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Abstract
We consider solving partial differential equations
(PDEs) with Fourier neural operators (FNOs),
which operate in the frequency domain. Since the
laws of physics do not depend on the coordinate
system used to describe them, it is desirable to
encode such symmetries in the neural operator ar-
chitecture for better performance and easier learn-
ing. While encoding symmetries in the physical
domain using group theory has been studied exten-
sively, how to capture symmetries in the frequency
domain is under-explored. In this work, we ex-
tend group convolutions to the frequency domain
and design Fourier layers that are equivariant to
rotations, translations, and reflections by leverag-
ing the equivariance property of the Fourier trans-
form. The resulting G-FNO architecture gener-
alizes well across input resolutions and performs
well in settings with varying levels of symmetry.
Our code is publicly available as part of the AIRS
library (https://github.com/divelab/AIRS).

1. Introduction
Partial differential equations (PDEs) are widely used to
model physical processes that evolve in time and space, in-
cluding fluid flows (Wang et al., 2020; Bonnet et al., 2022;
Eckert et al., 2019), heat transfer (Zobeiry & Humfeld, 2021)
and electromagnetic waves (Lim & Psaltis, 2022). Classi-
cally, solving a PDE has been viewed as the task of finding
a sufficiently smooth function that satisfies a pointwise re-
lationship between derivatives of a different order. A more
modern approach is to consider differential operators as (of-
ten non-linear) maps between function spaces and utilize
techniques of functional analysis to construct and analyze
solutions. The first philosophy is present in neural PDE
solvers such as physics-informed neural networks (PINNs)
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(Raissi et al., 2019; Lu et al., 2021b), whereas the second
is pursued by neural operators (Lu et al., 2021a; Li et al.,
2021a). While PINNs are used to solve equations indi-
vidually and online, neural operators learn a solution map
between function spaces from problem data to the solution
offline. The second approach is highly efficient in contexts
where the same problem has to be solved often with slightly
varied parameters or initial conditions and is the focus of
this work.

PDEs capture dynamics of physical processes in which sym-
metries exist, as visualized in Figure 1. Symmetries of the
underlying problem are reflected in the PDE and its solu-
tion operator: the laws of physics do not depend on the
coordinate system used to describe them. Many differential
operators are rotation invariant, including common models
for fluid flow, heat propagation and electrodynamics, but
asymmetries in the domain of computation can break sym-
metries in a more global way: for instance, two directions
in a cylindrical container behave similarly while the third
plays a different role. It is therefore global symmetries
that solution operators capture. Explicit encoding of these
symmetries in network architectures can improve model gen-
eralization, interpretability, and sample complexity (Weiler
& Cesa, 2019; Worrall & Welling, 2019).

While equivariant architectures have been studied in diverse
applications (Thomas et al., 2018; Cohen & Welling, 2017;
Weiler et al., 2018; Cohen et al., 2018), most current studies
parameterize their convolution kernels in physical space or
group space, as opposed to Fourier space. Therefore, the
networks are constrained to the resolution of the training
data. That is, the trained models may not generalize well
to data sampled on a discretization differing from that used
in the training data. Additionally, the kernel is most often
assumed to have compact, local support, which is effective
for sharing information at short distances but requires deep
architectures for long-range signal propagation, whereas
Fourier convolutions offer an efficient approach for perform-
ing global convolutions (Li et al., 2021a).

In this work, we propose the Group Equivariant Fourier
Neural Operator (G-FNO). By leveraging symmetries of
the Fourier transform, we extend group convolution to the
frequency domain and design Fourier layers that are equiv-
ariant to rotations, reflections and translations. As a result,
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Figure 1: Demonstration of symmetries in the Navier-Stokes
equations. We numerically solve the Navier-Stokes equa-
tions with a symmetric forcing term as studied in Section 4.3.
We find that rotating the initial vorticity field corresponds to
a rotated solution vorticity at time t = 20 up to numerically
introduced artifacts, as seen in the rightmost column. We
formally derive this symmetry in Appendix C.3.

the proposed G-FNO leverages symmetries, can generalize
across discretizations, and performs a global convolution
that efficiently processes information on multiple scales.
Experiments show that G-FNO significantly improves the
accuracy of PDE solutions even under imperfect symmetries
and can generalize to a higher resolution at test time.

2. Related Work
2.1. Neural PDE Solvers

Neural PDE solvers use neural networks to solve PDEs.
Physics-informed neural networks (PINNs) (Raissi et al.,
2019) parameterize solution functions with neural networks
and optimize network parameters to satisfy the constraints
imposed by a PDE. In contrast, neural operators (Lu et al.,
2021a; Li et al., 2021a) learn mappings between input and
output functions directly from training data and can be
trained autoregressively (Li et al., 2021a; Brandstetter et al.,
2022b). As their combination, physics-informed neural op-
erators (Wang et al., 2021b; Li et al., 2021b) make use of
explicit PDE constraints to help neural operators better sat-
isfy underlying physics. Bar-Sinai et al. (2019); Um et al.
(2020); Kochkov et al. (2021) integrate neural solvers and
classical solvers (Holl et al., 2020) by using trained neural
networks to reduce the numerical error on coarse grids. Our
work builds upon Fourier Neural Operators (Li et al., 2021a;
Kovachki et al., 2023), which have shown promising results
in solving PDEs.

2.2. Fourier Neural Operator

Fourier neural operators (FNOs) (Li et al., 2021a; 2020;
2022a; Kovachki et al., 2023) learn to solve PDEs by per-
forming global convolutions via Fourier layers, which are
implemented efficiently in the frequency domain using the
Fast Fourier Transform (FFT). FNOs process local and
global information in parallel through high and low fre-
quency modes (Gupta & Brandstetter, 2022), and reduce
computational cost by truncating the highest frequency
modes to zero. Additionally, since the convolution operator
is learned in the frequency domain, the network is theo-
retically independent of the resolution of the training data,
enabling FNOs to generalize to higher resolution during
testing, a task termed zero-shot super-resolution (Li et al.,
2021a; Boussif et al., 2022).

FNOs have appeared in a variety of applications for dy-
namics modeling, including optimal control (Hwang et al.,
2022), modeling of coastal dynamics (Jiang et al., 2021),
modeling of turbulent Kolmogorov flows (Li et al., 2022b),
solving stochastic differential equations (Salvi et al., 2022),
and forecasting global weather trends (Pathak et al., 2022).
Beyond dynamics modeling, Guibas et al. (2022) use Fourier
layers to replace spatial self-attention for computer vision
tasks.

The FNO architecture has also been extended in recent
studies. Poli et al. (2022) propose a new weight initial-
ization scheme and improved efficiency by only applying
one Fourier transform per forward propagation. Tran et al.
(2023) enable deeper stacks of Fourier layers by applying
transforms independently along each of the spatial axes of
the input and by proposing a new training strategy. Instead
of network design and training, our work focuses on inte-
grating symmetries into FNO architectures by extending
group equivariant convolutions to the frequency domain.
Specifically, the proposed method parameterizes convolu-
tion kernels in the Fourier-transformed group space, and in
doing so, allows for a global convolution operator that is
equivariant to rotations, reflections, and translations, and
can furthermore perform zero-shot super-resolution.

3. Methods
Fourier Neural Operators (FNOs) learn operators mapping
an input function to the solution function. For example,
for time-dependent PDEs, the input function could be the
solution at the current time step, and the output could be the
solution at the next time step.

Inspired by the Green’s function representation of PDE
solutions, FNO alternates between the application of a fixed
non-linear map and learned integral operators K, defined
as (Kv)(x) =

∫
κ(x, y)v(y)dy, where κ is the Green’s

function to be learned. By further assuming κ to be invariant
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to translations, we can rewrite κ as κ(x, y) = ψ(x− y).
Consequently, the operator defines a convolution in physical
space as

(Kv)[x] =
∫
ψ(x− y)v(y)dy. (1)

By the Convolution Theorem, convolution in physical space
can be efficiently implemented as element-wise multiplica-
tion in the frequency domain, which gives

(Kv)[x] = F−1 (Fψ · Fv) [x], (2)

where F and F−1 are the Fourier transform and the inverse
Fourier transform. Instead of learning the kernel ψ, FNO
directly learns the Fourier transform of ψ, Fψ.

For a translation-invariant Green’s function to exist, a
PDE must have two properties: linearity and translation-
invariance. In practice, most PDEs of interest are non-linear,
which FNOs address by including non-linear operations
in the learned solution operator. For models in physical
sciences, translation-invariance corresponds to the homo-
geneity of physical space. The assumption is violated in
models of heterogeneous materials or boundary phenomena,
but generally applies to many situations in fluid mechan-
ics and beyond. If the model is additionally isotropic, the
Green’s function only depends on the distance ∥x− y∥, not
the direction of x−y. In such situations, it is sensible to use
computational models which are based on the Green’s func-
tion representation and respect the invariances it encodes,
but allow for non-linear operations when solving non-linear
PDEs.

3.1. Encoding Symmetries in the Physical Domain

Equivariant architectures have previously been realized us-
ing group convolutions (G-convolutions) via physically-
parameterized kernel functions (Cohen & Welling, 2016). It
is well-known that convolutional neural networks (CNNs)
achieve translation equivariance through convolutional
weight-sharing across spatial locations (LeCun et al., 1998).
Group equivariant CNNs achieve equivariance to symme-
try groups beyond translation by convolving feature maps
and kernels defined on these groups. Given a group G,
G-convolutions are defined as

(f ⋆ ψ) [g] =
∑
h∈G

dz∑
j=1

f j(h)
(
Lgψ

j
)
(h), (3)

where both the feature map f and kernel ψ are functions
on G mapping to Rdz , and Lgλ := λ ◦ g−1 is the group
action of G on a function λ. Cohen & Welling (2016)
proved the G-equivariance of G-convolutions. Taking
G = Z2, the group of planar translations, G-convolution
reduces to the conventional translation-equivariant convo-
lution, i.e., (f ⋆ ψ) (x) =

∑
y∈Z2

∑dz

j=1 f
j(y)ψj(y − x),

where (Lxψ) (y) := ψ(y − x) for x ∈ Z2.

