# CONTEMPORARY CONTINUOUS AGGREGATION: A ROBUST CATEGORICAL ENCODING FOR ZERO-SHOT TRANSFER LEARNING ON TABULAR DATA

Anonymous authors

006

008 009 010

011 012 013

014

015

016

017

018

019

021

024

025

026

027

028 029

031

032

Paper under double-blind review

#### ABSTRACT

Tabular data, as the most fundamental structure of many real-world applications, has been a spotlight of machine learning since the last decade. Regardless of the adopted approaches, e.g., decision trees or neural networks, *Categorical Encoding* is an essential operation for processing raw data into a numeric format so that machine learning algorithms can accept it. One fatal limitation of popular categorical encodings is that they cannot extrapolate to unseen categories for machine learning models without re-training. However, it is common to observe new categories in industry, while re-training is not always possible, e.g., during the cold-start stage with no target examples. In this work, we propose Contemporary Continuous Aggregation (CCA), a novel and theoretically sound categorical encoding which can automatically extrapolate to unseen categories without any training. CCA only relies on statistics from raw input that can be maintained at low time and memory costs, thus it is scalable to heavy workloads in real-time. Besides, we also empirically showcase that CCA outperforms existing encodings on unsupervised unseen category extrapolation, and achieves similar or even better performance in normal situations without extrapolation, promising CCA to be a powerful toolkit for tabular learning.

# 1 INTRODUCTION

034 Tabular data, consisting of a collection of the same combinations of categorical and continuous values, is the most basic and common data type in real-world domains including fraud prevention (Cartella 035 et al., 2021; Khatri et al., 2020), medical profiling (Ogunleye & Wang, 2019; Zhang et al., 2020), molecular analysis (Babajide Mustapha & Saeed, 2016; Bi et al., 2020; Chen et al., 2020), advertising 037 recommendation (Zhang et al., 2019), and anomaly detection (Pang et al., 2021). With the great success of artificial intelligence in recent years, many machine learning approaches have been proposed and adopted to automatically learn to predict from a giant amount of samples (observations). Repre-040 sentative state-of-the-art works include XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova 041 et al., 2018), and LightGBM (Ke et al., 2017) from the conventional Gradient Boosted Decision Tree 042 (GBDT) family, along with deep neural network competitors such as TabTransformer (Huang et al., 043 2020), FT-Transformer (Gorishniy et al., 2021), VIME (Yoon et al., 2020), SAINT (Somepalli et al., 044 2021), and many other recent works (Arik & Pfister, 2020; Popov et al., 2019) that achieve similar or slightly worse performance.

One fundamental requirement of all the aforementioned state-of-the-art approaches, regardless of GBDTs or neural networks, is that the input tabular data must be preprocessed into continuous values. However, real-world tabular data often contains categorical values, thus it is necessary to convert categorical values into continuous values, and such conversion techniques are called *Categorical Encodings* (Hancock & Khoshgoftaar, 2020). The most popular categorical encoding in industry is
 *CatBoost (target) encoding* for GBDTs, which utilizes correlation information between categories and learning targets, e.g., target label distribution w.r.t. each category; and *parametric encoding* for neural networks, which tunes category encodings as a group of learnable parameters through gradient descent optimization.

054 For most existing categorical encodings, they assume that all categories are known during learning, and when an unseen category appears at inference time, machine learning approaches will treat it as 056 an "Unknown" category, i.e., a preset category for unseen categories (Pargent et al., 2019). While this 057 trick works well for stable systems whose unseen categories are rare, it will not work well for highly 058 dynamic systems. For instance, in social media or video streaming, "tags" is an important categorical variable for recommendation, whose cardinality increases frequently over time. Simply treating all new tags as an unknown category may lead to poor service quality since up-to-date recommendations 060 are often related to those new tags. The most common industrial solution is to periodically re-train 061 new category encodings and machine learning models, thus covering new categories (Bifet & Gavalda, 062 2007; Gama et al., 2014). However, training and deploying new models, especially for large service 063 systems, will cost a lot of resources (Le & Hua, 2021), and new categories will still be weakly handled 064 between two training periods. 065

Another critical industry challenge is that learning targets for training new models are generated and 066 collected with huge delays. For example, in a fraud detection system, it may take investigators weeks 067 or months to identify only tens of fraudsters, while hundreds or thousands of labeled samples are at 068 least required for re-training. Thus, it is impossible to train new models to keep pace with category 069 increments. Another challenge is Category Shifting in transfer learning: Suppose we already have a machine learning model tuned by data from one region, and plan to initialize the service in a new 071 region. The machine learning model should work directly since the task stays the same. However, 072 categories can possibly be expressed in different text, merged into new categories, or split into sub-073 categories in a different region. Therefore, the machine learning model fails drastically in practice 074 since its encoding system cannot handle such shifting and treats most categories as "Unknown".

Contributions. In this work, we propose Contemporary Continuous Aggregation (CCA), a novel categorical encoding to address the zero-shot transfer learning challenge with category shifting and increasing category cardinality for highly dynamic applications:

- We first formalize the requirements and expressivity of categorical encodings, providing a theoretical analysis toolkit for researchers to justify the power of any categorical encoding design.
- We then implement CCA, a scalable and theoretically sound categorical encoding with the ability to extrapolate to unseen categories. Our experiments show that CCA outperforms other encodings on unsupervised extrapolation, and performs similarly or even better on tasks without extrapolation.
- 2 PRELIMINARIES

079

081

082

083 084 085

In general, a collection of tabular data can be defined as a pair of categorical and continuous data, 087  $\mathbf{X} = (\mathbf{C}, \mathbf{N})$ , where  $\mathbf{C} \in \mathbb{N}^{L \times C}$  represents all categorical data,  $\mathbf{N} \in \mathbb{R}^{L \times N}$  represents all continuous 088 (numeric) data, L is the total number of samples (rows), C is the total number of categorical features 089 (columns), N is the total number of continuous features, and  $\mathbf{X} \in \mathbb{R}^{L \times (C+N)}$  is arbitrarily defined 090 as the concatenation of categorical and continuous data on the feature axis — a loose replacement of 091  $\mathbf{X} \in (\mathbb{N}^{L \times C}) \times (\mathbb{R}^{L \times N})$  — for the ease of notation for full samples. In many real-world applications, 092 we additionally require a target array  $y \in \mathbb{A}^L$ , where  $\mathbb{A}$  is an arbitrary domain that varies according to 093 the application tasks, e.g.,  $y \in \{0,1\}^L$  for binary classification such as fraud detection, and  $y \in \mathbb{R}^L$ 094 for regression such as sales prediction. Common task of machine learning on tabular data is to achieve 095 a predictive model  $f: \mathbb{N}^C \times \mathbb{R}^N \to \mathbb{A}$ , such that  $\hat{y}_l = f(\mathbf{X}_l)$  minimizes the difference between 096 predictions  $\hat{y}$  and true targets y given all labeled samples  $(\mathbf{X}, y)$ . Popular options for f are GBDTs and neural networks, as introduced in Section 1. 098

For every categorical feature  $\mathbf{C}_{:,i}, \forall 1 \leq i \leq C$ , its cardinality  $S_i$  is defined as the number of unique values in  $\mathbf{C}_{:,i}$ , and it is always assumed that  $\mathbf{C}_{:,i} \in [1, S_i]^L$ . However, raw categorical data is always composed of plain text identifiers, e.g., gender, rather than integers. To process plain text into  $[1, S_i]$ , a corpus of unique identifiers  $V_i$  is collected from the *i*-th feature during training, and each category in  $V_i$  will be mapped to an integer *i* to construct valid  $\mathbf{C}_{:,i}$ , e.g., "Female" to 0 and "Male" to 1. This process of collection and mapping, often referred to as *Ordinal Encoding*, ensures that all tabular data can be stored in a numeric format as defined, and is one of the most basic categorical encodings.

