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Abstract

As the availability of text and code has in-001
creased, large-scale pre-trained models have002
demonstrated considerable potential in tackling003
code generation problems. These models usu-004
ally apply a supervised fine-tuning approach,005
training on pairs of natural language problem006
statements and corresponding ground-truth pro-007
grams. However, the strategy of increasing the008
model size and training data quantity, despite009
potential performance improvements, also in-010
flates computational costs and can lead to over-011
fitting (Lai et al., 2022). Considering these is-012
sues, we introduce RETROcode, a novel adap-013
tation of the RETRO architecture (Borgeaud014
et al., 2022) for sequence-to-sequence mod-015
els, that strategically employs a sizable code016
database as an auxiliary method for model scal-017
ing. Unlike approaches that solely increase018
model and data size, RETROcode enables the019
model to directly access a large code database020
for making predictions. This provides an effi-021
cient mechanism to augment language models022
with substantial-scale memory. Our work in-023
cludes an empirical analysis of methods for024
integrating information from natural language025
and code from database in the generation pro-026
cess. Leveraging a large database, we outper-027
form classic architectures with similar number028
of parameters on our test sets and we achieve029
results that are getting closer to Codex despite030
it having a significantly larger parameter and031
training data size.032

1 Introduction033

Code generation is the task of automatically creat-034

ing computer programs from natural language, gen-035

erating potentially previously unseen code. It has036

a wide range of applications, from creating code037

snippets for developers to generating complete soft-038

ware applications. In recent years, the increasing039

availability of large amounts of code and natural040

language data has facilitated the development of041

powerful neural network models that can perform 042

code generation with high accuracy. 043

One challenge in working with large amounts 044

of natural language and code data is the lack of 045

aligned examples, which require human expertise 046

to annotate. To address this issue, one approach 047

is to use large pre-trained models that have been 048

trained on a large volume of code and/or natural 049

language data, and then fine-tune them on the avail- 050

able annotated data (Xu et al., 2020; Wang et al., 051

2021; Chen et al., 2021; Li et al., 2022). The use of 052

large models with a high number of parameters can 053

provide computational benefits during training and 054

inference, as well as improved memorization of 055

the training data. However, training these models 056

can be computationally expensive, and the large 057

number of parameters may lead to overfitting on 058

the training data (Bender et al., 2021; Karmakar 059

et al., 2022). 060

An alternative approach for translating natural 061

language to code is code retrieval, which involves 062

searching for and retrieving an appropriate code 063

snippet from a code database (Wan et al., 2019; 064

Ling et al., 2021; Gu et al., 2021). However, these 065

methods are becoming less commonly used as it 066

is now possible to use pre-trained models that are 067

trained on the entire code database and generate 068

personalized code responses to a given query. 069

Methods for natural language generation often 070

involve the use of generative models that are trained 071

to associate text with data in a database. These 072

solutions have two main advantages: they allow 073

for the separation of world knowledge from lan- 074

guage learning, and they enable the use of smaller 075

model sizes. For instance, the Knn-Based Com- 076

posite Memory system (Fan et al., 2021) assists a 077

conversational agent by providing access to infor- 078

mation from similar discussions and by supplying 079

relevant knowledge from various sources based on 080

the input user prompt. Another example is RETRO 081

architecture (Borgeaud et al., 2022), which pro- 082
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vides information to a language model as decoding083

goes using sentences similar to what was gener-084

ated. In both cases, queries are made to a database085

by comparing the embeddings of the input or out-086

put with those in the database to obtain the nearest087

neighbours, and the resulting information is pro-088

vided to the encoder or decoder, respectively.089

In this paper, we introduce RETROcode, a090

transformer-based architecture that integrates a091

sequence-to-sequence architecture into Borgeaud092

et al. (2022). This facilitates the simultaneous093

processing of dual inputs: natural language utter-094

ances and analogous code snippets retrieved from095

a database. Our strategy strives to harness the ex-096

tensive available code data while minimizing the097

model parameters.098

We present two methods for integrating this in-099

formation within the decoder and conduct an in-100

depth analysis of the impact of various critical com-101

ponents on system performance. Our results out-102

perform architectures with an equivalent number103

of parameters and are the close to Codex’s per-104

formance in our code generation task, albeit with105

significantly fewer parameters. This article delivers106

the following contributions:107

• It establishes a novel transformer sequence-to-108

sequence architecture that combines informa-109

tion from natural language input and similar110

code from a database.111

• It investigates the impact of key architecture112

components on system performance, includ-113

ing database preprocessing, database code114

size, and two distinct methods for integrating115

database information into the decoder.116

• It proposes an effective hybrid database to not117

only take advantage of the large amounts of118

code available but also of natural language to119

code alignments.120

This article is organized as follows: In Section 2,121

we provide a formal description of the query sys-122

tem used to retrieve neighbours from the database123

during decoding. In Section 3, we detail our model124

architecture, including two methods for merging125

natural language intent with information retrieved126

from the database. In Section 4, we highlight the127

critical elements of our architecture. Finally, in128

Section 5, we conduct experiments to examine the129

various key elements of our model, comparing 3130

different approaches to generate code from natural131

language.132

2 Query Architecture 133

In this Section, we describe the database query 134

system which is designed to retrieve similar codes 135

from the database in response to a query as illus- 136

trated in Figure 1. The function Queryk(Cq) is 137

defined to take a code chunk of size m and return 138

its k-nearest code neighbours from the database. 139

The embedding of the current code Cq is calculated 140

and compared to the embeddings from the database 141

with an L2 distance.

