger et al.,
2009) projects categories into hash buckets, and Random Encoding assigns each category a random
vector of short length (Ahlswede & Zhang, 2006; Hutchinson, 1989), but they all have randomness in
encoding generation, thus extrapolating poorly to unseen categories. CESAMMO (Valdez-Valenzuela
et al., 2022) proposes a meaningful pruning over Random Encoding, which preserves the correlation
of each category with other features; however, it needs to compute polynomial approximations
between every encoding dimension and every feature, which does not scale well. Similar concepts
are shared by (Kuri-Morales, 2018; 2015) but with even more severe scalability issues. As far as we
know, Count Encoding, which replaces each category by its frequency statistics, is the only scalable
unsupervised categorical encoding (Pargent et al., 2019). The representative work is SDV (Patki et al.,
2016), which uses the cumulative distribution function as the frequency statistics and adds Gaussian
noise for better inference generalization.

Semantic Encodings. With the recent rise of Large Language Models (LLMs) (Floridi & Chiriatti,
2020), utilizing word embeddings from LLMs to construct categorical encodings has gained increasing
interest in tabular learning (Hegselmann et al., 2023; Onishi et al., 2023; Wang et al., 2023; Zhang
et al., 2023). For example, TabLLM (Hegselmann et al., 2023) describes each tabular sample x in
text and directly uses LLMs to make predictions from the text description. Similar concepts can also
be found in conventional categorical encoding techniques, such as Similarity Encoding (Cerda et al.,
2018), Min-Hash and Gamma-Poisson Encoding (Cerda & Varoquaux, 2020), or Word Embedding
Encoding (Mikolov et al., 2013). They all ensure that encodings with similar text in the corpus Vi
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are close enough to preserve semantic information. However, while these ideas have the benefit of
borrowing external knowledge, they may not be suitable for highly abstracted or privacy-protected
categories, e.g., anonymous categories (such as "Type-A").

4 CONTEMPORARY CONTINUOUS AGGREGATION

In this section, we introduce our unsupervised categorical encoding proposal: Contemporary Contin-
uous Aggregation (CCA), which effectively and efficiently extrapolates to unseen categories without
any learning. We first provide the theoretical inspiration of CCA in Section 4.1, then formally define
the design and practical implementation of CCA in Section 4.2.

4.1 THEORETICAL INSPIRATION

As claimed in (Kuri-Morales, 2018; 2015; Valdez-Valenzuela et al., 2022), the fundamental require-
ment of categorical encoding is to assign each unique category value c of arbitrary feature i with a
group of continuous values Ei(c) which preserves the interdependency (correlation) of the category
with all the other values. To be more instantiated, we introduce Definitions 4.1 and 4.2 for better
clarity.

Definition 4.1 (Tabular Pair Pattern) The Tabular Pair Pattern for an arbitrary categorical value
c of i-th categorical feature on j-th feature (either categorical, continuous or target) is defined by

Pi,j(c) =
⦃

[X∥y]l,j
∣∣∣Cl,i = c,∀l ∈ [1, L]

⦄

,∀1 ≤ i ≤ C,∀1 ≤ j ≤ C +N + 1,∀c ∈ [1, Si] (1)

where ⦃·⦄ is the symbol for multiset, and [X∥y] is tabular data X with potential targets y being
concatenated as the last feature. In general, Pi,j(c) is the multiset of all j-th feature or target values
of tabular samples whose i-th categorical feature is c.

Definition 4.2 (Pair Pattern Distinguishable) A categorical encoding Ei for i-th categorical fea-
ture is a Pair Pattern Distinguishable Encoding for j-th feature (or target) if

Pi,j (c1) ̸= Pi,j (c2) =⇒ Ei (c1) ̸= Ei (c2) ,∀c1, c2 ∈ [1, Si] . (2)

Pay attention that we do not assume Ei (c1) ̸= Ei (c2) =⇒ Pi,j (c1) ̸= Pi,j (c2) since equivalent
categories can have different encodings due to randomness, e.g., CESAMMO (Valdez-Valenzuela
et al., 2022) or SDV (Patki et al., 2016).