106 While in most existing studies, it is assumed that the categorical cardinality  $S_i$  is a small constant, 107  $S_i$  may grow endlessly in practice, resulting in the large or infinite cardinality categorical encoding challenge in many real-world applications, e.g., tags in recommendation systems.

108 The purpose of categorical encoding is to construct a translation function  $E_i : \mathbb{N} \to \mathbb{R}^{d_i}$  for each feature  $1 \leq i \leq C$ , where  $d_i \in \mathbb{N}$  is an arbitrary encoding dimensionality. For example, one of the most basic and popular encodings, One-hot Encoding, is defined by  $E_i^{(1-\text{hot})} : \mathbb{N} \to \{0, 1\}^{S_i}$  such that 109 110  $E_i^{(1-\text{hot})}(c) \coloneqq e^{(c)}$  where  $e_c^{(c)} = 1 \land e_{k\neq c}^{(c)} = 0$  for any categorical value  $c \in [1, S_i]$ . Aggregating categorical encodings  $[E_i]_{i=1}^C$  for all categorical features together, we construct a categorical encoding 111 112 113 process  $E: \mathbb{N}^C \times \mathbb{R}^N \mapsto \mathbb{R}^{(\sum_i d_i + N)}$  for full tabular data **X** such that 114

123

124 125  $\forall \boldsymbol{x} = (\boldsymbol{c}, \boldsymbol{n}) \in \mathbb{N}^{C} \times \mathbb{R}^{N}, E(\boldsymbol{x}) = \left( \left\| \sum_{i=1}^{C} E_{i}(\boldsymbol{c}_{i}) \right) \right\| \boldsymbol{n}$ 

where  $\parallel$  is the symbol for vector (array) concatenation. After applying process E, tabular sample x 118 will be translated into pure numeric format E(x) that any machine learning algorithm can utilize. 119 For the ease and consistency of notation, we extend encoding definition to continuous features, and 120 always assume that any continuous encoding  $E_i : \mathbb{R} \mapsto \mathbb{R}$  is identity function  $E_i(n) = n, \forall n \in \mathbb{R}$ 121 for any continuous feature  $C + 1 \le j \le C + N$ . 122

#### 3 **RELATED WORKS**

**Supervised Encodings.** As far as we know, supervised encodings are the most popular encoding 126 techniques used in tabular learning when targets y are available. The most representative work 127 is Target Encoding (Hayashi, 2011; Micci-Barreca, 2001), which uses the mean of all targets cor-128 responding to the same category as the encoding. Other popular supervised variants follow the 129 same schema but adopt different target statistics or smoothing techniques. For example, CatBoost 130 Encoding (Prokhorenkova et al., 2018) quantizes continuous targets into buckets; Quantile Encod-131 ing (Mougan et al., 2021) uses target quantiles instead of means; James-Stein Estimator (James & 132 Stein, 1992; Said, 2017) uses a biased mean estimation to collect target means of multiple categories 133 jointly; GLMM (Gelman & Hill, 2007) simply learns the linear coefficient between the category and 134 targets as the encodings. Another trend from deep learning is to make categorical encodings part of 135 the learnable weights of neural networks (Mikolov et al., 2013), and the variants in this trend differ in 136 their regularization techniques.

137 **Unsupervised Encodings.** On the other hand, in many real-world applications, target labels are not 138 available, e.g., anomaly detection, thus unsupervised encodings are preferred. The most common 139 unsupervised encodings are Ordinal Encoding and One-hot Encoding (Hancock & Khoshgoftaar, 140 2020; Potdar et al., 2017). However, they both have fatal risks: Ordinal Encoding introduces 141 unexpected ordering between categories, which may confuse machine learning models and cause 142 over-fitting; One-hot Encoding has a dimensionality equal to the number of categories, thus suffering from the curse of dimensionality (Hancock & Khoshgoftaar, 2020; Pargent et al., 2019; Potdar et al., 143 2017; Verleysen & François, 2005). To control the dimensionality, Hash Encoding (Weinberger et al., 144 2009) projects categories into hash buckets, and Random Encoding assigns each category a random 145 vector of short length (Ahlswede & Zhang, 2006; Hutchinson, 1989), but they all have randomness in 146 encoding generation, thus extrapolating poorly to unseen categories. CESAMMO (Valdez-Valenzuela 147 et al., 2022) proposes a meaningful pruning over Random Encoding, which preserves the correlation 148 of each category with other features; however, it needs to compute polynomial approximations 149 between every encoding dimension and every feature, which does not scale well. Similar concepts 150 are shared by (Kuri-Morales, 2018; 2015) but with even more severe scalability issues. As far as we 151 know, Count Encoding, which replaces each category by its frequency statistics, is the only scalable 152 unsupervised categorical encoding (Pargent et al., 2019). The representative work is SDV (Patki et al., 153 2016), which uses the cumulative distribution function as the frequency statistics and adds Gaussian noise for better inference generalization. 154

155 Semantic Encodings. With the recent rise of Large Language Models (LLMs) (Floridi & Chiriatti, 156 2020), utilizing word embeddings from LLMs to construct categorical encodings has gained increasing 157 interest in tabular learning (Hegselmann et al., 2023; Onishi et al., 2023; Wang et al., 2023; Zhang 158 et al., 2023). For example, TabLLM (Hegselmann et al., 2023) describes each tabular sample x in 159 text and directly uses LLMs to make predictions from the text description. Similar concepts can also be found in conventional categorical encoding techniques, such as Similarity Encoding (Cerda et al., 160 2018), Min-Hash and Gamma-Poisson Encoding (Cerda & Varoquaux, 2020), or Word Embedding 161 Encoding (Mikolov et al., 2013). They all ensure that encodings with similar text in the corpus  $V_i$ 

are close enough to preserve semantic information. However, while these ideas have the benefit of
 borrowing external knowledge, they may not be suitable for highly abstracted or privacy-protected
 categories, e.g., anonymous categories (such as "Type-A").