For the group of translations and 90◦ rotations (the group
p4), a single-channel G-convolution kernel is efficiently
implemented as a stack of four independent filters defined
on Z2, each representing a rotation by 90◦. Applying the
group action Lg to the kernel, as in Equation (3), applies
a roto-translation to each of the filters and cyclically shifts
their order in the stack. The group p4m additionally con-
siders reflection symmetries and increases the number of
independent filters to 8. We review how these groups trans-
form functions defined on G and Z2 in more depth in Ap-
pendix C.1.

In the context of solving PDEs, Wang et al. (2021a) apply
equivariant models leveraging a range of symmetries for
modeling the temporal evolution of the velocity field of
ocean currents. This work was later extended to settings
where dynamics are only approximately equivariant by re-
laxing the symmetry constraint on learned kernels (Wang
et al., 2022). However, in both cases, the convolution kernel
was parameterized in physical space, tying the network to
the resolution of the training data and lacking parallel pro-
cessing of multiscale information as is inherent to Fourier
convolutions (Gupta & Brandstetter, 2022). Cohen et al.
(2018) explored parameterizing convolution kernels in the
frequency domain to achieve a rotation equivariant convo-
lution for spherical functions. However, this approach is
not applicable beyond functions defined on the sphere, and
furthermore does not encode translation equivariance, as
this is not a symmetry of the sphere. While Cohen et al.
(2018) are able to leverage an SO(3) Fourier transform
to perform SO(3) equivariant convolutions for spherical
functions, no such transform exists for performing convolu-
tions that are equivariant to roto-reflections and translations,
which presents a challenge for performing G-convolutions
in the frequency domain.

3.2. O(2)-Equivariance of Fourier Transforms

To gain insight into how we may perform G-convolutions in
the frequency domain, we look to characterize the behavior
of the Fourier transform of a kernel function ψ : Z2 → R
under the action of G on ψ. In this work, we consider
two groups in particular: the group p4 generated by 90◦

rotations and translations, and the group p4m generated by
p4 and horizontal reflections about the origin. We observe
an intuitive symmetry, which we prove in Appendix C.2,
that is foundational to performing group convolutions in the
frequency domain.

Lemma 3.1. Given the orthogonal group O(d) acting on
functions defined on Rd by the map (g, f) 7→ Lgf where
(Lgf)(x) := f(g−1x), the group action commutes with the
Fourier-transform, i.e. F ◦ Lg = Lg ◦ F .

This result describes the equivariance of the Fourier trans-
form. That is, applying a transformation from O(d) to
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a function in physical space applies the transformation
equally to the Fourier transform of the function. We next
use this result for the group of planar roto-reflections O(2)
to construct our G-Fourier layer.

3.3. Group Equivariant Fourier Layers

To derive our G-Fourier layers, we use the Convolution
Theorem in addition to Lemma 3.1. For the functions
v, ρ : Z2 → Rdz and the translation xg ∈ Z2, this theorem
gives that

(v ⋆ ρ) [xg] :=
∑
x∈Z2

dz∑
j=1

vj (x)
(
Lxg

ρj
)
(x)

=

dz∑
j=1

F−1
(
Fvj · Fρj

)
[xg] .

(4)

The multiplication in the second line is element-wise and
F is the Discrete Fourier Transform (DFT), which operates
on functions defined on Zd. In contrast, G-convolutions
operate on functions defined on a group as f, ψ : G→ Rdz ,
for which F is not defined in general. However, the groups
G we consider here admit a decomposition, as they are the
semidirect product G = Z2 ⋊ SG of the group of transla-
tions Z2 and the stabilizer of G, SG (Weiler & Cesa, 2019).
The stabilizer SG is defined as transformations that leave
the origin invariant, such as rotations for the group p4 and
rotation-reflections for p4m. Therefore, for all group el-
ements g ∈ G, g may be decomposed into a translation
xg ∈ Z2 and transformation sg ∈ SG as g = xgsg, with
the action of G similarly decomposed as Lg = LxgLsg . As
shown in the following, this decomposition is key for param-
eterizing our G-convolution kernels in the F-transformed
group space.

For a fixed stabilizer element s ∈ SG, define fs : Z2 → Rdz

for all translations x ∈ Z2 as fs(x) := f (xs), and define
ψs : Z2 → Rdz analogously using the kernel ψ. Then, for
the group element g = xgsg ∈ G, our G-Fourier layer is
derived from G-convolutions as

(f ⋆ ψ) [g] :=
∑
h∈G

dz∑
j=1

f j (h)
(
Lgψ

j
)
(h)

=
∑
s∈SG

dz∑
j=1

∑
x∈Z2

f js (x)
(
LxgLsgψ

j
ŝ

)
(x)

=
∑
s∈SG

dz∑
j=1

F−1
(
Ff js ·

(
LsgR

j
ŝ

))
[xg] (5)

=: F−1
(
Ff ·

(
L̂sgR

))
[xg] ,

where Rj
ŝ := Fψj

ŝ is the complex-valued function we aim
to learn and the equality in Equation (5) is a result of ap-
plying the Convolution Theorem in Equation (4) followed

by Lemma 3.1. Additionally, ŝ := s−1
g s accounts for the

cyclic shift along the stabilizer dimension (absorbed into
L̂sg ) that we detail in Appendix C.1. We furthermore de-
fine the order of operations in the action of SG on ψŝ as
(Lsgψŝ)(x) = ψŝ(s

−1
g x), as opposed to (Lsgψŝ)(x) =

(Lsgψ)(xŝ), and similarly for LsgRŝ. This ensures that
SG, which is a subgroup of O(2), is acting on a function
defined on Z2 via Lsg , enabling the use of Lemma 3.1. No-
tably, Equation (5) shows that we can efficiently perform
group equivariant convolutions in the frequency domain by
transforming Rj

s by elements sg from the stabilizer SG.

Concretely, the ℓ-th G-Fourier layer in the G-FNO archi-
tecture Lℓ maps the feature map f ℓ ∈ Rdz×dg×dx×dy to
f ℓ+1 ∈ Rdz×dg×dx×dy . Here, dz is the dimension of the la-
tent space, dg is the number of elements in SG (i.e., dg = 4
for p4, 8 for p4m), and dx×dy is the resolution of the input
function. Our G-convolution kernel bank in the frequency
domain is then Rℓ ∈ Cdz×dz×dg×dx×dy , which we visual-
ize in Figure 2. To manage complexity, we assume a priori
all modes above a cutoff frequency k are 0, and thus, only
a subset of size k × k of the dx × dy Fourier modes are
learnable, with the remaining modes fixed at 0.

Subsetting Rℓ along the output channel dimension,
Rℓ,l ∈ Cdz×dg×dx×dy represents Fψℓ,l for our implicit ker-
nel function ψℓ,l : G → Rdz . From Equation (5), ψℓ,l is
then convolved in the frequency domain with f ℓ to produce
the l-th channel of f ℓ+1 as

f ℓ+1,l(g) = F−1
(
Ff ℓ ·

(
L̂sgR

ℓ,l
))

[xg]. (6)

We denote the operator mapping f ℓ to f ℓ+1 over all chan-
nels and g ∈ G by f ℓ+1 = F−1(Ff ℓ · L̂SG

Rℓ).

To increase the expressive capacity of our G-Fourier layer,
we compose each frequency domain G-convolution with
additional equivariant operations. Here, we note that it is
key that these operations are applied only along the channel
dimension, as aggregating information in physical space
would introduce a dependence on the resolution of the train-
ing data, whereby reducing the ability of the G-FNO to
perform super-resolution. The ℓ-th G-Fourier layer Lℓ map-
ping f ℓ to f ℓ+1 can then be formally expressed as

Lℓf ℓ =W ℓ
Gf

ℓ +G-MLPℓ
(
F−1

(
Ff ℓ · L̂SG

Rℓ
))

. (7)

Here, W ℓ
G linearly projects the residual connection using a

1× 1 G-Conv layer, and G-MLPℓ is a shallow 2-layer MLP
with GeLU activation and with the linear layers replaced
with 1× 1 G-Conv layers. In Appendix B.6, we consider a
steerable parameterization (Cohen & Welling, 2017) of Rℓ.
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` 1

<latexit sha1_base64="2nUtVJeLP5F6u5WSenWa7zulZU8=">AAAB8XicbVDJSgNBEK1xjXGLevTSGARPYSa4HYNePEYxCyZj6OnUJE16eobuHiEM+QsvHhTx6t9482/sLAdNfFDweK+KqnpBIrg2rvvtLC2vrK6t5zbym1vbO7uFvf26jlPFsMZiEatmQDUKLrFmuBHYTBTSKBDYCAbXY7/xhErzWN6bYYJ+RHuSh5xRY6WHu075MWujEKNOoeiW3AnIIvFmpAgzVDuFr3Y3ZmmE0jBBtW55bmL8jCrDmcBRvp1qTCgb0B62LJU0Qu1nk4tH5NgqXRLGypY0ZKL+nshopPUwCmxnRE1fz3tj8T+vlZrw0s+4TFKDkk0XhakgJibj90mXK2RGDC2hTHF7K2F9qigzNqS8DcGbf3mR1Msl77x0dntarFzN4sjBIRzBCXhwARW4gSrUgIGEZ3iFN0c7L8678zFtXXJmMwfwB87nD1pMkLo=</latexit>

R
`
2

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit>

R
`3

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit>

R`
3

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit> R
` 3

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit>

R
`
3

<latexit sha1_base64="mZyJFJD7H5ZLI00ntymqIlGwC7M=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOt4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1jBkLk=</latexit>

R
`
1

<latexit sha1_base64="mZyJFJD7H5ZLI00ntymqIlGwC7M=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOt4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1jBkLk=</latexit>

R
`1

<latexit sha1_base64="mZyJFJD7H5ZLI00ntymqIlGwC7M=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOt4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1jBkLk=</latexit>