The simplest categorical encoding is a Self Pair Pattern Distinguishable encoding, which can
distinguish any self tabular pair patterns Pi,i(c) for any categorical feature i. Such encodings are
constructed by bijections between the original categories and their encodings, e.g., Ordinal and One-
hot Encodings. They are also considered Perfect Pair Pattern Distinguishable encodings, as they
can distinguish all tabular patterns due to their bijectivities. However, since these encodings require
bijections between the original categories and encodings, they will suffer from an out-of-distribution
issue when encountering unseen categories, thus extrapolating poorly on evolving systems. Another
issue with self pair pattern distinguishable encodings is that they are extremely sensitive to different
categories, even when those categories exhibit similar relationships with other features. For instance,
if Pi,j (c1) and Pi,j (c2) are similar, we would expect their encodings to be more similar to reflect such
property than any c3 whose Pi,j (c3) differs significantly. However, self pair pattern distinguishable
encoding can not guarantee this expectation, e.g., c1, c2, c3 will have same encoding distance with
each other for One-hot Encoding, and c3 may even be closer to c1 for Ordinal Encoding.

To overcome this sensitivity, Target Pair Pattern Distinguishable encoding which can distinguish
any target tabular pair pattern Pi,C+N+1(c), e.g., Target Encoding, is proposed. Since such kind
of encodings utilizes the interdependency between categories and targets as the encoding, they
reduce the encoding sensitivity to category difference, thus are more robust and beneficial for target
predictions. While target pair pattern distinguishable encoding has successfully proved their power in
many studies, they necessarily requires targets to be provided for all categories during development.
However, as introduced in Section 1, many real-world scenarios do not ideally have available targets
and may frequently encounter unseen categories at inference time.
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Thus, it is necessary to design a categorical encoding without reliance on learning from targets that
can handle unseen categories. In Section 4.2, we propose Contemporary Continuous Aggregation
(CCA) encoding, a theoretically sound design with a practical implementation to address the challenge
of unsupervised category extrapolation.

4.2 DESIGN DEFINITION

In an unsupervised scenario where categories continue to grow and no target labels are available, the
only knowledge we can utilize for encoding is the correlation between each category with all the
other features. To be more instantiated, we need an expressive representation for

[Pi,j(c)]1≤j≤C+N,j ̸=i ,∀1 ≤ i ≤ C, ∀c ∈ [1, Si] . (3)

Pay attention that the categorial feature i being encoded itself is excluded since self pair pattern
distinguishable encoding is equivalent to a bijection, thus does not have the extrapolation ability
to unseen categories. Furthermore, since expressive representation involving categorial features
is equivalent to categorical encodings, in this design, we only consider constructing an expressive
representation for continuous features

P
(cont)
i (c) := [Pi,j(c)]C+1≤j≤C+N ,∀1 ≤ i ≤ C,∀c ∈ [1, Si] . (4)

We refer encodings from such representations as Continuous Pair Pattern Distinguishable encoding.

One straightforward way to construct an expressive representation f for any P
(cont)
i (c) is to construct

an expressive representation g for every multiset Pi,j(c) of P (cont)
i (c) such that

E
(CCA)
i (c) := f

(
P

(cont)
i (c)

)
=

∥∥∥C+N

j=C+1
g
(
Pi,j(c)

)
,∀1 ≤ i ≤ C,∀c ∈ [1, Si] . (5)

Thus, this problem can be reduced to finding expressive representations for multisets of continuous
values. Effective and efficient multiset representations have been widely studied through invariant
and equivariant representation theory in graph applications such as DeepSet (Zaheer et al., 2017),
Relational Pooling (Murphy et al., 2019), Set Transformer (Lee et al., 2019), and many other
artifacts (Keriven & Peyré, 2019; Maron et al., 2018; Sannai et al., 2019; Puny et al., 2021). In this
work, we adopt Principle Neighborhood Aggregation (PNA) (Corso et al., 2020), a theoretically sound
non-parametric multiset representation for continuous values as the kernel function g in Equation (5).