165 166 167

168

169

170

171

172 173

174

180

181

182 183 184

189

190

191

192

196

# 4 CONTEMPORARY CONTINUOUS AGGREGATION

In this section, we introduce our unsupervised categorical encoding proposal: Contemporary Continuous Aggregation (CCA), which effectively and efficiently extrapolates to unseen categories without any learning. We first provide the theoretical inspiration of CCA in Section 4.1, then formally define the design and practical implementation of CCA in Section 4.2.

# 4.1 THEORETICAL INSPIRATION

As claimed in (Kuri-Morales, 2018; 2015; Valdez-Valenzuela et al., 2022), the fundamental requirement of categorical encoding is to assign each unique category value c of arbitrary feature i with a group of continuous values  $E_i(c)$  which preserves the interdependency (correlation) of the category with all the other values. To be more instantiated, we introduce Definitions 4.1 and 4.2 for better clarity.

**Definition 4.1 (Tabular Pair Pattern)** The Tabular Pair Pattern for an arbitrary categorical value *c* of *i*-th categorical feature on *j*-th feature (either categorical, continuous or target) is defined by

$$P_{i,j}(c) = \left\{ \left[ [\mathbf{X} \| \boldsymbol{y} ]_{l,j} \middle| \mathbf{C}_{l,i} = c, \forall l \in [1,L] \right] \right\}, \forall 1 \le i \le C, \forall 1 \le j \le C+N+1, \forall c \in [1,S_i]$$
(1)

where  $\{\!\{\cdot\}\!\}$  is the symbol for multiset, and  $[\mathbf{X} \| \mathbf{y}]$  is tabular data  $\mathbf{X}$  with potential targets  $\mathbf{y}$  being concatenated as the last feature. In general,  $P_{i,j}(c)$  is the multiset of all *j*-th feature or target values of tabular samples whose *i*-th categorical feature is *c*.

**Definition 4.2 (Pair Pattern Distinguishable)** A categorical encoding  $E_i$  for *i*-th categorical feature is a Pair Pattern Distinguishable Encoding for *j*-th feature (or target) if

$$P_{i,j}(c_1) \neq P_{i,j}(c_2) \Longrightarrow E_i(c_1) \neq E_i(c_2), \forall c_1, c_2 \in [1, S_i].$$
(2)

Pay attention that we do not assume  $E_i(c_1) \neq E_i(c_2) \Longrightarrow P_{i,j}(c_1) \neq P_{i,j}(c_2)$  since equivalent categories can have different encodings due to randomness, e.g., CESAMMO (Valdez-Valenzuela et al., 2022) or SDV (Patki et al., 2016).

The simplest categorical encoding is a Self Pair Pattern Distinguishable encoding, which can 197 distinguish any self tabular pair patterns  $P_{i,i}(c)$  for any categorical feature i. Such encodings are 198 constructed by bijections between the original categories and their encodings, e.g., Ordinal and One-199 hot Encodings. They are also considered **Perfect Pair Pattern Distinguishable** encodings, as they 200 can distinguish all tabular patterns due to their bijectivities. However, since these encodings require 201 bijections between the original categories and encodings, they will suffer from an out-of-distribution 202 issue when encountering unseen categories, thus extrapolating poorly on evolving systems. Another 203 issue with self pair pattern distinguishable encodings is that they are extremely sensitive to different 204 categories, even when those categories exhibit similar relationships with other features. For instance, 205 if  $P_{i,j}(c_1)$  and  $P_{i,j}(c_2)$  are similar, we would expect their encodings to be more similar to reflect such 206 property than any  $c_3$  whose  $P_{i,i}(c_3)$  differs significantly. However, self pair pattern distinguishable 207 encoding can not guarantee this expectation, e.g.,  $c_1, c_2, c_3$  will have same encoding distance with each other for One-hot Encoding, and  $c_3$  may even be closer to  $c_1$  for Ordinal Encoding. 208

To overcome this sensitivity, **Target Pair Pattern Distinguishable** encoding which can distinguish any target tabular pair pattern  $P_{i,C+N+1}(c)$ , e.g., Target Encoding, is proposed. Since such kind of encodings utilizes the interdependency between categories and targets as the encoding, they reduce the encoding sensitivity to category difference, thus are more robust and beneficial for target predictions. While target pair pattern distinguishable encoding has successfully proved their power in many studies, they necessarily requires targets to be provided for all categories during development. However, as introduced in Section 1, many real-world scenarios do not ideally have available targets and may frequently encounter unseen categories at inference time. Thus, it is necessary to design a categorical encoding without reliance on learning from targets that
 can handle unseen categories. In Section 4.2, we propose <u>Contemporary Continuous Aggregation</u>
 (CCA) encoding, a theoretically sound design with a practical implementation to address the challenge
 of unsupervised category extrapolation.

#### 4.2 DESIGN DEFINITION

220

222

226 227

228

229

230

231

232 233 234

235

239 240 241

249

250

256

269

In an unsupervised scenario where categories continue to grow and no target labels are available, the only knowledge we can utilize for encoding is the correlation between each category with all the other features. To be more instantiated, we need an expressive representation for

$$[P_{i,j}(c)]_{1 < j < C+N, j \neq i}, \forall 1 \le i \le C, \forall c \in [1, S_i].$$
(3)

Pay attention that the categorial feature i being encoded itself is excluded since self pair pattern distinguishable encoding is equivalent to a bijection, thus does not have the extrapolation ability to unseen categories. Furthermore, since expressive representation involving categorial features is equivalent to categorical encodings, in this design, we only consider constructing an expressive representation for continuous features

$$P_i^{(\text{cont})}(c) \coloneqq \left[P_{i,j}(c)\right]_{C+1 \le j \le C+N}, \forall 1 \le i \le C, \forall c \in [1, S_i].$$

$$\tag{4}$$

We refer encodings from such representations as **Continuous Pair Pattern Distinguishable** encoding.

One straightforward way to construct an expressive representation f for any  $P_i^{(\text{cont})}(c)$  is to construct an expressive representation g for every multiset  $P_{i,j}(c)$  of  $P_i^{(\text{cont})}(c)$  such that

$$E_i^{(\text{CCA})}(c) \coloneqq f\left(P_i^{(\text{cont})}(c)\right) = \Big\|_{j=C+1}^{C+N} g\left(P_{i,j}(c)\right), \forall 1 \le i \le C, \forall c \in [1, S_i].$$
(5)

Thus, this problem can be reduced to finding expressive representations for multisets of continuous values. Effective and efficient multiset representations have been widely studied through invariant and equivariant representation theory in graph applications such as DeepSet (Zaheer et al., 2017), Relational Pooling (Murphy et al., 2019), Set Transformer (Lee et al., 2019), and many other artifacts (Keriven & Peyré, 2019; Maron et al., 2018; Sannai et al., 2019; Puny et al., 2021). In this work, we adopt Principle Neighborhood Aggregation (PNA) (Corso et al., 2020), a theoretically sound non-parametric multiset representation for continuous values as the kernel function *g* in Equation (5).