R`
1

<latexit sha1_base64="2nUtVJeLP5F6u5WSenWa7zulZU8=">AAAB8XicbVDJSgNBEK1xjXGLevTSGARPYSa4HYNePEYxCyZj6OnUJE16eobuHiEM+QsvHhTx6t9482/sLAdNfFDweK+KqnpBIrg2rvvtLC2vrK6t5zbym1vbO7uFvf26jlPFsMZiEatmQDUKLrFmuBHYTBTSKBDYCAbXY7/xhErzWN6bYYJ+RHuSh5xRY6WHu075MWujEKNOoeiW3AnIIvFmpAgzVDuFr3Y3ZmmE0jBBtW55bmL8jCrDmcBRvp1qTCgb0B62LJU0Qu1nk4tH5NgqXRLGypY0ZKL+nshopPUwCmxnRE1fz3tj8T+vlZrw0s+4TFKDkk0XhakgJibj90mXK2RGDC2hTHF7K2F9qigzNqS8DcGbf3mR1Msl77x0dntarFzN4sjBIRzBCXhwARW4gSrUgIGEZ3iFN0c7L8678zFtXXJmMwfwB87nD1pMkLo=</latexit>

R
`2

<latexit sha1_base64="2nUtVJeLP5F6u5WSenWa7zulZU8=">AAAB8XicbVDJSgNBEK1xjXGLevTSGARPYSa4HYNePEYxCyZj6OnUJE16eobuHiEM+QsvHhTx6t9482/sLAdNfFDweK+KqnpBIrg2rvvtLC2vrK6t5zbym1vbO7uFvf26jlPFsMZiEatmQDUKLrFmuBHYTBTSKBDYCAbXY7/xhErzWN6bYYJ+RHuSh5xRY6WHu075MWujEKNOoeiW3AnIIvFmpAgzVDuFr3Y3ZmmE0jBBtW55bmL8jCrDmcBRvp1qTCgb0B62LJU0Qu1nk4tH5NgqXRLGypY0ZKL+nshopPUwCmxnRE1fz3tj8T+vlZrw0s+4TFKDkk0XhakgJibj90mXK2RGDC2hTHF7K2F9qigzNqS8DcGbf3mR1Msl77x0dntarFzN4sjBIRzBCXhwARW4gSrUgIGEZ3iFN0c7L8678zFtXXJmMwfwB87nD1pMkLo=</latexit>

R`
2

<latexit sha1_base64="2nUtVJeLP5F6u5WSenWa7zulZU8=">AAAB8XicbVDJSgNBEK1xjXGLevTSGARPYSa4HYNePEYxCyZj6OnUJE16eobuHiEM+QsvHhTx6t9482/sLAdNfFDweK+KqnpBIrg2rvvtLC2vrK6t5zbym1vbO7uFvf26jlPFsMZiEatmQDUKLrFmuBHYTBTSKBDYCAbXY7/xhErzWN6bYYJ+RHuSh5xRY6WHu075MWujEKNOoeiW3AnIIvFmpAgzVDuFr3Y3ZmmE0jBBtW55bmL8jCrDmcBRvp1qTCgb0B62LJU0Qu1nk4tH5NgqXRLGypY0ZKL+nshopPUwCmxnRE1fz3tj8T+vlZrw0s+4TFKDkk0XhakgJibj90mXK2RGDC2hTHF7K2F9qigzNqS8DcGbf3mR1Msl77x0dntarFzN4sjBIRzBCXhwARW4gSrUgIGEZ3iFN0c7L8678zFtXXJmMwfwB87nD1pMkLo=</latexit> R
` 2

<latexit sha1_base64="A2bcsxYs73dBSjc8+ddHyvTm1sE=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOu4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1c2kLg=</latexit> R
` 0

<latexit sha1_base64="A2bcsxYs73dBSjc8+ddHyvTm1sE=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOu4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1c2kLg=</latexit>

R
`
0

<latexit sha1_base64="A2bcsxYs73dBSjc8+ddHyvTm1sE=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOu4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1c2kLg=</latexit>

R
`0

<latexit sha1_base64="A2bcsxYs73dBSjc8+ddHyvTm1sE=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOu4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1c2kLg=</latexit>

R`
0

<latexit sha1_base64="mZyJFJD7H5ZLI00ntymqIlGwC7M=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0c08oiwktmhgQmzs5uZWROy4S+8eNAYr/6NN//GAfagYCWdVKq6090VxIJr47rfTm5peWV1Lb9e2Njc2t4p7u7VdZQohjUWiUg1A6pRcIk1w43AZqyQhoHARjC8nviNJ1SaR/LejGL0Q9qXvMcZNVZ6uOt4j2kbhRh3iiW37E5BFomXkRJkqHaKX+1uxJIQpWGCat3y3Nj4KVWGM4HjQjvRGFM2pH1sWSppiNpPpxePyZFVuqQXKVvSkKn6eyKlodajMLCdITUDPe9NxP+8VmJ6l37KZZwYlGy2qJcIYiIyeZ90uUJmxMgSyhS3txI2oIoyY0Mq2BC8+ZcXSf2k7J2Xz25PS5WrLI48HMAhHIMHF1CBG6hCDRhIeIZXeHO08+K8Ox+z1pyTzezDHzifP1jBkLk=</latexit> R
` 1

<latexit sha1_base64="2nUtVJeLP5F6u5WSenWa7zulZU8=">AAAB8XicbVDJSgNBEK1xjXGLevTSGARPYSa4HYNePEYxCyZj6OnUJE16eobuHiEM+QsvHhTx6t9482/sLAdNfFDweK+KqnpBIrg2rvvtLC2vrK6t5zbym1vbO7uFvf26jlPFsMZiEatmQDUKLrFmuBHYTBTSKBDYCAbXY7/xhErzWN6bYYJ+RHuSh5xRY6WHu075MWujEKNOoeiW3AnIIvFmpAgzVDuFr3Y3ZmmE0jBBtW55bmL8jCrDmcBRvp1qTCgb0B62LJU0Qu1nk4tH5NgqXRLGypY0ZKL+nshopPUwCmxnRE1fz3tj8T+vlZrw0s+4TFKDkk0XhakgJibj90mXK2RGDC2hTHF7K2F9qigzNqS8DcGbf3mR1Msl77x0dntarFzN4sjBIRzBCXhwARW4gSrUgIGEZ3iFN0c7L8678zFtXXJmMwfwB87nD1pMkLo=</latexit>

R
`
2

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit>

R
`3

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit>

R`
3

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit> R
` 3

<latexit sha1_base64="tXO5BTTWPzPML83QxDZ9jEB6ZTA=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePKKRR4SVzA4NTJid3czMmpANf+HFg8Z49W+8+TcOsAdFK+mkUtWd7q4gFlwb1/1ycguLS8sr+dXC2vrG5lZxe6euo0QxrLFIRKoZUI2CS6wZbgQ2Y4U0DAQ2guHVxG88otI8kndmFKMf0r7kPc6osdL9bef4IW2jEONOseSW3SnIX+JlpAQZqp3iZ7sbsSREaZigWrc8NzZ+SpXhTOC40E40xpQNaR9blkoaovbT6cVjcmCVLulFypY0ZKr+nEhpqPUoDGxnSM1Az3sT8T+vlZjehZ9yGScGJZst6iWCmIhM3iddrpAZMbKEMsXtrYQNqKLM2JAKNgRv/uW/pH5U9s7KpzcnpcplFkce9mAfDsGDc6jANVShBgwkPMELvDraeXbenPdZa87JZnbhF5yPb1vXkLs=</latexit>
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Figure 2: G-FNO-p4 architecture, illustrated in the 2D autoregressive form. Bottom: The model raises the input field to a
high-dimensional embedding in group space (PG) and performs group convolutions in the frequency domain (Lℓ) before
lowering the G-feature map back to the base space (QG). Top: A single G-Fourier layer. We perform G-convolutions in
the frequency domain, selecting the k lowest Fourier modes of the input signal. The top row of the real and imaginary
parts of the kernel bank illustrate the unrotated kernels, with Rℓ

s rotated by s · 90◦ relative to its canonical orientation,
s ∈ {0, 1, 2, 3}. G-MLPℓ is a shallow 2-layer MLP with GeLU activation and 1× 1 G-Conv layers which we apply along
the channel dimension of the output. We add a residual connection linearly projected along the channel dimension by W ℓ

G.

3.4. Group Equivariant Fourier Neural Operator
Architecture and Implementation

The G-FNO composes an encoder PG with multiple G-
Fourier layers followed by a decoder QG. Both the encoder
and decoder are 1 × 1 G-convs that lift the 2D input field
f0 ∈ Rdin×dx×dy to a higher dimensional embedding in the
group space and vice versa. Thus, the overall architecture,
visualized in Figure 2, is expressed as

QG ◦ LL ◦ · · · ◦ L2 ◦ L1 ◦ PG. (8)

The encoder additionally concatenates a positional encoding
describing the location in space and possibly time to each of
the input grid points. As this grid does not transform with
the input, the concatenation would not be equivariant if the
grid were to contain the Cartesian coordinates of the input
grid points. Therefore, we construct a positional encoding
that is rotation and reflection invariant by letting each of the
grid points map to the distance of the point from the center
of the grid. This gives a positional encoding that is invariant
to transformations of the input, hence preserving the overall
equivariance of the architecture. We also note that although
this positional encoding renders architectures only approx-
imately translation equivariant, we show in Appendix B.5
that the performance of both the baseline FNO and G-FNO
are improved with the inclusion of this grid.