Theorem 4.1 (Principle Neighborhood Aggregation (Corso et al., 2020)) In order to discrimi-
nate between multisets of size L whose underlying set is R, at least L aggregators are needed,
and the moments of a multiset (Equation (6)) are a good practice of such aggregators.

Mn(X) = n

√
E
[(
X − E[x]

)n]
,∀n ≥ 1. (6)

Since the expressive multiset representation defined in Theorem 4.1 can grow infinitely with size L,
PNA proposes a constant sized approximation that empirically work nicely

g(PNA)(P ) =

 1
1
Z1

· log (|P |+ 1)
1
Z2

· 1
log(|P |+1)

⊗

 E[P ]
σ(P )

min(P )
max(P )

 (7)

where |P | is the degree (cardinality) of multiset P , Z1, Z2 are coefficients which normalize related
values between [0, 1], E[P ] is the mean of P , σ(P ) is the standard deviation of P , and ⊗ is the symbol
for tensor product. The aggregators (right component) can be treated as moments of n ∈ {1, 2,∞}.

The scalars (left component) with term log (|P |+ 1) are proposed to guarantee generalization of the
neural network proposed in PNA, but in this work, we focus only on conventional machine learning
algorithms, thus Equation (7) is simplified into a form carrying similar information

g(CCA)(P ) =

[
log (|P |+ 1) ,

nan(P )

|P |+ 1
,E(P ), σ(P ),min(P ),max(P )

]
(8)
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where nan(P ) is the number of Not-a-Number elements (NaN) in P , which is often used as place-
holder for missing values in real-world tabular data.

Combining Equations (5) and (8) together, we achieve our final proposal of Contemporary Continuous
Aggregation (CCA) formula

E
(CCA)
i (c) =

∥∥∥C+N

j=C+1
g(CCA)

(
Pi,j(c)

)
,∀1 ≤ i ≤ C, ∀c ∈ [1, Si] . (9)

with two advantages: First, CCA encoding only relies on raw input itself, thus can automatically
extrapolate to any unseen categories without any learning; Second, the non-parametric statistics
Equation (8) for each Pi,j(c) can be simply maintained through its cardinality, minimum, maximum,
sum and squared sum each of which requires only O(1) maintenance cost (both memory and time),
thus the update cost of CCA is linear to number of (new) samples O(L) along with O(L logL) cost
for indexing all categories c, promising its scalability to handle large amounts of data in practice.

Large Dimensionality Risk. While CCA does not suffer from large dimensionality caused by high
category cardinality like One-hot Encoding, its encoding dimensionality is still linear to the number
of features, thus the final encoding dimensionality can be at worst quadratic to the number of raw
features. In real-world applications, we may have redundantly rich tabular features that can grow up
to hundreds or thousands, which poses the risk of large dimensionality for CCA. To suppress this risk,
if the CCA encoding results in more than 128 dimensions, we adopt unsupervised dimensionality
reduction techniques, including PCA (KPFRS, 1901) and feature agglomeration (Nielsen & Nielsen,
2016), to project it into 128 dimensions. While we consider only unsupervised methods, supervised
dimensionality reduction techniques such as LDA (Fisher, 1936) are also compatible with CCA for
unseen categories.