Figure 1: Process of Queryk(Cq) to obtain k-nearest
neighbours and their continuation. Here, the chunk
length m to construct the database is equal to 8.

142

We first introduce the database organization and 143

then explain how the query system is designed. 144

2.1 Database structure 145

We structure our database D as a key-value memory. 146

Each value consists of two continuous chunks of 147

code tokens of size m, referred to as [N,F ]. N is 148

the neighbouring chunk that is used to compute the 149

key, while F is the continuation of the code from 150

N , adding information. The key embedding is then 151

computed with a frozen CODEBERT on N . 152

We choose to use a frozen model for the embed- 153

ding calculation to optimize the efficiency of the 154

database query system as it avoids to re-compute 155

embeddings over the entire database during train- 156

ing. It further enables the addition of new code 157

chunks to the database after training. 158

Note that the concatenation [N,F ] is not 159

necessarily a complete snippet of code, it depends 160

of the size of m which is one of the crucial 161

parameters of our model. 162

163

2.2 Neighbours Retrieval 164

Given such a database, the query embedding of Cq 165

is also built with a frozen CODEBERT. To retrieve 166

the k-nearest neighbours and their continuations 167
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from D, we use the L2 distance:168

Queryk(Cq) = (N1, ...,Nk) where Ni = [Ni, Fi]169

Note that for a database of T elements, we query170

the approximate nearest neighbours in O log(T ),171

relying on the Faiss library (Johnson et al., 2021)172
1.173

3 Model174

3.1 Objective175

We consider a family of models that generate a176

code Y from a natural language description X . The177

models have a generic form:178

p(Y | X) =
∏
t

p(Yt | Y<t, X) (1)179

where Y = {Yt : t ∈ J1, LK} and X = {Xi :180

i ∈ J1, nK}. The decoding objective aims to find181

the most-probable hypothesis among all candidate182

hypotheses by solving the following optimization183

problem:184

Ŷ = argmax
Y

p(Y | X) (2)185

3.2 Baseline186

To address this problem, we consider as a baseline187

the classic transformer architecture from Vaswani188

et al. (2017) with some minimal changes: we re-189

place Layer Normalisation with Root Mean Square190

(RMS) normalisation (Zhang and Sennrich, 2019)191

and use rotary embedding (Su et al., 2021). As192

we employ residual connections (He et al., 2015)193

between each sub-layer followed by a RMS nor-194

malization. We define the notations:195

SublayerFFW(X) = RMSNorm(X + FFW(X))

SublayerSA(X) = RMSNorm(X + SA(X))

SublayerCA(X,Y ) = RMSNorm(Y + CA(X,Y ))

SublayerCCA(X,Y ) = RMSNorm(Y + CCA(X,Y ))

196

where RMSNorm is a Root Mean Square normal-197

ization, FFW is a fully-connected feed-forward net-198

work. The self-attention SA and the cross-attention199

CA are classically defined as in Vaswani et al.200

(2017) with MultiHead(Q,K, V ) where Q, K, and201

V are the query, key, and value matrices respec-202

tively. The chunked-cross attention CCA is defined203

as in Borgeaud et al. (2022) to handle the inter-204

action between the model and the retrieved data205

1https://github.com/facebookresearch/faiss

in chunks without breaking autoregressivity (see 206

Appendix A for details). We can then define the 207

encoder’s layer for natural language as: 208

ENC_NL(X) = SublayerFFW(H)

H = SublayerSA(X)
(3) 209

and the code decoder’s layer as follows: 210

DEC(X,Y ) = SublayerFFW(Cnl)

Cnl = SublayerCA(E,C)

E = ENC(X)

C = SublayerSA(Y )

(4) 211

The methodology for computing hidden represen- 212

tations using a transformer has been detailed. To 213

predict code tokens, our approach is to leverage a 214

standard application of the softmax function across 215

the model’s vocabulary. However, to address the 216

challenge of rare word terms, especially relevant in 217

the context of very specific variable names, we en- 218

hance this with the inclusion of a pointer network 219

(Vinyals et al., 2015). In accordance with method- 220

ologies outlined in Yin and Neubig (2018); Beau 221

and Crabbé (2022), the final output layer of our 222

model is a fusion of a softmax distribution over the 223

vocabulary and the results derived from the pointer 224

network. This design ensures an effective balance 225

between handling general language structures and 226

accommodating specific OOV terms. 227

3.3 Gathering neighbours’ information 228

Crucially, our proposed architecture incorporates a 229

transformer guided by neighbours retrieved from 230

an external code database. Here, we explain how 231

we integrate information from the code database 232

into the code generation process, that is the value 233

returned by the Queryk(Cq) function. 234

The information from the retrieved neighbours 235

must be encoded to be integrated into the de- 236

coder. Each encoding of Ni is conditioned with the 237

code already generated by the decoder (Y ) as in 238

Borgeaud et al. (2022): 239

ENC_NB(Ni, Y ) = SublayerFFW(H)

H = SublayerCA(C,E)

C = SublayerSA(Y )

E = SublayerSA(Ni)

(5) 240

As a result, the encoding Enb of the neighbours is 241

the concatenation of the encoding of each retrieved 242
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Figure 2: Illustration of the RETROcode architecture, which includes two variations for integrating neighbour
encoding into the baseline model 2. (a) Sequential aggregation: we incorporate the information from the neighbours
into the code generation process using a two-step process. First, we use the classic cross-attention mechanism to
combine the information from the natural language. Then, we perform a second cross-attention between the output
of the first cross-attention and the neighbours. This process is described in equation 6. (b) Parallel aggregation:
we separately compute the information from the neighbours and the natural language with the decoder using
cross-attention, and then merge the results with a linear layer as described in equation 7.