Two additional challenges in efficiently implementing the
G-Fourier layer concern the organization of the frequency

modes in the DFT and enforcing the Hermitian constraint on
Rℓ. For simplicity in notation, we consider ψ : G→ R as
our implicit kernel function and let our learnable parameter
R : G → C be the DFT of ψ, with ψs : Z2 → R as ψ
for a fixed value of s ∈ SG and Rs : Z2 → C defined
identically for R. First, for the transform of a 2D signal, the
DFT algorithm places the origin (i.e., the zero frequency)
in the upper left corner, followed by the positive modes and
then the negative modes along each of the axes. However,
transformations from SG (rotations or roto-reflections) are
most naturally applied to Rs with a centered origin. We
therefore parameterize Rs as Fπψs, where Fπ represents
the DFT followed by a periodic shift to center the zero-
frequency component at the origin. In Equation (5), we
must similarly apply Fπ to the input signal f js so that the
corresponding modes are correctly multiplied with Rs, and
replace F−1 with F−1

π−1 , which is the inverse shift followed
by the inverse DFT.

Second, because our implicit kernel function ψs is real-
valued, the Fourier transform Rs will be Hermitian. That
is, Rs(ξ1, ξ2) = R∗

s(−ξ1,−ξ2), where ·∗ denotes complex
conjugation and (ξ1, ξ2) ∈ Z2. It is important to enforce the
Hermitian property in learningR, as it ensures that the result
of the multiplication in the frequency domain will also be
Hermitian, which in turn ensures that the inverse transform
will be real-valued. To enforce this constraint, we only learn
the positive modes along the last axis of Rs, since the nega-
tive modes, which are necessary in Equation (5) for applying
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Shallow Water

Navier-Stokes

Figure 3: Illustration of the evolution of the Navier-Stokes
equations with symmetric forcing (NS-SYM, top) and the
shallow water equations (SWE-SYM, bottom).

transformations from SG, can be directly inferred from the
positive modes using the Hermitian property. Maintaining
this property has the added benefit that we may use the real
FFT algorithm for the forward and inverse transform, which
reduces the cost by a factor of roughly 2 compared to the
FFT. Further, ensuring the output of our G-Fourier layers is
real-valued by enforcing the Hermitian constraint allows us
to avoid overhead incurred by complex-valued parameters
outside of the frequency domain, i.e., in W ℓ

G and G-MLPℓ.

We note that the use of Fourier transforms restricts us to
studies on the entire space or periodic domains. Numerical
discretizations, as we study here, always reduce to the case
of a periodic domain, as the DFT implicitly extends the
input periodically. Problems on the whole space can be
studied, under suitable assumptions, if the length scale of
the domain of interest is sufficiently small compared to the
assumed domain of periodicity in a discretization.

4. Experiments
We introduce the datasets we consider in Section 4.1, de-
scribe our experimental settings in Section 4.2, and present
results in Section 4.3.

4.1. Datasets

We evaluate our models on two commonly used PDEs in the
field of computational fluid dynamics: the incompressible
Navier-Stokes equations and the shallow water equations.
The Navier-Stokes equations find broad applications in mod-
eling of turbulent dynamics and hydromechanical systems.
The shallow water equations are useful in general flood-
ing events simulation (Takamoto et al., 2022) and weather
modeling (Gupta & Brandstetter, 2022).

2D Incompressible Navier-Stokes equations. We con-
sider two versions of the incompressible Navier-Stokes in

vorticity form (Li et al., 2021a), given by:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), (9)
∇ · u(x, t) = 0, (10)
w(x, 0) = w0(x). (11)

Here, w(x, t) ∈ R is the vorticity field we aim to predict,
w0(x) ∈ R is the initial vorticity, u(x, t) ∈ R2 is the veloc-
ity, and ν = 10−4 is the viscosity coefficient. The solution
domain we consider is x ∈ [0, 1]2, t ∈ {1, 2, . . . , T}, where
t enumerates a discretization of the continuous temporal
domain and T is defined in Tasks and Evaluation.

In Equation (9), f is a forcing term that describes external
forces acting on the flow. As we show in Appendix C.3,
for the rotated version of a solution to these equations to
still be a solution, the forcing term must be invariant to
90◦ rotations. We therefore consider two realizations of
these equations with different forcing terms to evaluate
the performance of G-FNO in settings with and without
global symmetry. The first, studied by Li et al. (2021a)
and which we refer to as NS, has the forcing term
f(x1, x2) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2))),
which is not rotation invariant. The second, NS-SYM, has
the forcing term f(x1, x2) = 0.1(cos(4πx1) + cos(4πx2)),
which is rotation invariant, and hence yields a solution
set closed to rotations. We visualize the evolution of the
vorticity field w for NS-SYM in Figures 3 and 7 and for NS
in Figure 6.

2D Shallow Water equations. As with the Navier-Stokes
equations, we consider two versions of the shallow water
equations that we refer to as SWE-SYM and SWE, each
with different degrees of global symmetry. SWE-SYM is
from Takamoto et al. (2022) and models the dynamics of
a fluid that is initially confined within a circular dam and
subsequently released due to the sudden removal of the dam.
The equations are given by:

∂th+∇ · (hu) = 0, (12)

∂t(hu) +∇ · (huu⊤) + 1

2
g∇h2 = 0, (13)

where h(x, t) ∈ R is the depth that we will pre-
dict, u(x, t) ∈ R2 is the velocity, and g ∈ R is
acceleration due to gravity. The solution domain is
x ∈ [−2.5, 2.5]2, t ∈ {1, 2, . . . , 25}. The initial depth
h(x, 0) is given by:

h(x, 0) =

{
2.0 r <

√
x21 + x22

1.0 r ≥
√
x21 + x22

, (14)

where r denotes the radial distance to the center of the circu-
lar dam. We visualize the evolution of h in Figures 3 and 5,
which demonstrates the high degree of global symmetry
present in this data.
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SWE is from Gupta & Brandstetter (2022) and models both
the vorticity field and pressure field of global winds with a
large time step size of 48 hours. Because SWE is defined on
a rectangular domain, it lacks the global symmetry present
in SWE-SYM, which is evident from Figure 4.

4.2. Experimental Settings

Tasks and Evaluation. We train all models on numerical
data that is downsampled from the resolution at which it was
generated. In Appendix A.1, we discuss data generation and
downsampling in more depth and include training details
in Appendix A.2. We evaluate models on a hold-out test set
with the same resolution as the training data. Specifically,
for NS, we map the ground truth vorticity field up to t = 10
to the field at each time step up to T = 30. Procedures
for NS-SYM are identical, but with T = 20 instead. For
SWE-SYM, we map the depth of the water at t = 1 up to
the depth at T = 25, while for SWE, we map the pressure
and vorticity fields up to t = 2 to the fields up to T = 11.
In Appendix D, we visualize the predicted rollouts for each
dataset.

We consider two approaches for advancing time with our
neural solvers. 2D models utilize spatial convolutions with
autoregressive predictions, while 3D models predict all time
steps with a single forward propagation by performing con-
volutions in space-time. Both 2D and 3D versions of the
equivariant models we consider in our experiments encode
symmetries in the spatial domain.

After evaluating rollout errors, we study the equivariance
by rotating the test set and evaluating the models again. Ad-
ditionally, we evaluate models on the super-resolution task
in which we apply the models trained on the downsampled
training data to the test data at the fine resolution at which it
was generated. Note that while the 3D models are able to
perform super-resolution in space and time, the 2D models
can only perform super-resolution in space, as training the
models to advance time autoregressively locks the model
to this time step. Lastly, to evaluate the efficacy of super-
resolution, we used the predictions for each model made
on the coarse grid to interpolate the solutions onto the finer
grid.

For each of these tasks, we use relative mean square error
to evaluate our models (Li et al., 2021a; Tran et al., 2023).
Specifically,

R-MSE =
1

ntest

ntest∑
i=1

∥ŷi − yi∥2
∥yi∥2

, (15)

where ntest is the number of test PDEs and ∥ · ∥2 is the L2

norm. ŷi and yi denote the predicted solution and ground
truth of the i-th test PDE. We also train our models using the
one-step version of this loss, where ŷi and yi are both only

one time step. This training strategy was shown by Tran
et al. (2023) to be superior to recurrent training, which we
further examine in Appendix B.4.

Baselines. We consider several variants of the FNO, as
well as an equivariant U-Net. Coupled with equivariance,
this is a particularly interesting comparison, as U-Nets take
a sequential approach to processing information on mul-
tiple scales, while FNO architectures process multi-scale
information in parallel with Fourier convolutions (Gupta &
Brandstetter, 2022). Our p4 equivariant U-Net, U-NET-p4,
is a modified version of the architecture studied by Wang
et al. (2021a) for dynamics modeling. The version of the
FNO we consider is constructed with a non-equivariant
version of our G-Fourier layer given in Equation (7) and
includes versions of the linear projection W ℓ

G and G-MLP
defined for functions on R instead of the group space G.

We also include versions of the FNO trained using data
augmentation to aid the model in learning symmetries in
the data, an idea explored for neural solvers by Brandstet-
ter et al. (2022a). The data augmentation is performed
by sampling group transformations from p4 (translations
and rotations by 90◦) and p4m (p4 plus reflections) and
applying these transformations to the training data, yield-
ing FNO+p4 and FNO+p4m, respectively. Note that since
FNO performs convolution, it is translation equivariant by
design, and therefore, we only need to sample rotations and
roto-reflections.

Lastly, we consider RADIALFNO, a frequency domain pa-
rameterization of the architecture explored by Shen et al.
(2021). Shen et al. (2021) construct equivariant CNNs us-
ing a radial kernel function. By Lemma 3.1, the Fourier
transform of this kernel will also be radial, and thus, this
architecture admits a straightforward extension to a param-
eterization in the frequency domain. For equivariance to
rotations by 90◦, the kernel need not be fully radial and
rather just invariant to 90◦ rotations. This increases the ca-
pacity of the considered baseline by reducing the degree of
weight-sharing required to achieve the desired invariance.

4.3. Results and Analysis

We consider two variants of theG-FNO:G-FNO-p4, which
employs G- Fourier layers that are equivariant to 90◦ rota-
tions and translations, and G-FNO-p4m, which is addition-
ally equivariant to horizontal and vertical reflections about
the origin. In Appendix B.1, we analyze inference times and
forward memory requirements for all models considered.

