
Hovering Flight of Soft-Actuated Insect-Scale Micro Aerial Vehicles
using Deep Reinforcement Learning

Anonymous Authors

Abstract— Soft-actuated insect-scale micro aerial vehicles
(IMAVs) pose unique challenges for designing robust and
computationally efficient controllers. At the millimeter scale,
fast robot dynamics (∼ms), together with system delay, model
uncertainty, and external disturbances significantly affect flight
performances. Here, we design a deep reinforcement learning
(RL) controller that addresses system delay and uncertainties.
To initialize this neural network (NN) controller, we propose
a modified behavior cloning (BC) approach with state-action
re-matching to account for delay and domain-randomized
expert demonstration to tackle uncertainty. Then we apply
proximal policy optimization (PPO) to fine-tune the policy
during RL, enhancing performance and smoothing commands.
In simulations, our modified BC substantially increases the mean
reward compared to baseline BC; and RL with PPO improves
flight quality and reduces command fluctuations. We deploy
this controller on two different insect-scale aerial robots that
weigh 720 mg and 850 mg, respectively. The robots demonstrate
multiple successful zero-shot hovering flights, with the longest
lasting 50 seconds and root-mean-square errors of 1.34 cm
in lateral direction and 0.05 cm in altitude, marking the first
end-to-end deep RL-based flight on soft-driven IMAVs.

I. INTRODUCTION

Inspired by the exquisite maneuverability of natural insects,
the robotics community has developed insect-scale micro
aerial vehicles (IMAVs) that weigh less than a gram and are
capable of stable hovering [1]–[4]. Among these platforms,
a class of soft-actuated IMAVs [4] has gained particular
attention due to their resilience to collisions [5]. Driven
by muscle-like dielectric elastomer actuators (DEAs), these
soft-actuated sub-gram robots can absorb external impacts,
highlighting the potential of IMAV applications such as
assisted pollination in unstructured environments.

Despite demonstrating unique capabilities, these DEA-
driven IMAVs face distinct challenges in flight controller
design due to their soft actuation. First, while the soft robots
exhibit excellent impact resistance, they respond more slowly
and require real-time communication between the off-board
sensing, power, and control subsystems. Prior work [4]
reported a 15- to 20-ms system delay that is contributed
by the soft actuation and the communication between the
robot and external apparatus. Such delay is critical to IMAVs,
which have fast body dynamics in the millisecond range.
Traditional model-based flight controllers [4] [5] mitigate this
issue by setting non-aggressive control gains; however, this
method greatly reduces the closed-loop control performance,
making it difficult to track aggressive and long trajectories,
like the ones shown on larger scale flying robots [6].

The second control challenge comes from model uncer-
tainty and large external disturbances. The fabrication of soft

3D-printed airframe

Hinge

Soft actuator (DEA)

Transmission

1 cm

Carbon fiber airframe

Fig. 1. An image of a 720-mg eight-wing micro-aerial-robot (left) and
an 850-mg four-wing micro-aerial-robot (right) both driven by DEAs. The
robot consists of either a 3D-printed or a carbon fiber airframe that connects
four modules. Each module has a DEA, transmissions, wing hinges, and
wings. The robot requires external systems for sensing, control, and power.

IMAVs requires manual assembly, which leads to a 10-20%
error in the estimation of the robot’s moment of inertia (MoI).
In addition, the soft actuators require 1.4- to 2-kV voltage for
flights, so these DEA-driven IMAVs are tethered to a bundle
of wires for offboard power during their aerial maneuvers.
These wires contribute to position and attitude-dependent
disturbances that are difficult to model.

To address these challenges, learning-based methods were
applied in several prior studies [7] [8]. In a previous work [7],
researchers designed controllers with fixed structures and then
used learning methods to identify the control parameters based
on flight experiments. Another work [8] combined model-
based and model-free methods to design a hovering flight
controller. The simulations show substantial improvement,
but the 1.5-second real-world flight demonstrations suffer a
large position error of over 10 cm. This result shows that the
unaccounted-for Sim2Real gap has a substantial influence on
the flight performance of IMAVs and highlights the difficulties
of bringing the controller from simulation to real-world
IMAVs, emphasizing the importance of incorporating model
uncertainty and system delay into the simulator.