neighbour:243

Enb = ENC_NB(N , Y )

= [ENC_NB(N1, Y ) : . . . : ENC_NB(Nk, Y )]
244

Note that we cannot use directly the database key to245

feed our decoder since we wish to integrate not only246

similar codes but also their continuation, which are247

not included in the key computation.248

3.4 Decoding with natural language and249

neighbours250

As we aim to feed the decoder with information251

from natural language and the retrieved neighbours252

to guide upcoming predictions, we describe here253

an update of equation 4 taking advantage of the254

embedding Enb gathered from the neighbours. To255

do this, we use two different methods (Figure 2).256

First, we introduce the sequential aggregation257

where the neighbour information is mixed with the258

natural language information thanks to the cross-259

attention (as represented on the left of Figure 2):260

DEC(X,Y,N ) = SublayerFFW(Cnb)

Cnb = SublayerCCA(Enb, Cnl)

Enb = ENC_NB(N , Y )

Cnl = SublayerCA(Enl, C)

Enl = ENC_NL(X)

C = SublayerSA(Y )

(6) 261

The second solution computes the cross-attention 262

between the neighbours and the natural language in 263

parallel and then aggregate the information through 264

a linear layer (as shown on the right of Figure 2): 265

DEC(X,Y,N ) = SublayerFFW(Cmerge)

Cmerge = Linear(Cnb + Cnl)

Cnb = SublayerCCA(Enb, C)

Enb = ENC_NB(N , Y )

Cnl = SublayerCA(Enl, C)

Enl = ENC_NL(X)

C = SublayerSA(Y )

(7) 266

267

2Here, the neighbour’s encoder is not constrained by the
code being generated as in the original RETRO architecture
and it is a classic transformer encoder. We drop it because
it does not impact the results. See Appendix B for further
details.
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The neighbour encoding provides a strong signal268

to the decoder, so we use equations 6 and 7 every p269

layers and otherwise we use the baseline equation270

4.271

4 Dataset and preprocessing272

In this Section, we describe the characteristics273

of the CoNaLa dataset on which we have tested274

our different architectures, the available code data275

to construct our database and the creation of the276

database.277

4.1 Dataset278

In this study we use one specific dataset, CoNaLa,279

to perform our code generation task.280

CoNaLa is a comprehensive corpus, comprising281

approximately 600,000 pairs of natural language282

expressions and their corresponding Python code283

fragments, sourced from StackOverflow. Among284

these examples, a subset of 2,879 pairs has under-285

gone meticulous manual cleaning by professional286

developers, which significantly enhances their qual-287

ity. This subset is further divided into a training set288

comprising 2,379 pairs and a fixed test set contain-289

ing 500 pairs. All results reported in the article are290

based on these manually curated examples, unless291

stated otherwise. We created a fixed development292

set by extracting 200 examples from the total 2,379293

examples within our training data.294

Substitution We preprocess the CoNaLa dataset295

by normalising the names of variables and con-296

stants which are denoted by quotes in the natural297

language of the 2379 manually curated examples as298

done in (Yin and Neubig, 2018; Beau and Crabbé,299

2022; Zhou et al., 2023). This is done by sub-300

stituting the actual names of the variables with a301

predefined set of normalized names that the statisti-302

cal model can recognize. For example, all variables303

are renamed to var_0, var_1, etc. and all lists are304

renamed to lst_0, lst_1, etc. in both the natural305

language and code.306

Evaluation To compare with previous work, we307

report the standard evaluation metric for CoNaLa.308

Hence, we report corpus-level BLEU and compare309

with other works on the fixed test set.310

4.2 Database creation311

The database’s construction is the backbone of312

our model’s framework. Here we delve into the313

specifics of the dataset used for building our classic314

database as described in 2.1, and further explore 315

the varied permutations surrounding this dataset. 316

Our intent is to harness the potential of the 317

600,000 code snippets extracted from CoNaLa. 318

Given their intrinsic noise and sporadic alignment 319

with natural language, these snippets raise a sig- 320

nificant challenge when incorporated into model 321

training. Nevertheless, the high volume of these 322

snippets - corresponding to Python idiomatic tasks 323

on StackOverflow - potentially holds a value for 324

our model during its generation phase. We consis- 325

tently draw from the totality of the 600,000 avail- 326

able codes with the 2,379 clean examples to con- 327

struct our database. However, initial variations are 328

introduced by modulating the length m of the seg- 329

ments, consequently leading to databases of differ- 330

ent sizes (since each code is divided into m chunks 331

and each chunk corresponds to a single entry in 332

the database). We vary the chunk length from 2, 333

4 and 8 (not counting the continuation which is 334

of the same size of m) because in average code 335

snippet from CoNaLa are of length 14.08. Addi- 336

tionally, we introduce variations in the code snip- 337

pets by integrating them ’as is’ into the database or 338

employing the substitution mechanism to standard- 339

ize the codes by replacing the variable names (the 340

heuristic for replace variable names and examples 341

of substitution mechanism for mined examples are 342

given in Appendix D). 343

One limitation of the classical approach is the 344

absence of constraints for the initially generated 345

tokens. To leverage the statement and code snip- 346

pet pairs, we opt to create a hybrid database by 347

integrating natural language embeddings as keys, 348

along with the corresponding initial code segments 349

as values. This integration guides the initial stages 350

of our decoding process (Figure 3 in Appendix A). 351

This variation aims to assist the model in generat- 352

ing the correct beginning of the code, which can 353

be critical. Incorrect initial code sequences could 354

lead to error propagation that becomes challeng- 355

ing to rectify in later generation steps, resulting in 356

incorrect retrieval of neighbors as well. 357

We use codeBERT 3 to construct database em- 358

beddings and utilize Faiss 4 to form the index. 359

5 Experiments 360

The experiments compare three strategies for code 361

generation. We start by describing our experimen- 362

3https://github.com/microsoft/CodeBERT
4https://github.com/facebookresearch/faiss
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tal protocol, highlighting the critical parameters363