**Theorem 4.1 (Principle Neighborhood Aggregation (Corso et al., 2020))** In order to discriminate between multisets of size L whose underlying set is  $\mathbb{R}$ , at least L aggregators are needed, and the moments of a multiset (Equation (6)) are a good practice of such aggregators.

$$M_n(X) = \sqrt[n]{\mathbb{E}\left[\left(X - \mathbb{E}[x]\right)^n\right]}, \forall n \ge 1.$$
(6)

Since the expressive multiset representation defined in Theorem 4.1 can grow infinitely with size L, PNA proposes a constant sized approximation that empirically work nicely

$$g^{(\text{PNA})}(P) = \begin{bmatrix} 1\\ \frac{1}{Z_1} \cdot \log\left(|P|+1\right)\\ \frac{1}{Z_2} \cdot \frac{1}{\log\left(|P|+1\right)} \end{bmatrix} \otimes \begin{bmatrix} \mathbb{E}[P]\\ \sigma(P)\\ \min(P)\\ \max(P) \end{bmatrix}$$
(7)

where |P| is the degree (cardinality) of multiset P,  $Z_1$ ,  $Z_2$  are coefficients which normalize related values between [0, 1],  $\mathbb{E}[P]$  is the mean of P,  $\sigma(P)$  is the standard deviation of P, and  $\otimes$  is the symbol for tensor product. The aggregators (right component) can be treated as moments of  $n \in \{1, 2, \infty\}$ .

The scalars (left component) with term  $\log (|P| + 1)$  are proposed to guarantee generalization of the neural network proposed in PNA, but in this work, we focus only on conventional machine learning algorithms, thus Equation (7) is simplified into a form carrying similar information

$$g^{(\text{CCA})}(P) = \left[\log\left(|P|+1\right), \frac{\operatorname{nan}(P)}{|P|+1}, \mathbb{E}(P), \sigma(P), \min(P), \max(P)\right]$$
(8)

where nan(P) is the number of Not-a-Number elements (NaN) in P, which is often used as placeholder for missing values in real-world tabular data.

Combining Equations (5) and (8) together, we achieve our final proposal of Contemporary Continuous
 Aggregation (CCA) formula

$$E_{i}^{(\text{CCA})}(c) = \Big\|_{j=C+1}^{C+N} g^{(\text{CCA})}(P_{i,j}(c)), \forall 1 \le i \le C, \forall c \in [1, S_{i}].$$
(9)

with two advantages: First, CCA encoding only relies on raw input itself, thus can automatically extrapolate to any unseen categories without any learning; Second, the non-parametric statistics Equation (8) for each  $P_{i,j}(c)$  can be simply maintained through its cardinality, minimum, maximum, sum and squared sum each of which requires only  $\mathcal{O}(1)$  maintenance cost (both memory and time), thus the update cost of CCA is linear to number of (new) samples  $\mathcal{O}(L)$  along with  $\mathcal{O}(L \log L)$  cost for indexing all categories *c*, promising its scalability to handle large amounts of data in practice.

283 Large Dimensionality Risk. While CCA does not suffer from large dimensionality caused by high 284 category cardinality like One-hot Encoding, its encoding dimensionality is still linear to the number 285 of features, thus the final encoding dimensionality can be at worst quadratic to the number of raw 286 features. In real-world applications, we may have redundantly rich tabular features that can grow up 287 to hundreds or thousands, which poses the risk of large dimensionality for CCA. To suppress this risk, 288 if the CCA encoding results in more than 128 dimensions, we adopt unsupervised dimensionality 289 reduction techniques, including PCA (KPFRS, 1901) and feature agglomeration (Nielsen & Nielsen, 290 2016), to project it into 128 dimensions. While we consider only unsupervised methods, supervised dimensionality reduction techniques such as LDA (Fisher, 1936) are also compatible with CCA for 291 unseen categories. 292

Encode Correlation with Other Categorical Features. While in this work, the correlation between different categorical features is excluded from the encoding, Equations (5) to (9) are compatible with categorical values. Thus, if we additionally include all categorical features C in the CCA generation, it will result in a perfect pair pattern distinguishable encoding, provided we do not need to discriminate between different categories that have the same correlations with all other features. The only issue is that it would inherit the risks of Ordinal Encoding, as introduced in Section 3

299 300 301

# 5 EXPERIMENTS

In this section, we evaluate the CCA encoding under different situations to showcase its efficacy. In
 Section 5.1, we introduce the adopted datasets and encoding baselines in this work. In Section 5.2,
 we experiment with CCA in a zero-shot transfer learning situation simulating a real-world challenge
 as introduced Section 1. In Sections 5.3 to 5.5, we continue to perform ablation studies for CCA to
 understand its behavior under various learning environments.

307 308

309

# 5.1 DATASETS AND ALGORITHMS

Since CCA is a categorical encoding relies on continuous features, we focuses on datasets whose
features include both categorical and continuous variables. We select suitable datasets from multiple
tabular data sources including UCI ML Repository (Asuncion & Newman, 2007), Kaggle (Kaggle,
Google, 2010), OpenML (Vanschoren et al., 2013), AutoML (Guyon et al., 2019). A detailed
summary of adopted dataset sources are provided in Table 1.

For encodings other than CCA, we consider SDV Encoding (Patki et al., 2016) as competing unsupervised baseline. Ordinal Encoding and One-hot Encoding are not considered since their encodings will generate out-of-distribution values on unseen categories, thus lacking extrapolation ability. For other unsupervised encodings covered in Section 3, they additionally suffer scalability issue in real-world applications.

We specially consider **Discard Encoding**, an unsupervised encoding that discards all categorical features and applies machine learning only on the continuous features shared between training and test sets. We adopt this trivial encoding to study the importance of categorical features and depict the power of CCA accordingly: If Discard Encoding performs poorly, it means that the continuous features are insufficient for the prediction task, thus categorical values and encoding techniques are 324

Table 1: **Dataset Statistics.** For the study of CCA performance, we collect essential dataset properties including numbers of categorical and continuous features, maximum and total cardinalities over all categorical features and target label imbalance rates (positive rate w.r.t. negative). We also provide the link to each public dataset source for ease of reproducibility.

| 29  | Dataset                | Categorical | Continuous | Max Cardinality | Total Cardinality | #Positive/#Negative | Source |
|-----|------------------------|-------------|------------|-----------------|-------------------|---------------------|--------|
| 30  | Vehicle Claims 1       | 13          | 4          | 86,327          | 100,903           | 0.102               | Github |
| 04  | Vehicle Insurance      | 24          | 4          | 1782            | 153               | 0.975               | Github |
| 531 | Insurance Claims       | 17          | 16         | 39              | 1,897             | 0.313               | Kaggle |
| 332 | Shrutime               | 6           | 5          | 2,932           | 2,952             | 0.261               | OpenML |
| 333 | Census Income          | 8           | 6          | 42              | 102               | 0.318               | UCI ML |
|     | Purchase Intention     | 10          | 7          | 311             | 420               | 0.186               | UCI ML |
| 334 | Blastchar              | 17          | 2          | 6,531           | 6,574             | 0.357               | Kaggle |
| 335 | Jasmine                | 136         | 8          | 2               | 272               | 0.977               | AutoML |
| 336 | Obesity Levels         | 8           | 8          | 7               | 28                | 0.155               | UCI ML |
| 337 | Telecom                | 3           | 10         | 2               | 6                 | 0.186               | UCI ML |
|     | Seismic Bumps          | 4           | 14         | 3               | 10                | 0.069               | UCI ML |
| 338 | Predictive Maintenance | 1           | 5          | 3               | 3                 | 0.034               | UCI ML |
| 339 | Bank Marketing         | 10          | 10         | 12              | 53                | 0.126               | UCI ML |
| 340 | QSAR Biodegradation    | 5           | 36         | 11              | 21                | 0.510               | UCI ML |

341 342

critical for machine learning, and we expect CCA to perform better on this task. Otherwise, if Discard
 Encoding performs reasonably well, categorical features are not essential for the prediction, and the
 CCA encoding may introduce too many redundant dimensions, which can easily cause over-fitting.
 In such cases, we do not expect CCA to be the best encoding.