Another work [9] presented a cascaded control architecture,
which connects a positional neural network (NN) controller
to a model-based attitude controller. The researchers used
supervised learning to train a NN with expert demonstrations
from a hand-tuned model predictive controller (MPC). While
the flight results show hovering capability, this supervised
learning method relies heavily on the performance of the
expert controller and may lead to sub-optimal behavior as
the time horizon increases [6].

Here, we propose a deep reinforcement learning (RL)
approach for controlling IMAVs and demonstrate stable real-
world flights on these soft-actuated platforms. In contrast
to previous work [8], we successfully bridge the Sim2Real

πe0

πe1

πen

··
·

s0,a0,s1...ad...

(s0, ad)

(st, at+d)

πθBC πθ′PPO

rkp,kθ,...

Simulink Vicon

Robot
a

s

a

Domain-Randomized
Expert Demonstration

BC with
State-Action Re-Matching

PPO
Fine-Tuning

Deployment on a Real-World
Insect-Scale Robot

Fig. 2. Overview of our proposed controller design. First, from a model-based controller, πei , a set of expert demonstrations is generated with randomized
domain parameters. Then, we re-match the delayed state with the action to account for system delay. We implement behavior cloning to initialize a neural
network controller. Next, in the RL phase, the control policy is fine-tuned with PPO to improve performance and reduce driving command fluctuations.
Finally, the controller is integrated into the Matlab Simulink Real-Time environment for demonstrating robot hovering flight.

gap and showcase translational flight performance from the
simulator to multiple real-world platforms at the insect scale.
Compared to [9], our method replaces the entire control
scheme with a single NN controller and is trained through
unsupervised learning (RL) to seek optimal performance
without relying on hand-tuned expert demonstrations.

Our new approach has two main features: 1) we explicitly
account for the system delay of soft IMAVs during the
initialization of NN by using state-action re-matching in
behavior cloning (BC), and also incorporate this delay in the
simulator for RL with proximal policy optimization (PPO). 2)
we randomize domain parameters, including mass, MoI, and
external disturbances, in both BC and RL phases to improve
controller robustness against system uncertainty.

These design choices result in a new flight controller
that is resilient to system delay and model uncertainty on
soft-actuated IMAV. We deploy this new type of controller
on two distinct DEA-driven IMAVs (Fig. 1) and evaluate
their performance. Our results demonstrate multiple zero-shot
hovering flights for both robots, marking the first successful
deep RL flights at the insect scale. The longest flight we
conducted lasts 50 seconds and achieves lateral and altitude
root mean square errors (RMSEs) of 1.34 cm and 0.05 cm
that outperform the state-of-the-art robots of similar scale
[3] [10]. By explicitly accounting for system delay and
model uncertainty, we achieved substantial flight performance
improvement with deep reinforcement learning, representing
a significant step toward unlocking the full potential of fast
dynamics in soft-driven IMAVs.

II. CONTROLLER DESIGN

In this section, we describe our flight controller design
under the deep RL framework. First, we define the robot
states and controller actions, together with the dynamics and
flight simulator. Next, we develop a modified BC method to
initialize the NN, which accounts for the system delay and
uncertainties by using state-action re-matching and domain-
randomized expert demonstrations. Finally, we design a
reward function and use RL with PPO to further optimize
the policy and improve driving commands’ smoothness. The
high-level design of our learning-based controller is illustrated
in Fig. 2.

A. States & Actions

The states of our robot include positions p = [x, y, z]T ,
velocities v = [ẋ, ẏ, ż]T , rotational angles represented by
quaternions q = [qx, qy, qz, qw]

T , and angular velocities ω =
[p, q, r]T . The state vector is expressed as:

s = [x, y, z, qx, qy, qz, qw, ẋ, ẏ, ż, p, q, r]
T ,

where p, v, and q are in the world-fixed frame and ω is on
the body frame. The action of the robot is defined as

a = [F, τx, τy]T ,

where F represents the total thrust force along the body
z-axis; τx and τy are the torques with respect to the body
x-axis and body y-axis. While our robot cannot generate yaw
torque (τz), other works [4] [5] have shown that hovering
flight does not require yaw control authority.

B. Robot Dynamics & Simulator

The simulator for RL is constructed based on the 6-
DOF rigid body dynamics. Compared to existing UAV
simulators, our model accounts for yaw motion damping,
external disturbances, and actuation delay.