utilized in our experiments5. Then, we provide364

an analysis of the baseline transformer approach,365

thoroughly detailed in Section 3.2.366

To test the contribution of the database, we first367

evaluate an enhanced version of the baseline trans-368

former with the classic database (Section 3.4).369

This experiment is designed to investigate the effec-370

tiveness of augmenting the model with a broader371

context of code structure and familiar patterns.372

Third, we investigate the hybrid database ap-373

proach, enhancing the database with natural lan-374

guage to constraint the decoding process at the375

beginning.376

5.1 Methodology377

Given the amount of code at our disposal, we lever-378

age CODEBERT for natural language encoding,379

thereby ensuring its compatibility with our pre-380

existing seq2seq architecture. This approach is381

apt, considering CODEBERT’s training not only in-382

volves code but also incorporates document strings383

corresponding to that code, thereby imbuing CODE-384

BERT with capabilities for understanding natural385

language.386

For encoding and decoding tasks associated387

with the neighbours, we use 6-layer transform-388

ers equipped with 8 heads, maintaining hidden di-389

mensions at a constant 256. We adhere to a fixed390

dropout of 0.4 across all cross-attention layers.391

In all our experiments, we use two neighbours392

and use cross-attention every three layers as recom-393

mended by Borgeaud et al. (2022). To optimize our394

model training, we precompute the neighbours dur-395

ing the database creation phase. Thus, our experi-396

mental strategy encompasses evaluating different397

chunk size configurations within the database, and398

also assessing the impact of variable name replace-399

ment. For the decoding process, a beam width of400

15 was employed.401

5.2 Baseline402

Table 1 summarizes the evaluation results of our403

two baseline configurations on our development404

set.405

The first setup uses a system size of 168M pa-406

rameters and yields a BLEU score of 35.19 ±407

0.63 trained on the 2379 cleaned examples from408

CoNaLa.409

5The code of our experiments is publicly accessible and
can be found at anonymized address.

System Size BLEU

Baseline 168M 35.19± 0.63
Baseline + 100k mined 168M 38.05± 1.08

Table 1: Baseline results on the development set. The
scores reported are the mean and standard deviation
resulting from training with 5 different seeds.

The second configuration incorporates an addi- 410

tional 100,000 mined examples into the system. 411

The integration of these mined examples signifi- 412

cantly enhances the model’s performance, leading 413

to a higher BLEU score of 38.05± 1.08. 414

The improvement observed in the ’Baseline + 415

100k mined’ configuration highlights the effective- 416

ness of augmenting the training set with mined 417

examples. This observation supports the hypothe- 418

sis that using mined examples can indeed serve as 419

a significant strategy to improve the performance 420

of code retrieval tasks. 421

5.3 RETROcode with classic database 422

We now evaluate our models using the classic 423

database to guide code generation. More specifi- 424

cally, we study the impact of different key variables, 425

such as the substitution mechanism in the database, 426

the chunk size ’m’, and the method for aggregating 427

the neighbours (either sequentially or in parallel), 428

on the performance of our model. 429

Architecture Substitution chunk size m BLEU

Parallel

False
2 32.98± 0.93
4 28.53± 1.05
8 31.56± 0.72

True
2 34.54± 0.58
4 30.27± 0.74
8 34.14± 0.29

Sequential

False
2 34.35± 0.36
4 29.09± 0.24
8 31.71± 0.49

True
2 35.23 ± 0.53
4 31.59± 0.67
8 34.60± 0.65

Table 2: Comprehensive comparison of BLEU scores,
each obtained from five different training sessions, on
the development set by varying key parameters: system
architecture (sequential or parallel), implementation of
the substitution mechanism in the database, and the
chunk size utilized in constructing the database. Each
score represents a mean value along with the associated
standard deviation.

From Table 2, we observe that in all cases, the 430

model performance is worse than that of our base- 431

line, despite being trained on the same number of 432

examples. A qualitative manual observation re- 433
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vealed that this disappointing behavior comes from434