4.3.1. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Test Rollouts. In Table 1, we present results on both Navier-
Stokes datasets for 2D and 3D models. G-FNO gives the
lowest test rollout error in all 4 settings, including improving
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Table 1: Results on Navier-Stokes with (NS-SYM) and without (NS) global symmetry. 2D models make rollout predictions
autoregressively, while 3D models perform convolutions in space-time. We present the relative mean squared error as a
percentage averaged over three random seeds for predicted rollouts. Rollouts are of length 10 in the case of NS-SYM and 20
for NS, and conditioned on the first 10 time steps in the trajectory for both datasets.

2D MODELS 3D MODELS
NS NS-SYM NS NS-SYM

# PAR. (M) TEST (%) # PAR. (M) TEST (%) # PAR. (M) TEST (%) # PAR. (M) TEST (%)

FNO 0.93 8.41(0.41) 0.93 4.21(0.12) 4.92 15.84(0.37) 4.92 26.02(0.41)
FNO+p4 0.93 10.44(0.47) 0.93 4.80(0.12) 4.92 14.14(0.14) 4.92 15.75(0.33)
FNO+p4m 0.93 22.09(1.46) 0.93 13.06(3.29) 4.92 15.32(0.05) 4.92 22.25(0.21)
G-FNO-p4 0.85 4.78(0.39) 0.85 2.24(0.09) 4.80 11.77(0.13) 4.80 10.72(0.27)
G-FNO-p4m 0.84 6.19(0.61) 0.84 2.37(0.19) 3.89 12.71(0.31) 3.89 17.21(1.35)
U-NET-p4 3.65 18.40(0.44) 3.65 15.39(0.16) 6.08 24.62(0.29) 6.08 21.82(0.10)
RADIALFNO-p4 1.03 9.21(0.26) 1.03 12.81(0.42) 4.98 12.09(0.08) 4.98 17.54(0.60)
RADIALFNO-p4m 0.95 10.86(0.18) 0.95 17.39(0.22) 5.63 11.83(0.23) 5.63 17.27(0.17)

Table 2: Super-resolution results on Navier-Stokes with (NS-SYM) and without (NS) global symmetry. We increase the
resolution of the test set by a factor of 4 and evaluate models trained on the lower resolution data. For 2D models, the
super-resolution is in space, while for 3D models, the time resolution is also increased. In the column SR, we show the
super-resolution rollout errors for models predicting directly to the higher resolution, while INT. shows the error for the
predictions made at a lower resolution and fine-grained using interpolation.

2D MODELS 3D MODELS
NS NS-SYM NS NS-SYM

SR TEST (%) INT. TEST (%) SR TEST (%) INT. TEST (%) SR TEST (%) INT. TEST (%) SR TEST (%) INT. TEST (%)

FNO 43.02(0.18) 43.14(0.19) 32.45(1.47) 23.33(0.07) 29.99(0.26) 27.97(0.10) 31.24(0.66) 29.38(0.47)
FNO+p4 49.78(8.40) 43.72(0.45) 31.72(1.55) 23.32(0.09) 30.36(0.18) 27.27(0.11) 25.25(0.80) 21.20(0.31)
FNO+p4m 54.04(4.52) 46.30(1.33) 32.68(0.84) 25.02(1.24) 30.45(0.37) 27.82(0.12) 31.44(1.20) 26.64(0.32)
G-FNO-p4 43.41(0.12) 43.51(0.11) 21.89(0.05) 23.36(0.04) 29.62(0.15) 27.09(0.06) 20.44(0.73) 17.71(0.09)
G-FNO-p4m 43.78(0.33) 43.88(0.30) 22.09(0.03) 23.56(0.03) 30.02(0.31) 27.38(0.21) 23.98(1.30) 22.14(0.96)
U-NET-p4 92.00(7.22) 43.68(0.82) 70.42(1.66) 24.24(0.12) 114.99(33.94) 30.11(0.41) 79.08(3.60) 25.85(0.03)
RADIALFNO-p4 43.73(0.07) 43.86(0.07) 25.47(0.31) 26.52(0.35) 29.92(0.65) 27.52(0.48) 24.87(0.51) 22.83(0.42)
RADIALFNO-p4m 43.91(0.69) 44.02(0.71) 27.85(0.22) 28.70(0.05) 29.94(0.60) 27.40(0.45) 24.49(0.14) 22.60(0.14)

the baseline error by over 3.5% on the NS data, which lacks
global symmetry. In Appendix B.2, we examine the effect of
only maintaining an equivariant representation in the initial
layers of the network on this data, and find that performance
increases with the number of equivariant layers. The benefit
of equivariant architectures, even on data without global
symmetries, has been previously noted (Cohen & Welling,
2016), and could be due to the ability of equivariant models
to extract local symmetries (Worrall et al., 2017). By con-
trast, models trained with data augmentation may achieve
an approximate equivariance, but are not constrained to
maintain equivariant internal representations and struggle to
capture local symmetries (Worrall et al., 2017). This could
explain why the FNO with data augmentation underper-
forms the G-FNO in all settings. This observation may also
account for data augmentation reducing the performance of
the FNO in all settings except 1, including the 2D model
on NS-SYM, where the global symmetry may deceptively
suggest data augmentation as a reasonable choice.

We also observe that U-NET-p4 does not perform well in
comparison to architectures performing convolutions in the

frequency domain. This could be due to the parallel multi-
scale processing mechanisms inherent to Fourier convolu-
tions, which contrasts the sequential multi-scale processing
mechanism employed by U-Nets (Gupta & Brandstetter,
2022).

Super-Resolution. In Table 2, we examine the super-
resolution capabilities of G-FNO. In 3 out of the 4 settings,
G-FNO produces the lowest super-resolution error, giving
the second-best error to the baseline FNO only for 2D
models on NS. We also perform super-resolution by fine-
graining low-resolution predictions using interpolation. For
2D models, we observe for both NS and NS-SYM that the
direct G-FNO super-resolution predictions have a lower
error than those made with interpolation.

Rotation Test. In Table 3, we rotate the test data by 90◦

counter-clockwise and evaluate the models trained on the
unrotated data. Unsurprisingly, we observe that the errors
of all equivariant models are invariant to this transformation.
We additionally note that the difference in the rotated test
error and unrotated test error on NS-SYM is much lower
for the FNO than on NS. This empirically demonstrates the
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Table 3: Rotation test results on Navier-Stokes with (NS-SYM) and without (NS) global symmetry. We use models trained
on the unrotated data to predict rollouts for the rotated PDE. In the case of NS, rotating the PDE does not produce a solution
to the original equations as it does for NS-SYM, which we prove in Appendix C.3.

2D MODELS 3D MODELS
NS NS-SYM NS NS-SYM

TEST (%) TEST90◦ (%) TEST (%) TEST90◦ (%) TEST (%) TEST90◦ (%) TEST (%) TEST90◦ (%)

FNO 8.41(0.41) 129.21(3.90) 4.21(0.12) 9.91(0.90) 15.84(0.37) 100.75(2.20) 26.02(0.41) 26.75(0.64)
FNO+p4 10.44(0.47) 10.38(0.38) 4.80(0.12) 4.74(0.20) 14.14(0.14) 14.21(0.15) 15.75(0.33) 15.85(0.31)
FNO+p4m 22.09(1.46) 22.61(1.54) 13.06(3.29) 12.81(2.80) 15.32(0.05) 15.37(0.03) 22.25(0.21) 22.24(0.20)
G-FNO-p4 4.78(0.39) 4.78(0.39) 2.24(0.09) 2.24(0.09) 11.77(0.13) 11.77(0.13) 10.72(0.27) 10.72(0.27)
G-FNO-p4m 6.19(0.61) 6.19(0.61) 2.37(0.19) 2.37(0.19) 12.71(0.31) 12.71(0.31) 17.21(1.35) 17.21(1.35)
U-NET-p4 18.40(0.44) 18.40(0.44) 15.39(0.16) 15.39(0.16) 24.62(0.29) 24.62(0.29) 21.82(0.10) 21.82(0.10)
RADIALFNO-p4 9.21(0.26) 9.21(0.26) 12.81(0.42) 12.81(0.42) 12.09(0.08) 12.09(0.08) 17.54(0.60) 17.54(0.60)
RADIALFNO-p4m 10.86(0.18) 10.86(0.18) 17.39(0.22) 17.39(0.22) 11.83(0.23) 11.83(0.23) 17.27(0.17) 17.27(0.17)

Table 4: Results on Shallow Water Equations with (SWE-SYM) and without (SWE) global symmetry. Rollouts are of length
24 and conditioned on the first time step in the trajectory in the case of SWE-SYM. For SWE, rollouts are of length 9 and
conditioned on the first 2 time steps in the trajectory.

2D MODELS 3D MODELS
SWE SWE-SYM SWE SWE-SYM

# PAR. (M) TEST (%) # PAR. (M) TEST (×10−3) # PAR. (M) TEST (%) # PAR. (M) TEST (×10−3)

FNO 6.56 18.45(0.89) 0.93 1.22(0.07) 49.57 41.49(0.12) 4.92 1.59(0.02)
FNO+p4 6.56 33.08(0.20) 0.93 1.33(0.08) 49.57 44.16(0.14) 4.92 1.64(0.02)
FNO+p4m 6.56 44.24(1.63) 0.93 1.32(0.07) 49.57 45.06(0.20) 4.92 1.65(0.03)
G-FNO-p4 6.36 14.96(0.06) 0.85 1.21(0.02) 53.70 43.68(0.55) 4.80 1.44(0.02)
G-FNO-p4m 6.23 16.20(0.17) 0.84 1.11(0.17) 56.81 43.46(0.79) 3.89 1.44(0.02)
U-NET-p4 6.90 28.79(0.08) 3.65 30.86(11.31) 6.08 55.28(1.86) 6.08 8.03(0.35)
RADIALFNO-p4 6.79 23.37(0.14) 1.03 0.71(0.03) 53.40 44.12(0.20) 4.98 1.54(0.02)
RADIALFNO-p4m 6.84 26.20(0.55) 0.95 0.70(0.07) 51.92 44.76(0.15) 5.63 1.49(0.01)

low degree of global symmetry present in NS and further
emphasizes the ability of G-FNO to perform well even in
settings lacking such symmetry.