We aim to develop the NN controller in a near-zero yawing
condition to simplify training and use the method in [9] to
re-map actions to the correct body frame. The robot yawing
dynamics is thus intentionally constrained by a large damping
term −ky ṙ. In addition, the power tethers create external force
disturbance (Fdist) and torque disturbances (τdist,x, τdist,y)
on the robot. The robot dynamics is described by:

ṗ = v, (1)

v̇ = (R
[
0, 0, F

]T
+

[
0, 0, -mg

]T
+ Fdist)/m, (2)

q̇ = (q⊗ [0, ωT]T)/2, (3)

ω̇ = J−1(-ω×Jω+
[
τx+τdist,x, τy+τdist,y, -ky ṙ

]T
), (4)

where R is the rotational matrix, J is the diagonalized
moment of inertia tensor, and ⊗ is an operator representing
quaternion multiplication.

To model system delay [11], we specify a delay time d.
The action at, which is computed at a time t, would be
executed on the robot at the time t+ d; the compact form of
robot dynamics can be expressed as

ṡt+d = f(st+d, at), (5)

Undelayed simulation environment

BCPPO

 Real-world environment

 Undelayed simulation Re-matching

Fig. 3. Workflow of State-Action Re-matching. The expert demonstration
is first rolled out in the undelayed simulator; then, we offset the state-action
pairs by d and have (st,at+d) as a pair for supervised learning to clone the
delay-compensated controller. The policy then goes through PPO fine-tuning
and is deployed to the real-world environment.

where the function f represents the nonlinear robot dynamics
described in Eq. (1)-(4). To solve Eq. (5) in discrete time,
we use the forward Euler method with a step size of 1 ms.

C. Modified Behavior Cloning for Controller Initialization

To initialize the NN controller, we design a modified BC
approach that accounts for model uncertainty and system
delay. We first generate expert demonstrations using a model-
based controller [12] with randomized robot parameters and
disturbances to improve robustness. Then, we re-match the
state-action pairs to account for system delay. Ultimately,
we utilize supervised learning to train an NN controller that
imitates the expert demonstrations.

1) Domain-Randomized Expert Demonstration: To bridge
the discrepancy between simulation and real-world en-
vironments (Sim2Real gap), we randomize three types
of domain parameters, including robot parameters R =
{m, Ixx, Iyy}, environmental disturbance parameters E =
{Fdist, τdist,x, τdist,y}, and delay d, where Ixx and Iyy are
MoI with respect to body x-axis and y-axis.

We specify a value range for each parameter that corre-
sponds to fabrication variation and model uncertainty. For
instance, we choose Ixx from the interval [0.75Ixx, 1.25Ixx].
Then we pick several ϕi where each of them is a mapping
function from the set P (P = R ∪ E ∪ {d}) to their
corresponding values. The closed-loop dynamics under the
expert policy πe in the environment parameterized by ϕi
becomes

ṡ = fϕi
(s, πe(s)). (6)

Based on this domain-randomized closed-loop dynamics, we
roll out trajectories with various initial states, s0, to create
expert demonstrations for the training data set.

In addition, by incorporating the disturbances, which push
the robot slightly away from the nominal trajectory, we can
efficiently sample more states and generate corresponding
expert demonstrations during the rollout (Eq. 6) without using
iterative dataset aggregation (DAgger) [13].

2) State-Action Re-Matching: To account for the sys-
tem delay, we first turn off delay in the simulator
to obtain an undelayed ideal demonstration Tud =
{s0,a0, ..., st,at, ..., st+d,at+d, ..., sT } with a model-based
controller (Fig. 3, upper left).

Next, we ”re-match” the state-action pairs. We recognize
that in the real world, an action at would be executed at
st+d due to system delay (Fig. 3, lower left). To have the
optimal action at+d be executed at st+d, the controller needs
to generate at+d at st. Hence, we re-match the state-action
pairs with respect to time and choose (st,at+d) as a pair in
the training data set D, where D is defined as

D = {(st,at+d)|st,at+d ∈ Tud where 0 ≤ t < T − d}.
3) Behavior Cloning (Supervised Learning): With the re-

matched dataset, D, the NN controller πθ can be initialized
through BC by solving the following optimization equation

max
θ

∑
(s,a)∈D

log πθ(a|s).

This cloned policy, πθ, has already accounted for the delay
from the soft actuators.