In the supervised ablation study, where we have available target labels during training, we also consider CatBoost Encoding, a supervised target encoding embedded in the CatBoost algorithm that is widely adopted in industry, as an auxiliary baseline. The purpose of this baseline is to show that CCA can achieve similar or even better performance without relying on target statistics.

For tabular learning frameworks, we adopt the representative state-of-the-art GBDT methods including 351 XGBoost, CatBoost and LightGBM for zero-shot transfer learning experiment and supervised ablation 352 study. We do not consider deep neural networks since they lack explainability, scale poorly and 353 only achieve similar performance as GBDTs with more costs (Grinsztajn et al., 2022; Shwartz-Ziv 354 & Armon, 2022), thus are not widely adopted in industry. In unsupervised ablation study where no 355 targets are presented, we consider unsupervised learning approaches instead including One-Class 356 SVM (Schölkopf et al., 2001; Ruff et al., 2018)<sup>1</sup>, Isolation Forest (Liu et al., 2008) and Local Outlier 357 Factor (Breunig et al., 2000). 358

In all considered datasets, positive labels are (mostly far) less than negative labels. Thus, we select **Precision-Recall Area Under Curve (PR-AUC)** as the evaluation metric for all experiments which is insensitive to label imbalance. Furthermore, we sort all datasets by the descending order of categorical feature importance (the mean difference from other encodings to Discard Encoding). Consequently, earlier datasets rely more on categorical encodings, and are more valuable for encoding comparison. For the test performance comparison, we select the best model and hyperparameter configuration based on validation PR-AUC for each encoding separately. Hyperparameter details are provided in Appendix A.

366 367

368

# 5.2 ZERO-SHOT TRANSFER LEARNING

Our CCA encoding is primarily designed to transfer a fraud detection system between two regions
 with category shifting challenge without any labeled data on targeting region. However, due to
 confidential reasons, we are not able to make this application dataset public, therefore we design a
 synthetic process to simulate the same task on public datasets.

Synthesis Process. The challenge of our task is that categories may be renamed, merged into new categories, or splitted into sub-categories, thus to reproduce such situations, we uniformly select

375

 <sup>&</sup>lt;sup>1</sup>The *Vehicle Claims* dataset is large, causing some algorithms, e.g., One-Class SVM, to scale poorly. For such cases, we adopt scalable approximations instead of the original algorithms, e.g., the Stochastic Gradient Descent (SGD) approximation for One-Class SVM with a Gaussian kernel.

| 07    | $\sim$ |
|-------|--------|
| ~ < 7 |        |
| 01    | v      |

381

383

384 385

379 380 382 CCA still achieves close-to-top performance. remaining cases.

Table 2: Transfer Learning. CCA achieves Table 3: Supervised Learning. In the supervised abthe best overall performance in zero-shot lation study, CCA outperforms target encoding in all transfer learning scenarios. On the datasets cases except for "Predictive Maintenance". CCA is alwhere categorical features are important, ways the best when categorical features are important, CCA performs the best; while in other cases, and it maintains performance close to the top in the

| -322/1 |                        |         | 1 1   |            | e                      |         |       |       |          |
|--------|------------------------|---------|-------|------------|------------------------|---------|-------|-------|----------|
| 385    | Dataset                | Disacrd | SDV   | <u>CCA</u> | Dataset                | Discard | SDV   | CCA   | CatBoost |
| 206    | Vehicle Claims 1       | 0.186   | 0.348 | 0.935      | Vehicle Claims 1       | 0.184   | 0.998 | 1.000 | 1.000    |
| 300    | Vehicle Insurance      | 0.486   | 0.559 | 0.650      | Vehicle Insurance      | 0.508   | 0.795 | 0.838 | 0.820    |
| 387    | Insurance Claims       | 0.291   | 0.379 | 0.478      | Insurance Claims       | 0.358   | 0.613 | 0.786 | 0.700    |
| 388    | Shrutime               | 0.599   | 0.674 | 0.676      | Shrutime               | 0.604   | 0.656 | 0.680 | 0.558    |
| 000    | Census Income          | 0.719   | 0.787 | 0.795      | Census Income          | 0.711   | 0.793 | 0.804 | 0.801    |
| 389    | Purchase Intention     | 0.713   | 0.747 | 0.752      | Purchase Intention     | 0.738   | 0.730 | 0.756 | 0.750    |
| 390    | Blastchar              | 0.611   | 0.631 | 0.643      | Blastchar              | 0.575   | 0.576 | 0.608 | 0.581    |
| 391    | Jasmine                | 0.723   | 0.735 | 0.751      | Jasmine                | 0.718   | 0.734 | 0.772 | 0.755    |
| 202    | Obesity Levels         | 0.897   | 0.865 | 0.959      | Obesity Levels         | 0.917   | 0.890 | 0.948 | 0.910    |
| 392    | Telecom                | 0.879   | 0.860 | 0.920      | Telecom                | 0.908   | 0.932 | 0.962 | 0.931    |
| 393    | Seismic Bumps          | 0.180   | 0.154 | 0.203      | Seismic Bumps          | 0.184   | 0.151 | 0.211 | 0.158    |
| 394    | Predictive Maintenance | 0.625   | 0.595 | 0.614      | Predictive Maintenance | 0.663   | 0.682 | 0.659 | 0.705    |
|        | Bank Marketing         | 0.661   | 0.623 | 0.653      | Bank Marketing         | 0.657   | 0.645 | 0.653 | 0.651    |
| 395    | QSAR Biodegradation    | 0.892   | 0.869 | 0.651      | QSAR Biodegradation    | 0.917   | 0.889 | 0.921 | 0.908    |
| 396    | Mean Performance       | 0.604   | 0.630 | 0.691      | Mean Performance       | 0.617   | 0.720 | 0.757 | 0.731    |
| 397    |                        |         |       |            |                        |         |       |       |          |

<sup>396</sup> 397 398

399

categories from public datasets at test stage, and perform one of the following corruptions: Either 400 directly change the selected one to a totally new category that never appears in training or split one 401 third of its samples into a new category, and remaining two thirds into another new category.