generation errors at beginning of the sequence that435

are further propagated. The initial tokens of code436

are indeed generated without information from the437

neighbours (see Appendix E for detailed output438

examples). The erroneous prefixes cause the query439

mechanism to retrieve similar beginning erroneous440

chunks, diverting our model from the correct path441

and consequently reducing the BLEU score signifi-442

cantly. From manual inspection again, we observe443

that the initial tokens of code generated are not444

fundamentally incorrect, but still different from the445

ground truth.446

Before providing a solution to overcome this447

problem, let us first highlight the main trends for448

our different variables.449

System Architecture The results illustrate a sig-450

nificant variation between the parallel and sequen-451

tial architectures. The sequential architecture ap-452

pears to yield higher BLEU scores compared to453

the parallel one, particularly when the substitu-454

tion mechanism is employed. It seems that cross-455

attention is a better way to merge information from456

natural language and neighbours rather than use a457

separate cross-attention treatment with a final linear458

layer.459

Substitution The implementation of a substitu-460

tion mechanism consistently enhances the model’s461

performance across both architectures and all462

chunk sizes. This increase in BLEU scores sig-463

nifies that normalization of variable names through464

substitution can greatly help in retrieving appro-465

priate neighbours and accurately predicting code.466

This is expected, given that one of the main dif-467

ficulties in predicting code lies in predicting the468

variable name as described by Beau and Crabbé469

(2022). Furthermore, the retrieval of neighbouring470

codes is enhanced by substitution, which standard-471

izes the code that has the same objective but uses472

different variable names.473

Chunk Size The impact of chunk size on model474

performance appears intricate, with no explicit pat-475

tern discernible from the Table. BLEU scores vary,476

not strictly correlating with the size of the chunks.477

For example, sometimes the smaller chunk size478

of 2 improves the results, likely by enabling the479

model to process more localized information from480

its neighbours. Conversely, larger chunk sizes,481

such as 8, also deliver good results as they let the482

model operate more independently during gener-483

ation, with neighbouring data having less impact 484

on the code’s tail end. In the case of an intermedi- 485

ate chunk size of 4, however, the model seems to 486

retrieve less relevant information, thus leading to 487

confusion and potentially lower-quality code gen- 488

eration. 489

5.4 RETROcode with hybrid database 490

To avoid mismatches between the generated code 491

and the reference code, we propose an initial stage 492

of inference driven by a hybrid database build 493

from CoNaLa’s clean and noisy pairs. By associ- 494

ating natural language embeddings (as key) with 495

the beginnings of related codes (as value), we can 496

query the database using the natural language input 497

statement and retrieve corresponding code begin- 498

nings. This thereby guides the model from the 499

generation’s outset. The results for this method are 500

detailed in Table 3. 501

Architecture Substitution chunk size m BLEU

Parallel

False
2 35.87± 0.71
4 32.22± 0.38
8 36.81± 1.07

True
2 36.09± 0.90
4 33.75± 0.23
8 37.76± 1.06

Sequential

False
2 39.10± 0.79
4 35.28± 0.50
8 43.03± 1.18

True
2 39.45± 1.08
4 36.20± 1.17
8 43.56 ± 0.81

Table 3: Exhaustive comparison of BLEU scores at-
tained from five different training instances on the de-
velopment set. Parameters echo those in Table 2, but
with the initial database now augmented by the hy-
brid database; natural language embeddings (keys) are
matched with the beginnings of corresponding codes
(values). All scores represent means and corresponding
standard deviations.

The implementation of the hybrid database sig- 502

nificantly enhances performance across all configu- 503

rations. It notably achieves a BLEU score of 43.56 504

with a chunk size of 8, exceeding the baseline + 505

100k by 5.5 BLEU points. We observe empirically, 506

that this method constraining generation from the 507

very beginning often leads to codes closely resem- 508

bling the ground truth, especially when m=8, allow- 509

ing the model to frequently clone first neighbours 510

that closely mirror the ground truth (see Appendix 511

F for detailed output examples). 512

The observations for the different factors, as dis- 513

cussed in 5.3, remain consistent. 514

7



5.5 Test set515

Finally we compare in table 4 our best models516

against other state of the art systems on CoNaLa517

from 5.4. Additionally, to assess the robustness518

and general applicability of our model, we employ519

an alternative dataset, CodeXGlue (Lu et al., 2021),520

with different properties.521

System Size BLEU CodeBLEU

ChatGPT-3.5-turbo 6 ?B 53.15 60.50
Codex (Chen et al., 2021) 12B 43.16 -
CodeT5 + DocPrompting (Zhou et al., 2023) 220M 36.22 -
CodeT5 (Wang et al., 2021) 220M 34.57 -
kNN-BERTranX (Zhou and Chen) 240M 37.29 39.04
BERTranX (Beau and Crabbé, 2022) 130M 34.20 -

RETROcode (parallel) + hybrid db 180M 38.23 38.50
RETROcode (sequential) + hybrid db 176M 43.09 44.18

Table 4: Comparative analysis of system evaluated on
the CoNaLa.

CoNaLa Test We present result on Table 4. All522

systems use pre-training on external sources; for in-523

stance, we use CODEBERT as the natural language524

encoder, whereas BERTranX utilizes BERT, and525

CodeT5, a seq2seq architecture, is pre-trained on526

the CodeSearchNet dataset (Husain et al., 2019).527

ChatGPT and Codex, on the other hand, are pre-528

trained on a vast, undisclosed dataset. A unique529

strategy is seen in Zhou et al. (2023)’s approach,530

which enhances CodeT5’s performance by incorpo-531

rating additional information retrieved from a doc-532

umentation database. BERTranX focuses on gen-533

erating syntactically correct Python code through534

the construction of abstract syntax trees with a535

grammar-based decoder, while kNN-BERTranX536

enhances this with a grammar database. Our537

method, RETROcode, distinguishes itself in this538

competitive field by surpassing systems with sim-539

ilar scale and data sources by almost 5 BLEU540

points. It closely approaches the performance level541

of Codex, despite being significantly smaller in size542

— 66 times less than that of Codex — when tested543

on the CoNaLa dataset. However, it is important544

to note that our system still trails behind ChatGPT,545

which benefits from a considerably larger scale546

with possible data contamination and is more finely547

tuned for developer assistance.548

CodeXGlue Test The CodeXGlue dataset com-549

prises 250,000 training examples and 15,000 test550

examples, each pairing a docstring with its cor-551

responding Python function. This dataset poses552

6Evaluated on December 10, 2023. The date is specified
to account for ongoing advancements in the ChatGPT model.