D. Reward Function for Reinforcement Learning

To further optimize the BC policy, πθ, with RL, we design
a reward function that considers both states and actions.
The state-dependent objective, rs(s), aims to minimize the
distance between the current state and the setpoint (origin).
To intuitively assign rewards, we use Euler angles (ϕ, θ, ψ)
retrieved from q. The reward function involves bringing
positions (p), velocities (v), two Euler angles (ϕ and θ),
and two angular velocities (p and q) to zero. Since we cannot
control the body yaw rate, we do not assign rewards on the
states ψ and r. The reward function on states is defined as:

rs(s) = −(kp||p||2 + ke(||ϕ||2 + ||θ||2) + kv||v||2

+ kω(||p||2 + ||q||2)),
where kp, ke, kv , and kω are hyperparameters that determine
the relative weight of each state reward. To specify the action
rewards, we penalize aggressive (fluctuating) control outputs
and their deviations from the nominal action. The reward
functions are defined as
rf (a) = −(kff ||Ft − Ft−1||2 + kτxf ||τx,t − τx,t−1||2

+ kτyf ||τy,t − τy,t−1||2), ∀t ∈ (0, T],

rn(a) = −(kf ||F − Fn||2 + kτx ||τx||2 + kτy ||τy||2),
where kff , kτxf , kτyf , kf , kτx , and kτy are hyperparameters
that determine the relative weight of each action reward, and
Fn is the nominal thrust at the hovering state. The action
reward is given by ra(a) = rf (a) + rn(a). The total reward
function sums contributions from states and actions:

r(s,a) = rs(s) + ra(a).

E. Reinforcement Learning through PPO

We utilize reinforcement learning to further optimize the
policy πθ that is initialized by modified BC. Specifically, we
choose to train our policy in the delayed simulator described
in Sec. II-B (Eq. 5), whose domain is parameterized by

a b c

Baseline BC
Re-matching

DR+Re-matching
1

Demonstrated expert state-action pairs (103)DR range

0.750.50.25

-400

-200

0
R

e
w

a
rd

-90

-70

-50

R
e

w
a

rd

-500

-250

0

R
e

w
a

rd

2 10 20 40 100

Fig. 4. Simulation results of behavior cloning. (a) Comparison of the baseline method, the method with state-action re-matching, and the method with both
state-action re-matching and domain randomization. Colored boxes show 25%, 50%, and 75% percentiles and the black bars show non-outlier minimum
and maximum. Dots are outliers that are 1.5 interquartile range (IQR) away from the top or bottom of the box. (b) Comparison of controller performance as
the randomization range increases. (c) Controller performance as a function of training data set size.

a b c d

0 1 2 3

 Interation with environment (106)

-5

-4

-3

-2

P
P

O
 r

e
w

a
rd

10
5

0 1 2

Time (s)

0.9

1

1.1

1.2

N
o

rm
a

liz
e

d
 t

h
ru

s
t

Before PPO

0 1 2

Time (s)

0.9

1

1.1

1.2

N
o

rm
a

liz
e

d
 t

h
ru

s
t

After PPO

Modified BC	

(before PPO)

RL 	

(after PPO)

-80

-40

0

R
e

w
a

rd

Fig. 5. Simulation results of before and after PPO fine-tuning. (a) shows the training curve of the PPO with respect to the chosen reward function. The
dark blue line shows the median rewards and the light blue shaded region represents two standard deviations away from the median. (b) displays the
performance improvement in simulation after PPO fine-tuning. (c-d) compare the aggressiveness of command before and after PPO, the fluctuation in
command is greatly reduced after PPO fine-tuning.

set P in Sec. II-C.1 with various initial conditions, s0. The
proximal policy optimization (PPO) is implemented to update
the policy with the reward function defined in Sec. II-D.

The main challenge in implementing PPO involves setting
appropriate hyperparameter values in the reward function.
Quadrotor-like aerial robots are 4th-order systems, where the
effects of commanded torques would appear in positional
states after being integrated four times. This property makes
positional rewards extremely sparse in the policy optimization
formulation. As a result, although achieving position control is
our primary objective, we still assign rewards to intermediate
states such as velocity, Euler angles, and body angular
velocity.