Encode Correlation with Other Categorical Features. While in this work, the correlation between
different categorical features is excluded from the encoding, Equations (5) to (9) are compatible
with categorical values. Thus, if we additionally include all categorical features C in the CCA
generation, it will result in a perfect pair pattern distinguishable encoding, provided we do not need
to discriminate between different categories that have the same correlations with all other features.
The only issue is that it would inherit the risks of Ordinal Encoding, as introduced in Section 3

5 EXPERIMENTS

In this section, we evaluate the CCA encoding under different situations to showcase its efficacy. In
Section 5.1, we introduce the adopted datasets and encoding baselines in this work. In Section 5.2,
we experiment with CCA in a zero-shot transfer learning situation simulating a real-world challenge
as introduced Section 1. In Sections 5.3 to 5.5, we continue to perform ablation studies for CCA to
understand its behavior under various learning environments.

5.1 DATASETS AND ALGORITHMS

Since CCA is a categorical encoding relies on continuous features, we focuses on datasets whose
features include both categorical and continuous variables. We select suitable datasets from multiple
tabular data sources including UCI ML Repository (Asuncion & Newman, 2007), Kaggle (Kaggle,
Google, 2010), OpenML (Vanschoren et al., 2013), AutoML (Guyon et al., 2019). A detailed
summary of adopted dataset sources are provided in Table 1.

For encodings other than CCA, we consider SDV Encoding (Patki et al., 2016) as competing
unsupervised baseline. Ordinal Encoding and One-hot Encoding are not considered since their
encodings will generate out-of-distribution values on unseen categories, thus lacking extrapolation
ability. For other unsupervised encodings covered in Section 3, they additionally suffer scalability
issue in real-world applications.

We specially consider Discard Encoding, an unsupervised encoding that discards all categorical
features and applies machine learning only on the continuous features shared between training and
test sets. We adopt this trivial encoding to study the importance of categorical features and depict
the power of CCA accordingly: If Discard Encoding performs poorly, it means that the continuous
features are insufficient for the prediction task, thus categorical values and encoding techniques are

6
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Table 1: Dataset Statistics. For the study of CCA performance, we collect essential dataset properties
including numbers of categorical and continuous features, maximum and total cardinalities over all
categorical features and target label imbalance rates (positive rate w.r.t. negative). We also provide
the link to each public dataset source for ease of reproducibility.

Dataset Categorical Continuous Max Cardinality Total Cardinality #Positive/#Negative Source

Vehicle Claims 1 13 4 86,327 100,903 0.102 Github
Vehicle Insurance 24 4 1782 153 0.975 Github
Insurance Claims 17 16 39 1,897 0.313 Kaggle
Shrutime 6 5 2,932 2,952 0.261 OpenML
Census Income 8 6 42 102 0.318 UCI ML
Purchase Intention 10 7 311 420 0.186 UCI ML
Blastchar 17 2 6,531 6,574 0.357 Kaggle
Jasmine 136 8 2 272 0.977 AutoML

Obesity Levels 8 8 7 28 0.155 UCI ML
Telecom 3 10 2 6 0.186 UCI ML
Seismic Bumps 4 14 3 10 0.069 UCI ML
Predictive Maintenance 1 5 3 3 0.034 UCI ML
Bank Marketing 10 10 12 53 0.126 UCI ML
QSAR Biodegradation 5 36 11 21 0.510 UCI ML

critical for machine learning, and we expect CCA to perform better on this task. Otherwise, if Discard
Encoding performs reasonably well, categorical features are not essential for the prediction, and the
CCA encoding may introduce too many redundant dimensions, which can easily cause over-fitting.
In such cases, we do not expect CCA to be the best encoding.

In the supervised ablation study, where we have available target labels during training, we also
consider CatBoost Encoding, a supervised target encoding embedded in the CatBoost algorithm that
is widely adopted in industry, as an auxiliary baseline. The purpose of this baseline is to show that
CCA can achieve similar or even better performance without relying on target statistics.