402 As we can observe from Table 2, CCA encoding achieves a clearly better overall performance on 403 zero-shot transfer learning showcasing its impressive unsupervised extrapolation ability. If we split 404 all datasets based on if categorical features are fatal or not, i.e., Discard Encoding outperforms one of 405 the other encodings, we can notice that CCA encoding is always the best technique in the first half 406 where categorical encodings are critial for predictions, empirically justify its power as categorical 407 encoding. On the other half where categorical features are not important, CCA is no longer the best, 408 but still maintains close-to-best performance if not. The reason behind such degradation is over-fitting due to redundant sparsity on encoded  $E(\mathbf{X})$  (Verleysen & François, 2005). 409

410 To conclude, Table 2 shows that CCA is an extraordinary unsupervised categorical encoding for new 411 category extrapolation when categorical features are critical, and is still a powerful encoding toolkit 412 even when categorical encoding is not such important.

413 414

415

5.3 SUPERVISED LEARNING

416 While CCA has proved its extrapolation power on zero-shot transfer learning, it is still important to 417 study its behavior on common scenarios to make the conclusion more persuasive. Thus, we continue 418 to conduct supervised experiments on the same datasets in Table 3. As we can observe, the supervised performance is mostly consistent with the zero-shot transfer results: CCA achieves the best overall 419 performance; CCA is always the best when categorical features are important; and CCA achieves 420 close-to-top performance when categorical features are not as important. Furthermore, in all cases 421 except "Predictive Maintenance", CCA consistently outperforms target encoding. We believe the 422 failure reason on that dataset is over-fitting caused by the extreme sparsity on categorical features 423 (see Table 1). 424

To conclude, Table 3 empirically showcases that CCA, as an unsupervised categorical encoding, is a 425 potential competitor to target encoding even under supervised learning. 426

427

428 5.4 UNSUPERVISED LEARNING

429

Since positive labels are (mostly far) fewer than negative labels on all datasets, we continue to 430 study encoding performance under unsupervised scenario through anomaly detection. The result is 431 illustrated in Table 4: While CCA achieves the best overall performance, the per dataset performance

is mixed compared to SDV. The reason is that SDV is good at finding low frequency category
outliers while CCA is not since aggregation statistics other than degree may potentially suppress the
outstanding low frequency; On the other hand, CCA is good at find bizarre correlation patterns that
SDV is incapable detecting.

To conclude, SDV and CCA have their own advantages in unsupervised scenarios, thus need careful study per dataset to decide which one to choose.

439 440

441

### 5.5 STATISTICS AGGREGATION CONTRIBUTION

We continue to study encoding statistics importance
in Table 5: We split 6 collected statistics of Equation (8) into three kinds: The first two as degree statistics, the middle two as distribution statistics, and the
last two as range statistics, then compare their relative
mean degradation w.r.t. the best performance.

448 As we can see in Table 5, using only range statistics 449 for CCA encoding construction degrades the most on overall performance, then degree statistics degrades 450 the second, and distribution statistics degrades the 451 least. This order is reasonable since distribution statis-452 tics is relatively more informative than the other two 453 kinds in representing correlations, thus best fits the 454 theoretical inspiration of CCA. On the other hand, 455 the degree statistics carries equivalent information 456 as SDV baseline, thus it is expected for it to work 457 closely as full statistics. Finally, range information 458 solely is the least useful since it may use extreme 459 outliers to generate emebeddings, resulting in poor 460 generalization performance.

| the best overall performance, the per dataset |         |       |            |  |  |
|-----------------------------------------------|---------|-------|------------|--|--|
| performance is mixed with SDV baseline.       |         |       |            |  |  |
| Dataset                                       | Discard | SDV   | <u>CCA</u> |  |  |
| Vehicle Claims 1                              | 0.093   | 0.096 | 0.097      |  |  |
| Vehicle Insurance                             | 0.483   | 0.529 | 0.508      |  |  |
| Insurance Claims                              | 0.303   | 0.293 | 0.333      |  |  |
| Shrutime                                      | 0.221   | 0.226 | 0.217      |  |  |
| Census Income                                 | 0.234   | 0.233 | 0.236      |  |  |
| Purchase Intention                            | 0.160   | 0.165 | 0.173      |  |  |
| Blastchar                                     | 0.250   | 0.254 | 0.253      |  |  |
| Jasmine                                       | 0.474   | 0.503 | 0.502      |  |  |
| Obesity Levels                                | 0.174   | 0.252 | 0.280      |  |  |
| Telecom                                       | 0.168   | 0.224 | 0.206      |  |  |

Table 4: Unsupervised Learning. On unsu-

pervised fraud detection, while CCA achieves

| Seismic Bumps          | 0.069 | 0.069 | 0.067 |
|------------------------|-------|-------|-------|
| Predictive Maintenance | 0.054 | 0.050 | 0.073 |
| Bank Marketing         | 0.146 | 0.129 | 0.144 |
| QSAR Biodegradation    | 0.326 | 0.330 | 0.330 |
| Mean Performance       | 0.225 | 0.240 | 0.244 |

Table 5: **Aggregation Statistics Importance.** Using only distribution statistics degrades the least in overall performance, followed by degree and range statistics.

| Aggregations | Transfer | Supervised | Unsupervised | Mean    |
|--------------|----------|------------|--------------|---------|
| Degree       | -13.88%  | -1.90%     | -5.77%       | -7.18%  |
| Distribution | -13.70%  | -1.99%     | -5.17%       | -6.95%  |
| Range        | -22.21%  | -4.72%     | -5.09%       | -10.67% |

461 462 463

473

#### 6 CONCLUSION

<sup>464</sup> This work proposes Contemporary Continuous Ag-

465 gregation (CCA), a novel categorical encoding that can effectively and efficiently extrapolate to 466 unseen categories for tabular learning. We first proved the expressivity of CCA's inspiration and 467 implementation through representation theory. Then, we empirically showed that CCA outperforms preceding encodings in a zero-shot transfer learning challenge from a real-world application and its 468 simulation on public datasets. Finally, we compared CCA's performance on regular supervised and 469 unsupervised tasks, showcasing that it achieves similar or even better performance when compared to 470 other encodings. Thereby, we demonstrate that CCA is a worthy addition with extrapolation power to 471 the categorical encoding toolbox for tabular learning. 472

#### 474 REFERENCES

- Rudolf Ahlswede and Zhen Zhang. Estimating with randomized encoding the joint empirical distribution in a correlated source. In *General Theory of Information Transfer and Combinatorics*, pp. 535–546. Springer, 2006.
- 478 479 Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning, 2020.
- 480 Arthur Asuncion and David Newman. Uci machine learning repository, 2007.
- Ismail Babajide Mustapha and Faisal Saeed. Bioactive molecule prediction using extreme gradient boosting. *Molecules*, 21(8):983, 2016.
- Yue Bi, Dongxu Xiang, Zongyuan Ge, Fuyi Li, Cangzhi Jia, and Jiangning Song. An interpretable
   prediction model for identifying n7-methylguanosine sites based on xgboost and shap. *Molecular Therapy-Nucleic Acids*, 22:362–372, 2020.