In addition to setting the state rewards, it is also crucial to
set appropriate action reward hyperparameters. The actions
generated through the BC policy are non-smooth [14] because
BC learns discrete state-action pairs without considering the
continuity in time. While fluctuating actions could generate
reasonable results in simulation, they are harmful to the
lifetime of robotic hardware [15]. Hence, we assign hyperpa-
rameters to the action reward function while minimizing the
negative impact on control effectiveness.

F. Deployment on Soft-Actuated Robot

After performing PPO fine-tuning, we deploy the RL-
trained policy, πθ′ , on our customized experimental setup that
runs Matlab Simulink Real-Time at 1 kHz. The flight arena
consists of a commercial motion tracking system (Vicon), a
specialized controller (Speedgoat), and high-voltage amplifiers
(Trek). We built a 720-mg eight-wing IMAV and an 850-
mg four-wing IMAV; both of them have four soft actuators
(DEAs).

III. RESULTS

We conduct simulations and flight experiments to evaluate
controller effectiveness. In simulations, the modified BC
improves the reward (median) by 75% compared to the
baseline BC. The PPO further enhances the reward (median)
by 62% and reduces the thrust fluctuation by 51%, which is
crucial for performing experimental validation on real-world
hardware. In flight experiments, we achieve multiple zero-
shot stable hovering where our position errors outperform
the state-of-the-art long endurance flights on IMAVs.

A. Simulation Results

To train the policy, we use a NN with 2 hidden layers
and 32 neurons per layer. To compare their performance in
simulation, we run each type of controller in the delayed
simulator for 5 seconds and repeat 100 times with different
robot parameters R, environmental disturbances E , delays d,
and initial conditions s0.

First, we evaluate the effectiveness of the two techniques:
state-action re-matching and domain-randomized expert demo.
We compare the performance of three behavior cloned
controllers: 1) baseline BC (non-randomized expert demo and
no re-matching); 2) BC with state-action re-matching (non-
randomized expert demo); and 3) BC with both state-action
re-matching and domain-randomized expert demonstrations.
In Fig. 4a, the baseline BC policy returns the lowest
median reward of -238.2, while the policy trained on state-
action re-matching (without randomized domains) scores
-201.2, indicating that the proposed re-matching method
improves controller performance in a delayed environment.
The policy trained with the randomized domains (with re-
matching), achieves the best median reward of -59.8. This
result showcases that randomizing parameters at the behavior

1.4

0 s

0.2 s

a

b

1 s 2 s

2.08 s

1 cm

0 0.5 1 1.5 2
Time (s)

-7

0

7

P
os

iti
on

 (c
m

)

x y

0 0.5 1 1.5 2
Time (s)

-2

-1

0

1

P
os

iti
on

 (c
m

)

z

0 0.5 1 1.5 2
Time (s)

0.6

1

N
or

m
al

iz
ed

 th
ru

st

Reference

Fig. 6. A successful hovering flight performed by the deep reinforcement learning controller on a 720-mg soft-actuated IMAV. (a) A sequence of composite
images illustrating a 2-second hovering flight. (b) Tracked robot lateral position, altitude, and the commanded thrust force.

cloning stage enhances the robustness of the controller to
accommodate more model uncertainty.

We also vary the parameter range in our domain random-
ization (DR) implementation and evaluate its influence on
controller performance. Fig. 4b shows that the mean reward
remains similar (within 20% change) despite having large
changes in parameter range. This result implies that larger
parameter variation can lead to higher tolerance to model
uncertainty without substantially sacrificing performance.
Furthermore, we investigate the learning convergence rate.
Fig. 4c shows the controller performance improves as the
number of training state-action pairs increases. This result
shows the trained policy only requires approximately 20000
state-action pairs to converge, equivalent to 20 seconds of
expert flight demonstrations in simulation.

In addition, we investigate the performance of PPO fine-
tuning and its influence on smoothing the control policy
at the RL stage. Fig. 5a shows the mean reward increases
as the number of agent-environment interactions increases.
Fig. 5b demonstrates that the fine-tuned RL policy, πθ′ , is
improved through PPO by 62% (median reward). Fig. 5c
and 5d compare the commanded thrust before and after
PPO fine-tuning. The command fluctuation reduces by 51%
without reducing trajectory tracking accuracy, making it more
preferable to be deployed on real-world hardware.