4.3.2. SHALLOW WATER EQUATIONS

Test Rollouts. In Table 4, we present results on both shallow
water datasets for 2D and 3D models. For the 2D models
on SWE-SYM, RADIALFNO gives the best performance,
likely due to the compatibility between the radial kernel
and radial solution function shown in Figure 3. We note
that as evidenced by the Navier-Stokes experiments and
the remaining shallow water settings, the radial inductive
bias appears to be overly restrictive and does not generalize
well beyond this setting. Beyond RADIALFNO, G-FNO
gives the lowest error out of the considered baselines. Addi-
tionally, in the 3D SWE setting, G-FNO is second to the
baseline FNO. We note that all models have an error greater
than 40% in this setting, suggesting that the 3D modeling
scheme does not work well for SWE. This could poten-
tially be due to the coarse step size representing 48 hours
reducing the smoothness of the function being convolved in
space-time.

For 2D models on SWE and 3D models on SWE-SYM,

G-FNO has the lowest test error. Although SWE lacks
global symmetry, which is immediately evident from the
non-square domain, G-FNO still improves upon the base-
line rollout error by over 2%. We present super-resolution
and rotation test results for SWE-SYM in Appendix B.3.

5. Conclusion
In this work, we propose to design FNO architectures that
encode symmetries. Specifically, by leveraging symmetries
of the Fourier transform, we extend group convolutions to
the frequency domain and design G-Fourier layers that are
equivariant to rotations, translations, and reflections. We
conduct extensive experiments to evaluate our proposed G-
FNO. Results show that explicit encoding of symmetries in
FNO architectures leads to consistent performance improve-
ments.
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Table 5: Inference time and forward memory requirements. We analyze the time and space complexity of all models on the
NS data over 10,000 forward propagations. As in our experiments, we use a batch size of 20 for the 2D models trained to
make predictions autoregressively, and a batch size of 10 for the 3D models that perform convolutions in space-time.

2D MODELS 3D MODELS

# PAR. (M) INFERENCE
TIME (MS)

FORWARD
MEMORY (GIB) # PAR. (M) INFERENCE

TIME (MS)
FORWARD

MEMORY (GIB)

FNO 0.93 4.27(1.66) 1.83 4.92 8.71(7.54) 3.09
G-FNO-p4 0.85 4.50(2.12) 1.97 4.80 10.21(15.62) 4.48
G-FNO-p4m 0.84 4.81(3.79) 2.17 3.89 10.73(16.46) 5.41
RADIALFNO-p4 1.03 4.34(2.63) 1.97 4.98 10.81(16.58) 6.24
RADIALFNO-p4m 0.95 4.16(3.29) 2.03 5.63 11.53(17.98) 7.50
U-NET-p4 3.65 7.92(4.34) 2.31 6.08 20.29(15.77) 7.45

Table 6: G-HYBRID results on NS. We let the first N layers of the network be equivariant p4 and p4mG-Fourier layers,
and the remaining 4−N layers be non-equivariant Fourier layers. We report both the test and rotated test errors.

p4 p4m
# G-FOURIER LAYERS # PAR. (M) TEST (%) TEST90◦ (%) # PAR. (M) TEST (%) TEST90◦ (%)

0 0.93 8.41(0.41) 129.21(3.90) 0.93 8.41(0.41) 129.21(3.90)
1 1.14 7.17(0.51) 126.53(3.66) 1.32 7.04(0.41) 128.32(1.83)
2 1.12 6.30(0.82) 127.89(4.99) 1.30 7.32(0.37) 129.15(3.02)
3 1.10 6.12(0.44) 128.73(7.78) 1.27 7.29(0.14) 125.74(9.08)
4 0.85 4.78(0.39) 4.78(0.39) 0.84 6.19(0.61) 6.19(0.61)

A. Training and Data Generation Details
A.1. Data Generation

For NS-SYM, we generate 1,000 training trajectories, 100 validation trajectories, and 100 test trajectories using the psuedo-
spectral Crank-Nicolson solver from Li et al. (2021a). For NS, we use the data directly from Li et al. (2021a), again with a
1,000/100/100 split. For each trajectory, the boundary conditions are periodic and the initial conditions w0(x) are sampled
from a Gaussian random field. Trajectories were solved numerically on a 256 × 256 × 120 grid and downsampled to
64× 64× 30, where the first two dimensions are in space and the third is time.

For SWE-SYM, we used numerical data from Takamoto et al. (2022) generated using the finite volume method. We split
1,000 trajectories into 800 training trajectories, 100 validation trajectories and 100 test trajectories. For each trajectory, the
radius of the dam, r in Equation (14), is sampled uniformly from (0.3, 0.7). We downsample the numerical solution from
128× 128× 100 to 32× 32× 25. Unlike NS and NS-SYM, we performed spatial downsampling using 2× 2 mean-pooling,
as strided downsampling introduced a significant asymmetry that was not present in the original data.

For SWE, we follow the methods and splits used by Gupta & Brandstetter (2022) to generate 5,600 training trajectories,
1,120 validation trajectories, and 1,120 test trajectories, all with resolution 96× 192× 88. We follow Gupta & Brandstetter
(2022) in temporally downsampling by a factor of 8 to 11 total time steps spaced 48 hours apart.

A.2. Training

We perform 3 replicates of all experiments and closely follow the training strategy and hyperparameter specification scheme
of Li et al. (2021a). We use 4 Fourier layers for all frequency domain models, truncating the transform to the 12 lowest
Fourier modes for all 2D models and 8 spatial/6 temporal Fourier modes for all 3D models. In the case of SWE, we increase
the number of modes for all 2D models to 32 following Gupta & Brandstetter (2022) and 22 spatial/8 temporal modes for all
3D models. We also replace the SYMMETRIC positional encoding discussed in Appendix B.5 for G-FNO on SWE with the
CARTESIAN encoding, as the non-square 96× 192 spatial domain prevents the SYMMETRIC encoding from being invariant
to rotations, breaking the equivariance of the model.

For the baseline FNO, the dimension of the latent space is 20. For G-FNO, we offset the extra dimensions added to
kernels discussed in Section 3.3 by reducing the number of channels to give a roughly equal number of trainable parameters
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Table 7: Super-resolution results on SWE-SYM. We increase the resolution of the test set by a factor of 4 and evaluate
models trained on the lower resolution data. For 2D models, the super-resolution is in space, while for 3D models, the time
resolution is also increased. In the column SR, we show the super-resolution rollout errors for models predicting directly
to the higher resolution, while INT. shows the error for the predictions made at a lower resolution and fine-grained using
interpolation.

2D MODELS 3D MODELS
SR TEST (×10−3) INT. TEST (×10−3) SR TEST (×10−3) INT. TEST (×10−3)

FNO 15.56(2.92) 16.15(0.01) 16.90(0.58) 17.76(0.01)
FNO+p4 14.80(3.30) 16.16(0.01) 17.19(0.86) 17.76(0.01)
FNO+p4m 16.38(3.94) 16.16(0.01) 17.11(0.83) 17.75(0.01)
G-FNO-p4 19.39(4.60) 16.15(0.00) 15.87(0.60) 17.75(0.00)
G-FNO-p4m 31.00(11.27) 16.15(0.01) 16.88(1.19) 17.75(0.00)
U-NET-p4 3009.65(2348.93) 35.19(9.48) 167.76(36.77) 19.19(0.13)
RADIALFNO-p4 30.40(4.20) 16.12(0.00) 14.48(0.76) 17.76(0.00)
RADIALFNO-p4m 22.42(0.95) 16.12(0.00) 13.36(0.36) 17.76(0.00)

Table 8: Rotation test results for SWE-SYM. We use models trained on the unrotated data to predict rollouts for the rotated
PDE.

2D MODELS 3D MODELS
TEST (×10−3) TEST90◦ (×10−3) TEST (×10−3) TEST90◦ (×10−3)

FNO 1.22(0.07) 1.50(0.05) 1.59(0.02) 1.80(0.02)
FNO+p4 1.33(0.08) 1.34(0.10) 1.64(0.02) 1.69(0.03)
FNO+p4m 1.32(0.07) 1.33(0.07) 1.65(0.03) 1.71(0.03)
G-FNO-p4 1.21(0.02) 1.21(0.02) 1.44(0.02) 1.44(0.02)
G-FNO-p4m 1.11(0.17) 1.11(0.17) 1.44(0.02) 1.44(0.02)
U-NET-p4 30.86(11.31) 30.86(11.31) 8.03(0.35) 8.03(0.35)
RADIALFNO-p4 0.71(0.03) 0.71(0.03) 1.54(0.02) 1.54(0.02)
RADIALFNO-p4m 0.70(0.07) 0.70(0.07) 1.49(0.01) 1.49(0.01)

compared to the baseline FNO. Specifically, in the case of 2D models, the dimension of the latent space for G-FNO-p4 and
G-FNO-p4m is 10 and 7, respectively. For 3D models, the dimensions are 11 and 7, except in the case of SWE, where
we increase the dimension for G-FNO-p4m to 8. We also increased the first-layer latent dimension to 100 for a 48.09M
parameter 3D U-NET-p4 on SWE. However, the 6.08M parameter version with latent dimension 32 presented in Table 4
improves the test error over the larger model by roughly 10%.

As opposed to the RECURRENT training strategy employed by Li et al. (2021a) for the 2D models, we instead use the
TEACHER FORCING strategy, which was shown by Tran et al. (2023) to improve performance. In Appendix B.4, we
compare training strategies on NS. We use the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, and
weight decay 10−4. We use batch size of 20 for 2D models and 10 for 3D models with a cosine learning rate scheduler that
starts at 10−3 and is decayed to 0. 3D models are trained for 500 epochs or until the validation loss does not improve for
100 successive epochs, while 2D models are trained for 100 epochs. 2D models are trained for less epochs because each
PDE in the training set corresponds to 1 training example for the 3D models and T − Tin training examples for the 2D
models, where Tin is the number of time steps being conditioned on. All models are implemented using PyTorch (Paszke
et al., 2019) and trained on a single NVIDIA A100 80GB GPU.