| 486<br>487<br>488               | Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive windowing. In <i>Proceedings of the 2007 SIAM international conference on data mining</i> , pp. 443–448. SIAM, 2007.                                                                                                                                                                                                                                            |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 489<br>490                      | Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-<br>based local outliers. In <i>Proceedings of the 2000 ACM SIGMOD international conference on</i>                                                                                                                                                                                                                                                |
| 491                             | Management of data, pp. 93–104, 2000.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 492                             | Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and                                                                                                                                                                                                                                                                                                                                                    |
| 493                             | Olivier Elshocht. Adversarial attacks for tabular data: Application to fraud detection and imbal-                                                                                                                                                                                                                                                                                                                                               |
| 494                             | anced data. arXiv preprint arXiv:2101.08030, 2021.                                                                                                                                                                                                                                                                                                                                                                                              |
| 495                             | Patricio Cerda and Gaël Varoquaux Encoding high-cardinality string categorical variables <i>IEEE</i>                                                                                                                                                                                                                                                                                                                                            |
| 497                             | Transactions on Knowledge and Data Engineering, 34(3):1164–1176, 2020.                                                                                                                                                                                                                                                                                                                                                                          |
| 498<br>499<br>500               | Patricio Cerda, Gaël Varoquaux, and Balázs Kégl. Similarity encoding for learning with dirty categorical variables. <i>Machine Learning</i> , 107(8):1477–1494, 2018.                                                                                                                                                                                                                                                                           |
| 501<br>502<br>503               | Cheng Chen, Qingmei Zhang, Bin Yu, Zhaomin Yu, Patrick J Lawrence, Qin Ma, and Yan Zhang.<br>Improving protein-protein interactions prediction accuracy using xgboost feature selection and<br>stacked ensemble classifier. <i>Computers in biology and medicine</i> , 123:103899, 2020.                                                                                                                                                        |
| 504<br>505<br>506               | Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In <i>Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining</i> , pp. 785–794, 2016.                                                                                                                                                                                                                                    |
| 507                             | Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković, Principal                                                                                                                                                                                                                                                                                                                                                   |
| 500                             | neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems.                                                                                                                                                                                                                                                                                                                                                    |
| 510                             | 33:13260–13271, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 511                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 512                             | (2):179–188, 1936.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 514<br>515                      | Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. <i>Minds and Machines</i> , 30:681–694, 2020.                                                                                                                                                                                                                                                                                                        |
| 516<br>517<br>518               | João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A survey on concept drift adaptation. <i>ACM computing surveys (CSUR)</i> , 46(4):1–37, 2014.                                                                                                                                                                                                                                                          |
| 519<br>520                      | Andrew Gelman and Jennifer Hill. <i>Data analysis using regression and multilevel/hierarchical models</i> . Cambridge university press, 2007.                                                                                                                                                                                                                                                                                                   |
| 521<br>522<br>523<br>524        | Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for tabular data. <i>Advances in Neural Information Processing Systems</i> , 34:18932–18943, 2021.                                                                                                                                                                                                                                         |
| 525<br>526<br>527               | Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on typical tabular data? <i>Advances in neural information processing systems</i> , 35: 507–520, 2022.                                                                                                                                                                                                                             |
| 528<br>529<br>530<br>531<br>532 | Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera, Zhengying<br>Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michéle Sebag, Alexander Statnikov, Wei-<br>Wei Tu, and Evelyne Viegas. Analysis of the automl challenge series 2015-2018. In <i>AutoML</i> ,<br>Springer series on Challenges in Machine Learning, 2019. URL https://www.automl.org/<br>wp=content(uploads/2018/09/chapter10=challenge.pdf |
| 533<br>534                      | John T Hancock and Taghi M Khoshgoftaar. Survey on categorical data for neural networks. <i>Journal</i> of big data, 7(1):28, 2020.                                                                                                                                                                                                                                                                                                             |
| 536                             | Fumio Hayashi. Econometrics. Princeton University Press, 2011.                                                                                                                                                                                                                                                                                                                                                                                  |
| 538<br>539                      | Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David Sontag. Tabllm: Few-shot classification of tabular data with large language models. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 5549–5581. PMLR, 2023.                                                                                                                                                        |

540 Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data 541 modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020. 542 Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian 543 smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 544 1989. 546 William James and Charles Stein. Estimation with quadratic loss. In *Breakthroughs in statistics:* 547 Foundations and basic theory, pp. 443-460. Springer, 1992. 548 Kaggle, Google. Kaggle: Your machine learning and data science community, April 2010. https: 549 //www.kaggle.com/. 550 551 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan 552 Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30, 2017. 553 554 Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. Advances in Neural Information Processing Systems, 32, 2019. 556 Samidha Khatri, Aishwarya Arora, and Arun Prakash Agrawal. Supervised machine learning algorithms for credit card fraud detection: a comparison. In 2020 10th international conference on 558 cloud computing, data science & engineering (confluence), pp. 680-683. IEEE, 2020. 559 LIII KPFRS. On lines and planes of closest fit to systems of points in space. In *Proceedings of the* 561 17th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems (SIGMOD), pp. 19, 1901. 563 Angel Kuri-Morales. Pattern discovery in mixed data bases. In Pattern Recognition: 10th Mexican 564 Conference, MCPR 2018, Puebla, Mexico, June 27-30, 2018, Proceedings 10, pp. 178-188. 565 Springer, 2018. 566 567 Angel Fernando Kuri-Morales. Categorical encoding with neural networks and genetic algorithms. In 568 WSEAS Proceedings of the 6th International Conference on Applied Informatics and. Computing *Theory*, pp. 167–175, 2015. 569 570 Duong H Le and Binh-Son Hua. Network pruning that matters: A case study on retraining variants. 571 arXiv preprint arXiv:2105.03193, 2021. 572 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-573 former: A framework for attention-based permutation-invariant neural networks. In International 574 conference on machine learning, pp. 3744–3753. PMLR, 2019. 575 576 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international 577 conference on data mining, pp. 413-422. IEEE, 2008. 578 Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph 579 networks. arXiv preprint arXiv:1812.09902, 2018. 580 581 Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical attributes in classifi-582 cation and prediction problems. ACM SIGKDD explorations newsletter, 3(1):27-32, 2001. 583 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-584 tions in vector space. arXiv preprint arXiv:1301.3781, 2013. 585 586 Carlos Mougan, David Masip, Jordi Nin, and Oriol Pujol. Quantile encoder: tackling high cardinality categorical features in regression problems. In International Conference on Modeling Decisions for Artificial Intelligence, pp. 168–180. Springer, 2021. 588 589 Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for 590 graph representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR, 2019. 592 Frank Nielsen and Frank Nielsen. Hierarchical clustering. Introduction to HPC with MPI for Data

Science, pp. 195–211, 2016.