B. Experimental Flight Results

To evaluate the effectiveness of state-action re-matching and
DR in bridging the Sim2Real gap, we deploy the trained policy
on two distinct soft-actuated robots. The results demonstrate
successful and stable hovering flights on both real-world
platforms.

We first conduct a flight test on a 720-mg eight-wing IMAV
(Fig. 1, left) to evaluate the reinforcement learning policy after
PPO fine-tuning (Fig. 6). The soft-actuated robot achieves a
zero-shot stable hovering with small lateral drift, marking the
first successful deployment of deep RL control on an insect-
scale flapping-wing soft robot (Supplementary Video Part 1).
Fig. 6 illustrates the tracked position and commanded thrust,
with position errors comparable to other work [4] [5]. The

commanded thrust is also reasonably smooth, highlighting
the effectiveness of PPO fine-tuning.

We then attempt to fly a four-wing robot (Fig. 1 right),
which has an MoI approximately six times smaller than
the eight-wing version on the y-axis, making it even more
challenging to control. To adapt to this design, we adjust
only the robot parameters R for both BC and PPO, keeping
other parameters unchanged for NN controller training. Using
the trained policy, we achieve three consecutive 10-second
flights (Fig. 7b and Supplementary Video Part 2) with lateral
position and altitude RMSEs of 0.97–1.58 cm and 0.10–0.12
cm, respectively (error calculated after a 1-second delay to
allow altitude to converge). To further evaluate the policy’s
reliability, we conduct an extended 50-second flight—longer
than any other reported flight at the insect scale [15]. During
this flight, the lateral position and altitude RMSEs are 1.34
cm and 0.05 cm, respectively (Fig. 7a,c and Supplementary
Video Part 3, error calculated after a 1-second delay).

Compared with other long hovering flights (> 10 s), the
position errors of these successful flight attempts on the four-
wing soft-actuated robot are smaller than those reported in
state-of-the-art IMAV studies [3] [5] [10].

IV. DISCUSSION & CONCLUSION

In this work, we develop a deep reinforcement learning-
based controller for an insect-scale aerial robot. We address
the challenges of system delay and model uncertainty by
initializing the policy through the state-action re-matching
method with domain-randomized demonstrations. Then, we
apply PPO in the reinforcement learning stage to improve
flight performance and reduce driving command fluctuation.
The simulation results show that the proposed techniques
for BC can effectively improve the mean reward, and PPO
fine-tuning reduces variations of thrust. Most importantly,
we deploy this controller on a 720-mg and an 850-mg soft-
actuated IMAV and demonstrate a 50-second hovering flight
with lateral position and altitude error of 1.34 cm and 0.05
cm, respectively.

Unlike most BC methods that rely on DAgger [13] to
enhance neural network robustness after cloning, the proposed
modified BC method incorporates disturbances, E , directly

25 s0.5 s
1 s

50 s

1 cm

a

0 2 4 6 8 10
Time (s)

-7

0

7

P
os

iti
on

 (c
m

) x Reference

0 2 4 6 8 10
Time (s)

-7

0

7

P
os

iti
on

 (c
m

) y

0 2 4 6 8 10
Time (s)

-2

-1

0

1

P
os

iti
on

 (c
m

) z

0 10 20 30 40 50
Time (s)

-7

0

7

P
os

iti
on

 (c
m

) x Reference

0 10 20 30 40 50
Time (s)

-7

0

7
P

os
iti

on
 (c

m
) y

0 10 20 30 40 50
Time (s)

-2

-1

0

1

P
os

iti
on

 (c
m

) z

b

c

0 s

Fig. 7. Successful hovering flights performed by the deep reinforcement learning controller on an 850-mg soft-actuated four-wing IMAV. (a) A sequence
of composite images illustrating a 50-second hovering flight. The blue dots in the images indicate the setpoint (origin) of the robot. (b)-(c) Tracked robot
lateral position and altitude. (b) Three 10-second hovering flights. The light colors represent repeating flights. (c) The 50-second hovering flight.

during the expert demonstration stage. This early introduction
allows us to sample more diverse state-action pairs without
DAgger, making trajectory generation computationally effi-
cient and reducing dataset creation time to under a minute.
Including supervised learning, the modified BC approach
initializes a delay-compensated NN ready for PPO in less
than 5 minutes (on an M1 MacBook Air).