7Evaluation made on December 15th 2023.

System Size BLEU CodeBLEU

ChatGPT-3.5-turbo7 ?B 40.36 54.47
Redcoder-Ext (Parvez et al., 2021) 140M 24.43 30.21
GAP-Gen (Zhao et al., 2023) 220M 22.3 24.1

RETROcode (parallel) + hybrid db 180M 23.54 25.87
RETROcode (sequential) + hybrid db 176M 27.41 33.92

Table 5: Comparative analysis of system evaluated on
the CodeXGlue.

a distinct challenge compared to development aid 553

tasks, as it requires the generation of complete func- 554

tions rather than mere one-liners. To adapt to this 555

different coding requirement, we custom-build our 556

database using the CodeXGlue training set, supple- 557

mented with examples from the Stack dataset (Ko- 558

cetkov et al., 2022). In this context, we maintain 559

the use of two neighboring data points but increase 560

the chunk size to m = 32 to accommodate the com- 561

plexity and length of the required code generation. 562

Redcoder-Ext also utilizes a code database, but its 563

approach involves appending the retrieved code to- 564

kens directly to the input for processing through a 565

pre-trained seq2seq model. Meanwhile, GAP-Gen 566

advances Python code generation by emphasizing 567

fine-tuning over pre-training and utilizes Syntax- 568

Flow and Variable-Flow to guide its generation pro- 569

cess. In our assessments on the CodeXGlue dataset, 570

our sequential RETROcode model demonstrates 571

superior performance, surpassing Redcoder-Ext by 572

nearly 3 BLEU points and 4 CodeBLEU points. 573

This improvement is likely attributable to a more 574

refined process of integrating neighboring data and 575

managing the information flow. 576

For both datasets, we compute the r(C) metric 577

as utilized in RETRO which quantifies the over- 578

lap between test and database examples for both 579

dataset. For CoNaLa, with m = 8, we obtain a 580

value of r(C) = 7.3% while for CodeXGlue with 581

m = 32, we get r(C) = 10.2%. 582

6 Conclusion 583

In this paper, we introduced two novel seq2seq 584

architectures to leverage natural language and a siz- 585

able code database for improved code generation. 586

Our results reveal that the best way to integrate 587

information from natural language and database 588

neighbors is through direct cross-attention. We also 589

identified the necessity to guide the initial stage of 590

our generation process, achievable through a hy- 591

brid database that maximizes the benefits of the 592

rich code resources and aligned pairs embedded in 593

the dataset. 594
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Limitations595

One limitation is that the model size is limited596

when scaling up with the database, but this also597

results in an increase in computation time due to598

the need for periodic database queries. Specifically,599

the baseline model processes each test example in600

approximately 0.11 seconds on average, while our601

enhanced model with a chunk size of 8 exhibits an602

average processing time of 0,38 seconds.603

Following the evaluation protocol used by604

CoNaLa and CodeXGlue, we use the BLEU and605

codeBLEU scores, but they do have inherent limi-606

tations. Firstly, the BLEU score does not vouch for607

the executability of the code - a single erroneous608

token can lead to a compilation error, despite high609

BLEU scores. Secondly, both scores do not ac-610

commodate for multiple viable codes capable of611

accomplishing the same task. In subsequent work,612

we plan to enrich our datasets and evaluation pro-613

tocol with unit tests specifically testing the syntax614

and semantics of the generated code. The inclusion615

of such tests is expected to facilitate the formu-616

lation of more relevant metrics tailored for code617

generation evaluation.618

Another critical limitation lies in the construc-619

tion of the database. Caution is required to prevent620

the inclusion of hazardous or confidential code,621

which could pose security risks if utilized by our622

model. Ensuring the safety and integrity of the623

database content is paramount to avoid these poten-624

tial dangers.625
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Figure 3: Illustration of chunk-cross attention mecha-
nism with chunk length m = 4. This illustration in-
troduces a variation of the database, discussed in 4.2,
featuring a hybrid database.