B. Additional Results
B.1. Inference Time and Forward Memory Requirements

In Table 5, we present the average inference time across 10,000 forward evaluations and the GPU memory utilized for each
model on the NS data. Here, we note that the times reported for 2D models are for predictions only one step into the future,
while 3D models perform convolutions in space and time and thus predict all T = 20 steps with one forward pass. We use
batch size of 20 for 2D models and 10 for 3D models.
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Table 9: Training strategy analysis for NS. We present the best validation result and super-resolution test error for three
choices of training strategy: MARKOV, where we condition on one time step and predict one time step into the future,
RECURRENT, where we condition on several time steps and predict the remaining steps in the rollout autoregressively, and
TEACHER FORCING, where we condition on several time steps and predict 1 time step into the future.

STRATEGY VALID (%) SR TEST (%)

FNO
MARKOV 7.19(0.28) 61.10(2.58)
RECURRENT 16.23(0.49) 42.14(0.25)
TEACHER FORCING 8.64(0.19) 43.02(0.18)

FNO+p4
MARKOV 10.90(0.24) 60.46(2.92)
RECURRENT 17.60(0.14) 41.22(0.41)
TEACHER FORCING 10.70(0.49) 49.78(8.40)

FNO+p4m
MARKOV 18.26(0.75) 60.41(2.28)
RECURRENT 20.81(0.28) 40.63(0.20)
TEACHER FORCING 22.43(1.59) 54.04(4.52)

G-FNO-p4
MARKOV 5.06(0.04) 43.35(0.24)
RECURRENT 13.20(0.06) 42.36(0.23)
TEACHER FORCING 4.86(0.32) 43.41(0.12)

G-FNO-p4m
MARKOV 6.59(0.96) 43.18(0.82)
RECURRENT 13.93(0.05) 42.16(0.34)
TEACHER FORCING 6.73(0.82) 43.78(0.33)

U-NET-p4
MARKOV 33.70(4.00) 110.60(0.92)
RECURRENT 51.61(7.68) 112.43(3.84)
TEACHER FORCING 18.86(0.53) 92.00(7.22)

RADIALFNO-p4
MARKOV 8.43(0.25) 43.14(0.29)
RECURRENT 13.51(0.07) 42.55(0.05)
TEACHER FORCING 9.59(0.05) 43.73(0.07)

RADIALFNO-p4m
MARKOV 10.38(0.19) 43.74(0.09)
RECURRENT 13.81(0.21) 42.30(0.27)
TEACHER FORCING 11.51(0.68) 43.91(0.69)

B.2. G-HYBRID Experiments on NS

We explore the effect of only maintaining an equivariant representation in the initial layers by composing N ∈ {0, 1, 2, 3, 4}
G-Fourier layers and replacing the final 4 − N layers with non-equivariant FNO layers. We train 2D models to make
predictions autoregressively on the NS task described in Section 4.2 and present rollout errors on the test set and rotated test
set in Table 6.

We observe that increasing the number of equivariant layers improves performance, despite the NS data not being globally
symmetric, as we prove in Appendix C.3. Equivariant models have been noted to offer benefits on non-symmetric datasets
in the past (Cohen & Welling, 2016). The observed benefits could stem from the ability of equivariant layers to learn local
symmetries (Worrall et al., 2017).

B.3. SWE-SYM Super-Resolution and Rotation Test Results

In Tables 7 and 8, we present super-resolution and rotation test results for SWE-SYM. For the super-resolution task with
2D models that make rollout predictions autoregressively, the ground truth rollouts during training are 32× 32× 24 and
128× 128× 24 during testing, where the first two dimensions are spatial and the third is the number of time steps. For 3D
models that perform convolutions in space-time, the temporal resolution also increases during testing to 128× 128× 96.

B.4. Training Strategy for 2D Models

We consider three different variants of training for 2D models: RECURRENT, TEACHER FORCING, and MARKOV. Li
et al. (2021a) used RECURRENT training for their 2D FNO, wherein the model predicts the entire rollout during training
autoregressively and the loss is back-propagated through time. Tran et al. (2023) found that TEACHER FORCING and
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Table 10: Positional encoding analysis for NS. We present the best validation, test, and rotation test results for three choices
of positional encoding: NONE, where we do not encode position, SYMMETRIC, where the encoding for each point is the
distance from the middle of the grid, and CARTESIAN, where the encoding is the Cartesian coordinates of the grid point.

POSITIONAL ENCODING VALID (%) TEST (%) TEST90◦ (%)

FNO
NONE 9.05(0.19) 8.54(0.36) 130.14(2.06)
SYMMETRIC 9.01(0.26) 8.95(0.18) 129.08(3.95)
CARTESIAN 8.64(0.19) 8.41(0.41) 129.21(3.90)

FNO+p4
NONE 10.82(0.21) 10.46(0.31) 10.46(0.46)
SYMMETRIC 10.63(0.07) 11.04(0.26) 10.47(0.36)
CARTESIAN 10.70(0.49) 10.44(0.47) 10.38(0.38)

FNO+p4m
NONE 23.54(0.57) 23.07(1.29) 23.65(1.04)
SYMMETRIC 23.67(1.31) 23.29(0.44) 23.09(0.29)
CARTESIAN 22.43(1.59) 22.09(1.46) 22.61(1.54)

G-FNO-p4
NONE 4.45(0.27) 4.47(0.21) 4.47(0.21)
SYMMETRIC 4.86(0.32) 4.78(0.39) 4.78(0.39)
CARTESIAN 4.61(0.25) 4.39(0.25) 4.39(0.25)

G-FNO-p4m
NONE 7.15(0.25) 6.75(0.17) 6.75(0.17)
SYMMETRIC 6.73(0.82) 6.19(0.61) 6.19(0.61)
CARTESIAN 6.86(0.17) 6.67(0.32) 6.67(0.32)

U-NET-p4
NONE 18.00(0.60) 17.95(0.07) 17.95(0.06)
SYMMETRIC 18.86(0.53) 18.40(0.44) 18.40(0.44)
CARTESIAN 18.84(1.15) 17.73(0.13) 18.07(0.27)

RADIALFNO-p4
NONE 9.56(0.31) 9.13(0.09) 9.13(0.09)
SYMMETRIC 9.59(0.05) 9.21(0.26) 9.21(0.26)
CARTESIAN 9.79(0.31) 9.58(0.05) 24.75(20.20)

RADIALFNO-p4m
NONE 11.89(0.34) 11.01(0.04) 11.01(0.04)
SYMMETRIC 11.51(0.68) 10.86(0.18) 10.86(0.18)
CARTESIAN 11.36(0.44) 11.20(0.12) 11.84(1.02)

MARKOV training improved performance of FNO architectures relative to RECURRENT training. In both strategies, the
model is trained to make predictions only one step into the future conditioned on the ground truth solutions at the previous
time steps. However, under the MARKOV strategy, the model is only conditioned on the most recent time step, whereas
models trained with TEACHER FORCING are conditioned on several of the most recent time steps.

In Table 9, we compare these training strategies based on their validation errors and super-resolution test errors. In all cases,
our findings agree with those of Tran et al. (2023) in that MARKOV and TEACHER FORCING improve results relative to
RECURRENT training. While for some models, MARKOV training gives a better error than TEACHER FORCING, we find
that MARKOV training significantly reduces the ability of the baseline FNO to perform super-resolution, and thus, we opt to
train all models using the TEACHER FORCING strategy.

B.5. Positional Encoding

We consider 3 variants of positional encoding: NONE, where position is not encoded, SYMMETRIC, where the encoding
represents the distance of the grid point from the center of the grid, giving a roto-reflection invariant grid, and CARTESIAN,
where the encoding is the Cartesian coordinates of each of the grid points. The resulting grid is then concatenated to the
input of the network. As the grid is fixed and does not transform with the input, SYMMETRIC breaks translation equivariance
while preserving roto-reflection equivariance, while CARTESIAN breaks translation and roto-reflection equivariance. NONE
preserves all symmetries.

We present validation, test, and rotation test results for these encodings in Table 10 and find that, although results are
mixed, in 5 of the 8 considered models, some form of positional encoding improves the validation error over NONE. In our
experiments, we therefore elect to use SYMMETRIC positional encoding for all equivariant models to preserve roto-reflection
equivariance and CARTESIAN positional encoding for FNO baselines (FNO, FNO+p4, and FNO+p4m). The exception is
the SWE experiments, where the non-rectangular domain breaks the roto-reflection invariance of the SYMMETRIC encoding.
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Table 11: Steerable G-FNO results on NS. We present test and rotation test results for a steerable parameterization of the
G-FNO.

# PAR. (M) TEST (%) TEST90◦ (%)

G-FNO-p4-STEER 0.83 20.87(1.25) 20.87(1.25)
G-FNO-p4m-STEER 0.89 22.58(0.41) 22.58(0.41)
G-FNO-p4 0.85 4.78(0.39) 4.78(0.39)
G-FNO-p4m 0.84 6.19(0.61) 6.19(0.61)

We therefore use CARTESIAN encoding for all models on this dataset.

B.6. Steerable parameterization of G-FNO

Steerable CNNs (Cohen & Welling, 2017) construct equivariant convolution layers using a steerable basis ϕ1, ϕ2, . . . , ϕn.
The steerable basis for each layer is constructed offline by solving a linear system of equations dependent on the group
representation of the input function and the desired representation of the output function. The steerable kernel ψ is then
given by

ψ =

n∑
j=1

αjϕj (16)

where α1, α2, . . . , αn are the learnable basis coefficients. Steerable convolutions are strictly more general than group
convolutions, since choosing the input and output representation as the regular representation gives an alternative method for
parameterizing group convolutions (Cohen & Welling, 2017). Furthermore, steerable convolutions can achieve equivariance
to infinite groups such as continuous rotations (Weiler & Cesa, 2019).