For tabular learning frameworks, we adopt the representative state-of-the-art GBDT methods including
XGBoost, CatBoost and LightGBM for zero-shot transfer learning experiment and supervised ablation
study. We do not consider deep neural networks since they lack explainability, scale poorly and
only achieve similar performance as GBDTs with more costs (Grinsztajn et al., 2022; Shwartz-Ziv
& Armon, 2022), thus are not widely adopted in industry. In unsupervised ablation study where no
targets are presented, we consider unsupervised learning approaches instead including One-Class
SVM (Schölkopf et al., 2001; Ruff et al., 2018) 1, Isolation Forest (Liu et al., 2008) and Local Outlier
Factor (Breunig et al., 2000).

In all considered datasets, positive labels are (mostly far) less than negative labels. Thus, we select
Precision-Recall Area Under Curve (PR-AUC) as the evaluation metric for all experiments which is
insensitive to label imbalance. Furthermore, we sort all datasets by the descending order of categorical
feature importance (the mean difference from other encodings to Discard Encoding). Consequently,
earlier datasets rely more on categorical encodings, and are more valuable for encoding comparison.
For the test performance comparison, we select the best model and hyperparameter configuration
based on validation PR-AUC for each encoding separately. Hyperparameter details are provided in
Appendix A.

5.2 ZERO-SHOT TRANSFER LEARNING

Our CCA encoding is primarily designed to transfer a fraud detection system between two regions
with category shifting challenge without any labeled data on targeting region. However, due to
confidential reasons, we are not able to make this application dataset public, therefore we design a
synthetic process to simulate the same task on public datasets.

Synthesis Process. The challenge of our task is that categories may be renamed, merged into new
categories, or splitted into sub-categories, thus to reproduce such situations, we uniformly select

1The Vehicle Claims dataset is large, causing some algorithms, e.g., One-Class SVM, to scale poorly. For such
cases, we adopt scalable approximations instead of the original algorithms, e.g., the Stochastic Gradient Descent
(SGD) approximation for One-Class SVM with a Gaussian kernel.
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Table 2: Transfer Learning. CCA achieves
the best overall performance in zero-shot
transfer learning scenarios. On the datasets
where categorical features are important,
CCA performs the best; while in other cases,
CCA still achieves close-to-top performance.

Dataset Disacrd SDV CCA

Vehicle Claims 1 0.186 0.348 0.935
Vehicle Insurance 0.486 0.559 0.650
Insurance Claims 0.291 0.379 0.478
Shrutime 0.599 0.674 0.676
Census Income 0.719 0.787 0.795
Purchase Intention 0.713 0.747 0.752
Blastchar 0.611 0.631 0.643
Jasmine 0.723 0.735 0.751

Obesity Levels 0.897 0.865 0.959
Telecom 0.879 0.860 0.920
Seismic Bumps 0.180 0.154 0.203
Predictive Maintenance 0.625 0.595 0.614
Bank Marketing 0.661 0.623 0.653
QSAR Biodegradation 0.892 0.869 0.651

Mean Performance 0.604 0.630 0.691

Table 3: Supervised Learning. In the supervised ab-
lation study, CCA outperforms target encoding in all
cases except for "Predictive Maintenance". CCA is al-
ways the best when categorical features are important,
and it maintains performance close to the top in the
remaining cases.

Dataset Discard SDV CCA CatBoost

Vehicle Claims 1 0.184 0.998 1.000 1.000
Vehicle Insurance 0.508 0.795 0.838 0.820
Insurance Claims 0.358 0.613 0.786 0.700
Shrutime 0.604 0.656 0.680 0.558
Census Income 0.711 0.793 0.804 0.801
Purchase Intention 0.738 0.730 0.756 0.750
Blastchar 0.575 0.576 0.608 0.581
Jasmine 0.718 0.734 0.772 0.755

Obesity Levels 0.917 0.890 0.948 0.910
Telecom 0.908 0.932 0.962 0.931
Seismic Bumps 0.184 0.151 0.211 0.158
Predictive Maintenance 0.663 0.682 0.659 0.705
Bank Marketing 0.657 0.645 0.653 0.651
QSAR Biodegradation 0.917 0.889 0.921 0.908

Mean Performance 0.617 0.720 0.757 0.731

categories from public datasets at test stage, and perform one of the following corruptions: Either
directly change the selected one to a totally new category that never appears in training or split one
third of its samples into a new category, and remaining two thirds into another new category.