improve the accuracy of its predictions for the cur-816

rent segment. Specifically, the model retrieves text817

that is similar to the previous segment and uses818

this information to inform its predictions for the819

current segment. During training, it is important820

to not break autoregressivity of the model giving821

neighbours information too early to the decoder.822

To ensure that the model maintains autoregressivity823

during training, we use chunked-cross attention for824

neighours as in Borgeaud et al. (2022) where the825

input sequences are divided into smaller chunks,826

and the model performs cross-attention within each827

chunk.828

Here’s a breakdown of the process:829

• The input sequence is divided into smaller830

chunks. The sequence denoted as Y is split831

into l chunks, each of size m. This means832

that the hidden state C is represented as a833

set of smaller chunks, denoted as (Cu =834

(Cum+i)i∈J1,mK), where u is an index that835

ranges from J1, lK.836

• After the sequence is chunked, chunked cross-837

attention is computed between each chunk Cu838

and its corresponding neighbour encodings839

Enb,u. For each chunk Cu, for each token840

i ∈ J1,mK, we define:841

CCA(C,Enb) = CA(Cum+i, Enb,u)842

• There’s a special case for the first m tokens,843

which can’t attend to any neighbour of a previ-844

ous chunk. For these positions, cross-attention845

is defined as the identity. This means that for846

all tokens j in the range from 1 to m, the out-847

put of the chunked cross-attention operation is848

just the input itself, i.e., CCA(C,Enb)j = Cj .849

• It’s also important to note that this process is 850

autoregressive, which means that the output of 851

the chunked cross-attention operation at posi- 852

tion i depends on all the tokens from position 853

0 to i that have been input into the operation 854

CCA. 855

This chunked cross-attention mechanism allows 856

the model to handle sequences of data efficiently, 857

by focusing on smaller chunks of the sequence at 858

a time, while maintaining the ability to learn de- 859

pendencies between different parts of the sequence 860

through the cross-attention operation. 861

B Neighbours constrained encoder 862

The architecture proposed by Borgeaud et al. 863

(2022) suggests that the generated code should con- 864

strain each layer of the neighbour encoder. 865

A straightforward strategy would be to use an 866

encoder architecture akin to the natural language 867

encoder, featuring two sub-layers; one for self- 868

attention and one for feed-forward operations, as 869

follows: 870

ENC_NB(N ) = SublayerFFW(H)

H = SublayerSA(N )
(8) 871

We evaluate these two methods using our optimal 872

model architecture - a sequential model with a 873

hybrid database, as detailed in section 5.4. The 874

database is preprocessed to normalize variable 875

names, and it employs a chunk size of m = 8. The 876

results of this comparison are presented in Table 6. 877

System Constrained Encoder CoNaLa BLEU

RETROcode (sequential) False 43.56± 0.81

RETROcode (sequential) True 43.03± 0.31

Table 6: Analysis of results from the development set,
gathered from five distinct seeds, for our optimal model,
both with and without the constrained neighbour en-
coder. Each BLEU score is expressed as an average
value, accompanied by its corresponding standard devi-
ation.

Interestingly, the BLEU scores show a marginal 878

decrease when employing the constrained encoder 879

approach. However, the standard deviation associ- 880

ated with the constrained method is notably lower, 881

implying more consistent performance across dif- 882

ferent seeds. Hence, we decided to use a classical 883

encoder for all experiments. 884
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C Datasets mined examples885

We present in Table D different examples from886

the CoNaLa mined examples used to construct our887

database.888

Intent Snippet

Convert binary string to list
of integers using Python

[s[i:i + 3] for i in
range(0, len(s), 3)]

How can I generate a
list of consecutive numbers?

list(range(9))

Converting byte string
in unicode string

c.decode(
’unicode_escape’)

Python: Get relative path
from comparing two

absolute paths

from os.path
import relpath

A python function that
accepts as an argument

either a scalar or a
numpy array

if isinstance(x,
np.ndarray):
return y

Delimit a specific column
and add them as
columns in CSV

df.join(c3)

How can I find start and
end occurrence of

character in Python

df1 = df[df[’test’]
!=df[’test’].
shift(+1)]

Making multiple calls with
asyncio and adding result

to a dictionary

loop.run_until_complete
(asyncio.wait(tasks))

Python regex matching
in conditionals

match = patt.match(line)

How do I use
matplotlib autopct?

plt.show()

Table 7: 10 examples pick randomly from CoNaLa
mined examples.

D Database normalized examples889

As mentioned in the section 4.2, we can detect and890

normalise the variable names of the codes to build891

the database. To detect variable names, we use892

the astor library 8 to transform each code snippet893

into an abstract syntax tree. Once completed, we894

browse the tree’s leaves and retrieve the variable895

names, excluding those corresponding to library896

calls such as pandas or numpy. Examples of vari-897

able normalization are shown in Table 8:898

E Inference process for classic database899

Code generated at each time step m We show-900

case outputs at each time step where the model901

queries the database to provide a deeper understand-902

ing of the model’s performance for each chunk903

size m. We exclusively display our top-performing904

8https://pypi.org/project/astor/

Code Normalized Code

results = [r for k
in keywords for r
in re.findall(

k, message.lower())]

var0 = [r for k
in var1 for r
in re.findall(

k, var2.lower())]

getattr(a,
’print_test’)()

getattr(var0,
’var1’)()

json.dumps(geodata) json.dumps(var0)

df.groupby([
df.index.date, ’action’])

.count()

var0.groupby([
str0.count()

format(5e-10, ’f’) format(5e-10, ’var0’)

Table 8: 5 examples pick randomly from CoNaLa mined
examples before and after substitution mechanism

models for each chunk size, corresponding to the 905

sequential architecture coupled with a normalized 906

database. 907

First example 908

Intent: count the occurrences of item str0 in list 909

var0 910

Ground truth: var0.count(’str0’) 911

For m = 2:

t Code Generated Retrieved Neighbours

2 <s>var0
var0)[-1
2)[:, None

4 <s>var0.count
.count(’/

.count(’str0

6 <s>var0.count(’str0
’str0’)</s>
’str0’)</s>

8 <s>var0.count(’str0’)</s>
-
-

912

For m = 4:

t Code Generated Retrieved Neighbours

4 <s>len(var0
=len(var0 - 7)

<s>len(var0)</s><pad><pad>

7 <s>len(var0)</s>
-
-

913

For m = 8: 914

Error Analysis of code generated For m = 2, 915

the model correctly generates the necessary code 916

structure and accurately translates the given intent. 917

The small chunk size allows the model to gradually 918

build up the code, getting the initial variable at step 919

2, then adding the .count function at step 4, and 920

finally adding the argument ’str0’ at step 6. It 921

then correctly ends the sequence at step 8. 922

For m = 4, the model fails to accurately trans- 923

late the given intent. Model generates len keyword 924

and retrieves out of context neighbours. 925
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t Code Generated Retrieved Neighbours