To parameterize the steerable kernel ψ in the frequency domain, we use the linearity of the transform as

Fψ =

n∑
j=1

αjFϕj . (17)

Thus, to learn a steerable kernel in the frequency domain, it is sufficient to learn the basis coefficients for the transform of
the basis functions. This has the added benefit that all of the learnable parameters in the model, i.e., the basis coefficients,
are real-valued.

In Table 11, we consider a steerable parameterization of G-FNO for the groups p4 and p4m. These initial results suggest
this parameterization is not ideal, as the models given by the original parameterization are significantly better. Future work
should investigate a more effective steerable parameterization so that equivariant frequency domain convolutions can be
extended to continuous groups.

C. Proofs and Background
C.1. The Groups p4 and p4m

In this section, we characterize the groups p4 and p4m. p4 is the group generated by translations and 90◦ rotations, while
p4m is p4 with reflections.

For us, an element g ∈ p4 is parameterized by sg ∈ {0, 1, 2, 3} for a planar rotation and xg ∈ R2 for a translation by xg.

We then let Rsg =

(
0 −1
1 0

)sg

, giving a rotation by sg · 90◦. The element g acts on a function ν : R2 → R by applying a

rotation followed by a translation as

(Lgν)[x] = ν
(
R−1

sg x− xg

)
. (18)

For discretized functions on a numerical grid δ · Z2, the translations xg are restricted to grid elements. For the sake of
simplicity, we focus on this setting in the following, which corresponds to our discretization. The continuous case is perfectly
analogous.
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Next, for a function ρ : p4 → R defined on p4, denote ρ(h) = ρ(sh, xh). Here, it may be helpful to picture p4 as
{0, 1, 2, 3}×Z2, that is, a “stack” of 4 planes. The translation coordinate xh indexes each of these planes, while the rotation
coordinate sh tracks the relative pose of the corresponding plane as it pertains to rotations, with sh = 0 indicating that the
plane is in its canonical orientation, sh = 1 indicating that the plane is rotated by 90◦, etc. Then, g transforms ρ by applying
a roto-translation to each of the planes and periodically incrementing the rotation coordinate sh as

(Lgρ)[h] = ρ
(
(sh + sg) mod 4, R−1

sg xh − xg

)
. (19)

For example, for the “slice” of ρ representing the plane in the second position, i.e., rotated by 180◦, rotating ρ by 180◦ will
bring that plane to its canonical orientation, that is (2 + 2) mod 4 = 0.

Further, for the transformation m in p4m, m is parameterized by sm and xm, with

sm =
(
s(1)m , s(2)m

)
∈ {−1, 1} × {0, 1, 2, 3}.

Let Rsm be a 2D orthogonal matrix corresponding to a rotation by s(2)m · 90◦ followed by a horizontal reflection if, and only

if, s(1)m = −1. That is, Rsm =

(
s
(1)
m 0
0 1

)(
0 −1
1 0

)s(2)m

. Then, m transforms the function ν similar to before by applying

a roto-reflection followed by a translation as

(Lmν)[x] = ν
(
R−1

smx− xm
)
. (20)

Lastly, for the function η : p4m→ R defined on p4m, again denote η(p) = η(sp, xp). Similar to the p4 case, xp indexes
into the “stack” of eight planes comprising p4m, while s(1)p tracks the relative pose of the corresponding plane with respect
to horizontal reflections and s(2)p tracks the rotational pose. Then, m transforms η as

(Lmη)[p] = η
(
s(1)p · s(1)m , (s(2)p + s(2)m ) mod 4, R−1

smxp − xm

)
. (21)

For example, for the “slice” of η representing the plane in the pose sp = (−1, 3), i.e., reflected and rotated by 270◦, applying
a roto-reflection by 90◦ will bring that plane to its canonical orientation, that is (−1 · −1, (3 + 1) mod 4) = (1, 0). Note
that vertical reflections are accomplished by composing a rotation and horizontal reflection.

C.2. Proof of Symmetry of Fourier transform to O(n)

Lemma C.1. Let A ∈ Rn×n be an invertible matrix, f : Rn → R Lebesgue-integrable and b ∈ Rn. Consider the function
fA,b : Rn → R given by fA,b(x) = f(Ax+ b). Then

F(f(A,b))(ξ) =
e−2πi ⟨A−T ξ,b⟩

|detA| F(f)(A−T ξ)

In particular, if A is an orthogonal matrix, then |detA| = 1 and A−T = A, so for all O ∈ O(n):

F(f(O,b))(ξ) = e−2πi ⟨Oξ,b⟩ F(f)(Oξ)

Proof. We will use the multi-dimensional change of variables formula with the substitution z = Ax + b, as well as the
identity ⟨ξ, Az⟩ = ⟨AT ξ, z⟩.

F(f(A,b))(ξ) =
1

(2π)n/2

∫
Rn

e−2πi ⟨ξ,x⟩f(A,b)(x) dx

=
1

(2π)n/2 |detA|

∫
Rn

e−2πi ⟨ξ,A−1(Ax+b)⟩+2πi ⟨ξ,A−1b⟩f(Ax+ b) |detA|dx

= e2πi⟨ξ,A
−1b⟩ 1

(2π)n/2 |detA|

∫
Rn

e−2πi ⟨ξ,A−1z⟩f(z) dz

=
e2πi ⟨ξ,A

−1b⟩

|detA|
1

(2π)n/2

∫
Rn

e−2πi ⟨A−T ξ,z⟩ f(z) dz

=
e2πi ⟨A

−T ξ,b⟩

|detA| F(f)(A−T ξ).
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C.3. Proof of Navier-Stokes Closure to Action of O(2)

Lemma C.2. Let U ⊆ R2 be a domain or U = T2 = R2/Z2 the flat torus/periodic square in which we identify the
top/bottom and left/right sides.

Suppose that the functions u : U → R2, w, f : U → R solve the partial differential equation

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x)

∇ · u(x, t) = 0
(22)

Take R to be an orthogonal matrix describing a rotation or reflection. Then the functions uR : R−1U → R2 and
wR, fR : R−1U → R also satisfy Equation (22), where:

uR(x, t) := R⊤u(Rx, t) (23)
wR(x, t) := w(Rx, t) (24)
fR(x) := f(Rx) (25)

Note that if f is invariant to the action ofO(2), then fR = f , and thus, this result implies that uR andwR solve Equation (22).

Lemma C.2 is most meaningful in our context if the domain U is invariant under the rotation R, i.e. if R−1U = U . This is
true if U = R2, U = B1(0) is a disk in R2, or if U = R2 and R is a reflection or a rotation by 0◦, 90◦, 180◦ or 270◦. The
case U = T2 is associated with the study of problems that are periodic in the coordinate directions.

Proof. For brevity of notation, we omit the time variable t.

To show that uR, wR and fR satisfy Equation (22), it is enough to show that:

(uR · ∇wR)(x) = (u · ∇w)(Rx) (26)
(∆wR)(x) = (∆w)(Rx) (27)

(∇ · uR)(x) = (∇ · u)(Rx) (28)

First, to show Equation (26), let D(ν) ∈ Rd×q denote the Jacobian matrix for ν : Rq → Rd. Then:

(uR · ∇wR)(x) = u(Rx)⊤R (D (w(Rx))R)
⊤

= (u · ∇w)(Rx)

Next, to show Equation (27), let δj,k be the Kronecker delta, which is 1 if j = k and 0 otherwise:
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∆wR(x) =

2∑
i=1

∂

∂xi

(
∂

∂xi
w(Rx)

)

=

2∑
i=1

2∑
j=1

∂

∂xi

(
∂w

∂xj
(Rx)

2∑
k=1

∂(Rj,kxk)

∂xi

)

=

2∑
i=1

2∑
j=1

∂

∂xi

(
∂w

∂xj
(Rx)Rj,i

)

=

2∑
i=1

2∑
j=1

2∑
k=1

Rj,i
∂w

∂xk∂xj
(Rx)

2∑
l=1

∂(Rk,lxl)

∂xi

=

2∑
i=1

2∑
j=1

2∑
k=1

Rj,i
∂w

∂xk∂xj
(Rx)Rk,i

=

2∑
j=1

2∑
k=1

∂w

∂xk∂xj
(Rx)(RR⊤)j,k

=

2∑
j=1

2∑
k=1

∂w

∂xk∂xj
(Rx)δj,k

= (∆w)(Rx)

Lastly, to show Equation (28):

∇ · uR(x) =
2∑

i=1

∂

∂xi

(
R⊤u(Rx)

)
i

=

2∑
i=1

2∑
j=1

∂

∂xi
Rj,iuj(Rx)

=

2∑
i=1

2∑
j=1

2∑
k=1

Rj,i
∂uj
∂xk

(Rx)

2∑
l=1

∂(Rk,lxl)

∂xi

=

2∑
i=1

2∑
j=1

2∑
k=1

Rj,i
∂uj
∂xk

(Rx)Rk,i

=

2∑
j=1

2∑
k=1

∂uj
∂xk

(Rx)(RR⊤)j,k

=

2∑
j=1

2∑
k=1

∂uj
∂xk

(Rx)δj,k

= (∇ · u)(Rx)

D. Rollout Visualizations
In this section, we randomly select a trajectory from the test set and visualize the ground truth rollout alongside the rollout
predicted by the 2D version of G-FNO-p4 trained to make predictions autoregressively. We visualize SWE in Figure 4,
SWE-SYM in Figure 5, NS in Figure 6, and NS-SYM in Figure 7.
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T = 3
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(a) Vorticity
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(b) Pressure

Figure 4: Rollout of SWE.
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T = 2
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0.41 0.84 1.28 0.41 0.84 1.28 0.000 0.005

Figure 5: Rollout of SWE-SYM. Note that the scales of the error bars on the left and the right differ.
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T = 11

Ground Truth Predicted Abs. Error
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Figure 6: Rollout of Navier-Stokes with non-symmetric forcing (NS). Note that the scales of the error bars on the left and
the right differ.
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Figure 7: Rollout of Navier-Stokes with symmetric forcing (NS-SYM).
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