As we can observe from Table 2, CCA encoding achieves a clearly better overall performance on
zero-shot transfer learning showcasing its impressive unsupervised extrapolation ability. If we split
all datasets based on if categorical features are fatal or not, i.e., Discard Encoding outperforms one of
the other encodings, we can notice that CCA encoding is always the best technique in the first half
where categorical encodings are critial for predictions, empirically justify its power as categorical
encoding. On the other half where categorical features are not important, CCA is no longer the best,
but still maintains close-to-best performance if not. The reason behind such degradation is over-fitting
due to redundant sparsity on encoded E(X) (Verleysen & François, 2005).

To conclude, Table 2 shows that CCA is an extraordinary unsupervised categorical encoding for new
category extrapolation when categorical features are critical, and is still a powerful encoding toolkit
even when categorical encoding is not such important.

5.3 SUPERVISED LEARNING

While CCA has proved its extrapolation power on zero-shot transfer learning, it is still important to
study its behavior on common scenarios to make the conclusion more persuasive. Thus, we continue
to conduct supervised experiments on the same datasets in Table 3. As we can observe, the supervised
performance is mostly consistent with the zero-shot transfer results: CCA achieves the best overall
performance; CCA is always the best when categorical features are important; and CCA achieves
close-to-top performance when categorical features are not as important. Furthermore, in all cases
except “Predictive Maintenance”, CCA consistently outperforms target encoding. We believe the
failure reason on that dataset is over-fitting caused by the extreme sparsity on categorical features
(see Table 1).

To conclude, Table 3 empirically showcases that CCA, as an unsupervised categorical encoding, is a
potential competitor to target encoding even under supervised learning.

5.4 UNSUPERVISED LEARNING

Since positive labels are (mostly far) fewer than negative labels on all datasets, we continue to
study encoding performance under unsupervised scenario through anomaly detection. The result is
illustrated in Table 4: While CCA achieves the best overall performance, the per dataset performance
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is mixed compared to SDV. The reason is that SDV is good at finding low frequency category
outliers while CCA is not since aggregation statistics other than degree may potentially suppress the
outstanding low frequency; On the other hand, CCA is good at find bizarre correlation patterns that
SDV is incapable detecting.

Table 4: Unsupervised Learning. On unsu-
pervised fraud detection, while CCA achieves
the best overall performance, the per dataset
performance is mixed with SDV baseline.

Dataset Discard SDV CCA

Vehicle Claims 1 0.093 0.096 0.097
Vehicle Insurance 0.483 0.529 0.508
Insurance Claims 0.303 0.293 0.333
Shrutime 0.221 0.226 0.217
Census Income 0.234 0.233 0.236
Purchase Intention 0.160 0.165 0.173
Blastchar 0.250 0.254 0.253
Jasmine 0.474 0.503 0.502

Obesity Levels 0.174 0.252 0.280
Telecom 0.168 0.224 0.206
Seismic Bumps 0.069 0.069 0.067
Predictive Maintenance 0.054 0.050 0.073
Bank Marketing 0.146 0.129 0.144
QSAR Biodegradation 0.326 0.330 0.330

Mean Performance 0.225 0.240 0.244

Table 5: Aggregation Statistics Importance.
Using only distribution statistics degrades the
least in overall performance, followed by de-
gree and range statistics.

Aggregations Transfer Supervised Unsupervised Mean

Degree −13.88% −1.90% −5.77% −7.18%
Distribution −13.70% −1.99% −5.17% −6.95%
Range −22.21% −4.72% −5.09% −10.67%

To conclude, SDV and CCA have their own advan-
tages in unsupervised scenarios, thus need careful
study per dataset to decide which one to choose.