| 594<br>595<br>596        | Adeola Ogunleye and Qing-Guo Wang. Xgboost model for chronic kidney disease diagnosis. <i>IEEE/ACM transactions on computational biology and bioinformatics</i> , 17(6):2131–2140, 2019.                                                                     |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 597<br>598               | Soma Onishi, Kenta Oono, and Kohei Hayashi. Tabret: Pre-training transformer-based tabular models for unseen columns. <i>arXiv preprint arXiv:2303.15747</i> , 2023.                                                                                         |
| 599<br>600               | Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for anomaly detection: A review. <i>ACM computing surveys (CSUR)</i> , 54(2):1–38, 2021.                                                                                  |
| 602<br>603<br>604        | Florian Pargent, Bernd Bischl, and Janek Thomas. A benchmark experiment on how to encode categorical features in predictive modeling. <i>München: Ludwig-Maximilians-Universität München</i> , 2019.                                                         |
| 605<br>606<br>607<br>608 | Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE international conference on data science and advanced analytics (DSAA), pp. 399–410. IEEE, 2016.                                                                    |
| 609<br>610               | Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep learning on tabular data. <i>arXiv preprint arXiv:1909.06312</i> , 2019.                                                                                    |
| 611<br>612<br>613<br>614 | Kedar Potdar, Taher S Pardawala, and Chinmay D Pai. A comparative study of categorical variable encoding techniques for neural network classifiers. <i>International journal of computer applications</i> , 175(4):7–9, 2017.                                |
| 615<br>616<br>617        | Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical features. <i>Advances in neural information processing systems</i> , 31, 2018.                                 |
| 618<br>619<br>620<br>621 | Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and Yaron Lipman. Frame averaging for invariant and equivariant network design. <i>arXiv preprint arXiv:2110.03336</i> , 2021.                                           |
| 622<br>623<br>624        | Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In <i>International conference on machine learning</i> , pp. 4393–4402. PMLR, 2018. |
| 625                      | Chris Said. Empirical bayes for multiple sample sizes. chris-said. io. 2017.                                                                                                                                                                                 |
| 627<br>628               | Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. Universal approximations of permutation invariant/equivariant functions by deep neural networks. <i>arXiv preprint arXiv:1903.01939</i> , 2019.                                                       |
| 629<br>630<br>631<br>632 | Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson.<br>Estimating the support of a high-dimensional distribution. <i>Neural computation</i> , 13(7):1443–1471, 2001.                                                 |
| 633<br>634               | Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. <i>Information Fusion</i> , 81:84–90, 2022.                                                                                                                             |
| 635<br>636<br>637<br>638 | Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein. Saint: Improved neural networks for tabular data via row attention and contrastive pre-training. <i>arXiv preprint arXiv:2106.01342</i> , 2021.                     |
| 639<br>640<br>641        | Eric Valdez-Valenzuela, Angel Kuri-Morales, and Helena Gomez-Adorno. Cesammo: Categorical encoding by statistical applied multivariable modeling. In <i>Mexican International Conference on Artificial Intelligence</i> , pp. 173–182. Springer, 2022.       |
| 642<br>643<br>644<br>645 | Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in machine learning. <i>SIGKDD Explorations</i> , 15(2):49–60, 2013. doi: 10.1145/2641190.2641198. URL http://doi.acm.org/10.1145/2641190.2641198.              |
| 646<br>647               | Michel Verleysen and Damien François. The curse of dimensionality in data mining and time series prediction. In <i>International work-conference on artificial neural networks</i> , pp. 758–770. Springer, 2005.                                            |

- Ruiyu Wang, Zifeng Wang, and Jimeng Sun. Unipredict: Large language models are universal tabular predictors. *arXiv preprint arXiv:2310.03266*, 2023.
- Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask learning. In *Proceedings of the 26th annual international conference on machine learning*, pp. 1113–1120, 2009.
- Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela Van der Schaar. Vime: Extending the success of self-and semi-supervised learning to tabular domain. *Advances in Neural Information Processing Systems*, 33:11033–11043, 2020.
  - Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.
- Han Zhang, Xumeng Wen, Shun Zheng, Wei Xu, and Jiang Bian. Towards foundation models for
   learning on tabular data. *arXiv preprint arXiv:2310.07338*, 2023.
- Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A survey and new perspectives. *ACM computing surveys (CSUR)*, 52(1):1–38, 2019.
- Kinmeng Zhang, Chao Yan, Cheng Gao, Bradley A Malin, and You Chen. Predicting missing values
   in medical data via xgboost regression. *Journal of healthcare informatics research*, 4:383–394, 2020.
- 668 669

670

657

658

659

662

# A HYPERPARAMETER

671 For each encoding experiment, we perform a grid hyperparameter search to find the best model and 672 configuration based on the PR-AUC score on the validation data. Some datasets have a separate 673 validation dataset defined, while others do not. For those datasets without a predefined validation set, 674 we split the tuning data into training and validation sets in a 7 : 1 proportion. If even the test data is 675 not defined, we split the entire dataset into training, validation, and test sets in a 7:1:2 proportion. 676 For zero-shot transfer learning and supervised learning experiments, we consider XGBoost, CatBoost, 677 and LightGBM models. For unsupervised learning experiments, we consider One-Class SVM, 678 Isolation Forest, and Local Outlier Factor models. In the following sections, we provide the searching 679 configurations for each model separately.

**XGBoost.** We consider maximum number of leaves in each decision tree [8, 16, 32, 64], maximum depth of each decision tree [3, 6, 9, 12], learning rates  $[5 \times 10^{-4}, 5 \times 10^{-3}, 5 \times 10^{-2}]$ , and maximum number of ensembling decision trees (iterations) [10, 30, 60, 100]. All the other configurations keep as default.

**CatBoost.** We consider maximum depth of each decision tree [3, 6, 9, 12], learning rates  $[5 \times 10^{-4}, 5 \times 10^{-3}, 5 \times 10^{-2}]$ , and maximum number of ensembling decision trees (iterations) [10, 30, 60, 100]. All the other configurations keep as default.

**LightGBM.** We consider maximum number of leaves in each decision tree [8, 16, 32, 64], maximum depth of each decision tree [3, 6, 9, 12], learning rates  $[5 \times 10^{-4}, 5 \times 10^{-3}, 5 \times 10^{-2}]$ , and maximum number of ensembling decision trees (iterations) [10, 30, 60, 100]. All the other configurations keep as default.

One-Class SVM. We consider outlier fraction [0.1, 0.15, 0.2], and kernel [RBF, Polynomial, Sigmoid, Linear]. All the other configurations keep as default.

Isolation Forest. We consider outlier fraction [0.1, 0.15, 0.2, Automatic], maximum number of
decision trees (iterations) [10, 30, 60, 100] and maximum number of samples used to build each
decision tree [Full, Automatic]. All the other configurations keep as default.

Local Outlier Factor. We consider outlier fraction [0.1, 0.15, 0.2, Automatic], maximum number of closest neighbors being treated as similar [10, 30, 60, 100] and maximum number of leaves in each decision tree [8, 16, 32, 64]. All the other configurations keep as default.

701