Achieving insect-like locomotion on a soft-actuated IMAV
requires complex planning and high-rate feedback control,
yet we are limited to lightweight onboard microprocessors
with constrained computational capacity. Deep reinforcement
learning is an ideal solution, as a small (32x32) multi-layer
perceptron can be efficiently run on hardware of this size,
and the neural network can learn an optimal policy over long
time horizons through deep RL [6].

An essential aspect of this work is bridging the Sim2Real
gap. For the first time, an insect-scale robot achieves stable
hovering flight using model-free deep RL, demonstrating
that controllers proven effective in the simulator can reliably
translate to real-world soft-actuated robots. This milestone
not only validates the robustness of our approach but also
paves the way for testing more control strategies safely and
efficiently within the simulation environment.

While this work focuses on hovering flights, it represents
an intermediate step toward achieving insect-like agile maneu-
verability. By harnessing the potential of unsupervised deep
reinforcement learning, the neural network controller can be
trained on more complex tasks in simulation—such as wall
perching [16], inverted ceiling landings [17], and aggressive
trajectory following [6]—and perform these challenging
maneuvers on real-world IMAVs in the near future.

REFERENCES

[1] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood, “Controlled
flight of a biologically inspired, insect-scale robot,” Science, vol. 340,
no. 6132, pp. 603–607, 2013.

[2] Y. M. Chukewad, J. James, A. Singh, and S. Fuller, “Robofly: An
insect-sized robot with simplified fabrication that is capable of flight,
ground, and water surface locomotion,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 2025–2040, 2021.

[3] R. M. Bena, X. Yang, A. A. Calderón, and N. O. Pérez-Arancibia,
“High-performance six-dof flight control of the bee++: An inclined-
stroke-plane approach,” IEEE Transactions on Robotics, vol. 39, no. 2,
pp. 1668–1684, 2023.

[4] Y. Chen, H. Zhao, J. Mao, P. Chirarattananon, E. F. Helbling, N.-s. P.
Hyun, D. R. Clarke, and R. J. Wood, “Controlled flight of a microrobot
powered by soft artificial muscles,” Nature, vol. 575, no. 7782, pp.
324–329, 2019.

[5] Y. Chen, S. Xu, Z. Ren, and P. Chirarattananon, “Collision resilient
insect-scale soft-actuated aerial robots with high agility,” IEEE Trans-
actions on Robotics, vol. 37, no. 5, pp. 1752–1764, 2021.

[6] Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza,
“Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning,” Science Robotics, vol. 8, no. 82, p. eadg1462,
2023.

[7] N. O. Perez-Arancibia, P.-E. J. Duhamel, K. Y. Ma, and R. J. Wood,
“Model-free control of a hovering flapping-wing microrobot: The design
process of a stabilizing multiple-input–multiple-output controller,”
Journal of Intelligent & Robotic Systems, vol. 77, pp. 95–111, 2015.

[8] A. De, R. McGill, and R. J. Wood, “An efficient, modular con-
troller for flapping flight composing model-based and model-free
components,” The International Journal of Robotics Research, p.
02783649211063225, 2021.

[9] A. Tagliabue, Y.-H. Hsiao, U. Fasel, J. N. Kutz, S. L. Brunton, Y. Chen,
and J. P. How, “Robust, high-rate trajectory tracking on insect-scale
soft-actuated aerial robots with deep-learned tube mpc,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 3383–3389.

[10] S. Kim, Y.-H. Hsiao, Y. Lee, W. Zhu, Z. Ren, F. Niroui, and Y. Chen,
“Laser-assisted failure recovery for dielectric elastomer actuators in
aerial robots,” Science robotics, vol. 8, no. 76, p. eadf4278, 2023.

[11] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped
robots,” in Robotics: Science and Systems, 2018.

[12] P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Single-loop control
and trajectory following of a flapping-wing microrobot,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 37–44.

[13] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[14] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” Robotics: Science

and Systems, 2023.
[15] Y.-H. Hsiao, S. Kim, Z. Ren, and Y. Chen, “Heading control of a long-

endurance insect-scale aerial robot powered by soft artificial muscles,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 3376–3382.

[16] P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Perching with a robotic
insect using adaptive tracking control and iterative learning control,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1185–1206, 2016.

[17] B. Habas, J. W. Langelaan, and B. Cheng, “Inverted landing in a small
aerial robot via deep reinforcement learning for triggering and control
of rotational maneuvers,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 3368–3375.