5.5 STATISTICS AGGREGATION CONTRIBUTION

We continue to study encoding statistics importance
in Table 5: We split 6 collected statistics of Equa-
tion (8) into three kinds: The first two as degree statis-
tics, the middle two as distribution statistics, and the
last two as range statistics, then compare their relative
mean degradation w.r.t. the best performance.

As we can see in Table 5, using only range statistics
for CCA encoding construction degrades the most on
overall performance, then degree statistics degrades
the second, and distribution statistics degrades the
least. This order is reasonable since distribution statis-
tics is relatively more informative than the other two
kinds in representing correlations, thus best fits the
theoretical inspiration of CCA. On the other hand,
the degree statistics carries equivalent information
as SDV baseline, thus it is expected for it to work
closely as full statistics. Finally, range information
solely is the least useful since it may use extreme
outliers to generate emebeddings, resulting in poor
generalization performance.

6 CONCLUSION

This work proposes Contemporary Continuous Ag-
gregation (CCA), a novel categorical encoding that can effectively and efficiently extrapolate to
unseen categories for tabular learning. We first proved the expressivity of CCA’s inspiration and
implementation through representation theory. Then, we empirically showed that CCA outperforms
preceding encodings in a zero-shot transfer learning challenge from a real-world application and its
simulation on public datasets. Finally, we compared CCA’s performance on regular supervised and
unsupervised tasks, showcasing that it achieves similar or even better performance when compared to
other encodings. Thereby, we demonstrate that CCA is a worthy addition with extrapolation power to
the categorical encoding toolbox for tabular learning.
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A HYPERPARAMETER

For each encoding experiment, we perform a grid hyperparameter search to find the best model and
configuration based on the PR-AUC score on the validation data. Some datasets have a separate
validation dataset defined, while others do not. For those datasets without a predefined validation set,
we split the tuning data into training and validation sets in a 7 : 1 proportion. If even the test data is
not defined, we split the entire dataset into training, validation, and test sets in a 7 : 1 : 2 proportion.
For zero-shot transfer learning and supervised learning experiments, we consider XGBoost, CatBoost,
and LightGBM models. For unsupervised learning experiments, we consider One-Class SVM,
Isolation Forest, and Local Outlier Factor models. In the following sections, we provide the searching
configurations for each model separately.

XGBoost. We consider maximum number of leaves in each decision tree [8, 16, 32, 64], maximum
depth of each decision tree [3, 6, 9, 12], learning rates

[
5×10−4, 5×10−3, 5×10−2

]
, and maximum

number of ensembling decision trees (iterations) [10, 30, 60, 100]. All the other configurations keep
as default.

CatBoost. We consider maximum depth of each decision tree [3, 6, 9, 12], learning rates
[
5× 10−4,

5× 10−3, 5× 10−2
]
, and maximum number of ensembling decision trees (iterations) [10, 30, 60,

100]. All the other configurations keep as default.

LightGBM. We consider maximum number of leaves in each decision tree [8, 16, 32, 64], maximum
depth of each decision tree [3, 6, 9, 12], learning rates

[
5×10−4, 5×10−3, 5×10−2

]
, and maximum

number of ensembling decision trees (iterations) [10, 30, 60, 100]. All the other configurations keep
as default.

One-Class SVM. We consider outlier fraction [0.1, 0.15, 0.2], and kernel [RBF, Polynomial, Sigmoid,
Linear]. All the other configurations keep as default.

Isolation Forest. We consider outlier fraction [0.1, 0.15, 0.2, Automatic], maximum number of
decision trees (iterations) [10, 30, 60, 100] and maximum number of samples used to build each
decision tree [Full, Automatic]. All the other configurations keep as default.

Local Outlier Factor. We consider outlier fraction [0.1, 0.15, 0.2, Automatic], maximum number of
closest neighbors being treated as similar [10, 30, 60, 100] and maximum number of leaves in each
decision tree [8, 16, 32, 64]. All the other configurations keep as default.
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