8 <s>count = sum(
1 for item in

<s>count = len([item for item
in lst0 if item == str0]))

<s>count = lst0.count(
str0)</s><pad>

12
<s>count = sum(
1 for item in
var0 if item
== str0)</s>

-
-
-
-

For m = 8, the model generates a more complex926

piece of code than the ground truth but it correctly927

implements the logic of the given intent. This928

shows that larger chunk sizes can lead to more929

complex but still accurate translations of the given930

intent. However, after step 8 the model fails to re-931

trieve any useful neighboring chunks, which could932

again be due to the larger chunk size.933

In summary, a smaller chunk size can be bene-934

ficial for the accuracy of simpler code sequences,935

while a larger chunk size can be better suited to936

generating more complex code. However, the lat-937

ter can also lead to issues with retrieving useful938

neighboring chunks and correcting errors in the939

generated code.940

Second example941

Intent: Joining data from dataframe var0 with data942

from dataframe var1 based on matching values of943

column str0 in both dataframes944

Ground truth: var0.merge(var1, on=’str0’)945

For m = 2:946

t Code Generated Retrieved Neighbours

2 <s>pd
<s>pd.con
<s>pd.con

4 <s>pd.merge(
ge(var0,
ge(var0,

6 <s>pd.merge(var0, var1
var1)</s>

’str0’)</s>

8 <s>pd.merge(var0, var1,
on

, on=’k
, on=[’

10
<s>pd.merge(var0, var1,

on=[’
=[’lst0’]
=[’var0’,

12
<s>pd.merge(var0, var1,

on=[’str0’,
str0’, ’var1

=[var4’, ’var2

14
<s>pd.merge(var0, var1,

on=[’str0’, on=’
on=’str0’)
on=’str1’)

16
<s>pd.merge(var0, var1,
on=[’str0’, on=’str0’]

str0’]</s>)
var4’)]

18
<s>pd.merge(var0, var1,

on=[’str0’, on=’str0’]</s>
-
-

For m = 4:947

For m = 8:948

Error Analysis of code generated This second949

example is longer and more complex than the first950

one.951

For m = 2, we notice that the code begins to952

take shape from the second step with the initiation953

t Code Generated Retrieved Neighbours

4 <s>s1 =
<s>s1=pd.mer)

cols=str2)</s><pad><pad>

8 <s>s1=pd.mer
pd.merge(var0,

<s>pd.merge(var0,

12
<s>s1=pd.merge( q(var0, var1, args

var0, array(str0, dtype=np

16
<s>s1=pd.merge( var2, ’var3’, var0
var0, var1, ’ var1, ’var2’:var2

20
<s>s1=pd.merge( -

var0, var1, ’var1)</s> -

t Code Generated Retrieved Neighbours

8 <s>s1 = pd.mer
<s>s1=pd.merge(var0,var1,how
<s>df1 = pd.read_hdf(’str0’,

16 <s>s1=pd.merge(
var0,var1,how

ge(var0,var1,how=
’inner’,on[’str0’]
seq in zip(var0,

var0[1:])]</s><pad>

22
<s>s1=pd.merge(
var0,var1,how=
’inner’ ,on=
’str0’)</s>

-
-
-
-

of the "pd" command, a familiar Pandas syntax. 954

As the chunk size is quite small, the code is up- 955

dated with high frequency, allowing the model to 956

regularly revise its sequence based on new neigh- 957

boring chunks. However, this approach has a draw- 958

back. The model has trouble creating longer, more 959

complex code structures, possibly due to the small 960

chunk size causing it to focus on smaller fragments 961

of code rather than the overall structure. 962

For m = 4, the model is making efficient use 963

of the neighboring code chunks to generate a rela- 964

tively more complex structure. However, it hallu- 965

cinates at the end copying neighbours. The size of 966

m looks too small to handle complex structure and 967

too big to locally update code. 968

For m = 8, the model correctly generates a 969

more complex structure with a larger chunk size. 970

It begins the "pd.merge" command at the 8th step 971

and finishes the function with appropriate syntax 972

at the 22nd step. However, the model copies the 973

how argument, which was not requested, and as in 974

the other cases, it does not start like the reference, 975

which reduces the BLEU score. 976

In summary, there are trade-offs associated with 977

the choice of chunk size. A smaller chunk size facil- 978

itates more frequent adjustments but may struggle 979

with larger structures, while a larger chunk size 980

may generate more complex code but lacks the 981

granularity to refine it. 982

F Inference process for hybrid database 983

Code generated at each time step Here we give 984

an example of the inference process with our best 985
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model only for m = 8.986

First example987

Intent: Convert a list of lists var0 to list of integers988

Ground truth: var0=[int(”.join([str(y) for989

y in x])) for x in var0]990

t Code Generated Retrieved Neighbours

0 -

<s>[int(”.join(str(d)
for d in x))

<s>[”.join(str(d)
for d in x) for x

8 <s>var0=[int(”.join(str(

<s>[int(x) for x
in str(var0)]</s><pad><pad>]

<s>[”.join(str(d)
for d in x) for x

14
<s>var0=[int(”.join(str(

d for d in var0</s>

-
-
-
-

Error Analysis of code generated The code991

here is well predicted with our hybrid database992

thanks to useful neighbours retrieved at t = 0. It is993

interesting to note that even if the code is valid, the994

BLEU score is not equal to 100 given the dummy995

variable d predicted by the model.996
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